
Applying Reinforcement Learning to Blackjack Using Q-Learning

Charles de Granville CHAZZ184@OU.EDU

University of Oklahoma

Abstract

Blackjack is a popular card game played in
many casinos. The objective of the game is to
win money by obtaining a point total higher than
the dealer’s without exceeding 21. Determining
an optimal blackjack strategy proves to be a
difficult challenge due to the stochastic nature of
the game. This presents an interesting
opportunity for machine learning algorithms.
Supervised learning techniques may provide a
viable solution, but do not take advantage of the
inherent reward structure of the game.
Reinforcement learning algorithms generally
perform well in stochastic environments, and
could utilize blackjack's reward structure. This
paper explores reinforcement learning as a
means of approximating an optimal blackjack
strategy using the Q-learning algorithm.

 1 Introduction

 1.1 The Blackjack Problem Domain

The objective of blackjack is to win money by obtaining
a point total higher than the dealer’s without exceeding
21. The game works by assigning each card a point value.
Cards 2 through 10 are worth their face value, while
Jacks, Queens, and Kings are worth 10 points. An ace is
worth either 1 or 11 points, whichever is the most
beneficial. Before the start of every hand, each player at
the table places a bet. Next, the players are dealt two
cards face up. The dealer also receives two cards: One
face down, and one face up. The challenge is to choose
the best action given your current hand, and the face up
card of the dealer. Possible actions include hitting,
standing, splitting, or doubling down.

Hitting refers to receiving another card from the dealer.
Players may hit as many times as they wish, as long as
they do not bust1. If additional cards are not desirable, one
may choose to stand. If a player receives two cards of the
same value, it is possible to split, and play each card as a
separate hand. For example, if two 7's are dealt, one may
split, and play each 7 separately. The catch is that an
additional bet of equal size to the original must be placed.
At any given time a player may also choose to double
down. This means doubling one's bet in the middle of a

1Busting refers to going over 21.

hand, on the condition of receiving only one additional
card from the dealer.

The stochastic nature of blackjack presents an interesting
challenge for machine learning algorithms. A supervised
learning algorithm constructs a model by learning on a
labeled set of instances. One drawback with this approach
is that it does not take the inherent reward structure of the
game into account. An ideal blackjack strategy will
maximize financial return in the long run. Reinforcement
learning algorithms are particularly well suited for these
types of problems. Also, the game can be easily modeled
as a Markov Decision Process (MDP). These factors
suggest that a reinforcement learning approach is
appropriate for approximating an optimal blackjack
strategy. The next section provides a brief overview of
reinforcement learning, which is followed by a
description of the Q-learning algorithm.

 1.2 Reinforcement Learning

Reinforcement learning techniques rely on feedback from
the environment in order to learn. Feedback takes the
form of a numerical reward signal, and guides the agent
in developing its policy. The environment is usually
modeled as an MDP, which is defined by a set of states,
actions, transition probabilities, and expected rewards
(Sutton & Barto, 1998). Each action has a probability of
being the action selected, as well as an associated value,
which corresponds to the expected reward of taking the
action. A greedy action is an action that has the greatest
value. In order to learn, the agent must balance
exploration and exploitation of the environment. During
exploration, the agent tries non-greedy actions in hopes of
improving its estimates of their values.

Value functions allow the agent to compute the expected
reward of being in state s, or taking some action a from s,
while following some policy π. We may formally define
these value functions as

and

Qs , a= E
{∑

k=0

∞

k r tk1∣st= s , at = a}

Vs= E
{∑

k=0

∞

k r tk1∣st= s}

Vπ(s) is called the state-value function, and allows the
agent to compute the expected reward of being in state s,
and following policy π. Qπ(s, a) is called the action-value
function, and allows the agent to compute the expected
reward of being in state s, taking action a, and thereafter
following policy π. An optimal policy consists of the
actions that lead to the greatest reward over time. The
optimal state-value function is denoted by V*(s), and the
optimal action-value function is denoted by Q*(s, a).

 1.3 The Q-Learning Algorithm

The Q-learning algorithm is a temporal difference (TD)
method that approximates Q*(s, a) directly (Sutton &
Barto, 1998). TD methods such as Q-learning are
incremental algorithms that update the estimates of Q(s,
a) on each time-step. The Q-learning algorithm is
outlined below.

The parameter is referred to as the learning rate, and
determines the size of the update made on each time-step.
 is referred to as the discount rate, which determines the
value of future rewards. The Q-learning algorithm is
guaranteed to converge to Q*(s, a) with probability 1, as
long as each state-action pair is continually updated
(Suton & Barto, 1998). The algorithm is well suited for
on-line applications, and generally performs well in
practice.

 2 Implementation Details

The Q-learning algorithm is an excellent method for
approximating an optimal blackjack strategy because it
allows learning to take place during play. This makes it a
good choice for the blackjack problem domain. Blackjack
is easily formulated as an episodic task, where the
terminal state of an episode corresponds to the end of a
hand. The state representation consists of the agent's
current point total, the value of the dealer's face up card,
whether or not the hand is soft2, and whether or not the
agent's hand may be split. Certainly, more robust state
representations could be used, but I wanted to keep the

2A soft hand refers to a hand that contains an ace that is being counted
as 11 points.

size of the state space at a minimum. Actions include hit,
stand, split, and double down. All of the possible actions
where included in an attempt to stay true to the game. The
reward structure is as follows: For each action that does
not result in a transition to a terminal state, a reward of 0
is given. Once a terminal state has been reached, a reward
is given based on the size of the agent's bet. For example,
if the agent bets 5 dollars, and wins the hand, a reward of
+5 is given. If the agent loses the hand, a reward of -5 is
given. A static betting strategy is used because the state
representation does not allow predictions to be made
concerning which cards may appear in the following
hands. A complete list of the rules adopted for the
blackjack simulator are listed in Figure 2.

 3 Experimental Evaluation

 3.1 Methodology

To evaluate the performance of my learning agent, two
hard coded players have been implemented. The first
player takes completely random actions, while the second
follows a strategy known as basic strategy. Basic strategy
cuts the casinos edge down to less than one percent, and
is the optimal policy for the state representation
adopted (Wong 1994).

My experimental approach consists of five runs, where
each run is a cycle of training hands, and test hands.
During training, the agent plays with four other
reinforcement learning agents, all of which share the
same lookup tables. During the test hands, the agent
plays with the random player, and the basic strategy
player. Each player starts with $1,000, and makes the
same initial bet of $5. Within each run, the number of
training hands is continually increased to a total of 10
million, while the number of test hands remains constant
at 100,000. This procedure is summarized in Figure 3.

Initialize Q(s, a) arbitrarily

Repeat (for each episode):

Choose a from s using policy derived from Q
Take action a, observe r, and s'
Q(s, a) ⇐ Q(s, a) + [r + maxa' Q(s', a') Q(s, a)]

s ⇐ s'

until s is terminal
Figure 1: The Qlearning algorithm

1. 6 decks (5 in play, and 1 as a buffer)

2. Dealer stands on soft 17

3. Double down allowed after splitting

4. No limit on the number of re-splits

5. Insurance is not offered

6. No surrender

7. Natural blackjack pays 3:2

Figure 2: Rules Adopted by Blackjack Simulator

The reinforcement learning agent's initial policy is
completely random. Thus, one would expect it to
perform similarly to the random player initially. As the
number of training hands increases, the learning agent's
policy should converge to basic strategy because the Q-
learning algorithm directly approximates Q*(s, a).

 3.2 Results

Figure 4 shows average performance results for each
player over the five runs. The number of test hands
remains constant at 100,000, while the number of training
hands is continually increased to ten million. Notice that
all of the players lose money. This is true even of the
optimal policy, which demonstrates the difficulty of
actually winning money playing blackjack. A comparison
between the random player, and the learning agent
reveals a significantly better performance by the learning
agent. It is apparent that the agent is learning useful
information during the training process. Also notice that
the learning agent's performance asymptotically
approaches the performance of the basic strategy player.
This is to be expected because the Q-learning algorithm
directly approximates the optimal action-value function
Q*(s, a). Upon examination of the standard deviations
between the performance of the basic strategy player, and
the

reinforcement learning player, it was revealed that they
did not overlap. This means that the learning agent did
not converge to the optimal policy, but rather a near
optimal policy.

 4 Future Work

While the results of the previous section indicate that the
reinforcement learning agent is learning a near optimal
policy, there is room for improvement. Currently, my
learning algorithm uses an epsilon-greedy exploration
strategy. An algorithm with a more sophisticated
exploration strategy, such as the Bayesian Q-learning
algorithm described by Dearden, Friedman, and Russel
(1998), may yield better results. The Bayesian Q-learning
algorithm maintains probability distributions over Q-
values, in an attempt balance exploration and exploitation
by maximizing information gain. Including more
information in the state representation may increase
performance as well. One could image the addition of a
hi-low count. This, in conjunction with a dynamic betting
strategy, may allow performance to surpass that of the
basic strategy player.

 5 Conclusion

This paper explored the use of reinforcement learning as
a means of determining an optimal blackjack strategy
using the Q-learning algorithm. It has been shown that the
learning agent performed considerably better than
random, and converged to a near optimal policy. These
results are encouraging, but there remains room for
improvement. A better exploration strategy, such as the
Bayesian Q-learning algorithm, may lead to an
improvement in the results. Also, a more robust state
representation, together with a dynamic betting strategy,
may lead to a policy that is more successful than basic
strategy.

For each run

 While the number of training hands < 10 million

 Train the RL agent

 Reset each player's money total

 Test on 100,000 hands

 Increase the number of training hands

Figure 3: Experimental Procedure

References

Dearden, R., Friedman, N., & Russell, S. (1999).
Bayesian Q-learning. American Association for
Artificial Intelligence

Sutton, R., & Barto, A. (1998). Reinforcement Learning
An introduction. MIT Press.

Wong, S. (1994). Professional Blackjack. Pi Yee Press.

