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Abstract

This paper applies reinforcement learning
techniques to an asteroids-type game. Both
Q-Learning and Sarsa(λ) are used to learn
obstacle avoidance. Action-value function
approximation is provided by a backpropa-
gation neural network. The combination of
these two methods produces obstacle avoid-
ance strategies that perform at nearly a hu-
man level.

1. Introduction

Reinforcement learning is easy to apply to simple prob-
lems, but using reinforcement learning for more com-
plicated tasks is less straightforward. The most well
known application of reinforcement learning is TD-
Gammon (Tesauro, 1995). Other applications have
shown a varying degree of success (Stone & Sutton,
2001).

TD-Gammon learned to play backgammon using tem-
poral difference learning. A neural network was used
to approximate the value of each possible state. As
the program learned, it adjusted the weights of the
network to better approximate the value function.
The combination of neural networks and reinforcement
learning can be applied to a wide variety of problems.

The major difficulty in any complicated reinforcement
learning system is state representation and function
approximation. Currently both of these difficulties
have to be handled by trial and error. Therefore, the
application of reinforcement learning to a new domain
is a non-trivial process.

This paper describes a working system for obstacle
avoidance in an asteroids-style game. This game is
a good test bed for reinforcement learning because it
requires a continuous state space with a large number

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

Figure 1. A screenshot from the Spacewar simulator. Note
that a single obstacle is visible in all for corners of the
screen. The white dots are bullets fired from ships.

of features. The system we devised uses Q-Learning
or Sarsa(λ) to learn a control policy. Backpropagation
neural networks are used for function approximation.

2. Problem Definition

The problem domain is an asteroids-type game. In
our version of the game, which we will call Spacewar,
n ships and m obstacles exist in a two dimensional
rectangular space. An object maintains its current ve-
locity unless acted upon by an external force. The only
external forces are provided by collisions or by a ship’s
thruster. Objects that go off one edge of the screen
appear on the other edge.

Each ship is controlled by a player. At each timestep
the player can turn left, right, thrust, or shoot. Com-
bined actions are also possible. For example a player



can turn left, thrust, and shoot at the same time. Deci-
sions are made every 1/30 second. Ships are damaged,
and eventually destroyed, by collisions with other ob-
jects. The goal of the game is to outlive all over ships.

The simulator (Figure 1) was written in Java. The
source code and compiled releases are available on-
line at http://spacewar.netbeetle.com/. The sim-
ulator approximates all objects with a single circle.
Collisions between objects are calculated as precisely
as possible. If objects would have collided at any
point during a timestep the collision will be detected
even if the objects are not overlapping at the end of
the timestep. The physics code has been thoroughly
tested, and no exploits have been found.

2.1. Task Definition

Spacewar is a very complicated task. Rather than
taking on the entire problem, this paper focuses on
a subproblem. In order to win a Spacewar game, a
player must be able to avoid collisions with other ob-
jects. The obstacle avoidance subproblem is critically
important, and it is still a difficult task. The rest of
the paper only discusses obstacle avoidance.

The obstacle avoidance problem is defined as attempt-
ing to move the ship in such a way that it will not col-
lide with any obstacles. Performance at this task can
be measured by the average amount of time before a
collision.

We restrict the problem even further by setting the
number of obstacles and the size of the space. We use
six obstacles with a 50 meter radius and one ship with
a 10 meter radius. These seven objects are randomly
positioned in a 500 by 500 meter space such that there
is a reasonable buffer distance between all the objects.
The obstacles are also assigned a random velocity be-
tween 0 and 30 meters per second.

This task is ideal for reinforcement learning. It is sim-
ple enough to easily cast as a Markov decision process,
yet the continuous state space make the task difficult
enough to require the use of function approximation.
Ideally, using reinforcement learning will also produce
a control policy that is better than one based on heuris-
tics alone. In fact, the interactions between obstacles
would make it quite difficult to write a program to
handle this task. The number of actions that can be
performed in a game also makes it impossible to thor-
oughly search the state space.

2.2. Learning Algorithm

Q-Learning and Sarsa(λ) (Sutton & Barto, 1998) will
both be used for reinforcement learning. Later we

will compare the relative performance of the two al-
gorithms. These two algorithms are very similar, and
we expect them to produce similar results when run
with identical parameters.

Reinforcement learning algorithms typically work on a
sequence of states, actions, and rewards:

s0, a0, r1, s1, a1, r2, · · · , st, at, rt+1, · · · , sn

The agent receives state information, decides which
action to choose, and receives a reward based on the
chosen action. The goal of a reinforcement learner is
to maximize the sum of the rewards over an episode.

Q-Learning and Sarsa are both temporal difference
(TD) learning methods. At all times they model a
function Q(s, a), where s is a state and a is an action.
The value Q(s, a) is the sum of the expected future re-
wards that will be received after taking action a from
state s:

Q(st, at) = rt+1 + rt+2 + · · ·+ rt+n

Given state st and possible actions a0, a1, · · · , an, we
decide which action to choose by finding an action at

such that Q(st, at) ≥ Q(st, aj) for all j from 0 to n.
This action is the optimal action according to the cur-
rent policy.

After taking action at and receiving reward rt+1, we
find the next action to take by repeating the same
procedure. The expected future reward following the
next action is Q(st+1, at+1). If our function is optimal,
the last expected reward should equal the actual one-
step reward plus the new expected reward:

Q(st, at) = rt+1 + Q(st+1, at+1)

While learning is taking place, the above equality will
not hold. We will define the temporal difference error
(TDerror) to be the difference between the expected
rewards:

TDerror = rt+1 + Q(st+1, at+1)−Q(st, at)

Instead, we will update Q(st, at) to reduce the TD
error. The amount to update is given by a step size
parameter, α:

Q(st, at)← Q(st, at) + α · TDerror

For continuous tasks, the sum of expected future re-
wards may be infinite. In this case it is possible to
redefine the above equations to include a discount pa-
rameter, γ. If we include this parameter we get the
following new equations:

Q(st, at) = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n



Q(st, at) = rt+1 + γQ(st+1, at+1)

And we can define a new equation for the TD error:

TDerror = rt+1 + γQ(st+1, at+1)−Q(st, at)

The system as defined above always takes the optimal
action, but it is usually necessary for an agent to ex-
plore the state space more fully. This is typically han-
dled by introducing another parameter, ε, the proba-
bility of choosing a random action at any timestep.

Sarsa(λ) has one additional parameter, the eligibil-
ity trace decay rate, λ. Setting this parameter to a
non-zero value causes previously visited state-action
pairs to receive a portion of the TD error on future
timesteps. The amount of TD error that is given to
previous actions is defined by λ. At λ = 0, TD error
is only attributed to an action when it is taken. At
λ = 0, TD error is attributed to all previously visited
state-action pairs. Usually a value somewhere in the
middle performs best. In our testing we set λ to 0 for
the first test, and λ to 0.55 for the last test. It is also
possible to use elgibility traces with Q-Learning, but
it is not as clear how exactly that should work. In our
testing Q-Learning is run without eligibility traces, so
it is best compared to Sarsa(0).

The only difference between Q-Learning and Sarsa(0)
is the handling of exploratory random actions. In
Sarsa(0) a random action, at+1, will be used in the
update rule described above. In Q-Learning if the ac-
tion at+1 is random, it is not used in the update step.
Instead, the optimal action according to the current
policy, aπ

t+1, is used in the update step.

In order to apply this framework to obstacle avoid-
ance it is necessary to define our states, actions and
rewards. The state representation is the most compli-
cated part of this process, and it is discussed in the
next subsection. The possible actions are {no action,
left, right, thrust, left ∧ thrust, right ∧ thrust}. For
each timestep on which no action is carried out, a re-
ward of 0.1 is given. For each timestep on which any
other action is carried out, a reward of 0 is given. On
the final timestep of the game a reward of -10 is given
to penalize the collision.

The discount rate, γ, is set to 0.9, therefore the max
cumulative reward is 1. The exploration probability,
ε, is set to 0.01, and the step size, α, is varied over
the course of the experiments. Although the Space-
war program accepts commands every 1/30 second,
we will only update our command at 1/3 second inter-
vals. This will hopefully increase the speed of learning,
without damaging the quality of the results to too high
a degree.

2.3. State Representation

When using a neural network with reinforcement
learning, the choice of a good state representation is
critical. Both reinforcement learning and neural net-
works impose restrictions on the state representation.
In order for learning to occur all the restrictions must
be considered.

In order for reinforcement learning algorithms to find
optimal policies, they require the state representation
to be Markovian. In order to be Markovian the state
must retain all information necessary to predict the
future. It is usually not possible to store a true Markov
state, so an approximation has to suffice.

In the Spacewar domain, a Markov state would record
the positions and actions of all ships at all previous
timesteps. We need this information to accurately pre-
dict how the opponents will respond. For example, a
player may be aggressive in some circumstances and
cautious in others. If we want to predict the actions
of that player, we need to remember how he acted in
similar situations before.

In the obstacle avoidance subproblem there are no op-
ponent ships, so we don’t need to record the complete
history of the game. Obstacles are controlled only by
physics. The movement of the obstacles can be pre-
dicted given their positions and velocities. Therefore,
to maintain the Markov property all we need to retain
is the current positions and velocities of all the objects.

While the positions and velocities are all that is re-
quired for reinforcement learning, it may not be the
best state representation for a neural net. Neural
nets are powerful function approximators because they
have the power to generalize well. A network that has
never seen a state can return a value that is appropri-
ate to that state if it has been trained on many similar
states. Over the course of training a network is able
to determine the relative importance of all the inputs
and weight them accordingly.

Training is made much more efficient if states that
are similar have representations that are also similar.
This was not the case in the representation described
above. For example, the representations for a state is
different depending on the positions of all the objects.
If the position of every object is offset by the same
amount, this representation will look drastically dif-
ferent although the relative positions of all the objects
would be identical.

Egocentric coordinates are a simple solution to this
problem. If the position of every object is defined rel-
ative to the ship, then the network will have a much
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Figure 2. The state representation for a single obstacle. An
obstacle is described by θ, d, vx, and vy.

better ability to generalize. This representation makes
similar states look much more alike. A single obstacle
position can be represented by four variables: θ, the
angle to the obstacle; d, the distance to the obstacle;
vx, the velocity of the object around the ship; and vy,
the velocity of the object toward the ship. Velocities
are relative to the current ship velocity. These param-
eters are shown graphically in Figure 2.

It is also possible to sort the obstacles by distance,
such that the first obstacle in the state representation
is always the closest obstacle to the ship. This modi-
fication was added after the first set of tests were run,
and time constraints made it impossible to re-run the
tests.

Angles and distances seem like relatively abstract in-
formation to give a neural net, but they have been used
successfully in other work (Stone & Sutton, 2001). The
complete state description is therefore 24 floating point
numbers, four numbers for each of the six obstacles.

Objects can wrap around the edge of the screen, so
it is possible to measure the distance between objects
in an infinite number of ways. When defining the ego-
centric coordinates, the shortest possible distance from
the ship to each obstacle is used. This means that ob-
stacles that appear on opposite sides of the ship may
actually be close together even though they appear far
apart.

The state representation described here does not in-
clude this information in any way, therefore it is non-
Markovian. However, this fact only influences obsta-

cles that are far away from the ship. Obstacles close to
the ship move in a predictable manner, and it is still
possible to learn a good policy for obstacle avoidance.

2.4. Function Approximation

When we use Q-Learning or Sarsa(0), standard mul-
tilayer backpropagation neural networks (Mitchell,
1997) are used to approximate the Q(s, a) function.
At all times six actions are possible {no action, left,
right, thrust, left ∧ thrust, right ∧ thrust}. As de-
scribed by Thrun (1995) it is possible to represent this
function with a single neural network. However, we
chose to use six different networks, one for each possi-
ble action.

Each network had 24 input neurons that took their val-
ues from the state representation described previously.
These inputs were scaled so that they were roughly be-
tween -1 and 1. The input layer was fully connected
to a layer of 20 hidden sigmoid units, and the hidden
layer was connected to a single linear output unit.

To find the best action at any time, all six nets were
evaluated and the action corresponding to the net that
returned the highest value was chosen. To update a
Q(s, a) value, the net corresponding to action a was
updated using the backpropagation algorithm.

In contrast, when we used Sarsa(λ), a different net-
work structure was required. Eligibility traces can
not be handled efficiently when multiple networks are
used. In order to use eligibility traces with any func-
tion approximation system, it is necessary to have a
single vector of parameters, ~Θ, that are used in the
approximation of the Q(s, a) function. When we use
a single network, this vector is composed of all the
weights of the network. Each weight, wji, also has an
associated eligibility trace, eji.

In order to use a single network, we needed to mod-
ify our network structure. We used the same input
layer as discussed above, but modified the output layer
to include one neuron for each potential action. The
number of hidden neurons was also increased to give
the network more representational power.

With this setup, the optimal action could be found
with the evaluation of a single network. On update
steps, backpropagaton was done using only the neu-
ron representing the chosen action. The additional
neurons on the output layer were simply ignored.

Instead of updating the action-value function using
backpropagation, we want to make use of eligibility
traces to directly set our parameters. Backpropaga-
tion is still used to find the gradient of network weights



with respect to the TD error, but instead of using the
normal backpropagation update rule,

wji ← wji −
1
2
α

∂TD2
error

∂wji
,

we will add in eligibility traces according to the fol-
lowing equations (Sutton & Barto, 1998):

eji ← γλeji +
∂Q(st, at)

∂wji

wji ← wji + α · TDerror
∂Q(st, at)

∂wji
.

This is easily accomplished by noting the following re-
lation:

∂Q(st, at)
∂wji

= − 1
2 · TDerror

∂TD2
error

∂wji
.

When these algorithms are used in such a way, eligi-
bility traces become a feature of the neural network
instead of a feature of the learning algorithm. In our
tests, we gave the network an eligibility trace discount
rate of 0.5. However, when comparing with other re-
sults of Sarsa(λ), it is more appropriate to say that λ
was 0.55, or 0.5/γ, where γ = 0.9.

3. Experimental Evaluation

3.1. Methodology

The performance measure for obstacle avoidance is av-
erage lifetime. The performance of each algorithm will
be plotted over 1,000,000 games. The initial positions
of objects in the environment can have a large impact
on how long a ship can survive, so the data will not
form a smooth curve. In fact, it is hard to see any
pattern when all games are plotted. In order to visu-
alize the data better, we will divide a run of 1,000,000
games into 250 epochs of 4000 games each. Perfor-
mance over each set of 4000 games is averaged, and
these 250 points are plotted.

Results are not averaged over multiple runs due to
time constraints in making repeated runs. However,
the results presented are typical of all the experience
we have.

The best naive algorithm for this problem is to do
nothing. If the ship can not be moved in an intelligent
way, it is much better off doing nothing than moving
randomly. A ship that stays still averages about 18
seconds, while a ship that moves randomly averages
about 10 seconds.

We hypothesize that a machine learning algorithm
should be able to do substantially better than either of
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Figure 3. Results of Q-Learning and Sarsa(0). Each epoch
consists of 4000 games.

the naive methods. Also, we hypothesize that Sarsa(λ)
should learn significantly faster when λ is not set to 0.

3.2. Results

The first algorithm tested was Q-Learning with α set
to 0.1. This algorithm performed consistently better
than random almost immediately, and began to out-
perform “do nothing” at about 40,000 games. Most of
the learning happened during the first half of the run,
after which results improved very little.

In the next test we lowered the learning rate, α, to
0.001. This was an attempt to allow the algorithm to
continue learning longer than on the previous attempt.
This change drastically reduced the amount of learning
in the first half of the run, but it increased learning in
the second half enough to pass the first algorithm near
the end of the run. It is worth noting that for a long
period of time, this algorithm used the naive strategy
of doing nothing.

The next run used a variable learning rate. The learn-
ing rate started at 0.1 and linearly decreased to 0.001
over the course of the run. The goal of this run was
to duplicate the early success of the first run, with a
high learning rate, and the late success of the second
run, with a lower learning rate. It succeeded on both
points.
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Figure 4. Results of four runs of Sarsa(0.55). Each epoch
consists of 4000 games.

For the next run we switched learning algorithms to
Sarsa(0). Sarsa is a slightly faster algorithm, because
on exploratory steps no neural networks have to be
evaluated. The difference in the amount of time taken
by this algorithm turned out to be insignificant, but
the performance of this algorithm was almost identical
to Q-Learning with the same parameters.

Finally, we ran four runs of Sarsa(0.55). On each of
these runs we were able to learn a policy that per-
formed as well as any previous run after around 1/10
the number of games. However, late in the runs a sig-
nificant amount of variation developed. These runs
used the same parameters as the previous runs, and
the learning rate was varied in the same way. A sin-
gle run was done in which the obstacles were not in
sorted order. This run can be accurately compared
to the previous results, while the 4 runs with sorted
obstacles had a distinct advantage. The comparison
would be much stronger if sorted obstacles had been
used in all tests, but time constraints made that im-
possible.

Learning curves for all algorithm are shown in Figure 3
and Figure 4.

3.3. Discussion

The results obtained exceeded our initial expectations.
All the algorithms tested significantly outperformed

the simple strategies that we described. The perfor-
mance of Sarsa(0.55) was impressive. Learning could
be witnessed within the first 10,000 runs. This con-
trasted strongly with the other approaches in which it
was difficult to visually decide if learning was taking
place until around half way into the run.

The variable learning rate runs of Sarsa and Q-
Learning appear to still be learning at the end of the
run. An attempt was made to continue these runs, but
the learning immediately slowed to a negligible level.
We think this is because the learning rate was held
constant after the first 1,000,000 games were finished.

The act of decreasing the learning rate actively stim-
ulates learning. As long as the learning rate decreases
the information learned in one game is unlikely to be
completely erased in the next. Once the learning rate
is held constant random fluctuations in the function
approximators stop the system from improving.

This raises questions about the way in which the learn-
ing rate should be manipulated. For example, maybe
learning would go faster if the learning rate changed
slower at the end of the run than at the begin of the
run. In our testing we only adjusted the learning rate
linearly with the number of games played.

4. Future Work

The subproblem we are looking at is too tightly con-
stricted. The system described in this paper only
works for obstacle avoidance when there are exactly
six obstacles. In order to change the number of obsta-
cles an entirely new network would have to be learned.
A more general solution would be able to handle any
number of obstacles, as well as ships and bullets. This
may not be that large of a problem, the learning speed
makes it feasible to learn on each subproblem individ-
ually.

However, if this system were to be adapted to an real
world system, we would need a way to greatly reduce
the number of runs. The current algorithms are capa-
ble of learning in simulation only. So, even though it
is possible to learn a good policy in a few minutes, we
would still like to greatly reduce the number of runs.

Finally, the parameters of the learning algorithms were
all set somewhat arbitrarily. It would be informative
to systematically adjust these values and record the
results.



5. Conclusion

This paper presented a reinforcement learning algo-
rithm in a previously unexplored domain, and was able
to give promising results. The algorithms were able to
learn complicated control policies that would be quite
difficult to implement by hand.

Spacewar is a fun and challenging domain to work
with. It can be used as a competitive environment,
a non competitive environment, or even a team co-
ordination environment. The continuous state space
and continuous time make the domain a great testing
ground for the latest and most advanced algorithms.
Hopefully more work will be done on this problem.
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