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Abstract 
The fundamental hypothesis of this paper is that 
certain trends exist in stock market data that, if 
properly recognized, could be used to invest well 
on certain stocks.  This paper details an attempt 
to apply neural networks to stock market 
investing, in order to create an agent that can 
learn to invest profitably in certain stocks.  To 
accomplish this, a classification scheme is 
developed which maps certain stock closing 
price patterns to future movements in the price of 
the stock.  A neural network is trained on this 
data, with the hope of identifying certain patterns 
in the data not obvious to human analysts.  
Finally, the output of the neural network is 
coupled with high-level decision rules to direct 
the agent when to buy or sell for given input 
data.  As a result of these efforts, an agent is 
developed which makes a profit when investing 
upon the stocks given it in this project. 

1.  Introduction 

Stock market investing is a common venture undertaken 
by Americans and others around the world.  Yet, despite 
its ubiquity, the stock market is hardly understood, and 
investments made by the average person are usually little 
more than proverbial “shots in the dark,” resulting in 
either gains or losses with seemingly random regularity.  
The question has been posed, and still remains, as to 
whether the movements of the stock market can be 
predicted, and if so, whether or not these predictions can 
be used to make profitable investments in the market.  
Some economists theorize that even if certain trends could 
be identified, that the market would quickly compensate 
for their use, rendering little advantage to the investor.  
Such ideas are embodied in the Efficient Market 
Hypothesis (Lawrence, 1997).  These notions are not 
discussed in this paper.  Rather, the technical details of 
identifying and properly using trends in the closing price 
of stocks are the focus of this paper, with the assumption 
that the trends, if identified and used, could be used to full 
advantage in the process of investing in the market.  So to 
this end, an agent was developed, which uses a neural 
network to identify trends in test data and then apply it to 
test data in order to make good investing decisions.  The 
design and development of this agent are the main 

contents of this paper, along with the results of its 
performance on test data. 

2.  Problem and Solution Overview 

As previously stated, the problem addressed by this paper 
is that of attempting to invest “well” in the stock market 
by identifying certain trends in stock price, and putting 
them to good use.  For this particular project, the input 
domain was restricted to historical stock data.  Therefore, 
the process of investing involved running a simulation 
over some historical data. 

The process of investing is defined as follows.  First, an 
arbitrary agent is given a set of stock market data.  The 
data is a list of closing prices of that particular stock, 
where each data point corresponds to a particular day that 
the stock was traded.  The data is organized in 
chronological order so that the first data point corresponds 
to the first day the stock was traded, and the last data 
point to the last day of trading.  For example, the data set 
for Google’s stock runs from 08/19/04 to 09/05/06, and 
also includes all of the days in-between on which the 
stock was traded.  After receiving the data, the agent is 
given some initial capital, and performs a simulated 
investment run, starting at the first data point, and ending 
at the last.  At each data point, the agent makes a decision 
to sell, buy, or do nothing, based on that particular agent’s 
trading rules.  After the run is completed, the profit is 
calculated, which determines the success of the run.  In 
addition, the agent is forbidden to go into debt, meaning 
that it cannot buy more stock than it has capital enough to 
purchase.  To model real-world transactions, the agent is 
also charged a fee of 0.9 cents per gross profit on a 
transaction. 

Three agents were developed to operate in this domain, 
with the goal of making a positive profit on any given 
simulation.  The first agent, also the main subject of this 
paper, is the neural network agent, which is described in 
detail below.  The other two agents were constructed as 
benchmarks, for the purpose of gauging the performance 
of the neural network agent.  The first benchmark agent is 
a random investor, which buys or sells at random data 
points.  The second benchmark is a heuristic that attempts 
to model some human investing methods, by buying at 
local increases in price, and selling at local decreases.  
The description of the design, development, and testing of 
these agents will henceforth occupy the rest of the paper. 
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3.  Implemented Agents 

3.1  Random Agent 

The algorithm for the random investor is agent is 
relatively simple.  At each data point, a random number is 
obtained.  Based on this number, the agent will buy some 
shares 10% of time, sell some shares 10%, and do nothing 
the other 80%.  To be consistent with the constraints upon 
the problem domain, the agent will do nothing if it is 
given the order to sell, and currently has no shares, nor 
will it do anything if ordered to buy when it has no capital 
with which to purchase stock.  This agent provides the 
lower bound on performance, in the sense that any 
somewhat intelligent agent should at least perform better 
than random.   

3.2  Heuristic Agent 

The heuristic agent attempts to mimic a short-sighted 
approach to investing that humans commonly use, in the 
author’s experience.  Basically, if the stock price has been 
increasing for the last few days, the agent assumes that it 
is on the up-and-up and decides to buy some shares.  
Conversely, if the price has been decreasing over the last 
several days, then the agent assumes that the stock isn’t 
doing so well, and sells some shares to cut its losses.  
Many human investors mimic this behavior in some form, 
buying stock when they think it is going to increase in 
price, and selling when they think they might lose money 
by holding on to the stock.   

The heuristic can be expressed formally as follows.  For 
some data point i, let vi be the value of that particular data 
point, as calculated by the heuristic. Then, 

 

 

 

In the above equation, w is the window size, and D is the 
array of data points.  The index k refers to a trading day, 
and D[k] is the closing price of the stock on day k. As one 
can see, vi is nothing more than a linearly adjusted 
average of the w previous data points.  If vi > lu then the 
agent buys some shares, and if vi < ll, then the agent sells 
some stock.  In this project, the upper limit, lu, was set to 
$5, the lower limit, ll, was set to –$5, and the window 
size, w, was set to 5.  These parameters could be fine-
tuned to change the behavior of the agent.  For instance, 
to make the agent more cautious about transactions, the 
absolute value of the upper and lower limits could be 
increased.  The window size could also be increased to 
make the agent account for a greater amount of history in 
the decision-making process.  This approach is flexible in 
that it allows for buy/sell decisions to be made on data 
that could be noisy, as long as it is increasing or 
decreasing on average by enough of an amount.  
However, it is conceivable that some data patterns have 

an average that does not correspond to their direction of 
movement, i.e. a pattern that is moving down, but has a 
large “spike” that causes it to have a positive average.  
Such patterns are possible in theory, but for a window 
size of 5, are extremely rare in stock market data in the 
author’s experience.  In most all cases, data that is noisily 
moving up has a positive average, and vice versa. 

3.3  Neural Network Agent 

The Neural Network (NN) agent was designed for the 
purpose of extracting patterns of stock price fluctuation 
from a set of training data, and using that same data to 
invest intelligently on a set of test data.  Unlike the 
benchmark agents, the goal of the NN agent is to use what 
it has learned to “guess” what the market will do next 
from any given data point, and then to invest 
appropriately given this guess.  The task of designing the 
agent fell into four steps: designing a classification 
scheme, deciding upon an appropriate neural network 
architecture, implementing an effective training scheme, 
and defining high-level decision rules. 

3.3.1  CLASSIFICATION SCHEME 
The intent of the classification scheme is to map a set of 
data points to the stock’s subsequent movement.  So, for 
some data point i, the previous wpre points are considered.  
The average of these points is taken, and denoted as 
Avgpre.  Next, the wpost points following the current data 
point are considered.  The average of these points is 
taken, and denoted as Avgpost.  Then, the vector containing 
the points D[i-wpre] to D[i-1] is mapped to the difference 
of Avgpost and Avgpre.  In this way, a set of data points is 
mapped to the relative future change in the data.  In this 
project, wpre and wpost were set to 20. 

Formally, the classification can be described thus.  A 
classified example, ei, is the example corresponding to an 
arbitrary point i in the data set.  Symbolically, ei is a pair, 
<xi,vi>, where xi is a vector, and vi its corresponding 
value, according to the following equations.  First, xi is a 
vector such that |xi| = wpre.  For an integer index variable 
k, xi[k] = D[i - wpre + k], where 0 ≤ k ≤ wpre – 1 and D 
represents the data set.  The value of vi is as follows: 
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The classification occurs, then, for all data points i such 
that wpre < i < |D| - wpost.  The classifier iterates across the 
data set, producing an example for each point i that falls 
within the given bounds.  As the iteration occurs, the 
vector xi forms a colloquial “moving window.”  This 
method of classification was developed by the author of 
this paper, and is novel as far as he knows.  This 
classification approach is similar to one used in 
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Chenoweth & Obradovic (1996), in the sense that it is 
also a moving-window approach.  However, the system 
referenced in this paper employed a somewhat different 
classification scheme, leveraging an ensemble of different 
statistical classification methods to produce an example 
set. 

3.3.2  NEURAL NETWORK ARCHITECTURE 
The NN agent uses a multi-layer perceptron network.  For 
general information on artificial neural networks, the 
reader is directed to Mitchell (1997).  The number of 
inputs to the network is equal to wpre, the size of the 
classifier’s moving window.  Thus, the input to the neural 
network, for a given data point, is the previous wpre data 
points.  This approach is not universal, however.  In Yao 
and Poh (1995), an input configuration is used which 
utilizes several statistical calculations performed over 
recent data that attempt to convey certain characteristics 
of the data, as opposed to just using the data itself.  
Several examples include the moving average over the 
previous 10 nodes, the moving average over the previous 
50 nodes, and the difference in closing prices over the 
previous 5 days.  The goal of the network used in this 
project is to detect trends in data not necessarily known to 
human observers, rather than attempting to isolate certain 
trends beforehand, on which to train. 

The output of the network is a single node, which 
produces a real-valued number indicating the direction the 
network thinks the market will go in the near future; 
positive values indicate an expected increase in price, and 
negative values indicate an expected decrease.  In 
addition, the absolute value of the output also indicates 
the amount of expected change, so an output of +15 
would indicate a greater expected increase than +5.  To 
accomplish this kind of operation, linear input and output 
units are used, along with hidden nodes using tanh as an 
activation function.   

In the course of performing many experiments, it was 
determined that the network performed best, in terms of 
smallest error, for the classified data when the number of 
hidden nodes, H, approximately satisfied the following 
relation, with k = 10, and Egiven the set of examples given 
to the neural network, on which to train: 

 

 

This is most likely due to the fact that the data is not 
linearly separable and correct correlation to certain output 
values requires that many factors be considered.  In any 
case, the network did not perform well for values of k < 
10, in many cases not even learning to differentiate 
between widely separate inputs.  Through 
experimentation, it was determined that training times for 
networks in which |Egiven| > 20, while following the above 
relation, were intractable.  So, |Egiven| was set to 20 in this 
project, the number of hidden nodes was thus set to 200.  
Several different topologies were considered over the 

course of the project, including using several layers of 
hidden units.  In the end, however, the network of 200 
hidden nodes experimentally performed the best.  In an 
interesting side note, one paper found that networks with 
only one hidden layer are generally more accurate than 
those with two or more when training on stock market 
data, although this finding did not really influence the 
architecture used in this project (Egeli, Ozturan, & Badur, 
2003). 

3.3.3  TRAINING SCHEME 
The neural network of the NN agent was trained using 
backpropagation.  An interesting alternative method of 
error minimization is discussed in Hochreiter and 
Schmidhuber (1997).  Although this method, which 
attempts to identify large flat regions in the error space, 
shows some promise, implementing it proved to be 
beyond the scope of this project.   

In general, the neural network in the NN agent is trained 
over an example set E, where E = {e1,e2,…,en}, where 
each ei is of the form ei = <xi,vi>, where xi is a vector of 
length wpre and vi is a real-valued number.  The network 
performs some number of training iterations over E, 
where in each iteration, backpropagation is performed for 
each ei ∈ E.  Once again, the reader is referred to Mitchell 
(1997) for the details of backpropagation. 

This general approach, however, did not work.  In the 
course of many experiments, it was determined that the 
network could not learn properly if two different training 
examples ei and ej contained vectors such that xi[k] ≈ xj[k] 
and vi ≠ vj, where k is some index variable denoting a 
specific element in the vector.  More specifically, it was 
found that the network had trouble learning if any |xi[k] - 
xj[k]| < 0.5 and |vi – vj| > ε , ∀i,j such that 1 ≤ i,j ≤ n, i ≠ j, 
where n = |E|, and some small ε.  To account for this 
issue, the training set E was modified in the following 
manner prior to training.  First, each xi is modified, such 
that each element xi[k] is rounded to the nearest integer.  
Let these modified vectors be denoted xi′.  Next, each xi′ 
is stored, with its corresponding vi, in a table, T.  A scan is 
performed on T, and identical vectors xi′ are noted.  Next, 
for each class of identical vectors xi′, a corresponding vi′ 
is found, which is the average of all of the vi’s of the 
vectors xi′.  Formally, if a certain class contains m 
identical vectors, xi1′, xi2′… xim′ then vi′ would be: 
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Finally, the modified < x′, v′> pairs are collected into a 
new set of the form {e1′, e2′,…, er′} = E′, which is called 
the reduced example set, where r ≤ n.  The reduced 
example set can be successfully trained on the neural 
network, since it satisfies the property that all 
corresponding elements of different vectors xi are at least 
0.5 apart.  To produce Egiven, some |Egiven| elements are 
taken from E′ and collected to form a set.  In the 
implementation of the NN agent, elements are drawn 
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from T in a semi-random fashion, such that the order of E′ 
does not resemble E.  From this, the first |Egiven| elements 
of E′ can be selected to form Egiven.  Due to the semi-
random order of E′, Egiven is likely contain a diverse set of 
examples, and since wpre is relatively large, the examples 
in Egiven should also mostly “cover” the data set, in the 
sense that a good portion of the data points in D are 
present in the xi’s of the examples in Egiven.  Thus, even 
though Egiven may be relatively small, its size should not 
adversely affect the ability of the neural net to find the 
desired patterns in the data by a great amount.  This 
conclusion is supported by the results in section 4.3. 

This approach to reducing the example set was developed 
by the author, and is novel as far as he is aware.  
Chenoweth & Obradovic (1996) also note the importance 
of reducing the example set, eliminating non-relevant and 
noisy data, grouping the rest into well-separated classes.  
They suggest the usage of several sophisticated statistical 
models to perform this reduction.  Although the approach 
developed here is more naïve, it attempts to accomplish 
something similar, by separating the examples out into 
classes so that the neural network can learn effectively. 

Through experimentation, the leaning rate, α, was set to 
5x10-8 and the momentum, µ, was set to 0.9.  It was also 
found that at least 1000 training iterations need to be run 
for the neural net to perform to any degree of accuracy on 
test inputs provided after training. 

3.3.4  HIGH-LEVEL DECISION RULES 
When performing a simulation, the agent needs to have a 
method by which to decide whether or not to buy, sell, or 
do nothing at a given time.  For a given data point i in a 
simulation, let xi be a vector containing the previous wpre 
data points.  Also let F(x) be the output of the neural 
network.  Then, at each data point i encountered in the 
simulation, F(xi) is computed.  At this point, a decision is 
made.  If F(xi) > Lu, an upper limit, then the decision is 
made to sell.  Conversely, if F(xi) < Ll, a lower limit, then 
the decision is made to buy.  Nothing is done for all other 
values of F(xi).  This particular set of decision rules 
attempts to impart buy low, sell high behavior, by buying 
stock when the price is expected to drop, and selling when 
it is expected to rise.  In the implementation of the agent 
Lu was set to $10, and Ll to -$10. 

4.  Experiments and Results 

Two sets of experiments were run to test both the NN and 
benchmark agents: investing on Google stock (GOOG) 
and investing on eBay (EBAY).  GOOG and EBAY have 
different features, so investing on both should more 
accurately reveal the character of the agents being tested.  
In this regard, GOOG is a “nicer” stock, as it starts out at 
a relatively low price, increases over time, and then levels 
off after a slight decrease.  This is almost perfect for 
investing, as it gives an agent a great opportunity to buy 
low, sell high, and make a profit.  EBAY, on the other 

hand starts out by rapidly climbing to a high price, then 
decreasing and approximately leveling out.  This stock is 
not so friendly for investing agents, as there is not much 
room to buy low and then sell at a higher price.  One can 
still make a profit, but it is not as easy as on GOOG.  All 
three agents were tested by investing on GOOG, then 
investing on EBAY.  The results and methodologies of 
these experiments for each of the agents are detailed in 
the following sections. 

4.1  Random Agent 

The random agent was simulated over GOOG for 100 
runs.  In each run the agent was given $1000 initial 
capital.  Also, due to the stock’s high average closing 
price of $297, the agent was allowed only to buy or sell 
one share per data point.  The profit of each of these runs 
is shown below, in Figure 1. 
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Figure 1.  Profit per run over GOOG for the random agent. 

The average profit over these runs is -$84.07.  For a 
random agent, this seems to be pretty good performance, 
and is most likely due to the investor-friendly features of 
GOOG mentioned above. 

For the second experiment, the random agent was 
simulated over EBAY for 100 runs.  As with the previous 
experiment, the agent was given $1000 initial capital for 
each run, and was also restricted to only buying or selling 
one share per data point.  The results of these runs are 
shown below in Figure 2. 

 

 

 

 

 

 

 

Figure 2.  Profit per run over EBAY for the random agent. 

The average profit over these runs is -$595.51.  This isn’t 
nearly as good as the results over GOOG, and is 
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consistent with the assertion that EBAY is not as “nice” 
as GOOG for investing.  These results are less than ideal 
for a human investor; one would at least like to make a 
profit!  Therefore, it seems safe to say that these results 
form a lower bound on performance for the agents, and 
that the other more intelligent agents should perform 
better. 

4.2  Heuristic Agent 

The heuristic agent was then run over GOOG.  Like the 
experiments involving the random agent, the agent was 
given $1000 initial capital, and allowed to only buy or sell 
one share per data point.  Since the heuristic is 
deterministic, it is only necessary to perform one run to 
gauge the agent’s performance.  The results of the 
heuristic run are shown below in Figure 3. 

 

 

 

 

 

 

 

Figure 3.  Simulation run of heuristic agent over GOOG. 

The profit for this run was $141.12.  One can observe that 
the agent buys stock, decreasing the profit, when the stock 
price increases, and sells, increasing the profit, when the 
price decreases.  The “good” features of GOOG are 
visible in this graph, and the investment pattern of the 
heuristic follows, resulting in a respectable profit. 

For the next experiment, the heuristic agent was simulated 
over EBAY.  The same rules applied, with $1000 initial 
capital and the limit of one share bought/sold per 
transaction. 

 

 

 

 

 

 

 

 

 

Figure 4.  Simulation run of heuristic agent over EBAY. 

The profit for this run was -$82.  If the agent were to stop 
early in the simulation, it might make a nice profit, but the 
price of EBAY quickly drops and the agent loses money.  
The price never recovers, and neither does the agent.  
Despite, the “bad” features of EBAY, the agent still has a 
respectable performance, ending the simulation with a 
minor loss.  

As expected, the heuristic agent performs better than the 
random agent.  Nevertheless, one would hope for the NN 
agent to perform better than the heuristic, and make a 
profit over both stocks.  Thus, the heuristic agent provides 
another bound for performance, one which the NN agent 
should hopefully surpass. 

4.3  Neural Network Agent 

Two sets of experiments were performed on the NN 
agent, the difference lying in the training method used.  
First, since GOOG was determined through visual 
inspection and from the results of the benchmark 
heuristics to have “good” features, it was determined that 
some |Egiven| examples of GOOG should be used to train 
the NN agent before being tested on GOOG and EBAY.  
Since GOOG’s features are “good,” one would expect the 
agent to perform well testing on GOOG, and possibly 
other stocks.  In order to prevent overfitting, the use of 
two common methods was devised, which in turn led to 
two different sets of experiments.  The first method 
involves stopping training after a set number of iterations.  
For this project, training was stopped after 5000 
iterations.  The second method involves using a validation 
set, disjoint from the training set, to determine when to 
stop training.  When the error from computing values in 
the validation set starts increasing beyond some threshold, 
then one can conclude that the network is starting to learn 
specific idiosyncrasies in the training set, and stop the 
training.  So, in both sets of experiments, the NN agent 
was trained on a small set of examples drawn from 
GOOG’s reduced example set, and tested on both GOOG 
and EBAY.  After, this, the same experiments were 
performed by training on EBAY, then testing on both 
GOOG and EBAY.  Since EBAY’s features, are not as 
“good” as GOOG’s, one would expect performance to be 
worse overall, especially when testing on stocks other 
than EBAY.  As with the other experiments, the agent 
was given $1000 initial capital, and limited to buying or 
selling on share per data point.  The size of the training 
set was placed at 20 for both sets of experiments, and the 
size of the validation set was placed at 20 for the second 
set.  Also, since the neural network weights are randomly 
initialized, there is some room for variation in the network 
output after training has completed.  To account for this, 
five runs of each class of experiment were performed. 
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4.3.1  SET NUMBER OF ITERATIONS 
After training on the given example set the agent 
averaged a profit of $1269.48 on GOOG and a profit of 
$887.47 on EBAY.   
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Table 1.  Profit on GOOG and EBAY using a neural net trained 
on GOOG with a fixed number of iterations. 

Run 
GOOG 

Profit ($) 
EBAY 

Profit ($) 

1 1258.38 895.46 

2 1268.62 989.46 

3 1261.76 900.28 

4 1251.52 794.94 

5 1307.10 857.22 
 

From this data, the NN agent appears to have done 
extremely well using this method.  Even more indicative 
of success is the fact that the agent used trends learned 
from GOOG to invest successfully in EBAY, a data set 
unrelated to the training set in any way.  This seems to 
support the hypothesis certain trends can be identified and 
used to invest profitably in certain stocks. 

 

 

 

 

 

Figure 5.  Individual simulation run of NN agent over GOOG 

The above figure shows one of the runs performed by the 
agent over GOOG.  Many of the spikes in profit occur 
after a peak, indicating that the agent has learned some 
buy low, sell high behavior.  This once again supports the 
initial hypothesis of the paper. 

 

 

 

 

 

 

 

Figure 6. Individual simulation run of NN agent over EBAY. 

The above figure shows one the runs performed over 
EBAY.  Although the profit is a bit noisier than the 
GOOG run, the agent still appears to exhibit buy low, sell 
high behavior, as profit spikes appear after local maxima.  

It appears that this training method produces an agent that 
learns to invest profitably, at least on these stocks. 

Next, the NN agent was trained on EBAY and tested on 
both GOOG and EBAY.  In simulation, the agent 
averaged a profit of $51.38 on GOOG and a profit of 
$579.23 on EBAY. 

Table 2.  Profit on GOOG and EBAY using a neural net trained 
on EBAY with a fixed number of iterations. 

Run 
GOOG 

Profit ($) 
EBAY 

Profit ($) 

1 240.20 566.53 

2 131.70 573.10 

3 -29.45 670.09 

4 -73.16 555.62 

5 -12.38 530.80 
  

From this data, the NN agent appears to have done 
reasonably well given EBAY data on which to train.  As 
can be expected, the agent performed better or EBAY 
than on GOOG, since it trained on examples from the 
former.  Nevertheless, despite the “bad” features of 
EBAY, the agent still makes a profit, on average, 
investing on GOOG.  Thus, it still seems to have 
identified some trends in EBAY that are also useful on 
GOOG.  For the sake of brevity, graphs of individual runs 
of this sort will not be presented here. 
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4.3.2  USING VALIDATION SET 
Similar results were achieved using a validation set to 
limit the number of training iterations.  In the five runs 
comprising this experiment, the agent netted an average 
profit of $814.32 on GOOG, and made $821.61 on 
EBAY. 

Table 3. Profit on GOOG and EBAY using a neural net trained 
on GOOG using a validation set. NN Agent (EBAY)

-1500

-1000

-500

0

500

1000

1500

2000

1 125 249 373 497 621 745 869 993 1117 1241 1365 1489 1613 1737 1861

Day

Run 
GOOG 

Profit ($) 
EBAY 

Profit ($) 

1 947.91 872.58 

2 662.74 854.85 

3 962.25 810.97 

4 581.18 798.73 

5 917.52 771.16 
 

Although these numbers are slightly lower than those in 
the previous experiment, the agent still performs well, 
even doing better on EBAY than GOOG on a couple of 
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occasions.  Once again, this data seems to suggest that the 
agent has learned some trends that it can put to good use 
in investing. 

 

 

 

 

 

 

 

 

Figure 7.  Individual simulation run of NN agent over GOOG. 

As in the previous experiment, this agent appears once 
again to exhibit buy low, sell high behavior, which is the 
intended result.  Although this run is not as profitable as 
its counterpart from the other experiment, its general 
pattern is similar, and indicates that the same kind of 
learning has taken place. 

 

 

 

 

 

 

 

 

 

Figure 8.  Individual simulation run of NN agent over EBAY. 

This graph exhibits noise, much like its counterpart in the 
previous experiment, but it also seems to exhibit the 
desired buy low, sell high behavior, as major increases in 
profit occur after decreases in price.  Once again, it 
appears that the agent is learning properly and validating 
the initial hypothesis that an agent can learn to invest 
profitably in stocks. 

As in the previous set of experiments, the NN agent was 
then trained on examples from EBAY, and tested on both 
GOOG and EBAY, averaging a profit of -$44 on the 
former, and of $577 on the latter. 

 

 

Table 4. Profit on GOOG and EBAY using a neural net trained 
on EBAY using a validation set. 

Run 
GOOG 

Profit ($) 
EBAY 

Profit ($) 

1 -28.17 624.22 

2 -54.18 573.75 

3 -45.18 585.24 

4 -45.18 553.33 

5 -47.56 548.59 
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In this experiment, the agent performed about the same as 
its counterpart in Table 2 for investing on EBAY.  
However, the agent performed worse, by about $95 on 
average, investing on GOOG.  Despite the decrease in 
success, this is still better than the average result of the 
random heuristic.  Thus, in this case, the NN agent seems 
to be affected more by the “bad” features of EBAY on 
which it trained, and thus performs worse on other stocks.  
One could conclude that the agent still found enough 
good patterns to prevent a large loss while investing on 
GOOG. 

5.  Future Work 

Although the NN agent performed relatively well, there is 
still work that can be done to possibly improve the agent.  
One area that could be improved is in the area of the 
classification scheme and neural network architecture.  If 
a way could be found to bring down the number of hidden 
nodes per training example and still retain good 
performance, then training times could be reduced and 
more examples incorporated into the training set, possibly 
improving performance in the simulation. 

Another way to improve the agent would be to 
incorporate more information into the inputs of the neural 
nets.  The behavior of the stock market is influenced by a 
number of external factors, and one would think that 
including as many of these as possible would improve 
performance as well.  One interesting approach along 
these lines was taken in Wuthrich, et al. (1998), in which 
textual data from news websites was considered along 
with numerical data to make predictions.  Although this 
project might not benefit from exactly reproducing this 
paper, implementing something along these lines might 
help improve performance. 

6.  Conclusion 

This paper details an attempt to build a neural network-
based agent to invest profitably on certain stocks.  Using a 
certain combination of classification scheme, neural 
network architecture, and high-level decision rules seems 
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to have produced an agent capable of investing well on 
stocks, at least on GOOG and EBAY.  The initial 
hypothesis of the paper, that certain salient trends can be 
identified and used to invest well, is supported by the 
results obtained by these experiments.  Whether or not 
this hypothesis holds for all stocks, or whether a system 
like this could be implemented for use in the real world, is 
a question beyond the scope of this paper, and an 
unanswered one at that.  What this paper has shown, 
however, is that neural networks can be used to invest 
profitably on certain stocks, and perhaps, with the right 
combination of design, experimentation, and luck, one 
might be able to produce an agent capable of performing 
extremely well on all stocks in general, reaping huge 
profits for whoever was fortunate enough to have access 
to its predictions.  At this point, however, the future 
remains to be seen. 
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