
Photo Auto-Tagging with Dictionary Learning

Bei Li bei.li@ou.edu

Yohann Burette yohann.burette@ou.edu

Keywords: classification, sparse coding, KNN, Neural Network, Naive Bayes

1. Introduction

With the drop in prices, more and more users have now
access to digital cameras. Capturing and processing
digital pictures is more accessible compared to their
film counterparts. This results in an ever increasing
number of pictures people save on their computer’s
hard drive. However, as it is easy to store new pictures,
it is more difficult to find a particular one.

For this, the photography industry introduced the no-
tion of “tags” in order to help users sort their pictures.
Basically, when storing a picture, the user “tags” it
with words that match its content. For instance, a pic-
ture of a flower will receive the tag “flower”. Similarly,
a picture of a sailboat passing in front of a lighthouse
will be tagged with “sailboat” and “lighthouse”. The
idea behind this is that, later, it will be easier to filter
these tagged pictures out of an entire collection.

On the paper, photo tagging is a very simple yet pow-
erful way of organizing pictures. Unfortunately, as
the number of pictures increases, the tagging process
quickly becomes tedious. And most of the users tend
to skip this step eventually – worsening the problem
each time.

Our idea is thus to create an automatic tagging sys-
tem. By combining Computer Vision technologies and
Machine Learning algorithms, the system is able to
observe a picture’s features and assign tags to it. The
basic structure of our system is presented in Figure 1.

Although recognizing pictures is an easy task for a hu-
man being, it is much harder for a computer. In its
simplest representation, an image is a matrix of num-
bers. This matrix can be written as a stack of vectors
in order to process it with a classification algorithm.
The difficulty comes from the fact that a slight modifi-
cation in the original picture might change the matrix
significantly. Similarly, two pictures of a same object
but at different scales will have very different matrix
representations. Thus, finding a better representation

of the image is the key.

In computer vision, there are several popular ways of
representing images such as patch-based approaches
and the “bag-of-words” representation based on SIFT.
In this paper, we explored a new method called “Dic-
tionary Learning”.

This study led us to design two approaches to pic-
ture auto-tagging. First, we tried to classify pictures
using the Reconstruction Residual Error of Dictionary
Learning. As explained in the following, it didn’t work
as well as we expected. Our second approach makes
better use of Sparse Representation and is explained
later.

It is worth noting that both approaches were not found
in the literature. Most of the time spent on this project
was actually spent experimenting with these ideas.

2. Related Work

In the same manner as for text, researchers have been
trying to extract useful information from pictures.
Multiple techniques have been explored over the years.
Bag-of-words, Multiple-Instance Learning and Dictio-
nary Learning are three promising ones.

2.1. Bag-of-Words

In (Sivic & Zisserman, 2003), an approach to object
and scene retrieval similar to text retrieval is proposed.
Firstly, a number of features and viewpoint-invariant
features are extracted from a set of images. By k-mean
clustering, k most representative features are extracted
to form a vocabulary. With this vocabulary, every
image can be represented in a “bag-of-words” form.
Then the image retrieval task can be done in the same
way as text retrieval. The feature extraction method
mentioned above is mainly SIFT (Lowe, 2004), which
firstly uses difference of gaussian (dog) to detect points
of interest, and then use a vector (usually with length
128) to describe it. These feature vectors demonstrate



Submission and Formatting Instructions for ICML 2010

Figure 1. Structure of the system.

a certain level of scale and viewpoint-invariant ability.
Then the bag-of-visterms way is adopted in broader
tasks of computer vision. With the algorithm proposed
in (Bosch et al., 2006), one can discover objects in
images containing multiple object categories. In the
information retrieval field, pLSA is employed to handle
a similar problem, that is to classify a text document
into different topics (Brants et al., 2002).

Fergus et al. (Fergus et al., 2005), present an approach
that can learn an object category from its name by uti-
lizing the raw output of image search engines available
on the Internet. TSI-pLSA extends pLSA (as applied
to visual words) to include spatial information in a
translation and scale-invariant manner. This is pre-
sented in (Fergus et al., 2010).

2.2. Multi-Instance Learning

Multiple-Instance learning is another variation of su-
pervised learning. The idea behind this approach is to
have the agent learn a concept by giving it ”bags of
instances”. If a bag contains at least one instance that
represents the concept, then it is said positive. On the
contrary, if none of the instances represent the concept,
then the bag is said negative. In (Maron & Lozano-
Prez, 1998), the authors describe a tool called Diverse
Density that improves the way an agent can learn from
multiple-instance examples. They give three examples
of application: drug discovery, person recognition, and
stock analysis. For our project, the interesting part of
this paper is the bag generation. Each image forms
a bag and the instances are subdivisions of that im-
age. In the person recognition example, if the image
contained the person, then the bag is labeled positive.
Otherwise, it is said negative.

In (Maron & Ratan, 1998), this concept is extended
to natural scene recognition. The user easily defines
each bag as positive if the image represents a concept
(e.g. a waterfall, a mountain). And, in the same man-
ner, sub-regions of the image are taken as instances
of the bag. This example also shows that the Diverse
Density algorithm works well even when the feature

extraction/representation is simple. They show that
it works with a simple 15-dimensional feature space
where each instance is a point. The paper also shows
that there is no real difference in performance between
a simple feature extraction step and a more complex
one. The only difference is the amount of computa-
tion power needed. As an example of how a concept is
’learned’, their agent determined that an image con-
taining a waterfall will have a blob whose blue value
is 0.5, whose neighbor below has the same blue value,
whose neighbor above has the same red value, and so
on. It is also interesting to note that the results are
presented as precision-recall and recall graphs. The
precision is defined as the “ratio of the number of cor-
rect images to the number of images seen so far.” And
the recall is the “ratio of the number of correct images
to the total number of correct images in the test set.”

A more recent approach to multiple-instance learn-
ing is given in (Qiao & Beling, 2009) where the agent
learns about a concept on its own. This comes from
the observation that it is difficult to find good exam-
ple sets for algorithm training. The idea is to have
fewer labeled examples and to use the knowledge from
unlabeled bags to boost the training of the classifier.
In their example, they use features such as color, tex-
ture and shape of “patches” within the image. Even
though this approach requires less computation, it is
interesting to see that the results with this approach
are only slightly better than that obtained with other
existing approaches.

2.3. Dictionary Learning and Sparse
Representation

Intuitively, Dictionary Learning consists in extracting
common features from a set of images and forming a
dictionary. Then, each image can be represented as a
linearly combination of the dictionary’s elements. For
example, in the text processing domain, one can scan
through a set of articles and put every word that occurs
more than three times into a dictionary. Any new
article can then be represented in terms of the terms



Submission and Formatting Instructions for ICML 2010

Figure 2. Example of dictionary learned from a set of ran-
dom images

of the dictionary instead of its original words. This
also works for images; but instead of “words” we use
common visual features. Figure 2 shows a dictionary
learned from a set of random images downloaded from
Flickr.

Using this dictionary, an image can be represented as
a vector that combines elements from the dictionary.
Since some of the elements are not used, we obtain a
sparse representation of the image (c.f. Figure 3).

Our work explores auto-tagging of pictures using dic-
tionary learning and sparse representation.

The magic behind Dictionary Learning and Sparse
Representation is explained below. The casual reader
can easily skip the end of this section as it does not
affect the understanding of the following sections.

Sparse coding (SC) tries to reconstruct a signal us-
ing a dictionary and a sparse and efficient represen-
tation – i.e. a combination of only a few elements
of that dictionary. The goal of dictionary learning is
to train a specialized dictionary from some available
data. Many research projects has suggested that dic-
tionaries learned from data generally perform better
than other off-the-shelf dictionaries such as wavelets
and contourlets (Bryt & Elad, 2008; Bruckstein et al.,
2009; Elad & Aharon, 2006; Krishnapuram et al., 2005;
Mairal et al., 2009; 2008; Raina et al., 2007).

To state it formally, given a fixed dictionary D and n
vector signals x = (x1, x2, · · · , xn), SC finds a sparse

Figure 3. Sparse representation of an image.

representation of x as α = (α1, α2, · · · , αn) by opti-
mizing:

α = argmin
α
‖x−Dα‖F + λ ‖α‖p , (1)

where ‖ · ‖F denotes the Frobenius norm and ‖ · ‖p
denotes the lp norm after α is vectorized. Typically p
is chosen as 1 or 0, where the former case (p = 1) is
used as an approximation for the latter (p = 0). And λ
is a weighting parameter that adjusts the importance
of the two terms.

Now, to design a dictionary D so that x ' Dα while
‖α‖p is sufficient small, the equation above can be
modified as:

(α,D) = argmin
α,D
‖x−Dα‖F + λ ‖α‖p (2)

By combining the optimization of both α and D,
the dictionary that is most suitable to the signal x
can be learned. The optimization problem above can
be rather involved because (2) is not simultaneously
convex in terms of both α and D. However, a few
optimization techniques have been proposed (Aharon
et al., 2006; Engan et al., 2002).

The choice of the dictionary is extremely important
and the design of such a dictionary is one of the in-
teresting research directions that came out from this
study.



Submission and Formatting Instructions for ICML 2010

3. Classify with Reconstruction
Residual Error based on Dictionary
Learning

Dictionary learning relies on the feature extraction
technique (i.e. dictionary creation) and the recon-
struction phase. The features are extracted from a
set of pictures and grouped into a dictionary. From
this dictionary, it is possible to reconstruct any of the
original images with good precision. The difference
between the original image and its reconstruction is
called the residual error.

Our original idea was to use the residual error of a
reconstruction in order to classify the picture. Given a
dictionary per category, we would associate the picture
with the category for which the reconstruction residual
error is the smallest. The idea was simple enough that
we could use a perceptron to determine whether or not
a picture fitted a given category.

As an example, let us consider we want to classify
an article as “English”, “Chinese” or “Latin”. One
way to do this is to bring three dictionaries – one for
English, one for Chinese and one for Latin – and to
try to use words from each dictionary to reconstruct
the article. Now, if the article is written in English,
the English dictionary would match the best. It has
all the words needed to reconstruct the article. The
Latin dictionary would still match properly since many
English words are Latin-based. On the other hand, the
article would be poorly reconstructed when using the
Chinese dictionary because the two languages are too
different.

Using this idea, we proposed to determine which class
a given image should belong to by measuring the re-
construction residual error using each dictionary. The
smaller the residual error, the higher the probability
of the image to belong to that category.

3.1. System Components

For this first approach, the system consists of three
components:

• Training samples collector component. This com-
ponent fetches training photos from websites like
Flickr. After obtaining mitigated results with
Flickr’s tags and group pools, we decided to use
an existing – and already prepared – dataset from
Caltech (L. Fei-Fei & Perona). Each picture is
stored in a directory reflecting its category.

• Dictionary learning component. With the pic-
tures sorted, this component learns one dictionary

per category. As we explained before, a dictionary
contains “visual words” that are common to most
of the images in the category. The fitness of the
dictionary for a particular image is measured by
the reconstruction residual error. Of course high
residual error indicates low fitness. This compo-
nent is as shown in Figure 4.

• Annotation component. For a given picture, a
fitness value is computed against each dictionary.
Our intuition was that the picture will fall into
the categories with the lowest reconstruction er-
ror. Figure 5 shows an instance of good match
while Figure 6 shows a mismatch. Machine Learn-
ing enters into play when determining the thresh-
old between good match and mismatch. In this
approach, we used a simple perceptron. Its in-
put was the residual error and its output was a
boolean indicating whether or not it was a match.

Given N dictionaries learned from N groups of train-
ing images {D1, D2, ...DN}, reconstructing a photo I
results in N reconstruction errors {r1, r2, ...rN}. A
reconstruction error indicates how relevant a dictio-
nary is to the picture. For example with a dictionary
learned from a set of pictures of flowers, reconstruct-
ing a new photo of a flower will have a lower residual
error than reconstructing a photo of motorbike. Thus,
with the residual error, we can tell if a test photo has
anything to do with a dictionary.

We can building a set of training samples
{〈r1, y1〉 , 〈r2, y2〉 , ..., 〈rN , yN 〉} where ri is the residual
error of the reconstruction with the dictionary i and
yi is a boolean indicating whether or not the category
is relevant to the picture. For example, there are three
dictionaries Dbee, Dlake and Dmontain. When recon-
structing a photo of Moraine Lake which contains
both a lake and mountains, the residual errors would
be 0.8, 0.2 and 0.14 respectively. With these, we can
create a training sample {〈0.8, 0〉 , 〈0.2, 1〉 , 〈0.14, 1〉},
where the second element of each pair is either 0
(irrelevant) or 1 (relevant). This process is repeated
for each picture of our training data. Once done, we
can train our classifier.

To classify a new photo – i.e. not part of the train-
ing data – we first reconstruct it with each dictionary
separately. The residual errors are then fed into the
classifier. For each relevant dictionary, a new annota-
tion is added to the picture. More than one annotation
can be added to one photo since there can be multiple
residual errors that are classified as relevant.



Submission and Formatting Instructions for ICML 2010

Figure 4. Dictionary Generation

Figure 5. Good Match

Figure 6. Mismatch



Submission and Formatting Instructions for ICML 2010

3.2. Experiment Design

In our experiment, we learned two dictionaries
Dmotorbikes and Dflowers from two sets of images. The
dictionary learning was done by K-SVD which is based
on k-mean clustering and Singular Value Decomposi-
tion. With these two dictionaries, we tried to recon-
struct a set of test images. We expected the resid-
ual error of a picture of a flower reconstructed with
Dflowers to be lower than the residual error obtained
with Dmotorbikes.

3.3. Results Analysis

The results showed that, the reconstruction of flower
images were always lower than reconstruction of mo-
torbike images, no matter which dictionary was used.
This result was disappointing since it meant the recon-
struction error couldn’t be used to determine precisely
which dictionary fitted the best. Basically, the results
showed that a flower is more similar to a motorbike
than a real motorbike! Unfortunately, this was not
the way to go.

This showed us that the analogy between text and im-
age has its limit. In the English, Latin and Chinese ex-
ample, the distinction between each dictionary is clear.
But in the world of images, a dictionary extracted from
one set of images can be very similar to a dictionary
extracted from another set of images. One dictionary
can even contain every single element of the other dic-
tionary. Say we learn a dictionary from a white page,
basically the dictionary will contain only blank ele-
ments – since this is all that is needed to reconstruct
a photo of a white page. Now if we learn another dic-
tionary for images with flowers in the center and a
white page as a background, then this dictionary will
contain elements for reconstructing both flowers and
white page. Thus, the distinction between these two
dictionaries is vague.

Based on these results, this approach could not be used
for the classification.

4. Classify with Sparse Representation

Our second approach is also based on the feature ex-
traction technique of dictionary learning. As stated
above, each image can be represented as a vector of
features (c.f. Figure 3). Actually, it is more a sparse
representation since some features present in the dic-
tionary might not be present in the picture.

This observation gave us the idea of merging all the
dictionaries into a single one and to use it for all the
categories. Figure 7 shows an instance of such a mixed

dictionary.

The intuition is that two pictures from two different
categories would have totally different sparse represen-
tations. And, on the contrary, two pictures belonging
to a same category should have similar representations.

First, the sparse representation of the image is ob-
tained using the common (merged) dictionary. Then
its category is determined by looking how close it is
to other samples in our database. Thus, our problem
becomes a clustering one.

Machine learning offers several algorithms to tackle
such problems. Among them, we decided to try Neural
Networks, k-Nearest Neighbors and Naive Bayes, and
see which one works the best.

In this study, we wrote our own implementations
of Neural Networks, k-Nearest Neighbors and Naive
Bayes.

4.1. System Components

The system’s architecture is presented in Figure 8.

• Training samples collector component. This com-
ponent is the same as for the first approach.

• Dictionary Learning component. Different from
the previous approach, there is only one dictio-
nary for all the photos. The photos that are
picked for dictionary learning are randomly cho-
sen from different classes. With this learning
strategy, the dictionary contains all features for
different classes.

• Sparse Coding component. Now with a dictio-
nary, each photo can be represented using ele-
ments from the dictionary (imagining you are us-
ing words from an English dictionary to compose
an article). The procedure of finding the repre-
sentation is called sparse coding and the result is
a sparse vector.

• Training component. The classifier can be Naive
Bayes, Neural Network or k-Nearest Neighbor. Its
input is the sparse representation of the image. Its
output is a vector of booleans. There is a boolean
per category.

• Annotation component. From the output of the
classifier, this component can determine whether
or not the image belongs to each category. If the
boolean is 1, then the image belongs to that cat-
egory.



Submission and Formatting Instructions for ICML 2010

Figure 7. Merged dictionary for several categories.

Figure 8. System’s Flow Diagram



Submission and Formatting Instructions for ICML 2010

4.2. Experiment Design

In this second approach, we used six different sets of
pictures to create a single dictionary. This dictionary
was then used to get the sparse representation of pic-
tures that had already been classified. Each picture
was represented as a 256-feature vector. As mentioned
above, each feature of the dictionary receives a value
indicating how relevant it is to the picture. The re-
sulting dataset was then split into a training set and a
testing set. 75% of the pictures were used for training
while the remaining 25% were used for testing.

In order to test our kNN agent, we looked at its pre-
diction for each picture of the testing set knowing all
the pictures of the training set. The tuning parameter
in this algorithm is the number of neighbors that are
taken into consideration when making the prediction.
So, we ran the different tests while increasing k from
1 to 20.

For the neural network, it was a bit more complicated.
As stated earlier, it is difficult to know how many hid-
den nodes it should have. So, we ran different tests
using different numbers of hidden nodes. We succes-
sively increased the number of nodes from 1 to 256.
We observed both the training accuracy and the test-
ing accuracy to detect whether or not the agent was
overfitting the data.

Two different datasets were used for the experiments.
A first dataset consisted of only two classes with 400
samples each. This dataset allowed to determine if our
approach seemed to work. The second dataset repre-
sented six different classes. Only 42 samples were used
for each class. This allowed us to see how well our tech-
nique handled more complex classification problems.

4.3. Results Analysis

All three algorithms tested below were implemented
for this study. No external library was used.

4.3.1. KNN

For kNN, we ran the tests on the two datasets. As
shown in Figure 9, the accuracy is not really affected
by k when trying to pick between two classes. With
300 samples per class (75% of the 400 samples), the
agent is able to make the right prediction with about
80% accuracy.

The same tests were then run on the six-class dataset.
As Figure 10 shows, the results weren’t as high but
still really promising. The best accuracy was around
50% which is above random – in this case 16%. It is
worth noting that the kNN algorithm works best when

Figure 9. KNN on two classes of pictures.

it has multiple data points. So, with more samples, we
should expect even better results.

Figure 10. KNN on six classes of pictures.

4.3.2. Naive Bayes

In order for our Naive Bayes classifier to work on the
continuous value we needed to decide how the CPT
table will be represented. When working with con-
tinuous values, the CPT is usually represented as a
conditional distribution table (CDT) which maps a
certain condition to a distribution. Another way is
to discretize the continuous value. This is the method
adopted in this experiment.

The number of training sample is 75% of 400 samples
and the rest is for testing.



Submission and Formatting Instructions for ICML 2010

The granularity of the discretization affects the pre-
diction accuracy. So, in our test, we varied the granu-
larity to see the impact it had on the result. As shown
in Figure 11 for the two-class dataset, the accuracy
goes down as the granularity increases. Naive Bayes
uses training samples to estimate the true probability
of values of an attribute given a class label. As the
number of training samples increases, the probability
approaches the true value. When the number of train-
ing samples is too low, the probability is far from the
true value. With the discretization, the probability
of each discrete value showing for each label is even
farther from the true value. This is why it decreases
when the granularity increases.

Figure 11. Naive Bayes on two classes of pictures.

The best result Naive Bayes achieved for the 2-class
dataset was 78.50%.

We performed the same test on the 6-class dataset and
the best classification accuracy was 64%.

4.3.3. Neural Networks

The main difficulty with neural networks is to deter-
mine the number of hidden nodes that suits the prob-
lem. Too few hidden nodes, and the neural network
can’t learn completely. Too many, and it is the oppo-
site: the neural network knows too much (i.e. overfit-
ting issue).

Tests were run in order to see how learning was affected
by the number of hidden nodes. The results are shown
in Figure 12 for two classes and in Figure 13 for six
classes. In both cases, the best training accuracy was
obtained with 256 hidden nodes – which is the input
size. We set the learning rate α to 0.01 as it allows for

a fair amount of exploration.

Figure 12. Neural Networks on two classes of pictures.

Figure 13. Neural Networks on six classes of pictures.

In parallel, tests were conducted to see how well neu-
ral networks predicted classes for pictures that they
had never “seen”. Basically, the neural networks were
trained with 75% of the dataset and tested with the
remaining samples.

In Figure 14, we can see that the training accuracy
for two classes increases rapidly up to close to 1. The
prediction accuracy (i.e. testing) increases more slowly
but still goes above 60% in only 1,000 iterations.

When training on six classes, the best training accu-
racy doesn’t go much above 90%. But, as shown in
Figure 15, the prediction is still well above random.



Submission and Formatting Instructions for ICML 2010

Figure 14. Training vs Testing for Neural Networks on two
classes of pictures.

4.4. Discussion

A summary of the results is presented in Figure 16.
The three classifiers performed better than random. In
our tests, Naive Bayes seem to be the most consistent.
But it is important to keep in mind that our dataset
was relatively small. With a larger dataset, kNN and
Neural Networks are expected to take the lead.

5. Future Work

The number of classes this system can automatically
attached label to depends on the size and scale of train-
ing samples. Currently the system is trained only to
work on 6 classes. To make this system practical, more
classes need to be trained. Training data is essential
in machine learning and is usually hard to collect but
fortunately this is not our case. From Flickr, we can
collect essentially infinite number of training data for
different classes and the size of available training is
growing quickly each day. For the next step, we might
need to make the existing data collecting component
to work automatically collecting data from Flickr in
the background and trigger the training component to
learn new classes periodically.

Currently our system can only attach one label to one
photo but it would nice if the algorithm can detect
multiple region of interest and attach label accord-
ingly. One way to implement attaching multiple la-
bels is to use image segmentation algorithm which can
automatically separate different regions and based on
these regions, the existing algorithm can run and at-
tach labels accordingly. Another way to do it is letting

Figure 15. Training vs Testing for Neural Networks on six
classes of pictures.

Figure 16. Comparison of the prediction accuracies ob-
tained with k-Nearest Neighbors, Naive Bayes and Neural
Network for two and six classes of pictures.

users to manually choose regions of interest and run
the algorithm on each region to attach label.

Finally, as suggested by Dr McGovern, we could have
the three classifiers (Naive Bayes, kNN and Neural
Networks) vote for the picture’s category. The cat-
egory with the most votes wins.

6. Conclusion

In the work we have implemented an auto-labelling
system for photos. The idea behind the labelling is
photo classification. We have tried two different algo-
rithms for classification. One algorithm was on based
the reconstruction residual error with dictionary learn-
ing. But because the “visual keywords” have less dif-
ferential power than “written keywords”, the first al-
gorithm did not work well. The second algorithm we
tried was based on the sparse representation by dictio-



Submission and Formatting Instructions for ICML 2010

nary learning and sparse coding. Based on this sparse
representation, we have tried a few general classifica-
tion algorithm such as KNN, Naive Bayes and Neural
Network. The accuracy of classification is high.

References

Aharon, M., Elad, M., and Bruckstein, A. K-SVD:
an algorithm for designing overcomplete dictionar-
ies for sparse representation. IEEE Transactions on
signal processing, 54(11):4311, 2006.

Bosch, A., Zisserman, A., and Munoz, X. Scene clas-
sification via pLSA. Computer VisionECCV 2006,
pp. 517530, 2006.

Brants, T., Chen, F., and Tsochantaridis, I. Topic-
based document segmentation with probabilistic la-
tent semantic analysis. In Proceedings of the eleventh
international conference on Information and knowl-
edge management, pp. 218, 2002.

Bruckstein, A.M., Donoho, D.L., and Elad, M. From
sparse solutions of systems of equations to sparse
modeling of signals and images. SIAM review, 51
(1):34–81, 2009.

Bryt, O. and Elad, M. Compression of facial images
using the K-SVD algorithm. Journal of Visual Com-
munication and Image Representation, 19(4):270–
282, 2008.

Elad, M. and Aharon, M. Image denoising via sparse
and redundant representations over learned dictio-
naries. Image Processing, IEEE Transactions on, 15
(12):3736–3745, 2006.

Engan, K., Aase, S.O., and Husoy, JH. Frame based
signal compression using method of optimal direc-
tions (MOD). In Circuits and Systems, 1999. IS-
CAS’99. Proceedings of the 1999 IEEE International
Symposium on, volume 4, pp. 1–4. IEEE, 2002.

Fergus, R., Fei-Fei, L., Perona, P., and Zisserman, A.
Learning object categories from google? s image
search. 2005.

Fergus, R., Fei-Fei, L., Perona, P., and Zisserman,
A. Learning object categories from internet image
searches. Proceedings of the IEEE, 98(8):14531466,
2010.

Krishnapuram, B., Carin, L., et al. Sparse multinomial
logistic regression: Fast algorithms and generaliza-
tion bounds. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, pp. 957–968, 2005.

L. Fei-Fei, R. Fergus and Perona, P. Caltech 101: pic-
tures of objects belonging to 101 categories.

Lowe, D. G. Distinctive image features from scale-
invariant keypoints. International journal of com-
puter vision, 60(2):91110, 2004.

Mairal, J., Sapiro, G., and Elad, M. Learning mul-
tiscale sparse representations for image and video
restoration. SIAM Multiscale Modeling and Simula-
tion, 7(1):214241, 2008.

Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisser-
man, A. Supervised dictionary learning. Adv. NIPS,
21, 2009.

Maron, O. and Lozano-Prez, T. A framework for
multiple-instance learning. Advances in neural in-
formation processing systems, pp. 570576, 1998.

Maron, O. and Ratan, A. L. Multiple-instance learning
for natural scene classification. In Proceedings of
the Fifteenth International Conference on Machine
Learning, pp. 341349, 1998.

Qiao, Q. and Beling, P. A. Localized content based
image retrieval with Self-Taught multiple instance
learning. In 2009 IEEE International Conference
on Data Mining Workshops, pp. 170175, 2009.

Raina, R., Battle, A., Lee, H., Packer, B., and Ng,
A. Y. Self-taught learning: Transfer learning from
unlabeled data. In Proceedings of the 24th inter-
national conference on Machine learning, pp. 766,
2007.

Sivic, J. and Zisserman, A. Video google: A text re-
trieval approach to object matching in videos. 2003.


