
Speculative Distribution of Sub-Threads Across Processors

Patrick Yost patrick.yost-1@ou.edu

IDEA Lab

School of Computer Science

University of Oklahoma, Norman, Oklahoma 73019-6151

Keywords: Multi-core Architecture, Single Thread Improvement, Reinforcement Learning, Whole Program Paths

Abstract

As multi-core architecture continues to dominate
the development of new processor technology,
effective utilization of processors has come to
mean heavy parallelization inside of programs.
However, some problems are simply not
parallelizable, and these problems have been
unable to make any real use of multi-core
architecture. Recently, advances in algorithms
used to understand the behavior of a thread when
it executes have lead to clearer methods of
viewing the relation that different parts of an
execution share amongst one another. From that
knowledge, the direction of a program can be
predicted much farther into the future than can
be done with current methods. This, in turn,
allows for the “speculative distribution” of future
portions of a thread to processors on the hope
that they will likely be needed. If the predictions
are incorrect, the cost is effectively nothing as it
used a processor that would have otherwise
stood idle, but if the predictions are correct, the
program will have successfully completed two
different parts of the program simultaneously.
Effectively, this achieves partial-parallelization
of the targeted process. It is the goal of this
work to study this problem in a simplified form,
proving that the concept behind using these
predictions to inform a learning agent can work
in a simulator space where memory
dependencies are inconsequential before trying
to prove this concept in a more complex
simulator space.

1. Introduction

Limits on the amount of power and cooling that can cost-
effectively be applied to a processor have sparked a rapid
transition to a multi-core architecture dominant processor
market. Two- and four-core machines have become the

—————
Preliminary work. Under review by Dr. Amy McGovern (DrAM). Do

not distribute.

new standard for personal computers, and Apple recently
released an eight-core machine. In the future, the trend
seems destined to continue as Intel has already begun
work on a prototype eighty-core processor.

1.1 Serial Programs and the Multi-Core Machine

As these multi-core machines have become more
dominant, the potential power of computers has increased
dramatically. In easily parallelizable applications, their
potential is fully realized, but serial applications can
utilize only a small fraction of the machine’s potential.

A serial program is one in which each portion of code to
execute is chosen based on the code that is executed
before. By that very definition, there is no way to know
with certainty what instructions should be run in parallel
with the currently executing segment, and that in turn
results in a situation where a serial program can run
effectively only on a single core. When the processor is
made to have a maximum potential output of eighty times
that magnitude, the wasted potential will be significant.

1.2 Prediction as a Potential Solution

As pointed out above, the primary challenge in
parallelizing a serial program is determining the correct
code to execute preemptively. If the correct section is
known and memory dependencies allow, then that portion
of the program can be executed on another before it is
actually reached. Perhaps more importantly, if the
processing cores used by the predicted portion of the
program would have otherwise been idle, then even a
failed prediction effectively costs the system nothing.

Thus, it becomes a question of finding a way to both
make predictions and to evaluate those predictions based
on the likelihood that they will improve overall
performance if assigned to a processor. Since such a
thing involves the weighing not only of known rewards if
prediction succeeds but also an unknowable opportunity
cost if the prediction fails, a reinforcement learning agent
should be able to address the difficulties much better than
a handmade heuristic.

Speculative Distribution of Sub-Threads Across Processors

1.3 Overview

This paper describes a novel approach to making serial
programs run faster on multi-core architecture, utilizing
recently popularized tactics to collect information about
previous executions of the program and applying
reinforcement learning to evaluate the usefulness of
predictions before using them.

In Section 2, the simulated environment, learning agent,
and reward algorithms will be covered in detail, and in
Section 3, the experimental process and results will be
reviewed. Following that, related works will be discussed
and compared to this work in Section 4 before moving on
to Section 5 where we will discuss future directions for
this work.

2. Implementation of Learning

In this section, we discuss at length the implementation of
the learning agent and the environment in which it
functions. The simulation consists of tools used to make
predictions, the environment, and the learning agent itself.

2.1 Prediction Tools

To make predictions, we implement whole program paths
(Larus, 1999), the detailed study of which will be left to
the reader. As short summary, whole program paths are
formed by first using a tool to instrument the compiled
code of a program. In this work, that tool was Microsoft
Phoenix. After instrumenting the code and running it, a
trace is produced. The trace is a lossless collection of
every acyclic path and call made in the execution of the
program, and as such can be quite large and difficult
search for information.

To combat the prohibitive size and lack of clear
organization of the trace, the Sequitur data compression
algorithm is used on the trace to form a grammar that
implies clear hierarchical relationships (Nevill-Manning
& Witten, 1997). Treating each symbol as a node in a
directed acyclic graph (DAG) and treating nodes on the
left hand side of the rule as the parents of nodes on the
right hand side of the same rule creates a graphic,
navigable visualization of a whole program path (WPP).
Again, further investigation into this algorithm is left to
the reader, but Figure 1 below may help.

There are two key properties of whole program path
formation that prove valuable in this work. First, in the
grammar, each digram, or pair of symbols adjacent to
each other, is unique as a result of the way in which the
algorithm works (Nevill-Manning & Witten, 1997). This
does not guarantee that every pair in the original trace is
preserved, but it does allow for easy search of the whole
program path for a probably analogous point to previous
execution given only two symbols from the trace or
grammar. While there is no guarantee that this point is
actually analogous, it is very likely to be, and that is
satisfactory for the purpose of speculation.

Second, the resulting grammar is very hierarchical,
breaking the execution of the program down into sub-
paths that are executed together. Thus, when using this
for predictions, predicting one nonterminal symbol in the
WPP is equivalent to predicting anywhere from two to
several thousand terminal symbols, and these terminal
symbols each represent a single continuous acyclic path in
the program, and as such each is equivalent to predicting
an entire sequence of basic blocks.

2.2 Reinforcement Learning

Reinforcement learning is a very intuitively relatable
learning approach. Modeled after early work in
psychology, it closely mirrors the concepts of positive and
negative reinforcement in human learning. As seen in
Figure 2, the reinforcement learning paradigm consists of
two entities – the “Agent,” who makes choices and
receives positive and negative reinforcement, and the
“Environment,” which is everything the agent can
perceive or with which it can interact either directly or
indirectly. Between these two agents, there is a cyclical
series of interactions that can be broken down into three
categories. First, the agent is given a summary of the
environment’s status, called the state. In response to that
state, the agent chooses an action to take, changing the
environment in some way. Completing the cycle, the
environment provides the agent with both a new state that
represents the environment after the action’s changes
have taken effect, and also a reward. The reward is based
on the effect the action has had, and can be positive or
negative depending on whether the action has brought the
agent closer to or farther from its goal.

Figure 2: Reinforcement Learning Model

Figure 1: Example WPP

Speculative Distribution of Sub-Threads Across Processors

2.2.1 THE ENVIRONMENT

In this case, the environment consists of a series of
simulated processors that can take predicted values, check
them for correctness, and hold on to them for an amount
of timesteps equivalent to the size of the prediction given
to the processor.

Using information such as the number of processors
currently free and characteristics of possible predictions
such as size and confidence levels, the environment
distills its information into a state, essentially clustering
similar values together to make continuous sets of
information into discrete sets. For instance, a confidence
value between zero and one could be distilled from a
continuous real number to a value of either “confident” or
“not confident” depending on whether or not it was bigger
than a threshold value. In practical application, however,
it is beneficial to make somewhat less coarse distinctions.

As shown in Figure 3, the state consists of a single record
of the number of free processors and information about an
arbitrary number of predictions defined at the
simulation’s runtime.

2.2.2 THE AGENT

The agent works much like a living organism; given its
understanding of its world, in this case the state, it then
takes an action in an attempt to improve its position.
When it takes this action on the environment, the
environment is changed, and the state is given a reward
value evaluating the results of this choice.

2.2.3 THE LEARNING ALGORITHMS

(Eq 2.4.1)

� � � � � �� � �	
 ��
���� �� ���� ������
� ��

To update the agent’s understanding of its world, Eq.
2.4.1 is used. This equation updates the value of Q, the
most recently completed action taken by the agent. It is
from this designation for actions that this type of learning
gains its name “Q-Learning.” In the equation, α is a

smoothing variable between zero and one that helps keep
learning more regular and predictable, and R is the reward
the agent has been given for taking action Q. To discount
the value of the following state to reflect the delay in its
contributions, the number of timesteps spent in Action Q
is multiplied by a discounting value D raised to the power
T. This intuitively makes sense; if an investor can invest
to earn a thousand dollars tomorrow or invest with equal
certainty in something that will pay out a thousand dollars
in a decade, it would be foolish not to take the shorter
term investment. Finally, the number by which to
multiply the new discounting term is found by taking the
maximum value of all the action values in the new state
that resulted from Q.

It is important to note that it would be equally valid to
label the Q’s in Eq 2.4.1 ‘O’ because this work is
technically Option Learning. Option Learning is a subset
of reinforcement learning where actions are allowed to
take multiple timesteps, essentially representing numerous
tiny actions as one continuous and cohesive action. As a
result of the single timestep approach to simple Q-
Learning, the exponent T is usually left out of Q-Learning
equations.

(Eq 2.4.2)

���� �
∑ ����� � ���������
	
� !

	

Eq 2.4.2 is the first and simplest Reward Function
implemented for action Q in this work. Here, Px(t) is the
number of processors executing a correct set of predicted
values and assigned by x at time t. In this case, it breaks
down simply into those assigned by the action Q and
those assigned by another action. T is again the total
number of timesteps taken by action Q to completely
finish execution.

(Eq 2.4.3)

���� �
∑ ����� � "
 ���������
	
� !

	

Eq 2.4.3 is implemented in the second set of simulations
discussed in this work. Here, the value d has been added.
It is a value between zero and one that is used to discount
rewards not directly earned by the action Q

(Eq 2.4.4)

���� �
#��� � ∑ ����� � "
 ���������

	
� !

���$%&'�&�	$'� � 	

In order to make the task more realistic and more
challenging, a cost has been associated with assigning a
processor in Eq. 2.4.4. This cost takes two forms; first, it
is applied as a negative value in the numerator. This
forces the prediction to be of a certain size or incur a
negative penalty; offsetting this is the fact that a small

 Figure 3: Description of a State

Speculative Distribution of Sub-Threads Across Processors

prediction may help make bigger predictions in a few
timesteps. If such is the case, the value of the later
opportunities will eventually propagate back to the value
of the action at this point. Second, it is applied as a time
cost in the denominator of the reward function. This
directly corresponds to the fact that assigning a process to
a processor takes CPU cycles as well, and helps reflect
the fact that, assuming the predictions are all correct,
assigning one large prediction will be more efficient than
assigning numerous small predictions.

2.2.4 OPTIMISTIC VALUES

Finally, as a means to help encourage exploration early, a
technique known as Optimistic Initial Values is used. In
this technique, actions are given a positive starting value.
Its name comes from the fact that these positive values
make unexplored options seem much better, taking an
“optimistic” view of the unknown. This approach
encourages more aggressive early exploration of the space
and can often speed learning.

3. Experiments and Evaluation

This section will go over the methods by which testing
data was gathered and the methods through which the
agent was tested. Furthermore, it will analyze the results
of those tests.

3.1 Hypothesis

Before further describing a scientific manner of testing
the learning agent, it is necessary to put forth a more
precise hypothesis. It is the goal of this work to prove
that a reinforcement learning agent can use the
information in a program’s WPP to accurately predict
large portions of the program’s execution ahead of time
and, with a very abstractly modeled reward system,
actually learn to make rational choices about which
predictions to act on and which to wait through.

3.2 Testing Data

To date, this work has depended on actual trace and
whole program path data taken from the execution of the
SPEC 2005 benchmark GZip. To form a useful input file
that was also of a size that made thousands of simulations
possible in reasonable amounts of time, randomly chosen
portions of an arbitrary, user-defined size were taken and
copied from the trace. For reference, the simulator uses a
WPP based on the entire trace of the program.

3.3 Results

This section will review the results found in several
variations of the simulator space. These simulations vary
greatly in the actions allowed and rewards delivered, but
in all of them, a 16 processor machine was simulated and
the environment was set to create ten predictions every
time the agent was to make a choice. It is important to
note that while the graph shapes of these simulations can

and should be compared, the actual value of rewards
should not because their reward functions were different.

3.3.1 THE ADVANCED-ACTION SIMULATOR

The advanced-action simulator was the first developed in
this work. It takes its name from way in which it takes
actions based upon predictions. As you can see in Figure
4, this simulator actually implemented a fairly
complicated action scheme. Each action indicated two
separate choices – first, which prediction on which to act,
and second, how many ways to split the prediction.
Effectively, this agent would take a single prediction and
put part of it on each of a number of processors it chose.

As can be seen in Figure 5, this agent was readily able to
master a very small state space because it used only a tiny
set of its states, and its predictions could only be split a
few ways because they were so small. However, Figure 6
shows how it floundered in a larger space, barely
outperforming a random-choice agent that had a lucky
streak at the end of the simulations. Because this agent
worked with an exponentially more complicated state-
action space while implementing an overly simplified
reward function (Eq. 2.4.2), it couldn’t possibly succeed
at such a difficult problem. In order to correct the

Figure 4: Actions in the First Simulator

-2

0

2

4

6

T
o

ta
l R

e
w

a
rd

 E
a

rn
e

d

Iterations

Figure 5: First Simulator on a Tiny

Data Set

Learning Agent Random

Speculative Distribution of Sub-Threads Across Processors

shortcomings of its reward function, work on such an
advanced action space was tabled so that the focus could
be on correcting and improving its basic learning process.

3.3.2 THE SECOND SIMULATOR- HEURISTICS

First, this action implemented a new, simpler approach to
actions. This agent would only assign a prediction to a
single processor; in this way, its potential speed increase
is smaller in magnitude but its state-action space is much
more reasonably sized. This, combined with an updated
reward function (Eq.2.4.3), resulted in a more competent
learning agent. This can be seen in Figure 7.

One difficulty the agent encounters in making its full sets
of predictions is that it is sometimes impossible to make
that many predictions. For instance, an agent can only
look so far above its current position in the WPP DAG
before there are simply no nodes above it. In designing
the random agent for this system, a heuristic was
accidentally included that would cause an invalid choice
of prediction (i.e. one that was null) to be replaced with a
randomly chosen valid one. This gave the random agent
an unintended advantage.

To make the situation worse, the new reward function still
lacked any sort of penalty for small assignments, so it was
easy to get the highest possible reward. Any correct
prediction was as good as predicting all its sub-parts
individually, meaning that there was little to learn for the
agent. In Figure 8, there are two entries for the learning
agent; in the first, it has the benefit of the same heuristic
advantages as random, and in the second, it has none of
those advantages. The second includes a much more
obvious representation of a learning than the one given
the heuristic advantage, even if it is completely
outperformed in this scenario. This is evidence that the
problem that the agent is seeing is still too simple when it
is given the heuristic and a reward function that is so
easily satisfied; the learning agent maximizes its reward
almost immediately.

3.3.3 THE FINAL, DETAILED-REWARD SIMULATOR

0

1000

2000

3000

4000

T
o

ta
l R

e
w

a
rd

 R
e

ci
e

v
e

d

Iterations

Figure 6: First Simulator on a Larger

Data Set

20 per. Mov. Avg. (Learning Agent)

20 per. Mov. Avg. (Random)

0

5000

10000

15000

20000

R
e

w
a

rd
 V

a
lu

e
 f

o
r

a
 S

In
g

le

S
Im

u
la

ti
o

n

Number of Simulations

Figure 7: Second Simulator Learning

0

20

40

60

80

100

R
e

w
a

rd
 P

e
r

S
im

u
la

ti
o

n
 (

T
h

o
u

sa
n

d
s)

Number of Simulations

Figure 8: Second Simulator Results

Reinforcement Agent

Random Agent

Reinforcement Agent- No Help

0

500

1000

1500

2000

2500

R
e

w
a

rd
 R

e
ci

e
v

e
d

 p
e

r
T

h
o

u
sa

n
d

T
im

e
st

e
p

s

Timesteps

Figure 9: Final Simulator

Reinforcement Learning Agent

Random Agent

Speculative Distribution of Sub-Threads Across Processors

In the final simulator, a more detailed reward function
was implemented (Eq 2.4.4). This forced the agents to
deal with more realistic and complex issues when
choosing actions. Furthermore, the heuristic protecting
both the random and reinforcement learning agents was
removed completely and replaced with a small penalty
assessed every time an invalid choice was made. This
represents the missed cycles spent looking for nonexistent
predictions.

The results in this more realistic space were much more
impressive. As seen in Figure 9, the learning agent
masters its space fairly rapidly using optimistic values,
and its performance dominates that of the random agent.

4. Related Works

This section reviews related works in segments
categorized by their applicability to the problem at hand.
First, it reviews other works in the field of Machine
Learning, then it looks into other views on predictions for
the purposes of parallelization, and finally it closes by
examining works related to the organization and
accessibility of data that could be useful in this work’s
prediction scheme.

4.1 Machine Learning

Past reinforcement learning works yielded agents that
could do basic block scheduling on a processor capable of
taking two instructions at once (McGovern, Moss, &
Barto, 2002). Furthermore, these agents could often
outperform the commercial compiler to which they were
compared, and in doing so, they proved the viability of
reinforcement learning agents in the field of instruction
scheduling.

There are two primary differences between the work of
McGovern, Moss, and Barto, and the work discussed
here. First, from a machine learning standpoint, this work
uses a much less supervised method. They had a set of
minimally-correct answers to problems supplied by the
commercial compiler and could judge success or failure
from those. In this work, the value of an action must be
judged solely by the observable effects of that action.

Second, from a practical standpoint, the limitations and
potential of each are completely different. Their work
provides a direct increase in speed on a small number of
cores, but as presented, it would be very hard to use
practically on a large number of cores. Only a very
limited amount of parallelization can be performed on a
serial program while still respecting the linear path it must
follow from one section of code to another. In contrast,
the work presented herein seeks to circumvent those
limitations by allowing portions of a program to be
speculatively scheduled, and that provides the opportunity
for improvements in speed with little or no risk to the
system’s performance should the agent fail.

It is important to note that because these works operate on
two different mechanisms and at two separate scales, they
might conceivably be used simultaneously, allowing each
part of the code assigned by this work’s agent to be
accelerated as it executes. However, since the other work
operate on a static compiler before execution, it would
remain to be seen how well it would work in conjunction
with this work’s more dynamic approach.

4.2 Branch Prediction

In his work “Analysis of Branch Prediction via Data
Compression,” Chen states that most prediction schemes
in use today for branch prediction are in use for the
purpose of prefetching, and most of them break down to
simple Prediction by Partial Matching (PPM). Since PPM
is effectively accomplished using Markhov chains of
indefinite size, it is cumbersome and impractical for most
applications. Thus, in real applications, it is often
approximated using two-level branch prediction, where
two symbols are used to predict a third (Chen, Coffey, &
Mud, 1996). This can be repeated, taking the second and
third to predict a fourth, and so on.

PPM has a distinct downside. Since it is predicting the
next block based solely on the small set of tokens before
it and then using the those to make another in a chain of
predictions, there is no structure to the data. Without
structure, it is easy to see that large predictions are much
more challenging as their chance of correctness becomes
the product of the accuracy of every prediction made in
the chain. Furthermore, the very mostly likely chain as
defined by the algorithm may be the one that executes the
least often (Larus & Ball, Efficient Path Profiling, 1996).
Such limitations are unimportant when used in a
prefetching algorithm because the size of the prefetched
prediction will be small and new predictions will be made
frequently. On the other hand, they would be crippling
for this work.

Here, the first prediction is made in a mannner very
similar to two-level branch prediction, but once the
prediction engine has an idea of its location in the WPP, it
can infer large segments of code that can be executed
together.

4.3 Data Processing

There have been a number of works in the realm of data
processing that have affected this work or that might
affect it in its future developments. Most of these revolve
around WPPs as developed by Larus, which were already
in their basic form earlier in this paper.

Several works have centered on improving the ease of
interaction for the data in a WPP. One work foregoes the
use of Sequitur to instead use a compaction algorithm that
makes data flow analysis more practical (Zhang & Gupta,
2001). This might prove useful if we could apply static
recompilation to programs based on the agent’s
experience on the last run of the program.

Speculative Distribution of Sub-Threads Across Processors

A more directly applicable discovery can be found in a
work that describes in detail a way to build Extended
Whole Program Paths (Tallam, Gupta, & Zhang, 2005).
These EWPPs can help trace memory dependencies as the
program operates, which is vitally important to the future
of this work. Without a way to trace memory
dependencies, there is no way this approach could ever be
practically applied to real-world problems.

5. Conclusions and Future Work

This work has shown compelling evidence that learning,
in conjunction with new ways of saving, collecting, and
exploring runtime data from a process, can utilize free
cores in multi-core architecture to provide speed
enhancement to previously unparallelizable processes.
However, there is more research to be done before this
can be said for certain. Before moving forward, research
in more realistic environments and on a broader range of
data will be necessary.

It would also be interesting to try to implement this on
different scales. Work should be done to see if some or
all of this procedure can be applied to job scheduling on a
network or block scheduling on multi-core architecture,
for instance.

Perhaps most compelling is the idea of combining the
functionality of the agent with other learning agents
dividing responsibilities hierarchically. For instance, it
would be interesting to see what could be accomplished
by combining the results of this agent with an agent that
can statically or dynamically recompile the program. Of
even greater interest would be expanding the
responsibilities of the agent to include scheduling
multiple processes.

In short, with results that are very promising but still
limited as of yet, there is a great deal more work to done
in this area.

Acknowledgments

I would like to thank Dr. Amy McGovern and Dr. Ron
Barnes for their help and guidance in this endeavor. I
would also like to thank all members of the IDEA lab at
the University of Oklahoma for their support. This
research is partially based upon work funded by a 2008
Power-Aware Computing Award from Microsoft
Research.

References

Chen, I.-C. K., Coffey, J. T., & Mud, T. N. (1996).
Analysis of Branch Prediction via Data Compression.
Seventh International Conference on Architectural
Support for Programming Languages and Operating
Systems, (pp. 128-137). Ann Arbor.

Larus, J. R. (1999). Whole Program Paths. ACM
SIGPLAN 1999 Conference on Programming Language
Design and Implementation, (pp. 259-269). Atlanta.

Larus, J. R., & Ball, T. (1996). Efficient Path Profiling.
Proceedings of the 29th Annual International Symposium
on Microarchitecture, (pp. 46-57).

Law, J., & Rothermel, G. (2003). Whole Program Path-
Based Dynamic Impact Analysis. International
Conference on Software Engineering, (pp. 308-318).
Portland.

McGovern, A., Moss, E., & Barto, A. G. (2002). Building
a Basic Block Instruction Scheduler with Reinforcement
Learning and Rollouts. Machine Learning , 141-160.

Nevill-Manning, C. G., & Witten, I. H. (1997).
Identifying Hierarchical Structure in Sequences: A
Linear-Time Algorithm. Journal of Artificial Intelligence
Research 7 , 67-82.

Tallam, S., Gupta, R., & Zhang, X. (2005). Extended
Whole Program Paths. Parallel Architectures and
Compilation Techniques, (pp. 17-26). St. Louis.

Zhang, Y., & Gupta, R. (2001). Timestamped Whole
Program Path Representation and its Applications. ACM
SIGPLAN Conf. on Programming Language Design and
Implementation, (pp. 180-190). Snowbird.

