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Experiments serve a purposeExperiments serve a purpose

 They provide evidence for claims, design
them accordingly

 Choose appropriate test datasets,
consider using artificial data

 Record measurements directly related to
your claims
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Establish a needEstablish a need

 Try very simple approaches before
complex ones

 Try off-the-shelf approaches before
inventing new ones

 Try a wide range of alternatives not just
ones most similar to yours

 Make sure comparisons are fair
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Explore limitationsExplore limitations

 Under what conditions does your system
work poorly ?  When does it work well ?

 What are the sources of variance ?
 Eliminate as many as possible
 Explain the rest
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Explore anomaliesExplore anomalies
 Superlinear speedup
   IDA* on N processors is more than N times

faster than on 1 processor

“…we were surprised to obtain superlinear
speedups on average… our first reaction
was to assume that our sample size was too
small …”       - V. Rao & V. Kumar

Superlinear Speedup in Parallel State-Space Search
Technical Report AI88-80, 1988
CS Dept., U of Texas - Austin
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Look at your dataLook at your data
4 x-y datasets, all with the same statistics.
Are they similar ?   Are they linear ?

•mean of the x values = 9.0
•mean of the y values = 7.5
•equation of the least-squared regression line is: y = 3 + 0.5x
•sums of squared errors (about the mean) = 110.0
•regression sums of squared errors = 27.5
•residual sums of squared errors (about the regression line) = 13.75
•correlation coefficient = 0.82
•coefficient of determination = 0.67

F.J. Anscombe (1973), "Graphs in Statistical Analysis," American Statistician, 27, 17-21
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  AnscombeAnscombe datasets plotted datasets plotted
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Look at your data, againLook at your data, again

 Japanese credit card dataset (UCI)
 Cross-validation error rate is identical for

C4.5 and 1R

Is their performance the same ?
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Closer analysis revealsCloser analysis reveals……

Error rate is the same only on
the dataset class distribution

•ROC curves
•Cost curves
•REC curves
•Learning curves

C4.5

1R
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Test alternative explanationsTest alternative explanations

Solution Quality (% of optimal)

Combinatorial auction problems
CHC = hill-climbing with a clever new heuristic

   87        arb
   89       r90N
   90       r90P
   83       r75P
   96      sched
   99      match
   98       path
  CHC  problem  type
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Is CHC better than random HC ?Is CHC better than random HC ?

Percentage of CHC solutions
better than random HC solutions

     20      arb
     6     r90N
     7      r90P
     63      r75P
    100     sched
    100     match
    100      path
  % betterproblem type
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Avoid Avoid ““OvertuningOvertuning””

 Overtuning = using all your data for
system development. Final system likely
overfits.

 David Lubinksy, PhD thesis
 Held out ~10 UCI datasets for final testing

 Chris Drummond, PhD thesis
 Fresh data used for final testing
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Too obvious to mention ?  (no)Too obvious to mention ?  (no)

 Debug and test your code thoroughly

 Keep track of parameter settings, versions
of program and dataset, etc.


