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Abstract
     

As multi-core architecture continues to dominate 
the development of new processor technology, 
effective utilization of processors has come to 
mean heavy parallelization inside of programs.  
However, some problems are simply not 
parallelizable, and these problems have been 
unable to make any real use of multi-core 
architecture.  Recently, advances in algorithms 
used to understand the behavior of a thread when 
it executes have lead to clearer methods of 
viewing the relation that different parts of an 
execution share amongst one another.  From that 
knowledge, the direction of a program can be 
predicted much farther into the future than can 
be done with current methods.  This, in turn, 
allows for the “speculative distribution” of future 
portions of a thread to processors on the hope 
that they will likely be needed.  If the predictions 
are incorrect, the cost is effectively nothing as it 
used a processor that would have otherwise 
stood idle, but if the predictions are correct, the 
program will have successfully completed two 
different parts of the program simultaneously.  
Effectively, this achieves partial-parallelization 
of the targeted process.  It is the goal of this 
work to study this problem in a simplified form, 
proving that the concept behind using these 
predictions to inform a learning agent can work 
in a simulator space where memory 
dependencies are inconsequential before trying 
to prove this concept in a more complex 
simulator space. 

1.  Introduction 

Limits on the amount of power and cooling that can cost-
effectively be applied to a processor have sparked a rapid 
transition to a multi-core architecture dominant processor 
market.  Two- and four-core machines have become the 
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new standard for personal computers, and Apple recently 
released an eight-core machine.  In the future, the trend 
seems destined to continue as Intel has already begun 
work on a prototype eighty-core processor. 

1.1  Serial Programs and the Multi-Core Machine 

As these multi-core machines have become more 
dominant, the potential power of computers has increased 
dramatically.  In easily parallelizable applications, their 
potential is fully realized, but serial applications can 
utilize only a small fraction of the machine’s potential. 

A serial program is one in which each portion of code to 
execute is chosen based on the code that is executed 
before.  By that very definition, there is no way to know 
with certainty what instructions should be run in parallel 
with the currently executing segment, and that in turn 
results in a situation where a serial program can run 
effectively only on a single core.  When the processor is 
made to have a maximum potential output of eighty times 
that magnitude, the wasted potential will be significant. 

1.2  Prediction as a Potential Solution 

As pointed out above, the primary challenge in 
parallelizing a serial program is determining the correct 
code to execute preemptively.  If the correct section is 
known and memory dependencies allow, then that portion 
of the program can be executed on another before it is 
actually reached.  Perhaps more importantly, if the 
processing cores used by the predicted portion of the 
program would have otherwise been idle, then even a 
failed prediction effectively costs the system nothing. 

Thus, it becomes a question of finding a way to both 
make predictions and to evaluate those predictions based 
on the likelihood that they will improve overall 
performance if assigned to a processor.  Since such a 
thing involves the weighing not only of known rewards if 
prediction succeeds but also an unknowable opportunity 
cost if the prediction fails, a reinforcement learning agent 
should be able to address the difficulties much better than 
a handmade heuristic. 
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1.3  Overview 

This paper describes a novel approach to making serial 
programs run faster on multi-core architecture, utilizing 
recently popularized tactics to collect information about 
previous executions of the program and applying 
reinforcement learning to evaluate the usefulness of 
predictions before using them. 

In Section 2, the simulated environment, learning agent, 
and reward algorithms will be covered in detail, and in 
Section 3, the experimental process and results will be 
reviewed.  Following that, related works will be discussed 
and compared to this work in Section 4 before moving on 
to Section 5 where we will discuss future directions for 
this work. 

2.  Implementation of Learning 

In this section, we discuss at length the implementation of 
the learning agent and the environment in which it 
functions.  The simulation consists of tools used to make 
predictions, the environment, and the learning agent itself. 

2.1  Prediction Tools 

To make predictions, we implement whole program paths 
(Larus, 1999), the detailed study of which will be left to 
the reader.  As short summary, whole program paths are 
formed by first using a tool to instrument the compiled 
code of a program.  In this work, that tool was Microsoft 
Phoenix.  After instrumenting the code and running it, a 
trace is produced.  The trace is a lossless collection of 
every acyclic path and call made in the execution of the 
program, and as such can be quite large and difficult 
search for information. 

To combat the prohibitive size and lack of clear 
organization of the trace, the Sequitur data compression 
algorithm is used on the trace to form a grammar that 
implies clear hierarchical relationships (Nevill-Manning 
& Witten, 1997).  Treating each symbol as a node in a 
directed acyclic graph (DAG) and treating nodes on the 
left hand side of the rule as the parents of nodes on the 
right hand side of the same rule creates a graphic, 
navigable visualization of a whole program path (WPP).  
Again, further investigation into this algorithm is left to 
the reader, but Figure 1 below may help. 

There are two key properties of whole program path 
formation that prove valuable in this work.  First, in the 
grammar, each digram, or pair of symbols adjacent to 
each other, is unique as a result of the way in which the 
algorithm works (Nevill-Manning & Witten, 1997).  This 
does not guarantee that every pair in the original trace is 
preserved, but it does allow for easy search of the whole 
program path for a probably analogous point to previous 
execution given only two symbols from the trace or 
grammar.  While there is no guarantee that this point is 
actually analogous, it is very likely to be, and that is 
satisfactory for the purpose of speculation. 

Second, the resulting grammar is very hierarchical, 
breaking the execution of the program down into sub-
paths that are executed together.  Thus, when using this 
for predictions, predicting one nonterminal symbol in the 
WPP is equivalent to predicting anywhere from two to 
several thousand terminal symbols, and these terminal 
symbols each represent a single continuous acyclic path in 
the program, and as such each is equivalent to predicting 
an entire sequence of basic blocks. 

2.2  Reinforcement Learning 

Reinforcement learning is a very intuitively relatable 
learning approach.  Modeled after early work in 
psychology, it closely mirrors the concepts of positive and 
negative reinforcement in human learning.  As seen in 
Figure 2, the reinforcement learning paradigm consists of 
two entities – the “Agent,” who makes choices and 
receives positive and negative reinforcement, and the 
“Environment,” which is everything the agent can 
perceive or with which it can interact either directly or 
indirectly.  Between these two agents, there is a cyclical 
series of interactions that can be broken down into three 
categories.  First, the agent is given a summary of the 
environment’s status, called the state.  In response to that 
state, the agent chooses an action to take, changing the 
environment in some way.  Completing the cycle, the 
environment provides the agent with both a new state that 
represents the environment after the action’s changes 
have taken effect, and also a reward.  The reward is based 
on the effect the action has had, and can be positive or 
negative depending on whether the action has brought the 
agent closer to or farther from its goal. 

Figure 2: Reinforcement Learning Model 

 
Figure 1: Example WPP 



Speculative Distribution of Sub-Threads Across Processors 
 

 

2.2.1  THE ENVIRONMENT 

In this case, the environment consists of a series of 
simulated processors that can take predicted values, check 
them for correctness, and hold on to them for an amount 
of timesteps equivalent to the size of the prediction given 
to the processor. 

Using information such as the number of processors 
currently free and characteristics of possible predictions 
such as size and confidence levels, the environment 
distills its information into a state, essentially clustering 
similar values together to make continuous sets of 
information into discrete sets.  For instance, a confidence 
value between zero and one could be distilled from a 
continuous real number to a value of either “confident” or 
“not confident” depending on whether or not it was bigger 
than a threshold value.  In practical application, however, 
it is beneficial to make somewhat less coarse distinctions. 

As shown in Figure 3, the state consists of a single record 
of the number of free processors and information about an 
arbitrary number of predictions defined at the 
simulation’s runtime. 

2.2.2  THE AGENT 

The agent works much like a living organism; given its 
understanding of its world, in this case the state, it then 
takes an action in an attempt to improve its position.  
When it takes this action on the environment, the 
environment is changed, and the state is given a reward 
value evaluating the results of this choice.    

2.2.3  THE LEARNING ALGORITHMS 

(Eq 2.4.1) 
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To update the agent’s understanding of its world, Eq. 
2.4.1 is used.  This equation updates the value of Q, the 
most recently completed action taken by the agent.  It is 
from this designation for actions that this type of learning 
gains its name “Q-Learning.”  In the equation, α is a 

smoothing variable between zero and one that helps keep 
learning more regular and predictable, and R is the reward 
the agent has been given for taking action Q.  To discount 
the value of the following state to reflect the delay in its 
contributions, the number of timesteps spent in Action Q 
is multiplied by a discounting value D raised to the power 
T.  This intuitively makes sense; if an investor can invest 
to earn a thousand dollars tomorrow or invest with equal 
certainty in something that will pay out a thousand dollars 
in a decade, it would be foolish not to take the shorter 
term investment.  Finally, the number by which to 
multiply the new discounting term is found by taking the 
maximum value of all the action values in the new state 
that resulted from Q. 

It is important to note that it would be equally valid to 
label the Q’s in Eq 2.4.1 ‘O’ because this work is 
technically Option Learning.  Option Learning is a subset 
of reinforcement learning where actions are allowed to 
take multiple timesteps, essentially representing numerous 
tiny actions as one continuous and cohesive action.  As a 
result of the single timestep approach to simple Q-
Learning, the exponent T is usually left out of Q-Learning 
equations. 

(Eq 2.4.2) 
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Eq 2.4.2 is the first and simplest Reward Function 
implemented for action Q in this work.  Here,  Px(t) is the 
number of processors executing a correct set of predicted 
values and assigned by x at time t.  In this case, it breaks 
down simply into those assigned by the action Q and 
those assigned by another action.  T is again the total 
number of timesteps taken by action Q to completely 
finish execution. 

(Eq 2.4.3) 
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Eq 2.4.3 is implemented in the second set of simulations 
discussed in this work.  Here, the value d has been added. 
It is a value between zero and one that is used to discount 
rewards not directly earned by the action Q 

(Eq 2.4.4) 
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In order to make the task more realistic and more 
challenging, a cost has been associated with assigning a 
processor in Eq. 2.4.4.  This cost takes two forms; first, it 
is applied as a negative value in the numerator.  This 
forces the prediction to be of a certain size or incur a 
negative penalty; offsetting this is the fact that a small 

    Figure 3: Description of a State 
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prediction may help make bigger predictions in a few 
timesteps.  If such is the case, the value of the later 
opportunities will eventually propagate back to the value 
of the action at this point.  Second, it is applied as a time 
cost in the denominator of the reward function.  This 
directly corresponds to the fact that assigning a process to 
a processor takes CPU cycles as well, and helps reflect 
the fact that, assuming the predictions are all correct, 
assigning one large prediction will be more efficient than 
assigning numerous small predictions.  

2.2.4  OPTIMISTIC VALUES 

Finally, as a means to help encourage exploration early, a 
technique known as Optimistic Initial Values is used.  In 
this technique, actions are given a positive starting value.  
Its name comes from the fact that these positive values 
make unexplored options seem much better, taking an 
“optimistic” view of the unknown.  This approach 
encourages more aggressive early exploration of the space 
and can often speed learning. 

3.  Experiments and Evaluation 

This section will go over the methods by which testing 
data was gathered and the methods through which the 
agent was tested.  Furthermore, it will analyze the results 
of those tests.  

3.1  Hypothesis 

Before further describing a scientific manner of testing 
the learning agent, it is necessary to put forth a more 
precise hypothesis.  It is the goal of this work to prove 
that a reinforcement learning agent can use the 
information in a program’s WPP to accurately predict 
large portions of the program’s execution ahead of time 
and, with a very abstractly modeled reward system, 
actually learn to make rational choices about which 
predictions to act on and which to wait through. 

3.2  Testing Data 

To date, this work has depended on actual trace and 
whole program path data taken from the execution of the 
SPEC 2005 benchmark GZip.  To form a useful input file 
that was also of a size that made thousands of simulations 
possible in reasonable amounts of time, randomly chosen 
portions of an arbitrary, user-defined size were taken and 
copied from the trace.  For reference, the simulator uses a 
WPP based on the entire trace of the program.  

3.3  Results 

This section will review the results found in several 
variations of the simulator space.  These simulations vary 
greatly in the actions allowed and rewards delivered, but 
in all of them, a 16 processor machine was simulated and 
the environment was set to create ten predictions every 
time the agent was to make a choice.  It is important to 
note that while the graph shapes of these simulations can 

and should be compared, the actual value of rewards 
should not because their reward functions were different. 

3.3.1  THE ADVANCED-ACTION SIMULATOR 

The advanced-action simulator was the first developed in 
this work.  It takes its name from way in which it takes 
actions based upon predictions.  As you can see in Figure 
4, this simulator actually implemented a fairly 
complicated action scheme.  Each action indicated two 
separate choices – first, which prediction on which to act, 
and second, how many ways to split the prediction. 
Effectively, this agent would take a single prediction and 
put part of it on each of a number of processors it chose. 

As can be seen in Figure 5, this agent was readily able to 
master a very small state space because it used only a tiny 
set of its states, and its predictions could only be split a 
few ways because they were so small. However, Figure 6 
shows how it floundered in a larger space, barely 
outperforming a random-choice agent that had a lucky 
streak at the end of the simulations.   Because this agent 
worked with an exponentially more complicated state-
action space while implementing an overly simplified 
reward function (Eq. 2.4.2), it couldn’t possibly succeed 
at such a difficult problem.  In order to correct the 

Figure 4: Actions in the First Simulator 
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shortcomings of its reward function, work on such an 
advanced action space was tabled so that the focus could 
be on correcting and improving its basic learning process. 

3.3.2  THE SECOND SIMULATOR- HEURISTICS 

First, this action implemented a new, simpler approach to 
actions.  This agent would only assign a prediction to a 
single processor; in this way, its potential speed increase 
is smaller in magnitude but its state-action space is much 
more reasonably sized.  This, combined with an updated 
reward function (Eq.2.4.3), resulted in a more competent 
learning agent.  This can be seen in Figure 7. 

One difficulty the agent encounters in making its full sets 
of predictions is that it is sometimes impossible to make 
that many predictions.  For instance, an agent can only 
look so far above its current position in the WPP DAG 
before there are simply no nodes above it.  In designing 
the random agent for this system, a heuristic was 
accidentally included that would cause an invalid choice 
of prediction (i.e. one that was null) to be replaced with a 
randomly chosen valid one.  This gave the random agent 
an unintended advantage.  

To make the situation worse, the new reward function still 
lacked any sort of penalty for small assignments, so it was 
easy to get the highest possible reward.  Any correct 
prediction was as good as predicting all its sub-parts 
individually, meaning that there was little to learn for the 
agent.  In Figure 8, there are two entries for the learning 
agent; in the first, it has the benefit of the same heuristic 
advantages as random, and in the second, it has none of 
those advantages.  The second includes a much more 
obvious representation of a learning than the one given 
the heuristic advantage, even if it is completely 
outperformed in this scenario.  This is evidence that the 
problem that the agent is seeing is still too simple when it 
is given the heuristic and a reward function that is so 
easily satisfied; the learning agent maximizes  its reward 
almost immediately.  

3.3.3  THE FINAL, DETAILED-REWARD SIMULATOR 
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In the final simulator, a more detailed reward function 
was implemented (Eq 2.4.4).  This forced the agents to 
deal with more realistic and complex issues when 
choosing actions.  Furthermore, the heuristic protecting 
both the random and reinforcement learning agents was 
removed completely and replaced with a small penalty 
assessed every time an invalid choice was made.  This 
represents the missed cycles spent looking for nonexistent 
predictions. 

The results in this more realistic space were much more 
impressive.  As seen in Figure 9, the learning agent 
masters its space fairly rapidly using optimistic values, 
and its performance dominates that of the random agent.   

4.  Related Works 

This section reviews related works in segments 
categorized by their applicability to the problem at hand.  
First, it reviews other works in the field of Machine 
Learning, then it looks into other views on predictions for 
the purposes of parallelization, and finally it closes by 
examining works related to the organization and 
accessibility of data that could be useful in this work’s 
prediction scheme. 

4.1  Machine Learning 

Past reinforcement learning works yielded agents that 
could do basic block scheduling on a processor capable of 
taking two instructions at once (McGovern, Moss, & 
Barto, 2002).  Furthermore, these agents could often 
outperform the commercial compiler to which they were 
compared, and in doing so, they proved the viability of 
reinforcement learning agents in the field of instruction 
scheduling.   

There are two primary differences between the work of 
McGovern, Moss, and Barto, and the work discussed 
here.  First, from a machine learning standpoint, this work 
uses a much less supervised method.  They had a set of 
minimally-correct answers to problems supplied by the 
commercial compiler and could judge success or failure 
from those.  In this work, the value of an action must be 
judged solely by the observable effects of that action. 

Second, from a practical standpoint, the limitations and 
potential of each are completely different.  Their work 
provides a direct increase in speed on a small number of 
cores, but as presented, it would be very hard to use 
practically on a large number of cores.  Only a very 
limited amount of parallelization can be performed on a 
serial program while still respecting the linear path it must 
follow from one section of code to another.  In contrast, 
the work presented herein seeks to circumvent those 
limitations by allowing portions of a program to be 
speculatively scheduled, and that provides the opportunity 
for improvements in speed with little or no risk to the 
system’s performance should the agent fail. 

It is important to note that because these works operate on 
two different mechanisms and at two separate scales, they 
might conceivably be used simultaneously, allowing each 
part of the code assigned by this work’s agent to be 
accelerated as it executes.  However, since the other work 
operate on a static compiler before execution, it would 
remain to be seen how well it would work in conjunction 
with this work’s more dynamic approach. 

4.2  Branch Prediction 

In his work “Analysis of Branch Prediction via Data 
Compression,” Chen states that most prediction schemes 
in use today for branch prediction are in use for the 
purpose of prefetching, and most of them break down to 
simple Prediction by Partial Matching (PPM).  Since PPM 
is effectively accomplished using Markhov chains of 
indefinite size, it is cumbersome and impractical for most 
applications.  Thus, in real applications, it is often 
approximated using two-level branch prediction, where 
two symbols are used to predict a third (Chen, Coffey, & 
Mud, 1996).  This can be repeated, taking the second and 
third to predict a fourth, and so on. 

PPM has a distinct downside.  Since it is predicting the 
next block based solely on the small set of tokens before 
it and then using the those to make another in a chain of 
predictions, there is no structure to the data.  Without 
structure, it is easy to see that large predictions are much 
more challenging as their chance of correctness becomes 
the product of the accuracy of every prediction made in 
the chain.  Furthermore, the very mostly likely chain as 
defined by the algorithm may be the one that executes the 
least often (Larus & Ball, Efficient Path Profiling, 1996).  
Such limitations are unimportant when used in a 
prefetching algorithm because the size of the prefetched 
prediction will be small and new predictions will be made 
frequently.  On the other hand, they would be crippling 
for this work. 

Here, the first prediction is made in a mannner very 
similar to two-level branch prediction, but once the 
prediction engine has an idea of its location in the WPP, it 
can infer large segments of code that can be executed 
together.  

4.3  Data Processing 

There have been a number of works in the realm of data 
processing that have affected this work or that might 
affect it in its future developments.  Most of these revolve 
around WPPs as developed by Larus, which were already 
in their basic form earlier in this paper. 

Several works have centered on improving the ease of 
interaction for the data in a WPP.  One work foregoes the 
use of Sequitur to instead use a compaction algorithm that 
makes data flow analysis more practical (Zhang & Gupta, 
2001).  This might prove useful if we could apply static 
recompilation to programs based on the agent’s 
experience on the last run of the program. 
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A more directly applicable discovery can be found in a 
work that describes in detail a way to build Extended 
Whole Program Paths (Tallam, Gupta, & Zhang, 2005).  
These EWPPs can help trace memory dependencies as the 
program operates, which is vitally important to the future 
of this work.   Without a way to trace memory 
dependencies, there is no way this approach could ever be 
practically applied to real-world problems. 

5.  Conclusions and Future Work 

This work has shown compelling evidence that learning, 
in conjunction with new ways of saving, collecting, and 
exploring runtime data from a process, can utilize free 
cores in multi-core architecture to provide speed 
enhancement to previously unparallelizable processes.  
However, there is more research to be done before this 
can be said for certain.  Before moving forward, research 
in more realistic environments and on a broader range of 
data will be necessary. 

It would also be interesting to try to implement this on 
different scales.  Work should be done to see if some or 
all of this procedure can be applied to job scheduling on a 
network or block scheduling on multi-core architecture, 
for instance. 

Perhaps most compelling is the idea of combining the 
functionality of the agent with other learning agents 
dividing responsibilities hierarchically.  For instance, it 
would be interesting to see what could be accomplished 
by combining the results of this agent with an agent that 
can statically or dynamically recompile the program.  Of 
even greater interest would be expanding the 
responsibilities of the agent to include scheduling 
multiple processes. 

In short, with results that are very promising but still 
limited as of yet, there is a great deal more work to done 
in this area. 
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