
Constructing a Reinforcement Learning Agent
to Play the Game of Checkers

Mike Morris MMORRIS@SOSU.EDU

P.O. Box 455, Durant, OK 74702

1. INTRODUCTION / ABSTRACT

This project is for partial fulfillment of Dr. Amy
McGovern’s Machine Learning class at the University of
Oklahoma. The basic charge is to create a machine
learning agent and demonstrate its success or failure in a
given task. This particular effort involves an agent that
intends to improve its ability to play the age old game of
checkers.

The game of checkers seems very simple at first glance
and in fact, it does indeed have few rules. However, little
is known about winning strategies and complications arise
quickly, as there are literally more possible board states
and moves than suspected atoms in the universe.

Checkers is particularly well-suited to reinforcement
learning because a board state is easily observed and an
action is simply the next move. The details of this state-
ment are outlined with more detail further in this docu-
ment. The problem addressed by this experiment is to test
the type of value associated with a given board state and
test the effectiveness of the rewards calculations to be
given after each move.

The experiment intends to show that reinforcement
learning in the form of a single C++ program will work as
the theory suggests by demonstrating a series of games
with a particular opposing player.

Like any basic research, it is difficult to judge the project’s
importance to mankind but the hope is always here for
helpful insight into more important concepts that further
the cause of humanity.

2. Problem Definition and Algorithm

2.1 TASK DEFINITION

The game of checkers is meant to be played by a learning
agent that is a single C++ program. The opponent may
vary but will be consistent when determining the results
presented further below.

2.2 ALGORITHM DEFINITION

Standard reinforcement learning techniques are employed
in this project.

The state will consist of the 32 board positions along with

the pieces or lack of pieces that populate these spaces.
Every space will have a value, calculated by the following
value function:

where w
0
 = 1 if a “jump” was made by the agent to arrive at

the given state, and 0 otherwise, γ is a discount factor
between 0 and 1, w

1
 = the number of black pieces left on

the board, w
2
 = the number of red pieces left on the board,

w
3
 = the number of black “kings” on the board and w

4
 =

the number of red “kings” on the board. The α
i
 are

weights suitably small and can be altered by the agent as
it sees fit. The value function is tunable on the fly and
several were examined.

The action for a given state is simply the next move.
Without loss of generality, it is accepted that the agent is
always black and the red opponent always gets to move
first.

The agent will allow its opponent to request a move. A
check will be made to ensure the move is legal. If it is, then
the request will be granted and the move executed.

There is only one policy that determines what action, or
move, the agent will take. It is described as follows. The
agent will analyze the board and first determine if the game
is still active. If so, the agent will examine each of the
possible legal moves and apply the value function to each
resulting state. Note that there might be as many as 8
moves for each of the 12 pieces, or 96 possible moves by
the opponent, even more if double jumps are executed.
The state with the highest value will be obtained by taking
the move associated with it. This move will thus be the
action.

If the game is over, the coefficients of the value function
will be updated. For example, recalling that the agent is
black, if the number of black pieces remaining in a winning
state 6 or more (of a total of 12) then that state is most
desirable and we add weight, say 0.001, to w

1
, the coeffi-

cient of x
1
, which is the black piece count. i.e., we encour-

age x
1
 to have more weight. On the other hand, if the

number of red king pieces in a losing state is 4 or more (of
a total of 12) then that state is most undesirable and we
subtract weight, say 0.001, to w

4
, the coefficient of x

4
,

which is the red king piece count, i.e., we encourage x
4
 to

have less weight.

V(s) = γ w
0
 + α

1
w

1
 + α

2
w

2
 + α

3
w

3
 + α

4
w

4

Page 1 of 4Mike Morris - Final Paper - Machine Learning Class

ability to take an available jump. The results were very
similar to figure 1 and a more-game figure 1 is shown in
figure 3.

At this stage the two players were declared to be roughly
equal in winning ability and the next task was to attempt to
inject reinforcement learning into the black agent as
described above.

The γ factor is originally arbitrarily set at 1 and changes
based on certain statuses of the game. Different starting
values have been tested. The agent finds the maximum
reward from these numbers and takes the move associated
with the maximum reward. The status of the game is
monitored after each move and the game ends when one
side is out of players or until a pre-determined maximum
number of moves is taken, in which case the game is
declared a tie. The maximum number of moves seemed to
work effectively at 1,000.

3. Experimental Evaluation

3.1 METHODOLOGY

The project began by simply coding an agent that fol-
lowed the basic rules of checkers and asked the operator
for a move to be entered at the screen for each of the red
player’s moves. This worked but it was quickly obvious
that playing enough games to give the agent a chance to
learn was infeasible by this method. Just over 100 games
were played to determine this decision.

A near-complete rewrite of the code changed the program
to “play itself”, i.e., to let the original agent maintain its
code and methods and add additional code that simulated
the red opponent. In addition, a batch of any number of
games could be played.

Time constraints and other considerations prevented the
agent from connecting to an online player such as the one
offered by the University of Alberta and others. It was
decided that for this project, it was more important to
focus on machine learning than foreign interfacing.

The first version had the red agent choose a random move
from the set of all legal moves for it at its turn. The agent
did the same - without benefit of machine learning or any
strategy. The results were predictably disappointing. In
fact, the maximum-move criteria was often met and the
game would end in a draw. When viewing the board in
these early random games, it was quite amusing to see
both sides wandering around haplessly with little hope of
accomplishing anything. Figure 1 below illustrates the
activity by the two evenly-matched players that simply
examined all legal moves and took one of them at random.
The center line represents a fictitious player that might win
exactly 50% of the time and the two players in my program
can be seen oscillating around it.

Opposing red needed at least some help so it was given
the strategy that if a move existed that included a jump of
a black player then it would be taken. To test this, several
batches of varying lengths were run and the red-to-black
win count was almost unanimous at about 99 to 1. This is
illustrated in figure 2.

The decision was then made to leave the red player with
this effective ability and to give the black agent the same

Random vs Random

0

20

40

60

80

100

120

1 26 51 76 101 126 151 176

No. of Games

N
o.

 o
f W

in
s

Random

Black

Red

Random vs Jump Taker

0

2

4

6

8

10

12

14

16

18

20

1 3 5 7 9 11 13 15 17 19

No. of Games x100

N
o

.
o

f
w

in
s

x
10

0

Random

Black

Red

Figure 1.

Figure 2.

Jump Taker vs Jump Taker

0

100

200

300

400

500

600

700

800

900

1000

1 201 401 601 801 10011201 1401 1601 1801

No. of Games

N
o

. o
f

W
in

s

Random

Black

Red

Figure 3.

Page 2 of 4Mike Morris - Final Paper - Machine Learning Class

The middle straight line is simply a fictitious player that
wins half of its games. The bottom line represents the wins
of the static red player and the top line represents the wins
of the dynamic RL-endowed black player. Also notice that
this graph is not equal in scale on both axes.

Figure 4 is suggestive of machine learning and the
experimenter is pleased with this result, albeit a minor one.

At the presentation, Dr. McGovern suggested a run of
1,000,000 games. That was done and the results were
similar to sample runs of ten to fifteen thousand, suggest-
ing that the agent topped out at a certain low level.

I have chosen a different way to graphically illustrate
these results. I wrote a quick program to examine the one
million win/loss tallies and take a running average,
reducing the data points to 1,000. Then I plotted the
variance of the RL black agent versus the red player. It’s
not that exciting, but its upward curve does suggest that
its playing skill is slowly increasing. Figure 5 shows this.

3.3 DISCUSSION

Confusing results accompanied the most pleasing ones
shown above. For instance, some 10,000 game runs show
a smaller learning curve, which is unexplainable. A
particularly bothering result is the fact that on two
separate occasions, a 100,000 game run was made and the
learning curve did about the same as the good 14,000
game run shown in figure 4.

The 1,000,000 run was duplicated three times with nearly
identical results. Figure 5 simply states that the RL agent
won about 540,000 games while the red Jump Taker won
about 460,000 games. The curve is non-linear, which was
extremely exciting to our fledgling researcher as it indi-
cated improvement in learning.

Better results were initially expected but upon reflection of
the dynamics of the project, it is no surprise that these
results were somewhat subdued. One suspicion is that
part of the problem is the weakness in the evaluation
method in the fact that only a one-ply look-ahead is used.
This was done in the interest of having a goal that could
reasonably be accomplished in the time allotted. This
would be one of the first areas addressed in a further
development plan. Other checkers agents are known to
use a three-ply method.

Another possibility is the debugging of the code. While
the utmost efforts were made to write a program that
played checkers in a legal fashion, it is indeed a possibility
that hidden procedural bugs could warp the findings.
Another concern is the fact that the C++ random number
generator was used quite a lot, and it does not enjoy a
reputation of good randomness.

Last but not least, the researcher confesses that his
knowledge of RL has increased dramatically over the
duration of the project, but it has not reached full potential
at this time.

3.2 RESULTS

Before any attempt was made at utilizing reinforcement
learning, when any size batch of games was played, the
results would generally be within 5% of a 50/50 win/loss
count. This gave the experimenter relative assurance that
the agents were abiding by standard rules of play.

The methodology was used as described above. In the
value and reward calculations, emphasis is placed on
jumping an opponent when possible, and the agent
appears to be able to learn this after a considerable
amount of playing.

The actual results have been somewhat varied and some
are actually unexplainable so further work will be required
before any concrete claims can be made. However, some
batches appear to demonstrate that the agent is learning
as predicted and does improve its ability to play.

The following graph, figure 4, depicts a limited successful
execution of 14,000 games.

RL Agent vs Jump Taker

0

100

200

300

400

500

600

700

800

1 151 301 451 601 751 901 1051 1201 1351

No. of Games x 10

N
o

.
of

 W
in

s
x

10

Random

Black

Red

Figure 4.

Figure 5.

RL Agent Wins minus Jump Taker Wins

0

100

200

1 101 201 301 401 501 601 701 801 901

No. of Games x 1,000

W
in

 V
ar

ia
n

ce
 x

 1
,0

00

Page 3 of 4Mike Morris - Final Paper - Machine Learning Class

4. Related and Future Work

The experimenter is only familiar with two other serious
projects that address the game of checkers, although no
doubt many others exist.

The work done by Dr. A. L. Mitchell back in the late 1950s
used three-ply look-aheads and became fairly successful,
regularly beating players regarded as “master” players.

Another machine-player is Chinook, which is the World
Man-Machine Checkers Champion. Chinook was devel-
oped by a team of researchers led by Dr. Jonathan
Schaeffer of the Department of Computing Science at the
University of Alberta, Edmonton, Alberta, Canada. It
earned this title by competing in human tournaments,
winning the right to play for the (human) world champion-
ship, and eventually defeating the best players in the
world. The Man-Machine title was created to allow there
to be both a human world champion and a computer world
champion. The man-machine title is bestowed on the
victor of a match between the best computer (Chinook)
and the best human. [This paragraph courtesy and from
the University of Alberta web http://www.cs.ualberta.ca/
~chinook/about.php.]

The strategies used by Chinook are unknown and of
utmost power. Owners now claim that their agent can

Page 4 of 4Mike Morris - Final Paper - Machine Learning Class

never be beat but only tied. This experimenter’s methods
do not match either of these agents, but that is not
surprising due to the time and resources so far invested.

The experimenter plans to continue work on the project
and extend the look-ahead a couple or more plies and
hopes to have the agent clearly demonstrating that
reinforcement learning is working for this agent and that
the learning is clearly evident.

5. Conclusion

Major results have not been accomplished that make the
project fit for publication or serious research. However, it
appears that the concept of reinforcement learning has
been demonstrated to work and this checkers learning
agent seems to have learned how to slightly tower over
the given opponent.

References:

Samuel, Arthur L., “Some Studies in Machine Learning
Using the Game of Checkers”, IBM Journal of Research
Development, Vol.3. No. 3, 1959

Schaeffer, Lake, Lu, Bryant, Treloar. Chinook. 12 Sep. 2005.
University of Alberta, Edmonton, Alberta, Canada <http://
www.cs.ualberta.ca/~chinook/>

