
Genetic Resilience and Variable Mutation Rates

Gerardo Gonzalez GERARDO.GONZALEZ-1@OU.EDU

University of Oklahoma

Abstract
It has been shown that evolutionary computation
methods are influenced not only by the fitness
function explicitly defined by the user but also by the
genetic resilience inherent in the evolutionary
mechanisms. Given an environment with specialized
ecological niches that allow for high fitness and
niches that are less specialized but have a lower
maximum fitness, Jones and Soule (2006) investigate
the effect on the resilience of individuals of a
crossover mechanism that allows chromosomes to
increase or decrease in size. They conclude that after
the genes gain size resulting in resilience, the al-
gorithm performs as if it is influenced only by the fit-
ness function. In the present work, we investigate the
effect of variant mutations on resilience in
evolutionary computation, specifically in genetic
algorithms. The core of the experiments study the
effects of a mapping function from fitness to mutation
rate on the shape of the existing fitness landscape. We
determine whether, by manipulating this fitness-to-
mutation-rate function, individuals will effectively
become more resilient and the population will
converge based on fitness alone, given an
environment such as the one used by Jones and Soule.

1. Introduction

Evolutionary computation is a part of the machine
learning field that uses algorithms inspired by natural
evolution for optimization. In the evolutionary
computation literature many results show that the
evolutionary mechanism is influenced not only by fitness
but by other forces inherent in the algorithm itself (Soule,
2005). Resilience is one of these forces that drive the
evolutionary mechanism.

Genetic Resilience is the ability of a chromosome to
withstand changes in its fitness when operators like
mutation or crossover are applied. The problem is that in
special cases, the need for genetic resilience can override
the pressure of the fitness function causing convergence at
undesired places in the search space.

Soule and Jones (2006), in their study of resilience in
genetic algorithms, show that a way for a chromosome to
gain resilience is for it to grow, and that after resilience

has been gained, the algorithm will be driven by the
fitness function solving the problem.

In this paper we will study the effects of resilience in
genetic algorithms as shown by Soule (2005), and also the
effects of variable mutation rates on resilience with the
focus of finding whether mutation can be used to gain
resilience.

The variable mutation rate study is interesting because in
the standard use of genetic algorithms, fixed length
chromosomes are used, eliminating the possibility of
using chromosome growth to gain resilience as shown by
Soule (2005).

The hypothesis is that by learning a function between
mutation and some property of the genetic algorithm, the
resilience pressure will be decreased or increase as
necessary, and the algorithm will be able to converge
according to the fitness function.

Even though no experimentation of the effect of resilience
in real world problems has been study so far, the study of
variable mutation rates are still an interesting problem that
shines light on the effects of mutation in the evolutionary
mechanism.

In this paper, the results from the successful reproduction
of the experiments from Jones and Soule (2006) will be
shown, plus the results of the initial experiments with
variable mutation. Also some hypothesis on the cause of
the negative results from the variable mutation rates
experiments will be discussed, and ideas on why the
initial hypothesis failed under the current system.

2. Problem Definition and Algorithm
2.1 Task Definition

The task is to study genetic resilience in genetic
algorithms and how it can be influenced through
crossover and mutation.

2.1.1 Effects of Crossover

To study the effects of crossover in resilience a controlled
fitness landscape is chosen . The landscape used for this
paper is represented by the function shown in Figure 1
which is also one of the landscapes studied by Soule
(2005). This fitness function is simply a mapping between
the sum of the chromosome, and a fitness value given by
the landscape. For example a chromosome 0 1 1 4 4 4 1
would be summed to 15 (15 is also called the value of the

chromosome), and by looking at the fitness function the
chromosome receives a fitness of 0.

Figure 1
This landscape consist of two peaks. The first peak is
wider with a maximum fitness of 25, while the second
peak is narrower with a maximum fitness of 26. Even
though the difference in fitness between the two peaks is
only one point, the population should converge to the
narrower peak given the fitness function because the
narrower peak has the greatest fitness as its peak.

In Soule's experiments, the results show convergence to
the wider peak. This is caused by the lack of resilience in
the population.

Crossover, which is the only operator that is used in the
literature experiments, is very destructive causing drastic
shifts in fitness between parents and offspring. Since the
first peak is wider, even if the offspring shifts, there is
still a great chance that the offspring will be fit. The
members of the population at the narrower peak will be
drastically affected by any shift making the offspring very
unfit.

By doing this mental experiment, it can be seen that even
though the narrower peak is more fit, no chromosome is
able to stay at this peak because it is to narrow. The only
way to stay in the narrower peak is for the chromosomes
to be resilient. In Soule's experiments, the solution to the
problem comes from chromosome growth and resilience
gain by this growth. For example a long chromosome
with many 0's will give away mainly 0's during crossover
maintaining its fitness, this means that its offspring will
have a greater chance to be as fit as itself or better.

Even though a solution for this problem has already been
study by Soule, the reproduction of two of his
experiments, one with chromosome growth and one
without, will set a framework for further study of the
fitness landscape. Because once the algorithm used in
this paper presents similar behavior to the genetic
algorithm in the literature, a point of comparison will be
established for the further studies presented in this paper.

2.1.2 Effects of Mutation

The second task is to study the effect of mutation on
resilience. For this, the same framework from the
literature reproduction will be used, and new results will
be acquired only by changing the operators used during
the evolution of the population, in this case the only
operator will be mutation.

The hypothesis for further study is that there exists a
function that will map some seen attribute of the genetic
algorithm to a mutation rate, that will cause the desirable
parts of the fitness landscape to become more stable, and
the undesirable parts more unstable. For example in the
landscape of Figure 1, the desirable function will make x
values that are further away from the narrow peak more
unstable by assigning a high mutation rate, and as the x
values come closer to the narrow peak, the function will
assign smaller mutation rates, so that these areas will be
more stable and the chromosomes will be able to stay at
those more desirable fitness values with greater
probability.

In theory it sounds simple, but in a real life genetic
algorithm the landscape is not seen, and other attributes
will have to be used to find the mapping function.

In this paper two attributes will be studied:

– chromosome fitness

– Difference of fitness between a parent and its
offspring

2.2 Algorithm Definition

2.2.1 Basic Framework

The basic framework of this experiment is a common
genetic algorithm with the parameters used by Jones and
Soule (2005,2006). These parameters are summarized in
Table 1.

The row labeled integer values refer to the possible values
a gene can have. It is also important to note that a member
of the population can be selected more than once to be
part of the tournament, and there is not replacement. This
means that the new offspring will not participate on the
selection of the generation in which it was born.

2.2.2 Crossover

Two types of crossover are used, constant and
proportional, as defined by Jones and Soule (2006).

During the experiments that use crossover, a 0.9 crossover
rate was used.

2.2.3 Mutation Functions or Maps

Two mutation functions are used, each related to one of
the attributes defined in section 2.1.2.

2

2.2.3.1 First Function

For the first function an Array of size 100 is used. This is
the map that will hold the mutation rate of each value in
the x coordinate in the function in Figure 1.

All of the values in the map are initialized randomly
between 0 and 100.

The algorithm also keeps track of the maximum fitness
seen through the history of the genetic algorithm.

The update rule is captured in this equation:

Map[chromosome_value] = ((max_seen_fitness
– chromosome_fitness) / max_seen_fitness) *
100

2.2.3.2 Second Function

The second function uses a two dimensional Array as the
map. The first dimension is of size 100, and the second
dimension of size 2. This map will be used to keep track
of two values for each position in the x coordinate of the
function in Figure 1. The first value is the mutation rate,
and the second value is the difference between the parent
and the offspring.

The mutation rate is initialized randomly between 0 and
100. The difference can be initialize to any significantly
high value, in this case 200 was chosen as the initial
value.

The algorithm also keeps track of the maximum seen
fitness through the history of the genetic algorithm.

The pseudo code for the update rule is described below:

Mutation_rate = Map[chromosome_value][0]
Mutate chromosome according to
Mutation_rate to obtain offspring
Calculate fitness for both parent and offspring
Calculate the fitness_difference between the
offspring and the parent
If fitness_difference >
Map[chromosome_value][1] (or past seen
difference)
Map[chromosome_value][0] -=
((fitness_difference –
Map[chromosome_value][1]) /
max_seen_fitness)
Else
Map[chromosome_value][0] +=
((Map[chromosome_value][1]-
fitness_difference) / max_seen_fitness)
Map[chromosome_value][1] =
fitness_difference

3. Experimental Evaluation
3.1 Methodology

The criteria for evaluation, or the measure of success is
the convergence of the population to the narrow peak in
the landscape in Figure 1 which has its peak value at 66 in
the x coordinate.

The convergence to this value will test whether the
proposed method in an experiment is causing the
population to become more resilient or not.

For each experiment, all of the populations were saved
through all the 2000 generations. Then the average values
of the populations were calculated from the population
data. This average population value will show were the
population is converging to through the experiment.

Also for the first two experiments, the average number of
0's, 1's and 4's was calculated. This data shows that an
increase of 0's and 1's in the population as the
chromosomes grow is what is causing the gain in
resilience and the convergence.

3.2 Results

The first set of results shown in Figure 2 are those of the
experiment with proportional crossover.

In this Figure, the population's average shows
convergence exactly as expected according to the
literature results from Soule (2005). The population
converges really quickly to the narrower peak at value 33
because there is no growth, and no resilience being gained
by the population.

3

Average of the allele's sum over 5 trials with
proportional crossover.

 Figure 2
The second set of results are those shown in Figure 3 and
4. These are the results from the experiments with
constant crossover. As expected, in Figure 3 it can be seen
how at the beginning the population converges to the
wider peak at 33, but as the population gains resilience
through the chromosome growth and increase in 0's and
1's in the population shown in Figure 4, the population
eventually converges to the narrower peak at the value 66
in Figure 3.

Average of the allele's sum over 50 trials with constant
crossover.

 Figure 3

Average of number of 0s, 1s, and 4s during 50 trials

 Figure 4
The third set of results are from the first mutation rate
function described in section 2.2.3.1. These results are
shown in Figure 5. They show a population convergence
at an intermediate value between the two peak at around
49.

Average of the allele's sum over 5 trials with the first
mutation function.

 Figure 5
The fourth and last set of results are from the second
mutation function described in section 2.2.3.2. These
results are shown in Figure 6. This graph shows
convergence at an intermediate value again, this time it is
around 37.

4

Average of the allele's sum over 5 trials with the
second mutation function.

 Figure 6

3.3 Discussion
As described with the first to sets of results in section 3.2,
the two experiments that reproduce the literature were
satisfactory, and show results similar to those acquired by
Jones and Soule (2006). This was expected.

The last two sets of results are the most interesting ones,
and the ones that extend the study of resilience in genetic
algorithms.

In the last two experiments as mentioned in section 2, we
are only using mutation.

The hypothesis was that there exist a function that can
map an attribute of a genetic algorithm to different
mutation rates causing convergence to a desired place in
the search space.

That desire place for these experiments is the peak at 66.

The idea behind the first function was to create a map that
would assign mutation values according to the distance
between a chromosomes fitness and the maximum fitness
in the system. This is why in Figure 5 some convergence
is seen around the value 49. This value is an average
resulting from the population being divided in between
both peaks as seen in Figure 7.

Now that the results are seen, it makes sense that the
function behaved like this since the pressure of the
function is pushing the population to the highest value,
and also to those values closest to the highest value. The
problem is that the highest value (26), is at one peak,
while the next closest value (25) is at a completely
different peak.

Average over 5 trials of the population diversity at
generation 120 with the first mutation function

Figure 7
The last set of results are harder to analyze because the
algorithm of the function and the update rule are
somewhat more complex. The idea behind this function
was to modify the mutation rates by pushing them in the
direction in which the offspring would be more fit than
the parent, and at the same time causing some pressure to
reproduce at the maximum fitness seen. Apparently this
expectations failed, but still some interesting graphs came
out of the experiment.

In Figure 8, it can be seen that the population converged
to a value around 37. But 37 is sort of a random place to
converge. Even though this results don't seem satisfactory
according to the initially stated measure of success, I
believe that it is a successful trial. The reason why this
trial is consider successful is because it proves that
mutation maps can transform a landscape and cause for a
population to converge to a desire place in the search
space without being affected by the resilience pressure. 37
might not be a desirable place in the search space, but this
only means that the parameters of the algorithm need to
be adjusted, not that the hypothesis has failed.

5

Average over 5 trials of the population diversity at
generation 120 with the second mutation function

Figure 8

4. Related Work
All of the related and relevant work made on the study of
resilience in genetic algorithms has been quoted and part
of it has been reproduced in this paper. There is more
work in biological genetic resilience that might be
relevant in the future, but as of now it is outside of the
scope of this paper.

5. Future Work
Definitely more experimentation with other attributes and
functions based on those attributes need to be explored.

The idea of replicating the way in which mutation is
handle in biology is an interesting study. In biology the
mutation rate for a given chromosome is embedded in one
of the genes of the chromosome.

Also, the significance of resilience in more realistic
problems can be a great stepping stone to this research
making it more relevant and desirable.

6. Conclusions
Genetic resilience is a significant force in the evolutionary
computation mechanism, and since most standard genetic
algorithms require for the chromosome length to be fixed,
the solutions proposed by Jones and Soule in their
experiments (chromosome growth) become useless. This
is why variable mutation rates show themselves as
promising alternative to counter the resilient pressure
causing convergence to a global maximum in the search
space.

6. Bibliography
Jones, Soule. Comparing genetic robustness in

generational vs. steady state evolutionary algorithms. In
Proceedings of the 8th annual conference on Genetic and
evolutionary computation. Seattle, Washington, USA
2006. 143 – 150.

Soule, T. Resilient Individuals Improve Evolutionary
Search. Artificial Life, 12, 1 (Winter 2005), 17-34.

6

