ICML'2003 Minitutorial on Research, 'Riting, and Reviews

Experimental Methodology

Rob Holte University of Alberta holte@cs.ualberta.ca

The Alberta Ingenuity Centre for Machine Learning

1 August 29, 2005

Experiments serve a purpose

- They provide evidence for claims, design them accordingly
- Choose appropriate test datasets, consider using artificial data
- Record measurements directly related to your claims

Establish a need

- Try very simple approaches before complex ones
- Try off-the-shelf approaches before inventing new ones
- Try a wide range of alternatives not just ones most similar to yours
- Make sure comparisons are fair

Explore limitations

 Under what conditions does your system work poorly ? When does it work well ?

• What are the sources of variance ?

- Eliminate as many as possible
- Explain the rest

Explore anomalies

Superlinear speedup

IDA* on N processors is more than N times faster than on 1 processor

"...we were surprised to obtain superlinear speedups on average... our first reaction was to assume that our sample size was too small..." - V. Rao & V. Kumar

Superlinear Speedup in Parallel State-Space Search Technical Report Al88-80, 1988 CS Dept., U of Texas - Austin

Look at your data

4 x-y datasets, all with the same statistics. Are they similar? Are they linear?

mean of the x values = 9.0
mean of the y values = 7.5
equation of the least-squared regression line is: y = 3 + 0.5x
sums of squared errors (about the mean) = 110.0
regression sums of squared errors = 27.5
residual sums of squared errors (about the regression line) = 13.75
correlation coefficient = 0.82
coefficient of determination = 0.67

F.J. Anscombe (1973), "Graphs in Statistical Analysis," American Statistician, 27, 17-21

Anscombe datasets plotted

Look at your data, again

 Japanese credit card dataset (UCI)
 Cross-validation error rate is identical for C4.5 and 1R

Is their performance the same ?

Closer analysis reveals...

The Alberta Ingenuity Centre for Machine Learning

acr

9 August 29, 2005

Test alternative explanations

Combinatorial auction problems CHC = hill-climbing with a clever new heuristic

Solution Quality (% of optimal)

problem type	CHC
path	98
match	99
sched	96
r75P	83
r90P	90
r90N	89
arb	87

Is CHC better than random HC?

Percentage of CHC solutions better than random HC solutions

problem type	% better
path	100
match	100
sched	100
r75P	63
r90P	7
r90N	6
arb	20

Avoid "Overtuning"

- Overtuning = using all your data for system development. Final system likely overfits.
- David Lubinksy, PhD thesis
 - Held out ~10 UCI datasets for final testing
- Chris Drummond, PhD thesis
 - Fresh data used for final testing

Too obvious to mention ? (no)

Debug and test your code thoroughly

 Keep track of parameter settings, versions of program and dataset, etc.

