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Abstract
It  has  been  shown  that  evolutionary  computation 
methods  are  influenced  not  only  by  the  fitness 
function explicitly defined by the user but also by the 
genetic  resilience  inherent  in  the  evolutionary 
mechanisms. Given an environment with specialized 
ecological  niches  that  allow  for  high  fitness  and 
niches  that  are  less  specialized  but  have  a  lower 
maximum fitness, Jones and Soule (2006) investigate 
the  effect  on  the  resilience  of  individuals  of  a 
crossover  mechanism  that  allows  chromosomes  to 
increase or decrease in size. They conclude that after 
the  genes  gain  size  resulting  in  resilience,  the  al-
gorithm performs as if it is influenced only by the fit-
ness function. In the present work, we investigate the 
effect  of  variant  mutations  on  resilience  in 
evolutionary  computation,  specifically  in  genetic 
algorithms.  The  core  of  the  experiments  study  the 
effects of a mapping function from fitness to mutation 
rate on the shape of the existing fitness landscape. We 
determine  whether,  by  manipulating  this  fitness-to-
mutation-rate  function,  individuals  will  effectively 
become  more  resilient  and  the  population  will 
converge  based  on  fitness  alone,  given  an 
environment such as the one used by Jones and Soule.

1. Introduction

Evolutionary  computation  is  a  part  of  the  machine 
learning  field  that  uses  algorithms  inspired  by  natural 
evolution  for  optimization.  In  the  evolutionary 
computation  literature  many  results  show  that  the 
evolutionary mechanism is influenced not only by fitness 
but by other forces inherent in the algorithm itself (Soule, 
2005).  Resilience  is  one  of  these  forces  that  drive  the 
evolutionary mechanism. 

Genetic  Resilience  is   the  ability  of  a  chromosome to 
withstand  changes  in  its  fitness  when  operators  like 
mutation or crossover are applied. The problem is that in 
special cases, the need for genetic resilience can override 
the pressure of the fitness function causing convergence at 
undesired places in the search space.

Soule  and  Jones  (2006),  in  their  study  of  resilience  in 
genetic algorithms, show that a way for a chromosome to 
gain resilience is for it to grow, and that after resilience 

has  been  gained,  the  algorithm  will  be  driven  by  the 
fitness function solving the problem.

In this  paper  we will  study the  effects  of  resilience  in 
genetic algorithms as shown by Soule (2005), and also the 
effects of variable mutation rates on resilience with the 
focus of  finding whether  mutation can be used to  gain 
resilience.

The variable mutation rate study is interesting because in 
the  standard  use  of  genetic  algorithms,  fixed  length 
chromosomes  are  used,  eliminating  the  possibility  of 
using chromosome growth to gain resilience as shown by 
Soule (2005).

The  hypothesis  is  that  by  learning  a  function  between 
mutation and some property of the genetic algorithm, the 
resilience  pressure  will  be  decreased  or  increase  as 
necessary,  and  the  algorithm will  be  able  to  converge 
according to the fitness function.

Even though no experimentation of the effect of resilience 
in real world problems has been study so far, the study of 
variable mutation rates are still an interesting problem that 
shines light on the effects of mutation in the evolutionary 
mechanism.

In this paper, the results from the successful reproduction 
of the experiments from Jones and Soule (2006) will be 
shown,  plus  the  results  of  the  initial  experiments  with 
variable mutation. Also some hypothesis on the cause of 
the  negative  results  from  the  variable  mutation  rates 
experiments  will  be  discussed,  and  ideas  on  why  the 
initial hypothesis failed under the current system.

2. Problem Definition and Algorithm
2.1 Task Definition

The  task  is  to  study  genetic  resilience  in  genetic 
algorithms  and  how  it  can  be  influenced  through 
crossover and mutation. 

2.1.1 Effects of Crossover

To study the effects of crossover in resilience a controlled 
fitness landscape is chosen . The landscape used for this 
paper is represented by the function shown in Figure 1 
which  is  also  one  of  the  landscapes  studied  by  Soule 
(2005). This fitness function is simply a mapping between 
the sum of the chromosome, and a fitness value given by 
the landscape. For example a chromosome 0 1 1 4 4 4 1 
would be summed to 15 (15 is also called the value of the 



chromosome), and by looking at the fitness function the 
chromosome receives a fitness of 0.

Figure 1
This  landscape  consist  of  two  peaks.  The  first  peak  is 
wider with a maximum fitness of  25, while  the second 
peak  is  narrower with  a  maximum fitness  of  26.  Even 
though the difference in fitness between the two peaks is 
only  one  point,  the  population  should  converge  to  the 
narrower  peak  given  the  fitness  function  because  the 
narrower peak has the greatest fitness as its peak.

In Soule's experiments, the results show convergence to 
the  wider peak. This is caused by the lack of resilience in 
the population. 

Crossover, which is the only operator that is used in the 
literature experiments, is very destructive causing drastic 
shifts in fitness between parents and offspring. Since the 
first peak is wider, even if  the offspring shifts,  there is 
still  a  great  chance  that  the  offspring  will  be  fit.  The 
members of the population at the narrower peak will be 
drastically affected by any shift making the offspring very 
unfit. 

By doing this mental experiment, it can be seen that even 
though the narrower peak is more fit, no chromosome is 
able to stay at this peak because it is to narrow. The only 
way to stay in the narrower peak is for the chromosomes 
to be resilient. In Soule's experiments, the solution to the 
problem comes from chromosome growth and resilience 
gain  by  this  growth.  For  example  a  long  chromosome 
with many 0's will give away mainly 0's during crossover 
maintaining its fitness, this means that its offspring will 
have a greater chance to be as fit as itself or better.

Even though a solution for this problem has already been 
study  by  Soule,  the  reproduction  of  two  of  his 
experiments,  one  with  chromosome  growth  and  one 
without,  will  set  a  framework  for  further  study  of  the 
fitness  landscape.  Because once the algorithm used  in 
this  paper  presents  similar  behavior  to  the  genetic 
algorithm in the literature, a point of comparison will be 
established for the further studies presented in this paper.

2.1.2 Effects of Mutation

The  second  task  is  to  study  the  effect  of  mutation  on 
resilience.  For  this,  the  same  framework  from  the 
literature reproduction will be used, and new results will 
be acquired only by changing the operators used during 
the  evolution  of  the  population,  in  this  case  the  only 
operator will be mutation.

The  hypothesis  for  further  study  is  that  there  exists  a 
function that will map some seen attribute of the genetic 
algorithm to a mutation rate, that will cause the desirable 
parts of the fitness landscape to become more stable, and 
the undesirable parts more unstable. For example in the 
landscape of Figure 1, the desirable function will make x 
values that are further away from the narrow peak more 
unstable by assigning a high mutation rate, and as the x 
values come closer to the narrow peak, the function will 
assign smaller mutation rates, so that these areas will be 
more stable and the chromosomes will be able to stay at 
those  more  desirable  fitness  values  with  greater 
probability.

In  theory  it  sounds  simple,  but  in  a  real  life  genetic 
algorithm the landscape is not seen, and other attributes 
will have to be used to find the mapping function.

In this paper two attributes will be studied:

– chromosome fitness

– Difference  of  fitness  between  a  parent  and  its 
offspring

2.2 Algorithm Definition

2.2.1 Basic Framework

The  basic  framework  of  this  experiment  is  a  common 
genetic algorithm with the parameters used by Jones and 
Soule (2005,2006). These parameters are summarized in 
Table 1.

The row labeled integer values refer to the possible values 
a gene can have. It is also important to note that a member 
of the population can be selected more than once to be 
part of the tournament, and there is not replacement. This 
means that the new offspring will not participate on the 
selection of the generation in which it was born.

2.2.2 Crossover

Two  types  of  crossover  are  used,  constant  and 
proportional, as defined by Jones and Soule (2006). 

During the experiments that use crossover, a 0.9 crossover 
rate was used.

2.2.3 Mutation Functions or Maps

Two mutation functions are used, each related to one of 
the attributes defined in section 2.1.2.
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2.2.3.1 First Function

For the first function an Array of size 100 is used. This is 
the map that will hold the mutation rate of each value in 
the x coordinate in the function in Figure 1.

All  of  the  values  in  the  map  are  initialized  randomly 
between 0 and 100.

The algorithm also keeps track of the maximum fitness 
seen through the history of the genetic algorithm.

The update rule is captured in this equation:

Map[chromosome_value] = ((max_seen_fitness 
– chromosome_fitness) / max_seen_fitness ) *  
100

2.2.3.2 Second Function

The second function uses a two dimensional Array as the 
map. The first dimension is of size 100, and the second 
dimension of size 2. This map will be used to keep track 
of two values for each position in the x coordinate of the 
function in Figure 1. The first value is the mutation rate, 
and the second value is the difference between the parent 
and the offspring.

The mutation rate is initialized randomly between 0 and 
100. The difference can be initialize to any significantly 
high  value,  in  this  case  200  was  chosen  as  the  initial 
value.

The  algorithm  also  keeps  track  of  the  maximum  seen 
fitness through the history of the genetic algorithm.

The pseudo code for the update rule is described below:

Mutation_rate = Map[chromosome_value][0]
Mutate chromosome according to 
Mutation_rate to obtain offspring
Calculate fitness for both parent and offspring
Calculate the fitness_difference between the 
offspring and the parent 
If fitness_difference > 
Map[chromosome_value][1] (or past seen 
difference)
Map[chromosome_value][0] -= 
((fitness_difference – 
Map[chromosome_value][1] ) /  
max_seen_fitness) 
Else
Map[chromosome_value][0] += 
((Map[chromosome_value][1]-
fitness_difference ) / max_seen_fitness) 
Map[chromosome_value][1] = 
fitness_difference

3. Experimental Evaluation 
3.1 Methodology

The criteria for evaluation, or the measure of success is 
the convergence of the population to the narrow peak in 
the landscape in Figure 1 which has its peak value at 66 in 
the x coordinate.

The  convergence  to  this  value  will  test  whether  the 
proposed  method  in  an  experiment  is  causing  the 
population to become more resilient or not.

For each experiment, all  of the populations were saved 
through all the 2000 generations. Then the average values 
of  the  populations  were  calculated  from the  population 
data. This average population value will show were the 
population is converging to through the experiment.

Also for the first two experiments, the average number of 
0's,  1's and 4's was calculated. This data shows that  an 
increase  of  0's  and  1's  in  the  population  as  the 
chromosomes  grow  is  what  is  causing  the  gain  in 
resilience and the convergence.

3.2 Results

The first set of results shown in Figure 2 are those of the 
experiment with proportional crossover.

In  this  Figure,  the  population's  average  shows 
convergence  exactly  as  expected  according  to  the 
literature  results  from  Soule  (2005).  The  population 
converges really quickly to the narrower peak at value 33 
because there is no growth, and no resilience being gained 
by the population.
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Average  of  the  allele's  sum  over  5  trials  with 
proportional crossover.

    Figure 2
The second set of results are those shown in Figure 3 and 
4.  These  are  the  results  from  the  experiments  with 
constant crossover. As expected, in Figure 3 it can be seen 
how  at  the  beginning  the  population  converges  to  the 
wider peak at 33, but as the population gains resilience 
through the chromosome growth and increase in 0's and 
1's  in the population shown in Figure 4, the population 
eventually converges to the narrower peak at the value 66 
in Figure 3. 

Average of the allele's sum over 50 trials with constant 
crossover.

    Figure 3

Average of number of 0s, 1s, and 4s during 50 trials

    Figure 4
The third set  of  results  are from the first  mutation rate 
function  described  in  section  2.2.3.1.  These  results  are 
shown in Figure 5. They show a population convergence 
at an intermediate value between the two peak at around 
49.

Average of the allele's sum over 5 trials with the first 
mutation function.

    Figure 5
The  fourth  and  last  set  of  results  are  from the  second 
mutation  function  described  in  section  2.2.3.2.  These 
results  are  shown  in  Figure  6.  This  graph  shows 
convergence at an intermediate value again, this time it is 
around  37.
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Average  of  the  allele's  sum  over  5  trials  with  the 
second mutation function.

    Figure 6

3.3 Discussion
As described with the first to sets of results in section 3.2, 
the  two  experiments  that  reproduce  the  literature  were 
satisfactory, and show results similar to those acquired by 
Jones and Soule (2006). This was expected.

The last two sets of results are the most interesting ones, 
and the ones that extend the study of resilience in genetic 
algorithms.

In the last two experiments as mentioned in section 2, we 
are only using mutation.

The hypothesis was that  there exist  a  function that  can 
map  an  attribute  of  a  genetic  algorithm  to  different 
mutation rates causing convergence to a desired place in 
the search space.

That desire place for these experiments is the peak at 66. 

The idea behind the first function was to create a map that 
would assign mutation values according to the distance 
between a chromosomes fitness and the maximum fitness 
in the system. This is why in Figure 5 some convergence 
is  seen  around  the  value  49.  This  value  is  an  average 
resulting from the population being divided in  between 
both peaks as seen in Figure 7.

Now that  the  results  are  seen,  it  makes  sense  that  the 
function  behaved  like  this  since  the  pressure  of  the 
function is pushing the population to the highest value, 
and also to those values closest to the highest value. The 
problem is  that  the  highest  value  (26),  is  at  one  peak, 
while  the  next  closest  value  (25)  is  at  a  completely 
different peak.

Average  over  5  trials  of  the  population  diversity  at 
generation 120 with the first mutation function

Figure 7
The last set of results are harder to analyze because the 
algorithm  of  the  function  and  the  update  rule  are 
somewhat more complex. The idea behind this function 
was to modify the mutation rates by pushing them in the 
direction in which the offspring would be more fit than 
the parent, and at the same time causing some pressure to 
reproduce at the maximum fitness seen. Apparently this 
expectations failed, but still some interesting graphs came 
out of the experiment.

In Figure 8, it can be seen that the population converged 
to a value around  37. But 37 is sort of  a random place to 
converge. Even though this results don't seem satisfactory 
according  to  the  initially  stated  measure  of  success,  I 
believe that it is a successful trial. The reason why this 
trial  is  consider  successful  is  because  it  proves  that 
mutation maps can transform a landscape and cause for a 
population  to  converge  to  a  desire  place  in  the  search 
space without being affected by the resilience pressure. 37 
might not be a desirable place in the search space, but this 
only means that the parameters of the algorithm need to 
be adjusted, not that the hypothesis has failed.
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Average  over  5  trials  of  the  population  diversity  at 
generation 120 with the second mutation function

Figure 8

4. Related Work
All of the related and relevant work made on the study of 
resilience in genetic algorithms has been quoted and part 
of  it  has been reproduced in  this  paper.  There  is  more 
work  in  biological  genetic  resilience  that  might  be 
relevant in the future, but as of now it is outside of the 
scope of this paper.

5. Future Work
Definitely more experimentation with other attributes and 
functions based on those attributes need to be explored. 

The  idea  of  replicating  the  way  in  which  mutation  is 
handle in biology is an interesting study. In biology the 
mutation rate for a given chromosome is embedded in one 
of the genes of the chromosome. 

Also,  the  significance  of  resilience  in  more  realistic 
problems can be a great  stepping stone to this research 
making it more relevant and desirable.

6. Conclusions
Genetic resilience is a significant force in the evolutionary 
computation mechanism, and since most standard genetic 
algorithms require for the chromosome length to be fixed, 
the  solutions  proposed  by  Jones  and  Soule  in  their 
experiments (chromosome growth) become useless. This 
is  why  variable  mutation  rates  show  themselves  as 
promising  alternative  to  counter  the  resilient  pressure 
causing convergence to a global maximum in the search 
space.
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