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Abstract

The goal of robot learning from demonstra-
tion is to have a robot learn from watching a
demonstration of the task to be performed.
In our approach to learning from demon-
stration the robot learns a reward function
from the demonstration and a task model
from repeated attempts to perform the task.
A policy is computed based on the learned
reward function and task model. Lessons
learned from an implementation on an an-
thropomorphic robot arm using a pendulum
swing up task include 1) simply mimicking
demonstrated motions is not adequate to per-
form this task, 2) a task planner can use a
learned model and reward function to com-
pute an appropriate policy, 3) this model-
based planning process supports rapid learn-
ing, 4) both parametric and nonparametric
models can be learned and used, and 5) in-
corporating a task level direct learning com-
ponent, which is non-model-based, in addi-
tion to the model-based planner, is useful in
compensating for structural modeling errors
and slow model learning.

1 LEARNING FROM
DEMONSTRATION

One form of robot learning is to have robots learn a
task by watching the task being performed by a human
or by another robot. The robot can either mimic the
motion of the demonstrator, or learn how the demon-
strator acts, reacts, and handles errors in many sit-
uations (a policy). We are interested in exploring
techniques for learning from demonstration in cases
where the robot may not be doing exactly the same
task as the demonstrator and where there are only
a small number of task demonstrations available. In

these cases exactly imitating the motion of the demon-
strator may not achieve the task, and there may be
too little training data to learn an adequate policy di-
rectly from the demonstration. This paper explores
an approach to learning from demonstration based on
learning a task model and a reward function, and using
the model and reward function to compute an appro-
priate policy. This approach has been implemented
on an anthropomorphic robot arm using a pendulum
swing up task as an example. This paper describes
the approach, its implementation, the lessons learned,
and the applicability of various approaches to learning
from demonstration. The paper also explores the roles
of a priori knowledge and models during learning from
demonstration, and compares the use of parametric
and nonparametric models.

Learning from demonstration, also known as “pro-
gramming by demonstration”, “imitation learning”,
and “teaching by showing” is a topic that has received
significant attention in the field of automatic robot
programming over the last 20 years. Recent reviews
include Bakker and Kuniyoshi (1996); Dillmann et al.
(1996); Hirzinger (1996) and Tkeuchi et al. (1996). Ap-
proaches include direct teaching in which the robot im-
itates human motions or teleoperated motions, directly
learning a demonstrated policy (Widrow and Smith,
1964; Pomerleau, 1991; Nechyba and Xu, 1995; Gru-
dic and Lawrence, 1996), and the approach followed
in this paper: learning the intent of the demonstrator
and using that intention model to plan or generate a
policy (Friedrich and Dillmann, 1995; Tung and Kak,
1995; Delson and West, 1996). Using the same robot
as the one used in this work, learning from demon-
stration was investigated by Kawato et al. (1994) and
Miyamoto et al. (1996). Atkeson and Schaal (1997) re-
port on a preliminary implementation of learning from
demonstration for the pendulum swing up task.



2 THE PENDULUM SWING UP
TASK

The pendulum swing up task is a more complex ver-
sion of the pole or broom balancing task (Spong, 1995).
The hand holds the axis of the pendulum, and the pen-
dulum rotates about this hinge in an angular move-
ment (Figure 1). Instead of starting with the pendu-
lum vertical and above its rotational joint, the pendu-
lum is hanging down from the hand, and the goal of
the swing up task is to move the hand so that the pen-
dulum swings up and 1s then balanced in the inverted
position. The swing up task was chosen for study be-
cause 1t 18 a difficult dynamic maneuver and requires
practice for humans to learn, but it is easy to tell if the
task is successfully executed (at the end of the task the
pendulum is balanced upright and does not fall down).

A general version of this task allows both horizontal
and vertical hand motion perpendicular to the pen-
dulum axis. However, to simplify the task for this
implementation, we restricted the hand motion to a
horizontal line with the pendulum axis perpendicular
to this line. Figure 2 shows the pendulum and hand
motion from several human demonstrations, and Fig-
ure 3 shows a “movie” of one of the human motions.
Figure 4 shows several human demonstrations in which
more “pumping” motions were used. Human motion
was measured using a stereo vision system running at
a 60Hz sampling frequency. Note that the demonstra-
tion focuses on the variables important to the task
(pendulum angle and angular velocity, and hand posi-
tion and velocity), and ignores variables relevant only
to the human arm such as elbow or shoulder position,
or joint angles. Our goal is task level learning from
demonstration, rather than matching patterns of hu-
man arm movements (Aboaf et al.; 1989).

3 THE ROBOT IMPLEMENTATION
OF THE TASK

We implemented learning from demonstration on a
hydraulic seven degree of freedom anthropomorphic
robot arm (SARCOS Dextrous Arm located at ATR,
Figure 1). The robot observed its own performance
with the same stereo vision system that was used to
observe the human demonstrations. The combined vi-
sion and robot control system has about a 0.12s delay
between an event and the response to the perception of
that event. A Kalman filter was used to predict future
sensory measurements to compensate for this delay.
An 1dealized model of the pendulum dynamics was in-
corporated in the Kalman Filter and not changed dur-
ing learning. Future research will address the learning
of perceptual models. We implemented redundant in-
verse kinematics as well as real time inverse dynamics

Figure 1:  The
7| SARCOS robot
“l arm with a pen-
dulum gripped in
the hand.  The
pendulum axis is
aligned with the
fingers and
with the forearm
in this arm config-
uration.
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Figure 2: The pendulum angles and hand p?)esiti(ins

for several demonstration swing ups by a human. The
pendulum starts at § = —7 and a successful swing up
moves the pendulum to § = 0.

8th trial
|

Figure 3: The pendulum configurations during a hu-
man swing up and a successful robot swing up after
learning.
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Figure 4: The human pendulum angles and hand po-
sitions for several demonstration swing ups in which
two pumping motions were used.

(An et al., 1988) to allow the robot to follow desired
hand motions.

In general we are interested in building complex mo-
tions out of simple components (motion primitives), as
we feel this approach accelerates learning of new tasks.
In this work we structured the swing up task with two
parts:

1. Learning to swing the pole up. The goal of this
subtask is to move the hand so that the pole becomes
upright with a small angular velocity. This motion is
done without feedback (open loop).

2. Learning to balance the pole upright. This
phase of the task is entered when the pole is nearly up-
right with a small angular velocity. Feedback is used to
balance the unstable inverted pendulum. If the pen-
dulum is within the capture region of the feedback
controller the task has been completed successfully.

The most obvious approach to learning from demon-
stration is to have the robot imitate the human mo-
tion, by following the human hand trajectory. The
dashed lines in Figures 5-10 show the robot hand mo-
tion as it attempts to follow the human demonstration
of the swing up task, and the corresponding pendulum
angles. Direct imitation failed to swing the pendulum
up, as the pendulum did not get even halfway up to the
vertical position, and then oscillated about the hang-
ing down position. The discussion section explores
possible explanations why direct imitation might fail.

The approach we will use is to apply a planner to find-
ing a swing up trajectory that works for the robot,
based on learning both a model and and a reward func-
tion and using the human demonstration to initialize
the planning process.

¢ Learning a model. The robot learns a model of the
task (xx41 = f(xg,ur)) from its attempts to perform
the task.

¢ Learning a reward function. The robot learns a
reward function C' = )", r(xx, uk, k) from the demon-
stration that ranks performance similar to the demon-
stration as better.

¢ Using the human performance to seed the
planning process. Many planners only find locally
optimal plans, and require an initial plan to seed the
search process. We use the human demonstration as
the initial plan. The existence of a demonstration fo-
cuses the search on a small volume of state space, and
greatly reduces the need for exploration.

4 LEARNING THE TASK MODEL

We have used several techniques to learn task models,
including knowledge-based parametric approaches and
nonparametric approaches. Knowledge-based para-
metric models, which are based on a priori knowledge
of the physics of the task, typically support more pow-
erful generalization. Nonparametric models typically
require less apriori knowledge. We will briefly outline
both approaches.

Our knowledge-based parametric model is based on a
discrete time dynamic model of an idealized pendu-
lum (all mass concentrated at the tip) attached on a
horizontally moving hand:

Oppr = (1 —o) O + s (sin(0x) + & cos(0x)/g) (1)

where # is the pendulum angle, # 1s the pendulum an-
gular velocity, z is the horizontal hand acceleration, ay
is the viscous damping, ay is Ag/l, A is the time step
0.0167s, g is the gravitational acceleration 9.81m/s?,
and [ is the length of a pendulum 0.29m. Idealized val-
ues for the a based on these parameters are a; = 0.0
and as = 0.56. Identified values for the « based on
large numbers of robot movements with the pendulum
are aqp = 0.0094 and as = 0.56. Parametric models
were constructed using linear regression in MATLAB.
Note that the real pendulum did not have all of its
mass concentrated at the tip, did not have ideal viscous
friction, and the identified pendulum model included
the robot error dynamics of the deviations between
commanded and actual hand accelerations.

Nonparametric models were constructed using locally
weighted learning as described in (Atkeson et al.,
1996a). These models did not use knowledge of the
model structure (Equation 1), but instead assumed a
general relationship:

ék:-l—l — f(gkagka$ka$ka$k) (2)
The nonparametric models did use knowledge that the
variable to predict was 6541 and that variables that
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Figure 5: The hand and pendulum motion during
robot learning from demonstration using a paramet-
ric model.

might be relevant to that prediction included 8y, %,
zg, Tk, and & . Training data from the demonstrations
was stored in a database, and a local model was con-
structed to answer each query. Meta-parameters such
as distance metrics were tuned using cross validation
on the training set. For example, cross validation was
able to quickly establish that hand position and veloc-
ity (¢ and #) played an insignificant role in predicting
future pendulum velocities (fx41).

5 LEARNING TO BALANCE

In this paper we will focus on learning the swing up
movement primitive, and only briefly describe how
the robot learned to balance the inverted pendulum.
Schaal (1997) presents learning to balance in more de-
tail. 30 seconds of human balancing data allowed the
robot to identify a model of the pendulum dynamics.
The RFWR nonparametric modeling approach was
particularly useful in producing a local linear model
of the inverted pendulum dynamics (Schaal and Atke-
son, 1996; Atkeson et al., 1996b), for example:

ék+1 = 0.4760,+0.9970),+0.00512,+0.0058+0.0523

(3)
Based on previous work on learning pole balancing
from demonstration (Schaal, 1997) the following re-
ward function was minimized:

r(x,u) = 120007 + 250 + 12527 + 502 + 1.58% (4)

Based on the learned model and this reward function,
a balancing policy can be computed for these types of
regulation tasks using standard techniques (in this case
the discrete linear quadratic regulator design routine
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Figure 6: The hand and pendulum motion during
robot learning from demonstration using a nonpara-
metric model.

dlgr in MATLAB):
.l;commanded = 550 + 106 —6.92 - 9.3z (5)

The feedback gains of this policy are similar to hu-
man gains identified from the balancing data. The
balance policy provided stringent constraints on the
performance of the swing up controller because the
robot workspace limited the capture region for success-
ful balancing. The transition from the open loop swing
up motion to the balance controller occurred when the
pendulum came within 0.5 radians of vertical with an
upward angular velocity of less than 3rad/sec. Any
non-zero pendulum angular velocity or robot hand ve-
locity must be dissipated by the balance controller as
the pendulum gets closer to vertical.

6 LEARNING THE SWING UP
TASK

6.1 LEARNING WORKS WELL ON AN
EASY TASK

We used a planner based on optimal control techniques
to plan a swing up trajectory for the robot. The plan-
ner used a reward function C' = ), r(xy,ug, k) that
penalizes deviations from the demonstration trajec-
tory sampled at 60H z:

P, we, k) = (x5 — %) T (6 — x1) + ufu, (6)

where the state 1s x = (9,9,1‘,1‘), x4 is the demon-
strated motion, k is the sample index, and the control
is u= ().
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Figure 7: The hand and pendulum motion during
robot learning from demonstration of a “two pump”
trajectory using a parametric model. No improvement
in performance 1s seen after the 3rd trial.

In the first trial (dashed line in Figure 5 and Figure 6)
the robot imitated the human hand motion. Although
this motion failed to swing up the pendulum, it did
provide data that was used to build a model of the
robot.

Learning, using a parametric model, used this data
to estimate model parameters for the knowledge base
parametric model (Equation 1): «; = 0.0056 and
ay = 0.5506. Trajectory optimization techniques (Co-
hen, 1992) were used to compute a locally optimal tra-
jectory based on this model, using the human trajec-
tory as the initial trajectory to refine. The state con-
trol trajectories were parameterized with splines, and
the knot points of the splines were adjusted using gra-
dient descent on the optimization criterion. This opti-
mization generated a new hand trajectory for the robot
to follow. The executed hand motion and the corre-
sponding pendulum motion are indicated as the 2nd
trial in Figure 5. This motion succeeded in swingup
up the pendulum.

Learning using the nonparametric model was not as
fast (Figure 6). The same initial training data was
used (trial 1). The next attempt got the pendulum up
only half way. Adding this new data to the database
and replanning resulted in a movement that succeeded
(trial 3 in Figure 6).

6.2 LEARNING FAILS ON A HARD TASK

To demonstrate that the human demonstration had a
large impact on the form of the learned trajectory and
to explore learning a more difficult trajectory, the hu-
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Figure 8: The hand and pendulum motion during
robot learning from demonstration of a “two pump”
trajectory using a nonparametric model. No improve-
ment in performance is seen after the 5th trial.

Trial a1 s Af
1 N N N
2 0.0063 | 0.5546 | 0
3 0.0082 | 0.5631 | 0
4 0.0085 | 0.5651 | 0.5
5 0.0083 | 0.5680 | 0.7

Table 1: Model parameters and shifts of final position
during learning.

man demonstrator executed a different swing up tra-
jectory. The first demonstration trajectory had one
back and forth motion of the pendulum (Figure 2).
A more difficult swing up task 1s to “pump” the pen-
dulum twice before swinging it up (Figure 4). This
maneuver stores energy in the pendulum that must be
recovered in the final swingup. The model-based learn-
ing approach becomes slow or even gets stuck using
either parametric (Figure 7) or nonparametric (Fig-
ure 8) models, as these models, with the given input
variables, don’t capture the full complexity of the task
dynamics. In the parametric case the estimated pa-
rameters stop changing (compare o and as in trials 3
and 4 in Table 1). In the nonparametric case the new
data does not result in a changed planned trajectory
for the robot.

6.3 DIRECT TASK LEVEL LEARNING

Acknowledging that models are never perfect, we be-
lieve the failure of purely model-based learning to be
due to a mismatch between the model structure (the
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Figure 9: The hand and pendulum motion during
robot learning from demonstration of a “two pump”
trajectory using a parametric model.

form of the model) and the true system. In the case
of the nonparametric model the inputs may not in-
clude all relevant factors (such as the state of the
robot arm, which affects the robot trajectory follow-
ing errors). We introduce direct task-level learning to
overcome the occasional failure of purely model-based
learning (Aboaf et al., 1989). TFor fast learning, the
planner can compensate for deficiencies in the mod-
eling approach that block or slow down further per-
formance improvements by directly adjusting task pa-
rameters. For the swing up task we many natural ways
to do this. The task is segmented into two phases, the
swing up and the balance phase. The task planner
can use a different desired pendulum target angle at
the planned transition between the swing up and the
balance phase to change the energy added to the pen-
dulum during swing up. This parameter is suggested
by the failure of the trajectory to match the planned
trajectory for this variable. We implemented this ap-
proach for parametric model-based learning, and the
adjusted position target is listed in the last column of
Table 1. The adjustments were selected using an initial
value of 0.5radians and changed using binary search
with an initial step size of 0.2radians. The additional
trajectories in Figure 9 show successful learning us-
ing this type of direct task level learning on top of
the model based learning. We have also used schemes
which adjust the desired terminal velocity with equal
success.

For nonparametric model based learning the adjust-
ment of a final position target or a final velocity target
was often not sufficient to allow the planner to find a
trajectory that worked. The range of validity of the
model was sufficiently limited that an increased termi-
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Figure 10: The hand and pendulum motion during
robot learning from demonstration of a “two pump”
trajectory using a nonparametric model.

nal position or velocity caused the planned trajectory
to leave the region of validity of the model, and to be
quite inaccurate. An approach that was more robust
was to adjust the demonstration not only at the end,
but throughout its extent. For example, the 6th trial
in Figure 10 shows the effect of adjusting the demon-
stration by multiplying the demonstrated pendulum
velocity at each time ¢ by 1 4 ¢ * ¢/T, where ¢ = 0.3
and T is the length of the swing up trajectory segment.
We have implemented a straightforward binary search
algorithm to search for appropriate coefficients c.

7 DISCUSSION

Conclusions from the implementations include:

e Simply mimicking the demonstrated human hand
motion 1s not adequate to perform the pendulum
swing up task.

e Learning a model and a reward function and using
planning to compute a policy can get good per-
formance rapidly (get the learner “into the ball
park”), but convergence to final performance can
be blocked by deficiencies in the modeling ap-
proach.

e Incorporating a task level direct learning compo-
nent, which is non-model-based, is useful in com-
pensating for structural modeling errors and slow
model learning.

Why did direct imitation of the demonstrated
human motion fail?:  Directly imitating demon-
strated motions, or directly learning a demonstrated



policy, may not work because of imperfect execution
or slight differences in the demonstrated and actual
task. The robot controller is not perfect, and does not
exactly reproduce the human motion. To assess how
good the robot controller is, compare the dotted line
(human demonstration) and the dashed line (robot im-
itation) in the hand position plots of Figures 5-10. Tt is
not clear that the response of the pendulum will be the
same even if the robot hand motion exactly matches
the demonstrated hand motion. The robot grip of the
pendulum axis is not the same as the human’s grip due
to differences in hand structure and the orientation of
the pendulum axis relative to the motion of the hand 1s
slightly different in the two cases. The human demon-
stration included slight deviations from a straight line
and constant hand orientation, and the robot did not
replicate those deviations in its movements.

In addition to small task differences, there may be ma-
jor differences between the demonstrated and actual
task. We have also used human demonstrations with
another pendulum with a substantially different mass,
mass distribution, length, moment of inertia, and fric-
tion to train the robot to swing up the pendulum used
in this study. These demonstrations can be used to
train reward functions and to provide initial trajecto-
ries for optimization, but not to train models or di-
rectly train policies or motions, since the dynamics of
the demonstration task are quite different from the ac-
tual task.

Why isn’t the learned robot hand motion more
similar to the demonstration?: The robot hand
motion after learning was often quite different from
the original demonstration. There are several possible
explanations for this. As described previously, the dif-
ferent grips (and hand structure) of the robot and the
human may make the task dynamics different. The
human could move faster and in more ways than the
robot. But an interesting consequence of the use of
a model-based planner is that the robot could learn
something new from demonstration, and find a new
and better way (for the robot) to execute the task ac-
cording to the reward function.

Why can’t nonparametric modeling techniques
eliminate the need for the task level direct
learning component?: We applied locally weighted
regression (Atkeson et al., 1996a) in an attempt to
avoid the structural modeling errors of the idealized
parametric models during swing up, and also to see if
a priori knowledge of the structure of the task dynam-
ics was necessary to learn the task. Although these
models enabled the balance controller to be learned
very quickly and allowed learning with less a priori
knowledge, the planner still needed to compensate for
residual modeling errors in order to successfully per-
form the swing up. Two reasons that nonparametric

models failed to eliminate the need for task level direct
learning are:

e The planner needed oversmoothed models.
The planner used derivatives of the model, and took
advantage of any modeling error to reduce the cost of
the planned trajectory, so the planning process ampli-
fied modeling errors. It was necessary to bias the non-
parametric modeling tools to oversmooth the data to
allow the planning process to find reasonable trajecto-
ries. Therefore, the benefit of nonparametric modeling
was reduced.

e There wasn’t enough data. In order to learn a
model of the complexity necessary to accurately model
the full robot dynamics between the commanded and
actual hand accelerations a large amount of data is
required, independent of modeling technique. Because
there are few robot trials during learning, there is not
enough data to make such a model even just in the
vicinity of a successful trajectory. If it was required
that enough data is collected during learning to make
an accurate model, robot learning from demonstration
would be greatly slowed down.

Why does task level direct learning work?: Task
level direct learning works well in this implementa-
tion because a single parameter is available that di-
rectly relates to the task structure. Initially the robot
adds energy to the pendulum, and then the pendu-
lum coasts to the goal position, ideally having just the
right amount of energy to stop at the top. The desired
transition pendulum angle or angular velocity provide
fairly direct control over the amount of energy added to
the pendulum. This form of task level direct learning
reduces a highly complex and multidimensional learn-
ing problem to a simple low dimensional search (in
this case a one dimensional search), greatly simpli-
fying the learning problem. Highly appropriate task
parameters are available because of the context pro-
vided by the model-based planning process. If there
was no planner, the desired transition position or ve-
locity parameter would be meaningless. If a random
task parameter was arbitrarily chosen for adjustment,
it is unlikely to be effective, although there are several
task parameters that could also have been used. The
task parameters to adjust can be found automatically
by comparing the planned and actual trajectories. If
a table of adjustable parameters was used to repre-
sent the robot trajectory or a more general policy, it
would be much more difficult to find a comparable di-
mensionality reduction and a comparable reduction in
learning complexity.

Implications for reinforcement learning: In rein-
forcement learning, there has been a debate between
model-based (indirect) and non-model-based (direct)
approaches. In the model-based case, a task model
and/or reward function is learned from the environ-



ment, and an appropriate policy is computed. In
the non-model-based case, such as Q learning, a pol-
icy is represented and adjusted directly, and the con-
sequences of the policy adjustment are measured to
guide future policy adjustments. Just as in learning
from demonstration it is useful to combine model-
based and non-model-based approaches in a hybrid
approach, we expect that hybrid approaches will be
useful for reinforcement learning.

The role of a priori knowledge: A delicate issue is
the role of a priori knowledge in this approach to learn-
ing from demonstration. Clearly, a priori knowledge on
the part of the human programmer is used to struc-
ture the control system and select inputs, outputs, and
states. Less obviously, the problem of figuring out
what perceptual values are relevant to the task has
been addressed using a priori knowledge on the part
of the human programmer. The vision system used in
this study only measured relevant variables from the
demonstration. The planner implicitly weights the rel-
evance of each measurement in the demonstrated tra-
jectory during the planning process. The model struc-
ture for the parametric model was based on a priori
knowledge, but a nonparametric model has also been
used with somewhat slower learning. The reward func-
tion for the balancing learner was completely set by the
human programmer (based on his learning), and while
the form of the reward function was set by the human
programmer for swing up, the values of the reward
function parameters were set based on the demonstra-
tion data. Human knowledge was used to break the
task into a swing up and a balance component, and
to use the desired angular velocity at the transition to
adjust the model-based plan. It is not clear that this
human knowledge can be easily automated.

What did the robot learn?: The human demon-
stration provided a trajectory that defined the task
goal and seeded the learning process. The robot
learned a model and the task level adjustments nec-
essary to compensate for the modeling error. Based
on this learned knowledge, the robot computed the
detailed trajectory that performed the task.

This research leads to further research ques-
tions:

e What is the effect of increased dimensionality? In
future implementations the robot will be allowed
to make vertical motions, and perhaps orienta-
tion changes with its hand during swing up, which
should allow the robot to more closely imitate the
human demonstration. Will the increased dimen-
sionality make learning easier or harder?

e Can a more robust planning process be developed
which does not require oversmoothing the data, to
make more effective use of nonparametric model

learners?

e How can control and perceptual models be de-
veloped simultaneously, without changes in the
perceptual model causing apparent changes in the
robot or task dynamics?

e Can the task structure be found automatically,
rather than having to be set by a human pro-
grammer?

8 CONCLUSION

Human demonstration of a pendulum swing up task
enabled robot learning of the task. This paper ex-
plored an approach to learning from demonstration
based on learning a task model and a reward func-
tion from the demonstration, and using the model
and reward function to compute an appropriate pol-
icy. This approach was implemented on an anthropo-
morphic robot arm. Important lessons learned from
the implementation included 1) simply mimicking mo-
tions is not adequate to perform some tasks, 2) a task
planning module can use a learned model and reward
function to compute an appropriate policy, 3) this
model-based planning process supports rapid learning,
4) both parametric and nonparametric models can be
learned and used, and 5) incorporating a task level
direct learning component, which is non-model-based,
in addition to the model-based planner, is useful in
compensating for structural modeling errors and slow
model learning.
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