

Experiment Design for Computer Scientists

Marie des Jardins (mariedj@cs.umbc.edu)

CMSC 691B

March 9, 2004

Sources

- Paul Cohen, Empirical Methods in Artificial Intelligence, MIT Press, 1995.
- Tom Dietterich, CS 591 class slides, Oregon State University.
- Rob Holte, "Experimental Methodology," presented at the ICML 2003 Minitutorial on Research, 'Riting, and Reviews.

Experiment design

- Experiment design criteria:
- → ➤ Claims should be provable
- Contributing factors should be isolated and controlled for
- -> > Evaluation criteria should be measurable and meaningful
- → Data should be gathered on convincing domains/problems
- Baselines should be reasonable
- → ➤ ➤ Results should be shown to be statistically valid

Provable Claims

Provable Claims

- Many research goals start out vague:
 - Build a better planner
 - Learn preference functions
- Eventually, these claims need to be made provable:
 - Concrete
 - Quantitative
 - Measurable
- Provable claims:
 - My planner can solve large, real-world planning problems under conditions of uncertainty, in polynomial time, with few executiontime repairs.
 - My learning system can learn to rank objects, producing rankings that are consistent with user preferences, measured by probability of retrieving desired objects.

More Provable Claims

- More vague claims:
 - Render painterly drawings
 - Design a better interface
- Provable claims:
 - My system can convert input images into drawings in the style of Matisse, with high user approval, and with measurably similar characteristics to actual Matisse drawings (color, texture, and contrast distributions).
 - My interface can be learned by novice users in less time than it takes to learn Matlab; task performance has equal quality, but takes significantly less time than using Matlab.

One More

- Vague claim:
 - Visualize relational data
- Provable claim:
 - My system can load and draw layouts for relational datasets of up to 2M items in less than 5 seconds; the resulting drawings exhibit efficient screen utilization and few edge crossings; and users are able to manually infer important relationships in less time than when viewing the same datasets with MicroViz.

Measurable, Meaningful Criteria

Measurable Criteria

- Ideally, your evaluation criteria should be:
 - Easy to measure
 - Reliable (i.e., replicable)
 - Valid (i.e., measuring the right thing)
 - Applicable early in the design process
 - Convincing
- Typical criteria:
 - CPU time / clock time
 - Cycles per instruction
 - Number of [iterations, search states, disk seeks, ...]
 - Percentage of correct classification
 - Number of [interface flaws, user interventions, necessary modifications, ...]

Meaningful Criteria

- Evaluation criteria must address the claim you are trying to make
- Need clear relationship between the claim/goals and the evaluation criteria
- Good criteria:
 - Your system scores well iff it meets your stated goal
- Bad criteria:
 - Your system can score well even though it doesn't meet the stated goal
 - Your system can score badly even though it does meet the stated goal

Example 1: CISC

- True goals:
 - Efficiency (low instruction fetch, page faults)
 - Cost-effectiveness (low memory cost)
 - Ease of programming
- Early metrics:
 - Code size (in bytes)
 Entropy of Op-code field
 - Orthogonality (can all modes be combined?)
- Efficient execution of the resulting programs was not being directly considered
- RISC showed that the connection between the criteria and the true goals was no longer strong
- → Metrics not appropriate! ※

Example 2: MYCIN

- MYCIN: Expert system for diagnosing bacterial infections in the blood
- Study 1 evaluation criteria were:
 - Expert ratings of program traces
 - Did the patient need treatment?
 - Were the isolated organisms significant?
 - Was the system able to select an appropriate therapy?
 - What was the overall quality of MYCIN's diagnosis?
 - Problems:
 - Overly subjective data
 - Assumed that experts were ideal diagnosticians
 - Experts may have been biased against the computer
 - Required too much expert time
 - Limited set of experts (all from Stanford Hospital)

MYCIN Study 2

Evaluation criteria:

- Expert ratings of treatment plan
 - Multiple-choice rating system of MYCIN recommendations
 - Experts from several different hospitals

Comparison to study 1:

- © Objective ratings
- Still have assumption that experts are right
- Still have possible anti-computer bias
- Still takes a lot of time

MYCIN Study 3

- Evaluation criteria:
 - Multiple-choice ratings in a blind evaluation setting:
 - MYCIN recommendations
 - Novice recommendations
 - Intermediate recommendations
 - Expert recommendations
- Comparison to study 2:
 - Some anti-computer bias
 - Still assumes expert ratings are correct
 - Still time-consuming (maybe even more so!)

MYCIN Results

Prescriber	%OK (1 expert / 8)	% OK (majority)
MYCIN	65.0	70.0
Faculty-1	62.5	50.0
Faculty-2	60.0	50.0
Fellow	60.0	50.0
Faculty-3	57.5	40.0
Actual therapy	57.5	70.0
Faculty-4	55.0	50.0
Resident	45.0	30.0
Faculty-5	42.5	30.0
Student	30.0	10.0

- Experts don't always agree
- ◆ Method appears valid (more experience → higher ratings)
- MYCIN is doing well!

MYCIN Lessons Learned

- Don't assume experts are perfect
- Find out how humans are evaluated on a similar task
- Control for potential biases
 - Human vs. computer, Stanford vs. other institutions, expert vs. novice
- Don't expect superhuman performance
 - Not fair to evaluate against "right" answer
 - ...unless you evaluate humans the same way
 - ...and even then may not measure what you care about (performance under uncertainty)

Reasonable Baselines

Baseline: Point of Comparison

- Performance can't be measured in isolation
- Often have two baselines:
 - A reasonable naive method
 - Random
 - No processing
 - Manual
 - Naive Bayes
 - The current state of the art
- Ablation
 - Test the contribution of one factor
 - Compare system X to (system X factor)

Poor Baselines

- No baseline
- The naive method, and no other alternative
- A system that was the state of the art ten years ago
- The previous version of your own system
- What if there is no existing baseline??
 - Develop reasonable baselines
 - Decompose and find baselines for the components

Establish a Need

- Try very simple approaches before complex ones
- Try off-the-shelf approaches before inventing new ones
- Try a wide range of alternatives, not just ones most similar to yours
- Make sure comparisons are fair

Test Alternative Explanations

Combinatorial auction problems

CHC = hill-climbing with a clever new heuristic

Solution Quality (% of optimal)

problem type	CHC
path	98
match	99
sched	96
r75P	83
r90P	90
r90N	89
arb	87

s CHC Better than Random HC?

Percentage of CHC solutions better than random HC solutions

problem type	% better	
path	100	
match	100	
sched	100	
r75P	63	
r90P	7	
r90N	6 🛧	
arb	20 🖝	

Statistically Valid Results

Look at Your Data

4 x-y datasets, all with the same statistics. Are they similar? Are they linear?

- mean of the x values = 9.0
- mean of the y values = 7.5
- equation of the least-squared regression line is: y = 3 + 0.5x
- sum of squared errors (about the mean) = 110.0
- regression sum of squared errors = 27.5
- residual sum of squared errors (about the regression line) = 13.75
- correlation coefficient = 0.82
- coefficient of determination = 0.67

F.J. Anscombe (1973), "Graphs in Statistical Analysis," *American Statistician*, 27, 17-21

Anscombe Datasets Plotted

Thanks to Rob Holte for permission to use this slide

Look at Your Data, Again

- Japanese credit card dataset (UCI)
- Cross-validation error rate is identical for C4.5 and 1R

Is their performance the same?

Closer analysis reveals...

Thanks to Rob Holte for permission to use this slide

Statistical Methods

- Plotting the data
- Sample statistics
- Confidence intervals
 - Bootstrap, t distribution
- Comparing distributions
 - Bootstrap, t test, confidence intervals
- Learning algorithms
- Regression
- ANOVA

Lots more to come...