
Stock Market Investing Using Neural Networks

Matthew Bodenhamer MBODENHAMER@OU.EDU
University of Oklahoma

Abstract
The fundamental hypothesis of this paper is that
certain trends exist in stock market data that, if
properly recognized, could be used to invest well
on certain stocks. This paper details an attempt
to apply neural networks to stock market
investing, in order to create an agent that can
learn to invest profitably in certain stocks. To
accomplish this, a classification scheme is
developed which maps certain stock closing
price patterns to future movements in the price of
the stock. A neural network is trained on this
data, with the hope of identifying certain patterns
in the data not obvious to human analysts.
Finally, the output of the neural network is
coupled with high-level decision rules to direct
the agent when to buy or sell for given input
data. As a result of these efforts, an agent is
developed which makes a profit when investing
upon the stocks given it in this project.

1. Introduction

Stock market investing is a common venture undertaken
by Americans and others around the world. Yet, despite
its ubiquity, the stock market is hardly understood, and
investments made by the average person are usually little
more than proverbial “shots in the dark,” resulting in
either gains or losses with seemingly random regularity.
The question has been posed, and still remains, as to
whether the movements of the stock market can be
predicted, and if so, whether or not these predictions can
be used to make profitable investments in the market.
Some economists theorize that even if certain trends could
be identified, that the market would quickly compensate
for their use, rendering little advantage to the investor.
Such ideas are embodied in the Efficient Market
Hypothesis (Lawrence, 1997). These notions are not
discussed in this paper. Rather, the technical details of
identifying and properly using trends in the closing price
of stocks are the focus of this paper, with the assumption
that the trends, if identified and used, could be used to full
advantage in the process of investing in the market. So to
this end, an agent was developed, which uses a neural
network to identify trends in test data and then apply it to
test data in order to make good investing decisions. The
design and development of this agent are the main

contents of this paper, along with the results of its
performance on test data.

2. Problem and Solution Overview

As previously stated, the problem addressed by this paper
is that of attempting to invest “well” in the stock market
by identifying certain trends in stock price, and putting
them to good use. For this particular project, the input
domain was restricted to historical stock data. Therefore,
the process of investing involved running a simulation
over some historical data.

The process of investing is defined as follows. First, an
arbitrary agent is given a set of stock market data. The
data is a list of closing prices of that particular stock,
where each data point corresponds to a particular day that
the stock was traded. The data is organized in
chronological order so that the first data point corresponds
to the first day the stock was traded, and the last data
point to the last day of trading. For example, the data set
for Google’s stock runs from 08/19/04 to 09/05/06, and
also includes all of the days in-between on which the
stock was traded. After receiving the data, the agent is
given some initial capital, and performs a simulated
investment run, starting at the first data point, and ending
at the last. At each data point, the agent makes a decision
to sell, buy, or do nothing, based on that particular agent’s
trading rules. After the run is completed, the profit is
calculated, which determines the success of the run. In
addition, the agent is forbidden to go into debt, meaning
that it cannot buy more stock than it has capital enough to
purchase. To model real-world transactions, the agent is
also charged a fee of 0.9 cents per gross profit on a
transaction.

Three agents were developed to operate in this domain,
with the goal of making a positive profit on any given
simulation. The first agent, also the main subject of this
paper, is the neural network agent, which is described in
detail below. The other two agents were constructed as
benchmarks, for the purpose of gauging the performance
of the neural network agent. The first benchmark agent is
a random investor, which buys or sells at random data
points. The second benchmark is a heuristic that attempts
to model some human investing methods, by buying at
local increases in price, and selling at local decreases.
The description of the design, development, and testing of
these agents will henceforth occupy the rest of the paper.

Stock Market Investing Using Neural Networks

3. Implemented Agents

3.1 Random Agent

The algorithm for the random investor is agent is
relatively simple. At each data point, a random number is
obtained. Based on this number, the agent will buy some
shares 10% of time, sell some shares 10%, and do nothing
the other 80%. To be consistent with the constraints upon
the problem domain, the agent will do nothing if it is
given the order to sell, and currently has no shares, nor
will it do anything if ordered to buy when it has no capital
with which to purchase stock. This agent provides the
lower bound on performance, in the sense that any
somewhat intelligent agent should at least perform better
than random.

3.2 Heuristic Agent

The heuristic agent attempts to mimic a short-sighted
approach to investing that humans commonly use, in the
author’s experience. Basically, if the stock price has been
increasing for the last few days, the agent assumes that it
is on the up-and-up and decides to buy some shares.
Conversely, if the price has been decreasing over the last
several days, then the agent assumes that the stock isn’t
doing so well, and sells some shares to cut its losses.
Many human investors mimic this behavior in some form,
buying stock when they think it is going to increase in
price, and selling when they think they might lose money
by holding on to the stock.

The heuristic can be expressed formally as follows. For
some data point i, let vi be the value of that particular data
point, as calculated by the heuristic. Then,

In the above equation, w is the window size, and D is the
array of data points. The index k refers to a trading day,
and D[k] is the closing price of the stock on day k. As one
can see, vi is nothing more than a linearly adjusted
average of the w previous data points. If vi > lu then the
agent buys some shares, and if vi < ll, then the agent sells
some stock. In this project, the upper limit, lu, was set to
$5, the lower limit, ll, was set to –$5, and the window
size, w, was set to 5. These parameters could be fine-
tuned to change the behavior of the agent. For instance,
to make the agent more cautious about transactions, the
absolute value of the upper and lower limits could be
increased. The window size could also be increased to
make the agent account for a greater amount of history in
the decision-making process. This approach is flexible in
that it allows for buy/sell decisions to be made on data
that could be noisy, as long as it is increasing or
decreasing on average by enough of an amount.
However, it is conceivable that some data patterns have

an average that does not correspond to their direction of
movement, i.e. a pattern that is moving down, but has a
large “spike” that causes it to have a positive average.
Such patterns are possible in theory, but for a window
size of 5, are extremely rare in stock market data in the
author’s experience. In most all cases, data that is noisily
moving up has a positive average, and vice versa.

3.3 Neural Network Agent

The Neural Network (NN) agent was designed for the
purpose of extracting patterns of stock price fluctuation
from a set of training data, and using that same data to
invest intelligently on a set of test data. Unlike the
benchmark agents, the goal of the NN agent is to use what
it has learned to “guess” what the market will do next
from any given data point, and then to invest
appropriately given this guess. The task of designing the
agent fell into four steps: designing a classification
scheme, deciding upon an appropriate neural network
architecture, implementing an effective training scheme,
and defining high-level decision rules.

3.3.1 CLASSIFICATION SCHEME
The intent of the classification scheme is to map a set of
data points to the stock’s subsequent movement. So, for
some data point i, the previous wpre points are considered.
The average of these points is taken, and denoted as
Avgpre. Next, the wpost points following the current data
point are considered. The average of these points is
taken, and denoted as Avgpost. Then, the vector containing
the points D[i-wpre] to D[i-1] is mapped to the difference
of Avgpost and Avgpre. In this way, a set of data points is
mapped to the relative future change in the data. In this
project, wpre and wpost were set to 20.

Formally, the classification can be described thus. A
classified example, ei, is the example corresponding to an
arbitrary point i in the data set. Symbolically, ei is a pair,
<xi,vi>, where xi is a vector, and vi its corresponding
value, according to the following equations. First, xi is a
vector such that |xi| = wpre. For an integer index variable
k, xi[k] = D[i - wpre + k], where 0 ≤ k ≤ wpre – 1 and D
represents the data set. The value of vi is as follows:

∑
−

−=

−−=
1

][][1 i

wik
i wiDkD

w
v

∑∑
−

−=

+

+=

−=

−=
1

1
][1][1 i

wik

wi

ik prepost
i

preposti

pre

post

kD
w

kD
w

v

AvgAvgv

The classification occurs, then, for all data points i such
that wpre < i < |D| - wpost. The classifier iterates across the
data set, producing an example for each point i that falls
within the given bounds. As the iteration occurs, the
vector xi forms a colloquial “moving window.” This
method of classification was developed by the author of
this paper, and is novel as far as he knows. This
classification approach is similar to one used in

Stock Market Investing Using Neural Networks

Chenoweth & Obradovic (1996), in the sense that it is
also a moving-window approach. However, the system
referenced in this paper employed a somewhat different
classification scheme, leveraging an ensemble of different
statistical classification methods to produce an example
set.

3.3.2 NEURAL NETWORK ARCHITECTURE
The NN agent uses a multi-layer perceptron network. For
general information on artificial neural networks, the
reader is directed to Mitchell (1997). The number of
inputs to the network is equal to wpre, the size of the
classifier’s moving window. Thus, the input to the neural
network, for a given data point, is the previous wpre data
points. This approach is not universal, however. In Yao
and Poh (1995), an input configuration is used which
utilizes several statistical calculations performed over
recent data that attempt to convey certain characteristics
of the data, as opposed to just using the data itself.
Several examples include the moving average over the
previous 10 nodes, the moving average over the previous
50 nodes, and the difference in closing prices over the
previous 5 days. The goal of the network used in this
project is to detect trends in data not necessarily known to
human observers, rather than attempting to isolate certain
trends beforehand, on which to train.

The output of the network is a single node, which
produces a real-valued number indicating the direction the
network thinks the market will go in the near future;
positive values indicate an expected increase in price, and
negative values indicate an expected decrease. In
addition, the absolute value of the output also indicates
the amount of expected change, so an output of +15
would indicate a greater expected increase than +5. To
accomplish this kind of operation, linear input and output
units are used, along with hidden nodes using tanh as an
activation function.

In the course of performing many experiments, it was
determined that the network performed best, in terms of
smallest error, for the classified data when the number of
hidden nodes, H, approximately satisfied the following
relation, with k = 10, and Egiven the set of examples given
to the neural network, on which to train:

This is most likely due to the fact that the data is not
linearly separable and correct correlation to certain output
values requires that many factors be considered. In any
case, the network did not perform well for values of k <
10, in many cases not even learning to differentiate
between widely separate inputs. Through
experimentation, it was determined that training times for
networks in which |Egiven| > 20, while following the above
relation, were intractable. So, |Egiven| was set to 20 in this
project, the number of hidden nodes was thus set to 200.
Several different topologies were considered over the

course of the project, including using several layers of
hidden units. In the end, however, the network of 200
hidden nodes experimentally performed the best. In an
interesting side note, one paper found that networks with
only one hidden layer are generally more accurate than
those with two or more when training on stock market
data, although this finding did not really influence the
architecture used in this project (Egeli, Ozturan, & Badur,
2003).

3.3.3 TRAINING SCHEME
The neural network of the NN agent was trained using
backpropagation. An interesting alternative method of
error minimization is discussed in Hochreiter and
Schmidhuber (1997). Although this method, which
attempts to identify large flat regions in the error space,
shows some promise, implementing it proved to be
beyond the scope of this project.

In general, the neural network in the NN agent is trained
over an example set E, where E = {e1,e2,…,en}, where
each ei is of the form ei = <xi,vi>, where xi is a vector of
length wpre and vi is a real-valued number. The network
performs some number of training iterations over E,
where in each iteration, backpropagation is performed for
each ei ∈ E. Once again, the reader is referred to Mitchell
(1997) for the details of backpropagation.

This general approach, however, did not work. In the
course of many experiments, it was determined that the
network could not learn properly if two different training
examples ei and ej contained vectors such that xi[k] ≈ xj[k]
and vi ≠ vj, where k is some index variable denoting a
specific element in the vector. More specifically, it was
found that the network had trouble learning if any |xi[k] -
xj[k]| < 0.5 and |vi – vj| > ε , ∀i,j such that 1 ≤ i,j ≤ n, i ≠ j,
where n = |E|, and some small ε. To account for this
issue, the training set E was modified in the following
manner prior to training. First, each xi is modified, such
that each element xi[k] is rounded to the nearest integer.
Let these modified vectors be denoted xi′. Next, each xi′
is stored, with its corresponding vi, in a table, T. A scan is
performed on T, and identical vectors xi′ are noted. Next,
for each class of identical vectors xi′, a corresponding vi′
is found, which is the average of all of the vi’s of the
vectors xi′. Formally, if a certain class contains m
identical vectors, xi1′, xi2′… xim′ then vi′ would be:

givenEkH ⋅=

∑
=

=′
m

l
ili v

m
v

1

1

Finally, the modified < x′, v′> pairs are collected into a
new set of the form {e1′, e2′,…, er′} = E′, which is called
the reduced example set, where r ≤ n. The reduced
example set can be successfully trained on the neural
network, since it satisfies the property that all
corresponding elements of different vectors xi are at least
0.5 apart. To produce Egiven, some |Egiven| elements are
taken from E′ and collected to form a set. In the
implementation of the NN agent, elements are drawn

Stock Market Investing Using Neural Networks

from T in a semi-random fashion, such that the order of E′
does not resemble E. From this, the first |Egiven| elements
of E′ can be selected to form Egiven. Due to the semi-
random order of E′, Egiven is likely contain a diverse set of
examples, and since wpre is relatively large, the examples
in Egiven should also mostly “cover” the data set, in the
sense that a good portion of the data points in D are
present in the xi’s of the examples in Egiven. Thus, even
though Egiven may be relatively small, its size should not
adversely affect the ability of the neural net to find the
desired patterns in the data by a great amount. This
conclusion is supported by the results in section 4.3.

This approach to reducing the example set was developed
by the author, and is novel as far as he is aware.
Chenoweth & Obradovic (1996) also note the importance
of reducing the example set, eliminating non-relevant and
noisy data, grouping the rest into well-separated classes.
They suggest the usage of several sophisticated statistical
models to perform this reduction. Although the approach
developed here is more naïve, it attempts to accomplish
something similar, by separating the examples out into
classes so that the neural network can learn effectively.

Through experimentation, the leaning rate, α, was set to
5x10-8 and the momentum, µ, was set to 0.9. It was also
found that at least 1000 training iterations need to be run
for the neural net to perform to any degree of accuracy on
test inputs provided after training.

3.3.4 HIGH-LEVEL DECISION RULES
When performing a simulation, the agent needs to have a
method by which to decide whether or not to buy, sell, or
do nothing at a given time. For a given data point i in a
simulation, let xi be a vector containing the previous wpre
data points. Also let F(x) be the output of the neural
network. Then, at each data point i encountered in the
simulation, F(xi) is computed. At this point, a decision is
made. If F(xi) > Lu, an upper limit, then the decision is
made to sell. Conversely, if F(xi) < Ll, a lower limit, then
the decision is made to buy. Nothing is done for all other
values of F(xi). This particular set of decision rules
attempts to impart buy low, sell high behavior, by buying
stock when the price is expected to drop, and selling when
it is expected to rise. In the implementation of the agent
Lu was set to $10, and Ll to -$10.

4. Experiments and Results

Two sets of experiments were run to test both the NN and
benchmark agents: investing on Google stock (GOOG)
and investing on eBay (EBAY). GOOG and EBAY have
different features, so investing on both should more
accurately reveal the character of the agents being tested.
In this regard, GOOG is a “nicer” stock, as it starts out at
a relatively low price, increases over time, and then levels
off after a slight decrease. This is almost perfect for
investing, as it gives an agent a great opportunity to buy
low, sell high, and make a profit. EBAY, on the other

hand starts out by rapidly climbing to a high price, then
decreasing and approximately leveling out. This stock is
not so friendly for investing agents, as there is not much
room to buy low and then sell at a higher price. One can
still make a profit, but it is not as easy as on GOOG. All
three agents were tested by investing on GOOG, then
investing on EBAY. The results and methodologies of
these experiments for each of the agents are detailed in
the following sections.

4.1 Random Agent

The random agent was simulated over GOOG for 100
runs. In each run the agent was given $1000 initial
capital. Also, due to the stock’s high average closing
price of $297, the agent was allowed only to buy or sell
one share per data point. The profit of each of these runs
is shown below, in Figure 1.

Profit per Run (GOOG, Random)

-1500
-1000
-500

0
500

1000
1500
2000

1 11 21 31 41 51 61 71 81 91

Run

Figure 1. Profit per run over GOOG for the random agent.

The average profit over these runs is -$84.07. For a
random agent, this seems to be pretty good performance,
and is most likely due to the investor-friendly features of
GOOG mentioned above.

For the second experiment, the random agent was
simulated over EBAY for 100 runs. As with the previous
experiment, the agent was given $1000 initial capital for
each run, and was also restricted to only buying or selling
one share per data point. The results of these runs are
shown below in Figure 2.

Figure 2. Profit per run over EBAY for the random agent.

The average profit over these runs is -$595.51. This isn’t
nearly as good as the results over GOOG, and is

$ Profit

Profit (EBAY, Random)

-1500

-1000

-500

0

500

1000

1 9 17 25 33 41 49 57 65 73 81 89 97

Run

$ Profit

Stock Market Investing Using Neural Networks

consistent with the assertion that EBAY is not as “nice”
as GOOG for investing. These results are less than ideal
for a human investor; one would at least like to make a
profit! Therefore, it seems safe to say that these results
form a lower bound on performance for the agents, and
that the other more intelligent agents should perform
better.

4.2 Heuristic Agent

The heuristic agent was then run over GOOG. Like the
experiments involving the random agent, the agent was
given $1000 initial capital, and allowed to only buy or sell
one share per data point. Since the heuristic is
deterministic, it is only necessary to perform one run to
gauge the agent’s performance. The results of the
heuristic run are shown below in Figure 3.

Figure 3. Simulation run of heuristic agent over GOOG.

The profit for this run was $141.12. One can observe that
the agent buys stock, decreasing the profit, when the stock
price increases, and sells, increasing the profit, when the
price decreases. The “good” features of GOOG are
visible in this graph, and the investment pattern of the
heuristic follows, resulting in a respectable profit.

For the next experiment, the heuristic agent was simulated
over EBAY. The same rules applied, with $1000 initial
capital and the limit of one share bought/sold per
transaction.

Figure 4. Simulation run of heuristic agent over EBAY.

The profit for this run was -$82. If the agent were to stop
early in the simulation, it might make a nice profit, but the
price of EBAY quickly drops and the agent loses money.
The price never recovers, and neither does the agent.
Despite, the “bad” features of EBAY, the agent still has a
respectable performance, ending the simulation with a
minor loss.

As expected, the heuristic agent performs better than the
random agent. Nevertheless, one would hope for the NN
agent to perform better than the heuristic, and make a
profit over both stocks. Thus, the heuristic agent provides
another bound for performance, one which the NN agent
should hopefully surpass.

4.3 Neural Network Agent

Two sets of experiments were performed on the NN
agent, the difference lying in the training method used.
First, since GOOG was determined through visual
inspection and from the results of the benchmark
heuristics to have “good” features, it was determined that
some |Egiven| examples of GOOG should be used to train
the NN agent before being tested on GOOG and EBAY.
Since GOOG’s features are “good,” one would expect the
agent to perform well testing on GOOG, and possibly
other stocks. In order to prevent overfitting, the use of
two common methods was devised, which in turn led to
two different sets of experiments. The first method
involves stopping training after a set number of iterations.
For this project, training was stopped after 5000
iterations. The second method involves using a validation
set, disjoint from the training set, to determine when to
stop training. When the error from computing values in
the validation set starts increasing beyond some threshold,
then one can conclude that the network is starting to learn
specific idiosyncrasies in the training set, and stop the
training. So, in both sets of experiments, the NN agent
was trained on a small set of examples drawn from
GOOG’s reduced example set, and tested on both GOOG
and EBAY. After, this, the same experiments were
performed by training on EBAY, then testing on both
GOOG and EBAY. Since EBAY’s features, are not as
“good” as GOOG’s, one would expect performance to be
worse overall, especially when testing on stocks other
than EBAY. As with the other experiments, the agent
was given $1000 initial capital, and limited to buying or
selling on share per data point. The size of the training
set was placed at 20 for both sets of experiments, and the
size of the validation set was placed at 20 for the second
set. Also, since the neural network weights are randomly
initialized, there is some room for variation in the network
output after training has completed. To account for this,
five runs of each class of experiment were performed.

Heuristic (GOOG)

-1200

-1000

-800

-600

-400

-200

0

200

400

600

800

1 40 79 118 157 196 235 274 313 352 391 430 469 508

Day

$ Price
Profit

Heuristic (EBAY)

-1500

-1000

-500

0

500

1000

1500

2000

1 208 415 622 829 1036 1243 1450 1657 1864

Day

$ Price
Profit

4.3.1 SET NUMBER OF ITERATIONS
After training on the given example set the agent
averaged a profit of $1269.48 on GOOG and a profit of
$887.47 on EBAY.

Stock Market Investing Using Neural Networks

Table 1. Profit on GOOG and EBAY using a neural net trained
on GOOG with a fixed number of iterations.

Run
GOOG

Profit ($)
EBAY

Profit ($)

1 1258.38 895.46

2 1268.62 989.46

3 1261.76 900.28

4 1251.52 794.94

5 1307.10 857.22

From this data, the NN agent appears to have done
extremely well using this method. Even more indicative
of success is the fact that the agent used trends learned
from GOOG to invest successfully in EBAY, a data set
unrelated to the training set in any way. This seems to
support the hypothesis certain trends can be identified and
used to invest profitably in certain stocks.

Figure 5. Individual simulation run of NN agent over GOOG

The above figure shows one of the runs performed by the
agent over GOOG. Many of the spikes in profit occur
after a peak, indicating that the agent has learned some
buy low, sell high behavior. This once again supports the
initial hypothesis of the paper.

Figure 6. Individual simulation run of NN agent over EBAY.

The above figure shows one the runs performed over
EBAY. Although the profit is a bit noisier than the
GOOG run, the agent still appears to exhibit buy low, sell
high behavior, as profit spikes appear after local maxima.

It appears that this training method produces an agent that
learns to invest profitably, at least on these stocks.

Next, the NN agent was trained on EBAY and tested on
both GOOG and EBAY. In simulation, the agent
averaged a profit of $51.38 on GOOG and a profit of
$579.23 on EBAY.

Table 2. Profit on GOOG and EBAY using a neural net trained
on EBAY with a fixed number of iterations.

Run
GOOG

Profit ($)
EBAY

Profit ($)

1 240.20 566.53

2 131.70 573.10

3 -29.45 670.09

4 -73.16 555.62

5 -12.38 530.80

From this data, the NN agent appears to have done
reasonably well given EBAY data on which to train. As
can be expected, the agent performed better or EBAY
than on GOOG, since it trained on examples from the
former. Nevertheless, despite the “bad” features of
EBAY, the agent still makes a profit, on average,
investing on GOOG. Thus, it still seems to have
identified some trends in EBAY that are also useful on
GOOG. For the sake of brevity, graphs of individual runs
of this sort will not be presented here.

NN Agent (GOOG)

-1500

-1000

-500

0

500

1000

1500

2000

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461

Day

$

Price

Profit

4.3.2 USING VALIDATION SET
Similar results were achieved using a validation set to
limit the number of training iterations. In the five runs
comprising this experiment, the agent netted an average
profit of $814.32 on GOOG, and made $821.61 on
EBAY.

Table 3. Profit on GOOG and EBAY using a neural net trained
on GOOG using a validation set. NN Agent (EBAY)

-1500

-1000

-500

0

500

1000

1500

2000

1 125 249 373 497 621 745 869 993 1117 1241 1365 1489 1613 1737 1861

Day

Run
GOOG

Profit ($)
EBAY

Profit ($)

1 947.91 872.58

2 662.74 854.85

3 962.25 810.97

4 581.18 798.73

5 917.52 771.16

Although these numbers are slightly lower than those in
the previous experiment, the agent still performs well,
even doing better on EBAY than GOOG on a couple of

$

Price

Profit

Stock Market Investing Using Neural Networks

occasions. Once again, this data seems to suggest that the
agent has learned some trends that it can put to good use
in investing.

Figure 7. Individual simulation run of NN agent over GOOG.

As in the previous experiment, this agent appears once
again to exhibit buy low, sell high behavior, which is the
intended result. Although this run is not as profitable as
its counterpart from the other experiment, its general
pattern is similar, and indicates that the same kind of
learning has taken place.

Figure 8. Individual simulation run of NN agent over EBAY.

This graph exhibits noise, much like its counterpart in the
previous experiment, but it also seems to exhibit the
desired buy low, sell high behavior, as major increases in
profit occur after decreases in price. Once again, it
appears that the agent is learning properly and validating
the initial hypothesis that an agent can learn to invest
profitably in stocks.

As in the previous set of experiments, the NN agent was
then trained on examples from EBAY, and tested on both
GOOG and EBAY, averaging a profit of -$44 on the
former, and of $577 on the latter.

Table 4. Profit on GOOG and EBAY using a neural net trained
on EBAY using a validation set.

Run
GOOG

Profit ($)
EBAY

Profit ($)

1 -28.17 624.22

2 -54.18 573.75

3 -45.18 585.24

4 -45.18 553.33

5 -47.56 548.59

NN Agent (GOOG)

-1500

-1000

-500

0

500

1000

1500

1 23 45 67 89 111 133 155 177 199 221 243 265 287 309 331 353 375 397 419 441 463

Day

In this experiment, the agent performed about the same as
its counterpart in Table 2 for investing on EBAY.
However, the agent performed worse, by about $95 on
average, investing on GOOG. Despite the decrease in
success, this is still better than the average result of the
random heuristic. Thus, in this case, the NN agent seems
to be affected more by the “bad” features of EBAY on
which it trained, and thus performs worse on other stocks.
One could conclude that the agent still found enough
good patterns to prevent a large loss while investing on
GOOG.

5. Future Work

Although the NN agent performed relatively well, there is
still work that can be done to possibly improve the agent.
One area that could be improved is in the area of the
classification scheme and neural network architecture. If
a way could be found to bring down the number of hidden
nodes per training example and still retain good
performance, then training times could be reduced and
more examples incorporated into the training set, possibly
improving performance in the simulation.

Another way to improve the agent would be to
incorporate more information into the inputs of the neural
nets. The behavior of the stock market is influenced by a
number of external factors, and one would think that
including as many of these as possible would improve
performance as well. One interesting approach along
these lines was taken in Wuthrich, et al. (1998), in which
textual data from news websites was considered along
with numerical data to make predictions. Although this
project might not benefit from exactly reproducing this
paper, implementing something along these lines might
help improve performance.

6. Conclusion

This paper details an attempt to build a neural network-
based agent to invest profitably on certain stocks. Using a
certain combination of classification scheme, neural
network architecture, and high-level decision rules seems

$

Price

Profit

NN Agent (EBAY)

-1500

-1000

-500

0

500

1000

1500

2000

1 123 245 367 489 611 733 855 977 1099 1221 1343 1465 1587 1709 1831 1953

Day

$

Price

Profit

Stock Market Investing Using Neural Networks

to have produced an agent capable of investing well on
stocks, at least on GOOG and EBAY. The initial
hypothesis of the paper, that certain salient trends can be
identified and used to invest well, is supported by the
results obtained by these experiments. Whether or not
this hypothesis holds for all stocks, or whether a system
like this could be implemented for use in the real world, is
a question beyond the scope of this paper, and an
unanswered one at that. What this paper has shown,
however, is that neural networks can be used to invest
profitably on certain stocks, and perhaps, with the right
combination of design, experimentation, and luck, one
might be able to produce an agent capable of performing
extremely well on all stocks in general, reaping huge
profits for whoever was fortunate enough to have access
to its predictions. At this point, however, the future
remains to be seen.

References
Chenoweth, T., & Obradovic, Z. (1996). A multi-

component non-linear prediction system for the Sp 500
Index. Neocumputing J. 10(3.3), 275-290.

Egeli, B., Ozturan, M., & Badur, B. (2003). Stock Market
Prediction Using Neural Networks. Retrieved
September 11, 2006 from the Hawaii International
Conference on Business website:
http://www.hicbusiness.org/biz2003proceedings/Birgul
%20Egeli.pdf

Hochreiter, S., & Schmidhuber, J. (1997). Flat Minima.
Neural Computation, 9(1), 1-42.

Lawrence, R. (1997). Using Neural Networks to Forecast
Stock Market Prices. Retrieved September 11, 2006
from:
http://www.cs.uiowa.edu/~rlawrenc/research/Papers/nn.
pdf

Mitchell, T.M. (1997). Machine Learning. New York:
McGraw-Hill.

Wuthrich, B., et al. (1998). Daily stock market forecast
from textual web data. IEEE International Conference
on Systems, Man, and Cybernetics. 3, 2720-2725

Yao, J., & Poh, H.L. (1995). Forecasting the KLSE Index
Using Neural Networks. IEEE International
Conference on Neural Networks 2. 1012-1017

http://www.hicbusiness.org/biz2003proceedings/Birgul Egeli.pdf
http://www.hicbusiness.org/biz2003proceedings/Birgul Egeli.pdf
http://www.cs.uiowa.edu/~rlawrenc/research/Papers/nn.pdf
http://www.cs.uiowa.edu/~rlawrenc/research/Papers/nn.pdf

