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Abstract

Real-world behavior-based robot control
problems require the coordination of a large
number of competing behaviors. However,
coordination becomes increasingly difficult as
the number of competing behaviors increases.
Behavior hierarchies address this difficulty,
but do not solve it since high-level behav-
iors still require state information of lower-
level behaviors. Abstracting the state of
lower-level behaviors through priorities re-
moves this restriction, which should allow the
behavior hierarchy to better scale. However,
whether or not this abstraction negatively
impacts the effectiveness of the hierarchy is
unknown. In this work, both the quality of
priority-based behavior hierarchies and their
ease of development are evaluated. This is
done by using grammatical evolution to learn
how to coordinate low-level behaviors to ac-
complish a task. I show that not only do
priority-based behavior hierarchies perform
just as well as standard hierarchies, but that
they promote faster learning of solutions that
are better suited as components in larger hi-
erarchies.

1. Introduction

Real-time control is necessary for robots to operate
in real-world environments. A popular approach for
providing this real-time capability in dynamic environ-
ments is to use a behavior-based architecture (Brooks,
1986). One of the most significant problems for these
architectures is the coordination, or arbitration, of
multiple, competing behaviors. As the number of be-
haviors is scaled up, the coordination of behaviors
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becomes an increasingly complex and difficult task.
While this problem is not restricted to robot control
problems (Pirjanian, 1999), a solution is required if
robots are expected to successfully complete complex
tasks in dynamic environments.

This work seeks to address this scalability problem by
providing an abstraction layer that separates the im-
plementation of a given behavior from its use. This
abstraction is accomplished by encapsulating all of
the sensory input of a behavior into a single priority.
Through this abstraction, priorities can significantly
reduce the amount of state information required to ef-
fectively coordinate the behaviors. Furthermore, when
behaviors are organized into a hierarchy that utilizes
priorities, scaling to a large number of behaviors be-
comes possible.

In this work, I evaluate the effectiveness of priority-
based architectures in efficiently controlling an agent
and compare the results with standard architectures.
In addition, I compare the ease with which each can
be developed by using grammatical evolution, a form
of genetic programming.

2. Related work

One approach to arbitrating behaviors decomposes
the control problem into specific tasks (Nicolescu &
Matarić, 2002). In this method, a behavior network is
constructed, which is capable of determining the cur-
rent task and, in turn, activates the appropriate behav-
ior. Machine learning has even been successfully ap-
plied using this technique (Nicolescu & Matarić, 2001),
thus reducing the development overhead for large sys-
tems. While the hierarchical nature of this particular
approach does address some scaling issues, it does not
address the situation where more than one behavior
is active at any given time, which is where the more
difficult problem lies.

Another method is to approach the problem from a
multiple-objective function perspective (Pirjanian &
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Figure 1. A sample fuzzy behavior hierarchy, as used by
Tunstel (2001). Behaviors are implemented as fuzzy rule
sets and output either weighting values for other behaviors
or control values to be defuzzified. For simplicity, not all
sensor output links are shown.

Matarić, 2000). In this method, a weighting function
is developed that allows many behaviors to execute
concurrently and then weights the resulting actions
into a single action. However, in this technique, a new
weighting function must be developed whenever the
set of behaviors is modified, thus preventing reuse of
the function when set of behaviors is modified.

Saffiotti (1997) uses fuzzy logic rule sets to allow for
smooth transitions between behaviors and to improve
the overall robustness of the system. The effectiveness
of this approach is demonstrated by the development
of a team of robots for the Aibo RoboCup League (Saf-
fiotti & Wasik, 2003). The approach used in this work
combines a number of these approaches into a fuzzy
behavior hierarchy (Saffiotti & Wasik, 2003; Tunstel,
2001). Figure 1 shows one implementation of such
a hierarchy, as described by Tunstel (2001). Rather
than performing behavior arbitration in which a sin-
gle behavior is selected for control, fuzzy behavior hi-
erarchies typically use behavior fusion. This results
in more than one behavior participating in the con-
trol of the agent and each behavior being individually
weighted according to its applicability. While using
this type of hierarchy does not solve the behavior co-
ordination problem, it can simplify it by decomposing
it into smaller problems.

To aid in the development of the behavior hierarchies,
machine learning techniques can be utilized. For ex-
ample, it has been shown that genetic programming
can be used to evolve what are called composite behav-
iors (Tunstel, 2001). These behaviors are responsible
for coordinating lower-level behaviors through weight-
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Figure 2. A high-level view of a fuzzy behavior hierarchy,
as used by Tunstel (2001). Note that the primitive sensor
outputs are used throughout the behavior hierarchy.

ing values called degrees of applicability. This coordi-
nation scheme abstracts out many of the details of the
lower-level behaviors. Furthermore, lower-level behav-
iors can be developed in isolation as they contain no
internal reference to their parent composite behaviors.
The hierarchical nature of the set of behaviors, along
with this encapsulation, minimizes many of the nega-
tive effects encountered when scaling up the number
of behaviors. Perhaps the most important of these is
that once a behavior has been developed, it does not
require any modifications to work in conjunction with
other behaviors. Handling the interaction with other
behaviors is the domain of the composite behavior.

Unfortunately, scaling issues still remain. The most
notable is that while the hierarchy makes composite
behaviors simpler as the hierarchy is scaled up, the
inputs to the composite behaviors increase exponen-
tially. This occurs because there is no abstraction layer
for a primitive behavior’s sensory inputs (see Fig. 2).
As a result, composite behaviors are still required to
process all of the inputs of any child primitive behav-
iors. This couples a given composite behavior to a par-
ticular implementation, or context, of a sub-behavior.
For example, a composite behavior at the top of the
hierarchy would still be tied to the definition what it
means to be “too close” to an obstacle. Previous re-
search has not addressed this concern. This is most
likely due to the fact that most behavior hierarchies
described in the literature are relatively shallow.

3. Prioritizing behaviors

To remove this coupling, I propose adding abstraction
layers between the sensor outputs and the behavior
hierarchy. As a result, high-level composite behav-
iors use high-level information to coordinate behav-
iors, thus reducing the amount and granularity of the
information required. This abstraction layer is imple-
mented using virtual sensors. A virtual sensor is used
to not only provide “normal” output for use by be-
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Figure 3. The sensor hierarchy mirrors the behavior hi-
erarchy. Note that while primitive sensor information is
available to primitive behaviors, priorities are provided to
higher-level composite behaviors.

haviors but to also provide an abstracted view of this
output, hereafter referred to as a priority. Each virtual
sensor is related to a particular behavior present in the
behavior hierarchy and indicates the current priority
of that behavior, given the information available. This
priority value is then used by higher-level behaviors in-
stead of the normal output provided by the sensor. We
see examples of this approach frequently in our every-
day lives. For example, when an engine warning light
in a car turns on, it does not indicate the exact prob-
lem, but rather the general fact that a higher weight
should now be given to behaviors such as pulling to
the shoulder and turning off the engine.

By adding these virtual sensors to abstract the sen-
sor data to higher and higher levels, I have effectively
created a sensor hierarchy that mirrors the existing
behavior hierarchy (Fig. 3). In fact, the sensor hier-
archy is built at the same time as behavior hierarchy
since composite behaviors require the priorities that
the sensor hierarchy provides. Not only has the sen-
sor data been abstracted for high-level behaviors, it
has also been abstracted for high-level virtual sensors
(Fig. 4). As a result, the high-level sensors benefit
from the abstraction and can be conceptually simple.

Using priorities and virtual sensors, the system has
four distinct stages (Fig. 3). First, the primitive sen-
sors sense the environment and generate raw output.
Second, virtual sensors process these raw outputs so
they are usable by behaviors and then generate prior-
ities which give overall indications of the importance
of the current state. Next, these sensor outputs and
priorities are used by the behavior hierarchy to pro-
duce control commands. Last, the control commands
are sent to motor controllers for execution. It is im-
portant to note that there is no requirement for the
individual stages to be performed synchronously. In
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Figure 4. A sample sensor hierarchy that could be used in
conjunction with a behavior hierarchy. Virtual sensors pro-
duce a priority for a corresponding behavior that is then
used by virtual sensors at a higher level to produce further
abstracted priorities.

fact, each stage could be evaluated at different rates.

The effectiveness of this system is dependent on the
process used to generate the priorities and their qual-
ity. The amount of effort is similar to that of the stan-
dard approach, but the responsibility has been shifted
from the behaviors to the virtual sensors. In doing so,
I have reduced the composite behavior to its essence.

Note that there is no restriction on the method for
determining or calculating a priority value. For ex-
ample, a sensor used for determining the range and
direction to obstacles could simply base the priority
on the distance to the closest obstacle or could factor
in the direction to the obstacle as well.

Further, note that although each virtual sensor is ca-
pable of sending its output (such as the distance to
an obstacle) to its corresponding behavior, this is only
necessary for behaviors that directly affect the control
commands (i.e., are not composite behaviors). This is
due to the fact that the priorities provide enough in-
formation for a composite behavior to coordinate the
execution of the sub-behaviors. Furthermore, the ab-
straction of this output means that composite behav-
iors need not know the nature of that output. For
example, fuzzy behaviors can make use of fuzzified val-
ues, but since behaviors are not restricted to fuzzy im-
plementations, there is no limit imposed on the nature
or volume of information provided to behaviors.

4. Learning coordination

In order for priorities to be effective, they must pro-
vide the agent with performance comparable to that
provided by architectures that do not use priorities.
In addition, priorities should facilitate faster develop-
ment than non-priority-based architectures. To eval-
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uate both these criteria, I apply machine learning to
the problem of coordinating two different composite
behaviors. For each composite behavior, both priority-
based solutions and non-priority-based solutions are
learned. If the performance of priority-based solutions
is better than, or equal to, that of non-priority-based
solutions, we can conclude that there is significant ev-
idence that using priorities does not negatively impact
the performance of agents that use them. Second, if
priorities do in fact promote faster development, per-
formance during trials that use priorities should im-
prove at a faster rate than on trials that do not use
priorities.

The first composite behavior learned is one that com-
bines the primitive behaviors collision avoidance and
goal seeking. This composite behavior is hereafter re-
ferred to as the CAGS behavior. While a simple com-
posite behavior, the two primitive behaviors do com-
pete against one another and intelligent arbitration is
required for an agent to successfully arrive at the goal.
The second composite behavior learned adds the prim-
itive behavior runaway to CAGS and is hereafter re-
ferred to as the CAGSRA behavior. The addition of
the third primitive behavior increases the complexity
of the composite behavior and, therefore, has the po-
tential to impact both the performance and the learn-
ing rate of the solutions. The sensor inputs for each
of the three primitive behaviors are egocentric and
two-dimensional in nature and consist of direction and
magnitude components. Therefore, the use of priori-
ties reduce the number of inputs in half from six to
three. While this reduction may not seem meaning-
ful, when the number of behaviors is scaled up, this
reduction can become significant.

Grammatical evolution (Ryan et al., 1998) is used to
learn each of the composite behaviors for a number of
reasons. First, genetic programming, of which gram-
matical evolution is a special modification, has already
been shown to be useful in learning composite behav-
iors (Tunstel, 2001). Second, the grammatical nature
of fuzzy rulesets lends itself to this learning method. A
standard, variable-length bit-string representation was
used with eight bits representing a codon. For each ex-
perimental case, the evolutionary process was run for
50 generations using a population of 100 individuals.
The initial population was generated randomly with
subsequent generations being created through stan-
dard one-point crossover with a 1% probability of mu-
tation. For evaluation, the bit-string was mapped to
a set of fuzzy rules using either a grammar utilizing
priorities or not utilizing priorities depending on the
experiment. Figure 5 shows a portion of one of the
grammars used.

〈rule〉 ::= 〈antecedent〉 〈consequent〉 〈rule〉
| 〈antecedent〉 〈consequent〉

〈antecedent〉 ::= 〈antecedent〉 〈antecedent〉
| 〈collision-theta-dir〉
| 〈time-till-collision〉
| 〈goal-dir-theta〉
| 〈goal-arrival-time〉

〈time-till-collision〉 ::= time-till-collision( NOW )
| time-till-collision( REAL SOON )
| time-till-collision( SOON )
| time-till-collision( LONG TIME )
| time-till-collision( DISTANT )

Figure 5. A portion of a non-priority grammar used in
grammatical evolution.

Since the fitness function dictates what the system
will learn, the proper selection of a fitness function
determines what the resulting solution will look like.
Three different fitness functions are used to evaluate
solutions. The first fitness function was task-specific.
For example, in the collision avoidance, goal-seeking
behavior, the fitness of a solution was based on the
ability of an agent to get closer to the goal at each
timestep. Survivability (i.e., avoiding collisions) was
implicitly rewarded by the opportunity for future re-
ward. The second fitness function rewarded solutions
that weighted the primitive behaviors at the level sug-
gested by the priority and was computed by

fitness = priority × (priority − weight)

Furthermore, the solution was penalized if it did not
weight a primitive behavior with a non-zero priority.
If a behavior with a nonzero priority is not weighted
by any fuzzy rule, it received zero fitness for that
timestep. This penalty was motivated by the obser-
vation that in initial runs, solutions gave some behav-
iors a weight of zero not by applying a weight of zero,
but by not applying any weight at all. The last fitness
function combined both the task-oriented and priority-
oriented fitness functions into a single function.

5. Results

Both priority and non-priority versions of a given com-
posite behavior were evolved on the same set of envi-
ronments specially developed for training. The best
individuals for each generation were then evaluated
on a separate set of testing environments using the
task-oriented fitness function. This fitness function
was used since the effectiveness of the agent in ac-
complishing the task is the determining factor in the
overall success of the system.
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Table 1. The mean fitness, including standard deviation,
in the test environments as measured by the task-oriented
fitness function for the best of run solutions for the com-
posite behavior that coordinates collision avoidance and
goal-seeking behaviors (CAGS).

Fitness Non-priority Priority

Task 969.36 ± 105.49 979.456 ± 62.99
Priority 365.84 ± 201.41 386.73 ± 297.58

Composite 949.90 ± 79.81 982.73 ± 47.49
Heuristic N/A 714.76
Random 214.56 ± 140.49

Table 2. The mean fitness, including standard deviation, in
the test environments as measured by the task-oriented fit-
ness function for the best of run solutions for the composite
behavior that coordinates collision avoidance, goal-seeking,
and run-away behaviors (CAGSRA).

Fitness Non-priority Priority

Task 1067.02 ± 40.13 1062.90 ± 83.58
Priority 361.64 ± 186.83 421.80 ± 229.52

Composite 1072.69 ± 21.33 1077.79 ± 8.78
Heuristic N/A 839.55
Random 611.16 ± 118.85

For the CAGS composite behavior, there is no sta-
tistically significant difference in fitness between the
priority and non-priority-based solutions for a given
fitness function (see Table 1). The same is true for
the CAGSRA composite behavior (see Table 2). This
result is exactly what I was looking for as it indicates
that although priorities abstract out many of the de-
tails of an agent’s state, their use does not negatively
impact the effectiveness of the agent. It is important
to note, however, that these composite behaviors are
relatively simple compared to those for which this tech-
nique has been developed. Further investigation using
more complex composite behaviors is warranted before
I can be certain that this abstraction will work as the
system is scaled up.

For both the CAGS and CAGSRA composite behav-
iors, the evolved solutions that utilized a task-aware
fitness function outperformed both the näıve heuris-
tic composite behavior and composite behavior that
randomly weights all the sub-behaviors.

Figures 6–8 show the results for the CAGS compos-
ite behavior using the three different fitness functions.
It is important to remember that these results were
obtained by evaluating the best-of-generation individ-
uals in the testing environments using the task-based
fitness function, regardless of which fitness function
was used during evolution. As such, the learning rates
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Figure 6. Comparison of priority-based and non-priority
based learning using the task-oriented fitness function for
the CAGS behavior.
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Figure 7. Comparison of priority-based and non-priority
based learning using the priority-oriented fitness function
for the CAGS behavior.
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Figure 8. Comparison of priority-based and non-priority
based learning using the composite fitness function for the
CAGS behavior.
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Figure 9. Comparison of priority-based and non-priority
based learning using the task-oriented fitness function for
the CAGSRA behavior.
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Figure 10. Comparison of priority-based and non-priority
based learning using the priority-oriented fitness function
for the CAGSRA behavior.
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Figure 11. Comparison of priority-based and non-priority
based learning using the composite fitness function for the
CAGSRA behavior.
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Figure 12. Comparison of the learning rates for non-
priority-based solutions learning the CAGS behavior.

of each experiment differ from those shown when the
appropriate fitness function is used. For example,
Figure 7 seems to indicate that no learning occurred
throughout the entire 50 generations, but the fitness
values using the priority-based fitness function do in
fact show learning. However, what can be seen in this
particular figure is that the priority-based fitness func-
tion does not currently adequately represent the given
task as success when using the priority-based fitness
function does not lead to success when using the task-
based fitness function. Figures 6 and 8 indicate that
CAGS composite behaviors that utilize priorities im-
prove at a faster rate than those that do not use pri-
orities. Similar results can be seen in Figures 9 and
11 for the CAGSRA composite behavior. Again, this
is the result that I hypothesized. It demonstrates that
the abstraction provided by priorities aids learning by
simplifying the search space. While the difference in
learning rates is small in these experiments, I predict
that as the priorities are used in composite behaviors
that are far more complex than the ones evaluated
here, the difference will be even more significant. Fur-
thermore, the learning technique used here does not
require an enumeration of the search-space for learn-
ing to occur. When other learning techniques are used
that require such enumeration, such as Q-learning, the
improvements in learning rate will be even more sub-
stantial, regardless of the complexity of the composite
behavior being learned.

Figures 12-15 show that, regardless of the composite
behavior being learned, a task-based fitness function
is a necessity for success. While the solutions that
utilized the priority-based fitness function improved
their performance in the learning environments, that
success does not translate to the test-environments us-
ing the task-based-fitness function. These results were
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Figure 13. Comparison of the learning rates for priority-
based solutions learning the CAGS behavior.
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Figure 14. Comparison of the learning rates for non-
priority-based solutions learning the CAGSRA behavior.
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Figure 15. Comparison of the learning rates for priority-
based solutions learning the CAGSRA behavior.

not the ones hoped for as they indicate that a simple
fitness function that does not explicitly reward task-
specific success may not be feasible. The appeal of
such a fitness function is that although success for a
complex composite behavior may be hard to quantify,
a priority-based fitness function would be easy to con-
struct thus simplifying the learning process. However,
more investigation into why the priority-oriented fit-
ness function failed is warranted before it is rejected.

6. Conclusions

These results show that for the composite behaviors
CAGS and CAGSRA (defined in Section 4), using
priorities does not negatively impact the efficiency of
an agent and aids in learning to effectively coordi-
nate their sub-behaviors. This indicates that priori-
ties have the potential to allow behavior hierarchies
to be scaled beyond their current constraints since
many of the complexities of lower-level behaviors can
be abstracted out without loss of performance. Fur-
thermore, for these two composite behaviors, a task-
oriented fitness function is required for an effective be-
havior to be learned.

The development of a priority that communicates the
state a behavior operates in without exposing the low-
level information used by the behavior is complex and
requires great care. While the priorities used here were
calculated using heuristics developed based on experi-
ence with the behaviors themselves, it was still a pro-
cess that required tweaking of the calculation. In the
future, I want to investigate the use of machine learn-
ing techniques to develop better algorithms for deter-
mining the priority of a given behavior. Improvements
in the methods for determining a priority may even al-
low for the use of the priority-oriented fitness function.

Beyond the priority calculation, there are other areas
of future work. Our final goal is the scaling of the sys-
tem to a large number of competing behaviors. These
behaviors include not only single agent behaviors, like
the ones shown in this work, but also multi-agent be-
haviors that focus on the coordination of agents within
a team. Furthermore, I wish to investigate the use
of other machine learning techniques, such as neural
networks and fuzzy Q-learning, in learning composite
behaviors that utilize priorities.
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