Two Approaches for Learning Humanoid Walking

Andrew Hulsizer
Kim Houck
Peter Reid

Abstract

The task of controlling a robot to walk like
a humanoid is a long-standing topic of re-
search. We describe two approaches to this
problem that we have explored. The first
uses a tree to classify a skeletons position as
a member of a state set then runs Q-learning
on those states. The second uses a neural net
to control each of the joints. We compare
the efficacy of these approaches to a fixed,
hand-made policy and a random actor. These
comparisons are done in simulation, using an
open source physics simulation engine.

1. Learning Task
1.1 Goal

Our goal is to train a simulated humanoid robot to
move forward efficiently, given an environment that
simulates common forces (e.g. gravity). Ideally, the
method of moving that it settles on will mimic how
humans walk in real life.

1.2 Criteria

Our project attempts to move a simulated robot
throughout a simulated world. At the highest level
our project aims to move the humanoid robot as far
forward with the fastest velocity. On a deeper level, we
have aimed to use good machine learning techniques
in an efficient manner to decrease the vast number of
states we have as well as have the robot learn the best
action given a particular state.

The success or failure of our implementation can be
judged by charting the robots speed as it tries to make
its way down our simulated field. If, over time, that
speed increases, it can safely be said that learning is
taking place. We can also compare the robots speed
with the speed of other implementations, such as a
fixed, hand-made policy or a random actor. All sim-
ulation and measurements will take place in a world

ANDREW.HULSIZERQOU.EDU
KIM.HOUCKQOU.EDU
PETERREIDQOU.EDU

constructed using the Bullet physics engine !, which is
widely used in game and movie production.

1.3 Problem Motiviation

The problem of making machines walk like a human
has been an area of research for decades. This is an
inherently useful problem to solve, since a machine
that can move similarly to a human can better operate
in human-made environments and rough terrains than
a typical wheeled robot. A variety of approaches have
been tried, but the problem remains fundamentally
difficult.

2. Related Work

One similar and thoroughly studied problem domain is
that of the acrobot (Yoshimoto, 1999). Like the skele-
ton in our problem, the acrobot controls continuous
joints in order to execute some pattern of movement.
Also similar to our problem is the fact that the acrobot
is underactuated; it has more degrees of freedom than
it has direct control over. In our case, those extra de-
grees of freedom are in the form of the whole skeleton
tipping back and forth and moving around.

There is also a large body of research that directly
tackles humanoid problem. Discussions of design ele-
ments required (such as function approximators) and
the issues faced (such as balance) in these papers has
informed our own plans (Peters, 2003). Some existing
approaches, like ours, use neural nets as part of their
system (Palmer, 2009).

3. Partition Tree and Q-Learning
Approach

3.1 Motivation

Q-learning provides a simple way to learn an optimal
policy for any domain that has the Markov property.

!The Bullet Physics Engine, widely used in the
production of games and movies, is available at
www.bulletphysics.com.

In our domain, a state representation that includes the
positions and velocities of all the joints of the skeleton
is perfectly Markov. Just like all future movement of a
ball in an idealized world can be determined given its
current position and velocity, a skeleton could predict
how it is going to move given its current configuration;
this would simply be a matter of running a separate
physics simulation on the side.

Unfortunately, this perfectly Markov state represen-
tation is not amenable to Q-learning. There are far
too many states. If the agent were to perfectly predict
what an actions outcome was, the state would need, at
a minimum, one real value for each degree of freedom
in the skeleton. For our particular skeleton, which has
17 degrees of freedom, that would be 17 32-bit num-
bers, leads to about which is about 10163 states. To
give a tired comparison, this is more atoms than there
are in the observable universe. Clearly this is imprac-
tical.

This is where our tree comes into play. It is designed
to sacrifice some of the Markov property in order to
bring the number of states down to a reasonable num-
ber. Ideally, this would give us a world representation
in which we can compute a close approximation of fu-
ture states given the current state and in which we can
apply Q-learning. The basis of this is that most of the
time, small changes in joints have little effect on the
outcome of actions. For example a rotation difference
in the elbow has little impact on the outcome of taking
a step, but where the foot was has a large effect. If
our tree can distinguish between important and unim-
portant aspects of the skeletons configuration, then we
can discard the unimportant ones and be left with a
smaller set of states.

3.2 Design

The most novel aspect of this agents design is the tree.
At the highest level, its function is to map the skele-
tons configuration (descriptions of the position, rota-
tion, and velocity of various joints) onto a set of states.
In the rest of this description, it is important to dis-
tinguish between two terms:

Configuraton The raw position, rotation, and veloc-
ity of joints in the skeleton. There are about 10163
possible configurations for our skeleton.

State The abstract summary of a configuration.
There are much fewer of these and they are in-
tended to be as Markov as possible.

Using this terminology, our Q(s,a) values use states,
not configurations, as the first argument.

The structure of the tree is as follows. Each leaf node
in the tree corresponds to a single state. Each interior
node has two sub-trees and a binary test that can be
applied to a configuration. Depending on the outcome
of that test, it will categorize the configuration as ei-
ther belonging to a state in the left or right sub-tree.

Each of these "tests” is actually just a comparison of
one value in the configuration with some threshold.
Originally, our tests has a more general form: testing
whether the values in the configuration represented a
point above or below some hyperplane. However, this
level of generality seemed to do more harm than good,
since it made the tests harder to learn and allowed ir-
relevant details to impact the test result. Our current
setup, of testing just one value in the configuration,
is equivalent to allowing only hyperplanes that are or-
thogonal to some axis.

The behavior of this tree can be more clearly illus-
trated with an example. Suppose that the tree has
determined that the rotation of the left hip is the
most important aspect of the configuration to con-
sider. This is not an unreasonable supposition, since
whether the left hip is forward or backward will make
an action have a dramatically difference consequence.
When the tree is asked to give the state corresponding
to a configuration, it will test whether the left hips ro-
tation exceeds some threshold. If so, it will use the left
sub-tree to further categorize the configuration. Oth-
erwise, it will use the right sub-tree to further catego-
rize it. By the time a leaf node is reached, for example,
the tree might end up as categorizing the configuration
as having the right leg forward with its knee straight,
the left leg back with its knee somewhat bent, and the
arms out to the side. All this information would be en-
coded, essentially, by the state that the tree ultimately
returns.

Next comes the question of how to learn the tree. That
is, how does it determine that the left hip is the most
important to test first? Our approach is as follows.
First, the agent gathers some examples of what hap-
pens, in terms of reward and expected return, when it
takes an particular action in a particular class of con-
figurations. Sometimes the action will lead to high re-
ward and sometimes it will lead to low reward. (If this
state were perfectly Markov, it would always lead to
the same reward.) Once it has gathered enough exam-
ples, it can try to determine which aspect of the con-
figuration has the most impact on that reward. This
is done by considering several potential hyperplanes to
branch based on. The hyperplane that best separates
the configurations from which the action worked well
from those from which it did not is selected as the new

test to use at that node. If all goes well, when in the
future the agent has a choice to execute this action,
it will be better able to predict the outcome based on
this new test.

The precise definition of forming a new nodes test is
this:

(d,t) = argminargmin o({X.reward|X.d < t})+
deD teR

o({X.reward|X.d > t})

Each example X has a reward attribute and an at-
tribute recording what the reading for each input when
the reward occurred. The input dimension (d) and
threshold values (t) are chosen such that the standard
deviation in rewards of the partitions are minimized.

Aside from using this to approximate Q-values, we
can use it to approximate an arbitrary, fixed function.
Some examples of this are given in the results section.

4. Neural networks with control
outputs modified by Q-learning

4.1 Motivation

Neural nets were chosen to work in the continuous
state domain because, unlike trees or straight RL, they
can handle continuous input and output if necessary.
This makes them useful for imitating another walk-
ing algorithm, whether a hard coded walking cycle or
even eventually a motion capture video of a real hu-
man walking. Motion capture has been used before
on a simpler but similar problem: a robot playing air
hockey where the positions of the paddles and pucks on
the table were tracked visually (Bentivegna and Atke-
son, 2002). The air hockey robot used nearest neighbor
look-up to represent it’s state space, but neural net-
works were choosen for the humanoid robot due to the
much more complicated state space.

Q-learning reinforcement learning was chosen to im-
prove upon the controller generated by pure imitation
because the choice of action for a given state needs
to depend on the long term value of that taking that
action, in this case moving a joint or joints. A given
movement may do little in the short term to move the
robot forward, but if it results in the robot remain-
ing upright and eventually making forward progress it
may be a better choice than leaping forward quickly
but then falling and not going as far in the long term.
Q-learning was chosen because it is simpler than Q-
lambda, however it was modified to make it somewhat
more like Q-lambda in that instead of taking the re-
ward value at the next immediate time step it uses

the reward value from a single time step some time
in the future. This was done due to the fact that the
controllers update at over 60 Hz and therefore a single
update does not give time for a given joint action to
generate much of an effect on the model as a whole.
Below is the update function for Q-learning:

Q(st,a:) = Q(st,a4)+

alriyn + Wargf(la)x(@(stﬂ, a) — Q(st, ar)]
ac s

(Sutton and Barto, 2005)

Due to this delay the update function for Q-learning
our function is modified to be this:

Q(st,a:) = Q(s¢,a1)+
a[rt+delay+

7y arg maX(Q(Sterelayv a) - Q(st7 at)]
a€A(s)

4.2 Design

The basic design for the controller uses a separate neu-
ral net for each joint, which takes as input a normal-
ized time step value, boolean for each foot designat-
ing whether it is in contact with something, presum-
ably the ground, and the joint positions of the knees
hips and ankles. The first layer of the network uses 9
sigmoid nodes, one for each input, the second hidden
layer has 3 sigmoid nodes and the output layer has
a single tanh node that outputs the change in radi-
ans for that time step. Initially the neural networks
are trained off a hard-coded walking cycle algorithm.
This cycle was created by trial and error however with
proper image processing it could be taken from a video
of an actual human walking. In this case, however,
the data to train the networks comes from sending the
joint commands to the robot in the simulation, ensur-
ing accurate physics. Since the hard-coded commands
do not take dynamic balance into account the model is
respawned each time it falls, although each time step
of valid simulation is treated as a separate instance for
purposes of supervised training of the networks. Once
the networks are trained to mimic the observed pol-
icy below an error threshold they are used to control
the agent and Q-learning is used to decide whether to
scale the output of the neural nets up or down by 20

The state representation for the Q-learning command
scaling takes into account the time step in the walking
cycle(grouped together into intervals of 10), whether
the left, right, both or neither foot is touching the
ground, and whether the head is to the left/right

and/or forward/behind the centroid of the 2 feet. The
motivation behind this state representation was to at-
tempt to introduce the agents center of gravity into
the control process and therefore give it at least some
ability to balance.

5. Results

5.1 Function Approximators
5.1.1 TREE AS A FUNCTION APPROXIMATOR

To test our tree’s correctness independent of the walk-
ing application, we applied it to various functions in a
two-dimensional space. The three functions tested are
listed below:

e A piecewise constant function in which the func-
tion is defined as flat and constant in each of sev-
eral regions. This tests its ability to handle dis-
continuities.

e A function that is quadratic in both x and y. This
tests its ability to learn nonlinear functions.

e A trigonometric function, specifically atan2. This
is both discontinuous and nonlinear.

Each of the following curves represents averages after
10 runs. The sudden drop after 20 samples is an arti-
fact of our trees threshold for determining whether a
number of points is large enough to justify forming a
new branch.

Tree learning curves

for 20 function approximation

==Pigcewise conaant
=Gusdradic
Trigonometic

RMS Ermr
I

o 10 20 @ 40) &0 70 80 a0 100

Sample data size

Figure 1. Learning curves for a successful run of the tree
as a 2D function approximator

5.1.2 NEURAL NET MIMICKING A FIXED PoLicy

Over time, the neural networks learn to mimic the
commands given by the hard coded, albeit not per-
fectly. The learning rates are similar between the
low and high friction environments and all 6 control-
lable joints in the model should learning, although
none seem able to perfectly mimic the heuristic’s com-
mands.

The error of the neural network compared to random
is not shown, although the random commands would
vary over the range of motion of each joint, being ap-
proximately pi/2 for the knees and ankles and pi radi-
ans for the forward/back swing on the hips. The ”er-
ror” of the walking heuristic is 0 at all times, since the
heuristic’s commands are the comparison from which
the error is obtained.

Pos forg ErriR adians)

0 20 400 600 200 1000 1200 14m 1800 1800 2000

Time Steps (Simulation Seconds)

Figure 2. Average error over time for a knee joint’s neural
net learning to mimic the fixed policy. This is in a low-
friction experiment.

5.2 Walking Results

In our first experiment, we applied various skele-
ton controllers to walking over a high-friction plane.
The most interesting of these is our learning agent,
which used a learned, tree-partitioned state set and Q-
learning. Joining it were a random agent and one us-
ing hand-coded walking cycle. The neural net-powered
agent is not yet ready to join these three. We recorded
results by graphing forward velocity with respect to
time. Time was segmented into short intervals and for-
ward progress during each was recorded. Each of these
time intervals corresponds to a point in the graphs be-
low.

The random and fixed policies worked as expected,
which helps validate the our methods of measuring
agent performance. The random agents performance
is low and relatively constant. The fixed-policy agents
performance is marginally higher and still constant.

The tree-based approach shows a fairly linear increase
in performance followed by a plateau at around 2000
time steps. A line segment approximating the increas-
ing portion of the learning curve has a slope of around
.0005 units per second per second. The plateau is at
around 1.26 units per second.

For our second experiment, we made the plane slippery
and ran the same set of policies.

Results: This experiment tested our agent’s ability to
learn to move forward on terrain that has a low friction
(i.e. slippery). From our results below you can see
that the friction did not play much role in all agents
ability to move forward. Both the random and hand-
built agent remained roughly constant over the period
measured.

The tree-based agents performance can again be ap-
proximated by a line segment followed by a constant
function. The plateau is marginally lower: 1.24 units
per second.

The learning from observation approach using neural
networks and Q-learning was not as successful, as the
forward velocity drops dramatically when control is
switched from the heuristic to the neural nets at 1000
time steps, and it never perceivably recovers as an at-
tempt is made to scale the learned commands. While
the raw numbers cannot be directly compared to the
tree based approach due to the fact that the model is
allowed to fall down and respawn, it clearly performs
wore due to the fact that it is outperformed by the
hard-coded heuristic. Most on the larger negative ve-
locities in the graph are due to these respawns and
the models position being reset back to the origin, al-
though sometimes the model does manager to actually
take steps backwards.

6. Analysis

Overall, the learning curve from our tree-based ap-
proach is encouraging, since it slopes up until reaching
a plateau. However, there are several problems with
this approach that we believe limit the height of the
plateau in the learning curve.

e Knowledge leak - The repartitioning process can
destroy useful information, since the old partition
is thrown away. The new partition is likely to be
somewhat better, but it would be better if it kept
the best of the previous partition.

e Crude partition placement - Our agent places its
partitions orthogonal to axes and only approxi-
mates where they belong. There are more com-
plex methods for doing this kind of task (support

vector machines) that could be implemented as
future work and would likely have better results.

e Slow Q-value propagation - We used Q-learning
to learn Q-values, which is the most basic of this
class of methods. Some tweaks to it would acceler-
ate how quickly Q-values converged to something
correct. This slowness is particularly harmful if
a repartition happens on Q-values that have not
yet properly converged.

e Lack of action choice - The agent chooses from
among a fixed set of actions, which limits what
it can do much more than the skeletons physical
limitations. A more powerful agent would be able
to come up with new actions to run rather than
using the relatively small set that our agent starts
with. We chose not to incorporate an ability to
change actions into our agent. If we had, there
would be three kinds of learning going on at once:
Q-values, partitions, and action sets. Three si-
multaneous kinds of learning seems like it would
be slow and problematic.

The neural network controller based learning from ob-
servation approach is still having difficulties however,
part of this is because unlike the tree approach the
model was not constrained to not fall down, therefore
adding to problem of balance as a requirement for the
agent. Despite this however there are a few things that
could possibly improve upon this approach:

e Better representing the discontinuous nature of
the steps in the heuristics walking cycle in the in-
puts to the neural networks. The heuristic uses a
900 time step counter broken down into 100 time
step wide sections of continuous trajectory. Since
this time step parameter is represented to neural
network as a the time step value divided by 900 it
leaves little difference in the inputs on either side
of the discontinuity. Despite the fact that neural
networks can handle some degree of discontinuity,
a different representation of this input or a dif-
ferent network topology might help improve the
approximation of the heuristic.

e Association of the actions across all joints might
help the Q-learning phase better learning to scale
the controller commands. As it is the Q values
are learned in a vacuum, which prevents coordi-
nated action between the joints. Doing this how-
ever would increase the number of actions from 3
to 3%, which is a significant increase.

e More accurate representation of the relative loca-
tion of models center of gravity relative to the feet

Welocity unitsfs)

“elocity {unitsis)

-05

Low-Friction Experimeant

AW\WWW

AN A.MW

\J

.

;rm!'l‘l.‘ AP AR AT A AL AP A A
ton M abbaAna A ol K

4 i a it A
L] L]

|| " L

Time (simulator seconds)

Figure 3. Learning curves for experiment with a high-friction plane (ur = 25)

High-Friction Bgperiment

AMWAFWVIAMPAV ANV IN

v

0s

AN AR
AQ i R
v vmo‘v Vmu
L

Time {simulator seconds)

Figure 4. Learning curves for experiment with a high-friction plane (ux = 100)

==Parititon Tree

==Fixed
Rancom

==heurs Met

==FPartition Tree

== Fized
Random

==Meura het

in the Q-learning input model.

e Additional training time, data collection was done
using only 2000 seconds of simulation time, only
allowing for about 120,000 update cycles to learn
from. More time might yield better results.

7. Conclusion

Both approaches showed learning when applied as gen-
eral function approximators. Additionally, the tree-
based approach showed some success when applied as
part of our walking system. There is room for improve-
ment in the placement of partitions and in the devel-
opment of better actions to use. Although the system
is not up to powering an actual walker, it has shown
that it can at least support some degree of learning.

References

Sutton, R. S. and Barto, A. G. (2005) Reinforcement
Learning: An Introduction. Cambridge, MA, MIT
Press.

Bentivegna, D. C. and Atkeson, C. G. (2002) Learning
How to Behave from Observing Others

Yoshimoto, J., Ishii, S., Sato, M. Application of re-
inforcement learning to balancing of Acrobot. Sys-
tems, Man, and Cybernetics, 1999. IEEE SMC ’99
Conference Proceedings. 516 - 521 vol.5.

Peters, J., Vijayakumar, S., Schaal, S. Reinforce-
ment Learning for Humanoid Robotcs. Third
IEEE-RAS International Conference on Humanoid
Robots, Karlsruhe, Germany, Sept. 29-30 2003

Palmer, E. Michael; Miller, B. Daniel;, "An evolved
neural controller for bipedal walking with dynamic
balance,” Proceedings of the 11th Annual Confer-
ence Companion on Genetic and Evolutionary Com-
putation Conference: Late Breaking Papers, 2009

