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Abstract

Large-scale distributed systems used
to run a long, predictable series of op-
erations on a recurring basis (batch-
driven systems) are a prime target for
optimization to reduce resource us-
age or time consumption, since even
a small improvement may yield large
dividends over time. Machine learn-
ing techniques are a good way to
approach this optimization problem
since there are typically many vari-
ables that interact in unknown ways.

This paper discusses a practical ap-
proach to optimizing an existing real-
world system using an artificial neu-
ral network for simulation, a ge-
netic algorithm for exploration, and
a Bayesian network for human pre-
sentation and generalization.

1. Introduction

Solving increasingly large problems requires
increasingly large computational resources.
After a point, it is not possible to provide
these resources to a single process running

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

NICOLAS.GROUNDS@RISKMETRICS.COM

JASON.MADDEN@RISKMETRICS.COM

within the confines of a single physical ma-
chine. Indeed, it is often economically infea-
sible to reach this point. For this and other
reasons such as reliability, it is desirable to
divide the problem into smaller sub-problems
and distribute them among multiple, cooper-
ating machines. These cooperating machines
are known as a distributed system.

Choosing the appropriate division for the
problem is a topic in its own right. However,
once the division is fixed, there are generally
many aspects of the system itself that deter-
mine how efficiently the overall problem can
be solved. In general, these aspects can be
summarized as an attempt to achieve an op-
timal load balancing which makes full use of
available processing, memory, I/O and other
resources while simultaneously achieving min-
imal overhead and thus maximizing efficiency
of the system.

Realistic systems tend to have many param-
eters that can be controlled to affect this
balance. These parameters often influence
one another; that is, changing one parameter
means that other parameters which were for-
merly optimal now need to change as well. The
sheer scale of the problem makes it an ideal
area to apply machine learning techniques.

Previous work in this area has often been lim-
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ited to graph-theory applications for the place-
ment of data as in (Graham and Hinds, 1999)
and (Tang et al., 2001) or has assumed a com-
plete knowledge of the “shape” of the problem,
like (Chuang and Cheng, 2002). A more realis-
tic and general application is discussed in this
paper. Here, we will describe a real-world dis-
tributed batch-driven system and discuss the
parameters that affect its performance. A ge-
netic algorithm approach to finding optimal
parameters for a specific batch job will be de-
veloped utilizing a neural network to simu-
late the behaviour of the system. Finally, a
Bayesian network will be constructed on top of
the data for presentation to system designers
and for possible generalization of the results to
other batch jobs. This approach has provided
promising performance improvements in syn-
thetic tests.

2. Problem Definition and Algorithm
2.1. The Distributed System

The authors of this paper are primary de-
velopers on a large scale distributed system
(known internally as BlueBox) used for pro-
cessing financial data. This system supports
both batch and interactive usage and is in-
tended to be highly reliable, fault-tolerant,
and to scale horizontally with the addition
of new computing resources (a concept some-
times called a grid). In addition, there are
performance goals, both hard and soft, for in-
teractive and batch usage.

This system is composed of a container known
as the Framework, and a set of components
known as services. The Framework is in
charge of resource allocation, reliability, fault
tolerance, load balancing and communication
among services. Individual services perform
generally well-specified and orthogonal tasks,
and they make varying demands on CPU,
memory, storage space, network bandwidth,
and database resources. There are currently

a few dozen services.

The Framework and all services are written
in the Java programming language and run
within the Java runtime (JVM). Thus, the sys-
tem performance is also affected by JVM set-
tings, such as those that influence garbage col-
lection.

Interactive use patterns are somewhat un-
predictable, but batch usage is entirely pre-
dictable from one run of a batch job to the
next. There are multiple batch jobs, and
each batch job has a different load profile and
utilizes different services (and in turn differ-
ent computing resources) in differing amounts.
Typical batch jobs take several hours to com-
plete.

Parameters that can be tuned include:'

e Number of instances of each service

e Number of threads dedicated to each in-
stance of a service, or shared among many
services

e Number of concurrent threads processing
the batch sequence and generating load

e Average amount of memory allocated to
a service instance

e Type of communication used between var-
ious services (within the same process,
thus being fast but consuming more re-
sources, directly to another instance be-
ing somewhat slower but providing better
distribution, or to the next available in-
stance, which is slowest but provides the
best distribution)

2.2. Task Definition

There are two outputs that can be minimized

in the application of a distributed system to

! A detailed description of tuning parameters is included
in Table 1.
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a problem: either overall resource usage can
be minimized or overall runtime can be mini-
mized. The former goal might be appropriate
if multiple concurrent problems were active at
the same time, while the later goal achieves the
quickest turnaround time for a single problem.

The BlueBox system supports the collection of
the detailed statistics necessary for an analy-
sis and hence minimization of resource usage.
Such statistics include:

e CPU usage by service
e Database usage by service

e Number of requests made to a particular
service, by a particular service

However, it was judged that minimizing the
overall runtime would be a better goal. Mini-
mization of the overall runtime provides more
immediate feedback and better matches the
way the system is typically used (with only
one active batch job and time between differ-
ent batch jobs). Likewise, the runtime is min-
imized for a single defined batch job. That is,
the particular “shape” of the batch job is im-
plicit; it is held constant and does not change
(but see §5, Future Work). This approach
is acceptable because the number of different
batch jobs is small so it is not difficult to de-
termine optimal parameters for each one using
the approach outlined in this paper.

There are a very large number of parame-
ters that can be tuned in the BlueBox sys-
tem. Many of them are linear in the number
of services that are in use. For that reason,
the number of services was limited to eight
(this is a property of the batch job). Like-
wise, the number of machines in the system
was held fixed at five. The initial formula-
tion of the problem resulted in the number
of possible parameter combinations being in
the billions. Realizing this was far too large
for the limited time period available, some of

the more esoteric parameters were eliminated
from consideration, resulting in a more work-
able number of less than 20 million. There are
five boolean- or scalar-valued parameters that
control trade-offs of time vs. space that are ap-
plied globally,” and two set-valued parameters
that control distribution and load balancing
within a particular machine.’

2.3. Prerequisite Work

Before learning algorithms could be applied to
the problem, data had to be collected, but be-
fore that could happen two questions had to
be answered. First, what data was going to be
collected, and second, how was this data going
to be collected.

The second question was answered by mak-
ing use of the extensibility mechanisms built
into the BlueBox Framework. A small plugin
was written in Java that interfaces with the
Framework and stores statistics about batch
jobs to an Oracle relational database. This
data is then analyzed and reported on using
a simple utility. It is worth noting that this
plugin collects far more data than is currently
used, allowing for future work on resource us-
age minimization (some 20 million statistics
are currently aggregated into approximately
50 values).

The first question was more difficult to answer.
Because actual batch jobs require 3-4 hours to
run, it was not realistic to collect the necessary
data using those jobs. However, the jobs are
relatively easy to represent in terms of which
services they make use of, and in what per-
centages. These services, in turn, are (perhaps
somewhat arbitrarily) easily classified in terms
of their predominant resource usage pattern:
CPU, memory, other services, or simply time

2The global parameters are: Heap Memory, Concurrent
Threads, Message Spool Threshold, Message Compression

and Message Format.

3The machine-specific parameters are: Service Distri-
bution and In-JVM vs. Out-of-JVM.
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(due to usage of relatively unlimited external
resources). Armed with this information, four
mock services were written to express each
such pattern. Together with four existing fun-
damental services which are heavily used by all
batch jobs, this allows the definition of scaled-
down batch jobs which represent their larger
brethren but can run in reasonable amounts
of time (15-20 minutes). Two such jobs were
defined with the intent to model existing real-
world batch jobs.

Note that the specific services used and the
specific combinations in which they are used
(the job definitions) do not affect the approach
described in this paper, though they do affect
the specific results obtained (some combina-
tions and patterns of service usage being obvi-
ously more suitable to optimization than oth-
ers).

2.4. Use of Artificial Neural Networks

Even with the reduced scale batch jobs, 15-20
minutes is too long to wait to find out how well
a particular set of parameters will perform, es-
pecially since there are many millions of possi-
bilities. To account for this, some mechanism
of simulating the behaviour of the system with
a particular set of parameters was needed. Ar-
tificial neural networks with their ability to ap-
proximate arbitrary functions given sufficient
training examples seemed ideal for this pur-
pose.’

A neural network was implemented in Python.
This implementation was designed to use stan-
dard incremental back propagation on a fully
connected network. The hidden and input lay-
ers may use either the Sigmoid or Tanh acti-
vation function, and a bias input is applied to
4These services implement core functionality like secu-
rity and storage and can all be classified as simple time
consumers. They all make use of external resources.
This approach of using a neural network as a simulator

in combination with a genetic algorithm is similar to that
described in (Sazonov et al., 2002)

each neuron. The output layer may use either
of those functions, or simply be linear valued.
The network supports momentum, and uses an
error function that applies a penalty for large
weights. A significant constraint of this imple-
mentation is that it allows only one output.

Choosing an encoding of the many parame-
ters of the distributed system to use as input
to the neural network proved difficult. In an
effort to keep the number of inputs reason-
able, early attempts failed to properly account
for the fact that certain parameters can dif-
fer from one machine to another and from one
service to another. This problem was solved
by quantizing these values into the fraction of
machines that shared each value; for example,
each of the eight possible services is assigned a
number between 0.0 and 1.0, where 0.0 means
it’s been completely disabled, and 1.0 means
it is available on all five machines. The two
boolean values were encoded in binary as 0.0
and 1.0 for true and false, and the scalar val-
ues were scaled to fall between 0.0 and 1.0.
This resulted in a network with 21 inputs, all
between 0.0 and 1.0. The single output of the
network was the overall runtime, that which
we are seeking to minimize. It was also scaled
to be between 0.0 and 1.0.

Many experiments were conducted to deter-
mine the optimal network configuration to use.
In the end, a configuration of 3 hidden lay-
ers of 30 nodes was chosen. Training applied
a learning rate of 0.01, with a momentum of
0.001.

2.5. Genetic Algorithm Exploration

Searching across the many millions of possible
parameter combinations is implemented using
genetic algorithms; that is, it is the job of the
genetic algorithm to determine which sets of
parameters produce improved performance for
the system.

Within a genetic algorithm framework, several
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key features must be chosen: a representa-
tion of individuals must be found that allows
for mutation and crossover, a fitness function
is needed to evaluate all individuals, and the
genetic operators for mutation and crossover
themselves must be defined. In addition, the
genetic algorithm has several facets that con-
trol its speed of convergence and rate of explo-
ration.

The canonical bit-string representation for in-
dividuals, and its corresponding operators,
was considered and rejected for this applica-
tion. Wohile it would have been possible to
use an encoding similar to that used for neu-
ral network input, this precludes, or at least
complicates, the use of expert or prior knowl-
edge to help speed the search. Instead, a more
complicated data structure was used, and the
operators defined specially to make use of prior
knowledge.

The fitness function was defined on top of the
neural network simulator. Because the run-
time has no definable upper and lower bounds,
0.0 was defined to be the “best” possible run-
time. Values output from the simulator were
then simply subtracted from this (after being
scaled up). For example, if the simulator out-
put a runtime of 200.0 units, the fitness value
assigned to it would be —200.0, and an output
of 400.0 units would be evaluated as —400.0,
or twice as bad.

One place where expert knowledge is applied
is the fitness function. Certain individuals are
known to be non-viable and these are given
a very negative fitness (—10,000.0). For in-
stance, a set of parameters that completely
disabled one of the required services is obvi-
ously bad, as is one that chooses a memory
setting that will cause the JVM to fail to start
because it is too large or too small. We say
these individuals posses “bad genes.” In all, 8
parameters are considered in the definition of
a bad gene.

Both of the genetic operators for mutation and
crossover also apply expert knowledge to help
reduce the generation of these non-viable in-
dividuals. When an individual is picked for
mutation, one of the parameters is randomly
changed using a process like that outlined be-
low.

choose random parameter
if parameter is global:
if parameter is boolean:
parameter <= not(parameter)
else:
parameter
<= random_good_value(parameter)
else:
choose random machine
add or remove (random) service
to list of running services
or list of distributed services

The method used for crossover was selected to
give a close approximation of the traditional
method of uniform crossover. Each of the
global scalar parameters is simply copied ran-
domly from one or the other parent individual.
A slightly more complicated but conceptually
similar method is applied to the machine-level
settings; each machine in the child runs and
distributes some number of services selected
from the union of the services present in the
corresponding parents.

The genetic algorithm framework used we de-
veloped in Python. It uses tournament se-
lection with a probability of 0.7 of selecting
the more fit individual; this number has been
gradually raised to 0.9. This selection mecha-
nism was chosen to support a diverse popula-
tion in the early phases when our fitness func-
tion was less trustworthy (since it had trained
on less data). After initial experimentation,
the probability of crossover was fixed at 0.3
and the mutation rate at 0.2. The target pop-
ulation size was 2,000.
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2.6. Understanding with Bayesian
Networks

Although the collection of an accurate neu-
ral network simulator and a genetic algorithm-
based search has proven in experiments to find
better sets of parameter values for running
batch jobs, this approach in of itself is lim-
ited to the amount of time and resources that
can be devoted to such experiments. In hopes
of using the data from experiments to find a
way to generalize findings and discover under-
lying properties of the nature of these param-
eters a Bayesian network learning algorithm
was implemented.” Bayesian networks are an
excellent way to present human-readable find-
ings about the interactions of parameters and
their effect on system performance. Using ex-
periment results and EM (the Expectation-
Maximization algorithm) a Bayesian network
is trained to predict performance based on
the system parameters. The real key to us-
ing Bayesian networks, however, comes from a
search on the different possible structures for
such Bayesian networks and a scoring func-
tion to rate structures. In doing so we hope
to find an optimal Bayesian network structure
which not only predicts performance but can
graphically describe how parameters combine
(or conflict) to affect performance.

The Bayesian network, EM, and structure
search were all developed in Python. EM
is evaluated for either 100 iterations or until
the maximum change made to any Bayesian
Network probability is less than 0.0001. The
structural search began with 2 hidden network
nodes and iterated up to 10 hidden nodes.
Within each iteration the structure search con-
structed a Bayesian network by connecting the
runtime input node to all hidden nodes. Then,
random edges were added from hidden nodes
to parameter nodes for as long as such edges
increased the score of the Bayesian network

S(Heckerman, 1999) presents a complete tutorial on us-
ing Bayesian networks in learning.

(or until the network was fully connected.)
This is restarted (to generate more random
connections between hidden nodes and param-
eter nodes) a total of 50 times. The func-
tion for scoring the Bayesian network was
Schwartz Information Criteria (SIC) which
is also called Bayesian Information Criteria
(BIC). The Bayesian network with the high-
est score is considered the best overall.

3. Experiments

The overarching goal of the work presented in
this paper was an attempt to determine if ma-
chine learning techniques could be successfully
applied to the domain of distributed system
optimization.

3.1. Experimental Procedure

The basic procedure to collect data and refine
the parameters works as follows. Initially, a
random set of parameters are generated. The
batch job is run on the physical system us-
ing these parameters. This is repeated several
times to generate enough data to begin train-
ing the neural network simulator. When the
network has reached acceptable accuracy, the
genetic algorithm is started; after 1,000 gen-
erations, the output of the genetic algorithm
is a set of three individuals (sets of parame-
ters): the best individual in the final genera-
tion, a randomly selected individual from the
final generation, and a new, randomly gener-
ated individual. These three sets of parame-
ters are then run in the physical system. This
new data, plus the existing old data, is used to
retrain the neural network for increased accu-
racy and generalization abilities. The process
then repeats with the genetic algorithm creat-
ing a new set of individuals. Each iteration of
this takes about an hour.

The overall stopping criteria are in need of fur-
ther definition pending a more detailed anal-
ysis of the data. It is expected that after a
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certain point no further improvements will be
possible. The runtime of the batch job will
oscillate within a small range. This oscillation
must be detected and iteration ceased; but do-
ing so is fairly involved.

3.2. Neural Network

The performance of the neural network is crit-
ical the the overall viability of this approach.
Fortunately, the overall error of a neural net-
work is easy to visualize and analyze given a
set of training and test data. Also useful is the
availability of other neural network implemen-
tations for comparison purposes.
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Figure 2. Error Versus Weight Updates

First, Figure 1 shows how the performance of
the simulator is becoming more accurate as it
is fed more data. The line labeled “Actual
Runtime” shows the actual runtimes of each
hypothesis. The line labeled “Net-10" repre-
sents a network trained on only ten hypothesis
when it is asked to generalize across more than
100 hypothesis; it does quite poorly. However,
the line “Net-50,” which shows this same net-
work after being trained on at least five times
as many examples shows the network to be
matching the curve acceptably well.

Both nets were allowed to train for at most
2,500 iterations to avoid overfitting. This sim-
ple method was used early on due to the
paucity of data for validation purposes and
was continued for consistency. However, once

2000

enough data was obtained, it was possible to
produce Figure 2, which compares the error
for separate training and validation sets over
many weight update iterations and tends to
support this stopping criteria.

It is instructive to compare with a third
party neural network. The FANN implemen-
tation(Nissen, 2003) is a freely available arti-
ficial neural network library implementation.
FANN supports many training algorithms, but
defaults to iRPROP, the improved resilient
backpropagation algorithm, as described in
(Igel and Hiisken, 2000). This training al-
gorithm adaptively adjusts the weights based
solely on the change of direction of the deriva-
tive, allowing it to eschew the need for many
of the finicky parameters required by standard
backpropagation, and to typically converge
much faster. Indeed, in our experiments iR-
PROP did converge much faster and avoided
local minima better than our own backpropa-
gation implementation, as can be seen in Fig-
ure 3. Work on an iRPROP implementation
of our own is underway.

3.3. Genetic Algorithms

Hypothesis

Figure 4. Best Individual’s Runtime

The genetic algorithm exploration is well rep-
resented in Figure 4. This graph is a smoothed

38
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Figure 1. Comparison of Neural Nets Trained on Different Data

representation of how well the best hypothe-
sis of a given population (after a fixed number
(1,000) of generations) compares to the base-
line runtime. This graph can be contrasted
with Figure 5, which simply compares a ran-
dom hypothesis to the baseline (one significant
outlier has been left off this graph to make it
easier to compare to the previous graph). The
baseline runtime comes from a set of param-
eters chosen by the human operators of the
system to perform well.

Although difficult to distinguish from the
graphs, 53% of the best hypothesis runs im-
prove on the baseline time, while only 33% of
the random hypothesis runs are better than
the baseline. This would be encouraging, ex-
cept that a right-tailed normal test rejects the
hypothesis that the mean of the best runs dif-
fers from the mean of the random runs (the ac-
ceptance value is 2.33, while the test statistic is
only 1.55). However, given the relatively small

TN

VoV

Hypothesis

Figure 5. Random Hypothesis’s Runtime

sample size, the fact that the actual distribu-
tion is not clear, and the likelihood of noisy
data, this evaluation should not be considered
rigorous.

Several general observations can be made re-
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Figure 3. iRPROP with FANN versus Incremental Backpropagation

garding the performance of the genetic algo-
rithm. First, the degree of variance from the
baseline in Figure 4 shows that exploration is
in fact taking place. There is also a general
trend to reduce the amplitude of the explo-
ration over time, which can be interpreted as
the algorithm “zeroing-in” on a good set of
parameters (possibly a local minima).
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Figure 6. Prevalence of Bad Genes
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The prevalence and increase of bad genes in
the population, as shown for one trial in Fig-
ure 0, unfortunately indicates that there is
room for improvement in the genetic opera-
tors defined. It takes very few generations for
a population that is composed completely of
good genes to evolve mostly bad genes. Even
using “expert” knowledge for mutation and
crossover in an attempt to reduce the genera-
tion of bad genes, the bad genes come to dom-
inate the population in relatively short order,
making it difficult to maintain population vari-
ance.

The destructiveness of mutation and crossover
is a well-known problem in evolutionary com-
puting. Typical approaches include increas-
ing the size of individuals, changing their
encoding, re-defining the genetic operators,
or simply further reducing the mutation and
crossover rates while producing more genera-
tions. With additional work, any of those ap-
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proaches could be applied here.

3.4. Bayesian Networks

runTime

TimeHog_outOfVM
Hidden_2
0S_outofvM

Hidden_5

CPUHog_outOfVM
PO_outofVM

Figure 7. Bayesian Network for Job 1

Since the true relationship of parameters was
unknown before beginning this project it is dif-
ficult to analyze the results of the Bayesian
network structure search. However, it is en-
couraging the the structure search did produce
results that are believable. For instance, in
the Bayesian network for Batch Job 1, Fig-
ure 7, the message spool threshold (spool-
Size) and message compression (disableCom-
pression) parameters were analyzed as being
related (through their mutual parent, Hid-
den_4). This is an expected result, since
compression determines the size of messages,
which in turn influences the maximum size
of messages that will be kept in memory vs.
spooled to disk.

disableBinary

Hidden_9

runTime

’ Hidden_7 spoolSize

Hidden 2
Hidden 1

PO_outOfvVM

MemHog_outOfVM

NS_outOfVM

BS outOfVM

Hidden_6
SM_outofvM

Figure 8. Bayesian Network for Job 2

Also in the Bayesian network for Batch Job 1,
the compression and heap memory (maxMem-
ory) settings are related (through the node,
Hidden_1) which is also logical since the en-
abling /disabling of compression would have an
affect on the amount of memory needed to
keep the batch job running efficiently. Inter-
estingly, the Bayesian network for Batch Job
2, Figure 8, found the same two relations.

In addition to the relationships found to give
the highest BIC score it is also useful to an-
alyze what relationships created during the
structure search process resulted in raising the
BIC score. Figures 9 through 12 describe how
many edges added from a particular parame-
ter node to a hidden node already connected
to other parameter nodes (siblings) resulted in
an increase in BIC score: a productive edge.
These numbers depend heavily on how many
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Figure 10. Number of Productive Edges for Job 1 for other
nodes

times such edges are even considered which is
a random probability in the structure search
algorithm. To alleviate this a higher number
of iterations (random restarts) could be chosen
to ensure that all edges are randomly chosen
roughly an equal number of times, although we
feel that the value chosen was a fair. The in-
teresting results of these sets of figures is the
differences in which relationships were found
to be productive most often.

For Job 1, the most often productive relation-
ship was between the maximum amount of
memory and message format (disableBinary).
This means that adding an edge in the net-
work from the maxMemory parameter node to
a hidden node already connected to disableBi-
nary parameter node resulted in a higher net-
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Figure 11. Number of Productive Edges for Job 2 for
inVM/outOfVM nodes
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Figure 12. Number of Productive Edges for Job 2 for other
nodes

work score more than any other edge combina-
tion. For Job 2, however, this relationship was
actually found to rarely result in a higher net-
work score. The relationships for Job 2 that
most often resulted in increasing the network
score were whether the TimeHog service was
in VM and the maximum number of concur-
rent messages (maxConMsgs) allowed per ma-
chine, whether the OS service was in VM and
the maximum amount of memory, and maxi-
mum amount of memory and whether the NS
service was in VM.

Although a complete analysis of these rela-
tionships would require a great deal of knowl-
edge about the system and services and inter-
actions between the parameters which would
take many pages, some simple and intuitive
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(and in some cases, completely hypothetical)
explanations are proposed in the following
paragraph.

The relationship of maxMemory to disableBi-
nary possibly signifies that the trade-off of how
much memory it takes to process binary mes-
sages vs. non-binary messages is important.
The relationship between TimeHog-inVM and
maxConMsgs possibly signifies that since the
TimeHog service requires no actual resources
(it mearly consumes one of the allowed mes-
sage counts for a period of time) the maxi-
mum allowed number of concurrently process-
ing messages is important. The relationship
between OS-inVM and maxMemory possibly
signifies that the OS service typically con-
sumes a great deal of memory and so allowing
it to receive service calls within the same VM
requires that VM to have more memory avail-
able to it. The relationship between maxMem-
ory and NS-inVM possibly signifies the same
as maxMemory and OS-inVM above or even
possibly signifies that since the NS service re-
ceives a inordinate amount of the number of
service calls during the batch job process (and
those calls are often asynchronous) making all
those calls within the VM simply requires a lot
of memory.

Regardless of the actual truthfulness of some
of the explanations above one clear result of
the Bayes network learning is that the maxi-
mum amount of memory interacts with many
other parameters in ways that greatly affect
the performance of the batch job.

4. Related Work

Genetic algorithms are a popular approach
to solving large problems and exploring large
spaces in a directed fashion. There are sev-
eral applications that make use of this method
to solve database-like problems (graph-theory
problems) of making resources available where
they are used the most with the least cost,

such as those documented in (Chuang and
Cheng, 2002), (Tang et al., 2001), and (Gra-
ham and Hinds, 1999). Genetic algorithms
have also been applied specifically to schedul-
ing problems (a type of resource utilization
problem), as in (Meijer, 2004). Both the scope
and combinations of the approach presented
in this paper would seem to make it relatively
unique.

Much work has also been done in the area
of Bayesian network structure learning. Al-
though this experiment used a simple hill-
climbing greedy search with simulated anneal-
ing (restart with a new random network) for
searching the structure space others have de-
signed and applied useful algorithms such as
those described in (Koivisto and Sood, 2002)
or the Bayesian Structural EM Algorithm de-
fined in (Friedman, 1998). In their work
they propose a new algorithm for discovering
the best Bayesian network structure, i.e. the
one that maximized the posterior likelihood:
p(datastructure). Their algorithm was de-
signed to find best structures for subnetworks
but is also modifiable to work globally. In
(Getoor et al., 2002), Getoor et. al. explored
other representations in addition to Bayesian
Networks to represent relationships in data.

5. Future Work

In the interests of time, the scope of this ex-
periment has been deliberately limited. This
means that there are unanswered questions of
both a practical and theoretical nature that
remain to be explored.

Perhaps the most interesting and the most
useful next step would be to attempt to gen-
eralize the neural network simulator and the
Bayesian network classifier. As it stands, both
networks are trained on the implicit behaviour
of one batch job (saving time because this
reduces the size of the input and hence the
number of training examples needed). For a
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small number of production batch jobs this
can still be useful; since the batch jobs are
run every day it will be possible to perform a
limited amount of exploration on a daily ba-
sis, and within a month or so the networks
will be useful enough to allow the genetic al-
gorithm to output parameters that are likely
to be improvements. However, by providing
these networks with input statistics that de-
scribe the shape of a batch job to execute, if
their simulation is accurate enough it could
be possible to have the genetic algorithm im-
mediately produce a targeted set of parame-
ters for an entirely new batch job, and for the
Bayesian network to reveal interesting inter-
service relationships. The major problem with
this remains the probable requirement for a
large number of training examples; however,
it’s possible that the number really wouldn’t
be that large.

Another interesting avenue for continued ex-
ploration is the dual of the goal discussed in
this paper, minimizing runtime for a single
batch job, which is minimizing overall resource
usage for a batch job. Minimizing resource
usage is more challenging because it requires
an accurate picture of the resource utilization.
This means extremely detailed statistics need
to be captured (done) but then these statistics
have to be translated into input for the learn-
ing algorithms. As with the previous para-
graph, this means that more real training data
must be obtained, a time-consuming proposi-
tion. The benefit to being able to do this is to
allow for greater scalability and more concur-
rency in the distributed system.

The problem at hand was made more tractable
by reducing the combinations of parameters
under consideration. However, it is quite likely
that many of the parameters left out, partic-
ularly those related to the behaviour of the
JVM, could have significant impacts on the
performance of the system. Therefore, recon-
sidering the problem with those parameters

available for exploration could yield dividends.
Again, the practical problem with this is the
exploding number of inputs requiring increas-
ingly more training data.

There is a good deal of work that could be
done to improve or alter the use of Bayesian
Networks in this project. In addition to us-
ing the algorithms or possible other relational
data structures referenced in the Related Work
section above, one excellent area for future
work would be to use the genetic algorithm im-
plementation to perform the structure search.
The only sustantial work that would need to
be done is to find a suitable encoding for the
Bayesian Network structure such that appro-
priate crossover and mutation functions could
be applied.

The genetic algorithm itself could potentially
be improved by changing its starting set of hy-
pothesis. Currently, each iteration generates
a new set of random individuals and evolves
them from there. Saving the previous itera-
tion’s final generation and starting from there
could produce improved results, or at least be
aesthetically satisfying. Of course, the domi-
nance of bad genes would need to be overcome
first.

6. Conclusion

The chief hypothesis set to be explored in this
project was that machine learning techniques
could be applied to find better, if not an op-
timal, set of tuning parameter values to con-
figure a distributed system with that would
outperform current standard, human-defined
values. It is clear from results that several
sets of parameters values were discovered that
could improve performance. This also shows
that the genetic algorithm is properly search-
ing the possible parameter space and finding
those sets of parameter values that will in-
crease performance. This, together with the
results above, also shows the neural network
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is able to, within a certain degree of accu-
racy, predict performance. With more exam-
ples and training time, it is expected that the
neural network would improve even more.
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Parameter

Comments

Heap Memory

Amount of memory dedicated to Java heap. Setting this
too high can limit the number of threads available or limit
the amount of space for internal JVM data, and ultimately
cause the JVM or Framework to crash. Setting this too
low will result in reduced scalability and can ultimately
cause the Framework to crash.

Concurrent Threads

Service Distribution

In-JVM vs. Out-of-JVM

Total number of operations allowed to be handled by all
services in a Framework instance. Setting this too low cre-
ates unnecessary delays; setting this too high can trigger
memory or threading problems.

Controls which services are running on which Framework
instances. Running more services means higher avail-
ability and potentially better throughput. However, the
characteristics of each service need to be considered; it
may not be wise to put two services that each need large
amounts of memory on the same Framework.

Controls whether requests from one service to another
service running in the same Framework are allowed to
go directly to that service in that same JVM, or must
be load balanced across any available machines. In-JVM
requests have lower overhead but reduce load balancing
and can trigger memory or threading problems. Set for
each service on each machine.

Message Spool Threshold

Message Compression

Message Format

This property is a trade off between memory usage and
speed. It determines when messages are held in memory
for processing and when they must be spooled to disk.
Disabling compression reduces CPU usage and so might
reduce latency at cost of increased memory usage and
transport times (particularly when going out-of-VM).
There are two formats in which messages can be transmit-
ted. The XML format compresses extremely well, but can
be slower to read and write. The binary format can be
faster to read and write, particularly when the message is
small. Its performance tends to degrade, however, when
compression is enabled.

Table 1. Tuning Parameters
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