
Online Policy-Gradient Reinforcement Learning
using OLGARB for SpaceWar

Jason Fager jfager@ou.edu

University of Oklahoma, 660 Parrington Oval, Norman, OK 73019 USA

Abstract

The goal of this project is to explore the
use of reinforcement learning techniques to
address a difficult problem domain. The
SpaceWar task is a competitive, continuous-
valued, partially observable problem domain
that provides a fun and interesting chal-
lenge for machine learning algorithms. This
project focuses on the application of online
policy-gradient reinforcement learning tech-
niques to train a neural net controller for a
ship. This paper shows that the OLGARB
algorithm is effective for learning obstacle
avoidance strategies for SpaceWar, and com-
pares results across several values of the main
tuning parameter for the algorithm.

1. Introduction

The goal of this project is to explore the use of re-
inforcement learning techniques to address a difficult
problem domain.

1.1. The SpaceWar Problem Domain

The SpaceWar problem domain considered for this
project takes its inspiration from the classic game of
the same name written by Stephen Russell at MIT in
the early 1960s1. The original game is simple: a sin-
gle star exerts a gravitational force on two ships in a
toroidal space. A player can rotate their ship to the
right or left, fire their ship’s thruster, or jump into hy-
perspace with the goal of avoiding any collisions, or
shoot a bullet with the goal of hitting their opponent.
The game continues until one of the ships is destroyed.

The version of SpaceWar used in this project is mod-
ified from the original version. Instead of a central
sun exerting a gravitational force, the environment

1For a full history of the original Space-
War, see http://www3.sympatico.ca/maury/games/
space/spacewar.html

contains some number of large moving obstacles, and
gravity is neglected. In addition, there can be more
than two ships in a game. The amount of fuel and
bullets available to each ship are limited, and regener-
ate at a rate that prevents their constant use.

SpaceWar is an interesting arena for machine learn-
ing algorithms for several reasons. It tests an agent’s
ability to cope with agent vs. environment scenarios
as well as agent vs. agent scenarios. It requires the
agent to deal with an infinitely variable state space
over continuous-valued features with a limited and dis-
crete control set (there are 13 reasonable combinations
of commands). The most successful agents will be able
to avoid collisions with obstacles and bullets as well as
be able to shoot opponents, separate but related tasks
that are often in conflict with each other. In other
words, SpaceWar is hard, and it is similar to real-world
learning tasks.

1.2. Policy-Gradient Reinforcement Learning

The SpaceWar domain can be described as a rein-
forcement learning domain: an agent takes actions in
the space environment and is given punishment as its
health is decremented for collisions and reward as its
opponents are blasted into oblivion. An agent that is
able to develop a policy that maximizes these rewards
and minimizes these penalties will surely be able to
win games.

Traditional reinforcement learning techniques typi-
cally attempt to model the underlying value function
covering the state space, and allow the agent to map
states to actions based on an estimation of this value
function for each possible action. Q-learning and Sarsa
are examples of reinforcement learning algorithms that
work by estimating the underlying value function (Sut-
ton & Barto, 1998)

(Sutton et al., 1999) point out some of the drawbacks
of value function estimation. Most implementations
lead to deterministic policies even when the optimal
policy is stochastic, meaning that probabilistic action



policies are ignored even when they would produce su-
perior performance. Further, because these methods
make distinctions between policy actions based on ar-
bitrarily small value differences, tiny changes in the
estimated value function can have disproportionately
large effects on the policy.

An alternative method for reinforcement learning that
bypasses these limitations is a policy-gradient ap-
proach. In this approach, instead of learning an
approximation of the underlying value function and
basing the policy on the expected reward indicated
by that function, policy-gradient learning algorithms
maximize the long-term expected reward by searching
the policy space directly. In addition to being able to
express stochastic optimal policies and being robust
to small changes in the approximation, under certain
conditions policy gradient algorithms are guaranteed
to converge to an optimal solution. (Sutton et al.,
1999), (Baxter & Bartlett, 2001).

2. The OLGARB Algorithm

The constraints of SpaceWar require an algorithm that
can deal with a partially observable, continuous-valued
state space and a discrete-valued action space. (Baxter
& Bartlett, 2001) details the GPOMDP algorithm, an
offline learner that computes a biased estimate ∇ηβ(θ)
of the gradient of the average reward ∇η(θ) for a pol-
icy (encoded in θ) in a partially observable Markov
decision process. Baxter shows that under certain con-
ditions,

∇η(θ) = limβ→1∇ηβ(θ)

where β ∈ [0, 1] indicates a tradeoff between bias
and variance. That is, lower values of β intro-
duce higher bias to the estimate but higher values
of β introduce higher variance. Experimental results
show that this method can learn optimal control poli-
cies that elude standard value-function approximation
techniques (Baxter et al., 2001).

OLPOMDP, given by (Baxter et al., 2001), is the on-
line version of GPOMDP. While Baxter’s experimen-
tal results with OLPOMDP are less encouraging than
those with GPOMDP due to slow convergence times,
(Bartlett & J.Baxter, 2000) show that the estimates
∇ηβ(θ) given by OLPOMDP will converge to ∇η(θ)
in a manner similar to GPOMDP.

2.1. The OLGARB Algorithm

The main drawback to both the GPOMDP and
OLPOMDP algorithms is that they produce biased
estimates of the policy gradient. This bias can be re-
duced by taking the β term arbitrarily close to 1; how-

ever, as β approaches 1, the variance of the estimation
increases.

(Weaver & Tao, 2001) attempts to reduce the variance
caused by increasing β values by introducing a base-
line term that is the moving average of the reward.
This baseline value directly affects the learning rate of
the algorithm by scaling the contribution of the lat-
est reward based on its relation to the average reward
observed. If the new reward is dramatically different
than the average reward, then the calculated gradi-
ent carries greater weight in the update of the policy
parameters. On the other hand, when the observed
reward is close to the average reward, the calculated
gradient carries a smaller weight in the update of the
policy parameters. Using this adaptive scaling should
allow the increased variance typically associated with
high β values to be somewhat mitigated, while pre-
serving the benefit of decreased bias.

(Weaver & Tao, 2001) show that the use of this base-
line term does in fact decrease variance for high β
values in their GARB (GPOMDP with an Average
Reward Baseline) algorithm, allowing the bias to be
reduced without as significant a penalty in variance.
They also show experimental results for OLGARB,
their adaptation of OLPOMDP, that suggest a sim-
ilar decrease in variance for high β values in the online
algorithm. OLGARB is the algorithm selected for this
project implementation:

At each time step:

1. Observe state Xt

2. Probabilistically select action At according to
µ(·|Xt, θt)

3. Apply At and observe reward Rt

4. Update variables:
B = B + Rt−B

t

Z = βZ + ∇θµ
µ (At|Xt, θ

′)
θ = θ + γ(Rt −B)Z

In this notation, µ refers to the agent policy, θ refers
to the parameters that determine the policy, B is the
baseline value corresponding to the average reward (in-
troduced in OLGARB), Z is a vector describing the
gradient direction of the parameter update, β is the
bias-variance tradeoff value, and γ is the learning rate.

3. Experiments

The current work applies an implementation of OL-
GARB to a specific scenario in the general SpaceWar



task. The agent learns in an environment consisting
of two ships and two obstacles in an 800 unit by 600
unit space, with a physics engine that models a fric-
tionless environment. The engine updates the space
every 1/30th of a second.

Each ship fires at random with a probability of 0.8,
with a maximum of 5 bullets available to each ship at
any given time. The ships are initialized with 15 units
of health and 1000 units of fuel. Ships have a radius
of 10 units and a relatively small mass.

Each obstacle is initialized with a random velocity.
Obstacles have a radius of 50 units and a relatively
huge mass.

Damage is dealt proportionately to the magnitude the
difference in velocity before and after any collision be-
tween two ships or between a ship and an obstacle. If
a ship is hit with a bullet, one damage unit is dealt.

3.1. Implementation Details

For the scenario described above, OLGARB is imple-
mented for a neural network with 42 input nodes, 30
hidden nodes, and 6 output nodes. The input nodes
use an egocentric coordinate system for the agent, and
consist of the relative position and velocity vectors and
current orientation towards each other object (oppo-
nents, bullets, and obstacles). When the opponent
ship has not fired some of its alloted bullets, those
bullets are assigned the same parameter values as the
ship itself. The additional two input parameters give
the agent’s health and fuel.

The output nodes correspond to a subset of the rea-
sonable actions an agent can take. A node corresponds
to each of: ’do nothing’, ’turn left’, ’turn right’, ’fire
thruster’, ’turn left and fire thruster’, and ’turn right
and fire thruster’. The agent is simplified by removing
the options of jumping into hyperspace and firing a
bullet.

When selecting the action to take, the output values
are run through the softmax function

eoi∑
j eoj

and are interpreted as probabilities.

Updates to the network occur in a manner very similar
to standard backpropagation. Since the objective tar-
get values are not know at any update step, the error
term is calculated by making the assumption that the
selected action should always be selected and that the
unselected actions should never be selected. The re-
ward given for the resulting state is used to influence

whether and to what degree this assumption should
be reinforced. The update procedure is almost iden-
tical to that given in (El-Fakdi et al., 2005), which
implements OLPOMDP. Minor changes were made to
incorporate the average baseline reward term used in
the OLGARB algorithm.

3.2. Results

Performance is evaluated in two ways: first, the du-
ration in timesteps is measured during online training
sessions. A typical session between two random player
will last approximately 500 timesteps, while a session
between two players hardcoded to always ’do nothing’
will last approximately 2500 timesteps (The ’do noth-
ing’ player is strong because the space is so sparsely
populated). Second, the win percentage of the trained
agent is evaluated against a ’do nothing’ opponent.
Random’s win percentage against this heuristic is less
than 5%.

Figure 1 illustrates the game duration for 20 agents
trained from zero knowledge to 10,000 trials with a
β of 0.8. Performance quickly climbs to around 1400
time steps, significantly better than random, and grad-
ually improves, reaching an average of around 1900
timesteps at the end of 10,000 iterations. Figure
2 shows the performance of these agents against a
do nothing opponent, with win percentage hovering
around 30%, again significantly better than random.
However, this performance seems to level off early, and
little improvement is seen over time.

Figure 3 illustrates the game duration for 20 agents
trained from zero knowledge to 10,000 trials with a β
of 0.9999. Performance quickly climbs to around 1500
time steps, significantly better than random and the
lower β value, and steadily improves, reaching an av-
erage of around 2800 timesteps at the end of 10,000
iterations. Figure 2 shows the performance of these
agents against a do nothing opponent, with win per-
centage climbing to around 40%, again significantly
better than random and the lower β value. Addition-
ally, performance in both metrics seems to be increas-
ing even at the end of the trial run.

Qualitatively, the observed behavior of some of the
best agents from the training runs is impressive. The
agent learns that a velocity with a high magnitude
is dangerous, and that it can steer to avoid obstacles
both when it is right next to the object and when
it is approaching the object from a distance. This is
compared to a random agent, which tends to reach
high magnitude velocities and die in violent collisions,
and ’do nothing’ agents which survive for long periods
of time until another object just happens to collide,



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Figure 1. β = 0.8, Game duration (in number of timesteps)
during training, plotted as the average performance of 20
separate agents trained over the course of 10,000 trials.

and then quickly dies as its motion is a liability. While
the learning agents aren’t prefect, they are obviously
displaying desirable behavior.

4. Future Work

I would like to run the experiments again over a larger
number of β and γ values in an effort to optimize agent
performance as much as possible. I would also like to
see how the agent responds to more detailed input in-
formation, as well as to different neural net architec-
tures and lengthier trial runs. Finally, I would like to
reintroduce the full range of possible actions to see if
the agent is able to learn to attack the other agent.

Additionally, a collaborative effort is being planned
to compare the performance of this OLGARB imple-
mentation with an implementation that uses a value-
function estimator on an identical task. Another
good point of comparison would be with a standard
OLPOMDP implementation, to see the effects on per-
formance that are attributable to the baseline func-
tion.

5. Conclusion

This paper introduced the SpaceWar problem domain
and showed that the OLGARB algorithm is effective
at producing good policies for obstacle avoidance in an
environment with two ships and two obstacles. The
effects of the varying β parameter were shown, with
good performance achieved at a high β value. This pa-
per should provide encouragement that further inves-
tigation of online policy-gradient reinforcement learn-

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2. β = 0.8, Winning percentage against a strong
heuristic opponent (’do nothing’ opponent), plotted as the
average performance of 20 separate agents trained over the
course of 10,000 trials.

ing techniques for difficult problem domains would be
valuable.

References

Bartlett, P. L., & J.Baxter (2000). Stochastic opti-
mization of controlled partially observable markov
decision processes. Proceedings of the IEEE Confer-
ence on Decision and Control (pp. 124–129).

Baxter, J., & Bartlett, P. L. (2001). Infinite-horizon
policy-gradient estimation. Journal of Artificial In-
telligence Research, 15, 319–350.

Baxter, J., Bartlett, P. L., & Weaver, L. (2001). Ex-
periments with infinite-horizon, policy-gradient es-
timation. Journal of Artificial Intelligence Research,
15, 351–381.

El-Fakdi, A., Carreras, M., & Ridao, P. (2005). Di-
rect gradient-based reinforcement learning for robot
behavior learning. ICINCO (pp. 225–231).

Sutton, R., McAllester, D., Singh, S., & Mansour, Y.
(1999). Policy gradient methods for reinforcement
learning with function approximation (Technical Re-
port). ATT Labs.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement
learning: An introduction. MIT Press: Cambridge,
MA.

Weaver, L., & Tao, N. (2001). The optimal reward
baseline for gradient-based reinforcement learning.
Uncertainty in Artificial Intelligence: Proceedings of
the Seventeenth Conference (pp. 538–545).



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

500

1000

1500

2000

2500

3000

3500

Figure 3. β = 0.9999, Game duration (in number of
timesteps) during training, plotted as the average perfor-
mance of 20 separate agents trained over the course of
10,000 trials.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4. β = 0.9999, Winning percentage against a strong
heuristic opponent (’do nothing’ opponent), plotted as the
average performance of 20 separate agents trained over the
course of 10,000 trials.


