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Abstract

The goal of robot learning from demonstra�
tion is to have a robot learn from watching a
demonstration of the task to be performed�
In our approach to learning from demon�
stration the robot learns a reward function
from the demonstration and a task model
from repeated attempts to perform the task�
A policy is computed based on the learned
reward function and task model� Lessons
learned from an implementation on an an�
thropomorphic robot arm using a pendulum
swing up task include 	� simply mimicking
demonstrated motions is not adequate to per�
form this task� �� a task planner can use a
learned model and reward function to com�
pute an appropriate policy� �� this model�
based planning process supports rapid learn�
ing� �� both parametric and nonparametric
models can be learned and used� and �� in�
corporating a task level direct learning com�
ponent� which is non�model�based� in addi�
tion to the model�based planner� is useful in
compensating for structural modeling errors
and slow model learning�

� LEARNING FROM

DEMONSTRATION

One form of robot learning is to have robots learn a
task by watching the task being performed by a human
or by another robot� The robot can either mimic the
motion of the demonstrator� or learn how the demon�
strator acts� reacts� and handles errors in many sit�
uations �a policy�� We are interested in exploring
techniques for learning from demonstration in cases
where the robot may not be doing exactly the same
task as the demonstrator and where there are only
a small number of task demonstrations available� In

these cases exactly imitating the motion of the demon�
strator may not achieve the task� and there may be
too little training data to learn an adequate policy di�
rectly from the demonstration� This paper explores
an approach to learning from demonstration based on
learning a task model and a reward function� and using
the model and reward function to compute an appro�
priate policy� This approach has been implemented
on an anthropomorphic robot arm using a pendulum
swing up task as an example� This paper describes
the approach� its implementation� the lessons learned�
and the applicability of various approaches to learning
from demonstration� The paper also explores the roles
of a priori knowledge and models during learning from
demonstration� and compares the use of parametric
and nonparametric models�

Learning from demonstration� also known as �pro�
gramming by demonstration�� �imitation learning��
and �teaching by showing� is a topic that has received
signi�cant attention in the �eld of automatic robot
programming over the last �� years� Recent reviews
include Bakker and Kuniyoshi �	

��� Dillmann et al�
�	

��� Hirzinger �	

�� and Ikeuchi et al� �	

��� Ap�
proaches include direct teaching in which the robot im�
itates human motions or teleoperated motions� directly
learning a demonstrated policy �Widrow and Smith�
	
��� Pomerleau� 	

	� Nechyba and Xu� 	

�� Gru�
dic and Lawrence� 	

��� and the approach followed
in this paper learning the intent of the demonstrator
and using that intention model to plan or generate a
policy �Friedrich and Dillmann� 	

�� Tung and Kak�
	

�� Delson and West� 	

��� Using the same robot
as the one used in this work� learning from demon�
stration was investigated by Kawato et al� �	

�� and
Miyamoto et al� �	

��� Atkeson and Schaal �	

�� re�
port on a preliminary implementation of learning from
demonstration for the pendulum swing up task�



� THE PENDULUM SWING UP

TASK

The pendulum swing up task is a more complex ver�
sion of the pole or broom balancing task �Spong� 	

���
The hand holds the axis of the pendulum� and the pen�
dulum rotates about this hinge in an angular move�
ment �Figure 	�� Instead of starting with the pendu�
lum vertical and above its rotational joint� the pendu�
lum is hanging down from the hand� and the goal of
the swing up task is to move the hand so that the pen�
dulum swings up and is then balanced in the inverted
position� The swing up task was chosen for study be�
cause it is a di�cult dynamic maneuver and requires
practice for humans to learn� but it is easy to tell if the
task is successfully executed �at the end of the task the
pendulum is balanced upright and does not fall down��

A general version of this task allows both horizontal
and vertical hand motion perpendicular to the pen�
dulum axis� However� to simplify the task for this
implementation� we restricted the hand motion to a
horizontal line with the pendulum axis perpendicular
to this line� Figure � shows the pendulum and hand
motion from several human demonstrations� and Fig�
ure � shows a �movie� of one of the human motions�
Figure � shows several human demonstrations in which
more �pumping� motions were used� Human motion
was measured using a stereo vision system running at
a ��Hz sampling frequency� Note that the demonstra�
tion focuses on the variables important to the task
�pendulum angle and angular velocity� and hand posi�
tion and velocity�� and ignores variables relevant only
to the human arm such as elbow or shoulder position�
or joint angles� Our goal is task level learning from
demonstration� rather than matching patterns of hu�
man arm movements �Aboaf et al�� 	
�
��

� THE ROBOT IMPLEMENTATION

OF THE TASK

We implemented learning from demonstration on a
hydraulic seven degree of freedom anthropomorphic
robot arm �SARCOS Dextrous Arm located at ATR�
Figure 	�� The robot observed its own performance
with the same stereo vision system that was used to
observe the human demonstrations� The combined vi�
sion and robot control system has about a ��	�s delay
between an event and the response to the perception of
that event� A Kalman �lter was used to predict future
sensory measurements to compensate for this delay�
An idealized model of the pendulum dynamics was in�
corporated in the Kalman Filter and not changed dur�
ing learning� Future research will address the learning
of perceptual models� We implemented redundant in�
verse kinematics as well as real time inverse dynamics

Figure �� The
SARCOS robot
arm with a pen�
dulum gripped in
the hand� The
pendulum axis is
aligned with the
�ngers and
with the forearm
in this arm con�g�
uration�

-5.00

-4.00

-3.00

-2.00

-1.00

0.00

1.00

p
en

d
u

lu
m

 a
n

g
le

 (
ra

d
ia

n
s)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.15

-0.10

-0.05

-0.00

0.05

0.10

0.15

0.20

h
an

d
 p

o
si

ti
o

n
 (

m
et

er
s)

0.5 1.0 1.5 2.0 2.5 3.0
seconds

Figure � The pendulum angles and hand positions
for several demonstration swing ups by a human� The
pendulum starts at � � �� and a successful swing up
moves the pendulum to � � ��

Human demonstration

8th trial

Figure � The pendulum con�gurations during a hu�
man swing up and a successful robot swing up after
learning�
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Figure � The human pendulum angles and hand po�
sitions for several demonstration swing ups in which
two pumping motions were used�

�An et al�� 	
��� to allow the robot to follow desired
hand motions�

In general we are interested in building complex mo�
tions out of simple components �motion primitives�� as
we feel this approach accelerates learning of new tasks�
In this work we structured the swing up task with two
parts
�� Learning to swing the pole up� The goal of this
subtask is to move the hand so that the pole becomes
upright with a small angular velocity� This motion is
done without feedback �open loop��
�� Learning to balance the pole upright� This
phase of the task is entered when the pole is nearly up�
right with a small angular velocity� Feedback is used to
balance the unstable inverted pendulum� If the pen�
dulum is within the capture region of the feedback
controller the task has been completed successfully�

The most obvious approach to learning from demon�
stration is to have the robot imitate the human mo�
tion� by following the human hand trajectory� The
dashed lines in Figures ��	� show the robot hand mo�
tion as it attempts to follow the human demonstration
of the swing up task� and the corresponding pendulum
angles� Direct imitation failed to swing the pendulum
up� as the pendulum did not get even halfway up to the
vertical position� and then oscillated about the hang�
ing down position� The discussion section explores
possible explanations why direct imitation might fail�

The approach we will use is to apply a planner to �nd�
ing a swing up trajectory that works for the robot�
based on learning both a model and and a reward func�
tion and using the human demonstration to initialize
the planning process�

� Learning a model� The robot learns a model of the
task �xk�� � f �xk�uk�� from its attempts to perform
the task�

� Learning a reward function� The robot learns a
reward function C �

P
k
r�xk�uk� k� from the demon�

stration that ranks performance similar to the demon�
stration as better�

� Using the human performance to seed the
planning process� Many planners only �nd locally
optimal plans� and require an initial plan to seed the
search process� We use the human demonstration as
the initial plan� The existence of a demonstration fo�
cuses the search on a small volume of state space� and
greatly reduces the need for exploration�

� LEARNING THE TASK MODEL

We have used several techniques to learn task models�
including knowledge�based parametric approaches and
nonparametric approaches� Knowledge�based para�
metric models� which are based on a priori knowledge
of the physics of the task� typically support more pow�
erful generalization� Nonparametric models typically
require less apriori knowledge� We will brie�y outline
both approaches�

Our knowledge�based parametric model is based on a
discrete time dynamic model of an idealized pendu�
lum �all mass concentrated at the tip� attached on a
horizontally moving hand

��k�� � �	 � ��� ��k � �� �sin��k� � �xk cos��k��g� �	�

where � is the pendulum angle� �� is the pendulum an�
gular velocity� �x is the horizontal hand acceleration� ��
is the viscous damping� �� is �g�l� � is the time step
���	��s� g is the gravitational acceleration 
��	m�s��
and l is the length of a pendulum ���
m� Idealized val�
ues for the � based on these parameters are �� � ���
and �� � ����� Identi�ed values for the � based on
large numbers of robot movements with the pendulum
are �� � ����
� and �� � ����� Parametric models
were constructed using linear regression in MATLAB�
Note that the real pendulum did not have all of its
mass concentrated at the tip� did not have ideal viscous
friction� and the identi�ed pendulum model included
the robot error dynamics of the deviations between
commanded and actual hand accelerations�

Nonparametric models were constructed using locally
weighted learning as described in �Atkeson et al��
	

�a�� These models did not use knowledge of the
model structure �Equation 	�� but instead assumed a
general relationship

��k�� � f��k� ��k� xk� �xk� �xk� ���

The nonparametric models did use knowledge that the
variable to predict was ��k�� and that variables that
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Figure � The hand and pendulum motion during
robot learning from demonstration using a paramet�
ric model�

might be relevant to that prediction included �k� ��k�
xk� �xk� and �xk� Training data from the demonstrations
was stored in a database� and a local model was con�
structed to answer each query� Meta�parameters such
as distance metrics were tuned using cross validation
on the training set� For example� cross validation was
able to quickly establish that hand position and veloc�
ity �x and �x� played an insigni�cant role in predicting

future pendulum velocities � ��k����

� LEARNING TO BALANCE

In this paper we will focus on learning the swing up
movement primitive� and only brie�y describe how
the robot learned to balance the inverted pendulum�
Schaal �	

�� presents learning to balance in more de�
tail� �� seconds of human balancing data allowed the
robot to identify a model of the pendulum dynamics�
The RFWR nonparametric modeling approach was
particularly useful in producing a local linear model
of the inverted pendulum dynamics �Schaal and Atke�
son� 	

�� Atkeson et al�� 	

�b�� for example

��k�� � �����k���

� ��k������	xk������� �xk�������xk
���

Based on previous work on learning pole balancing
from demonstration �Schaal� 	

�� the following re�
ward function was minimized

r�x�u� � 	����� � �� ��� � 	��x� � �� �x� � 	���x� ���

Based on the learned model and this reward function�
a balancing policy can be computed for these types of
regulation tasks using standard techniques �in this case
the discrete linear quadratic regulator design routine
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Figure � The hand and pendulum motion during
robot learning from demonstration using a nonpara�
metric model�

dlqr in MATLAB�

�xcommanded � ��� � 	� �� � ��
x� 
�� �x ���

The feedback gains of this policy are similar to hu�
man gains identi�ed from the balancing data� The
balance policy provided stringent constraints on the
performance of the swing up controller because the
robot workspace limited the capture region for success�
ful balancing� The transition from the open loop swing
up motion to the balance controller occurred when the
pendulum came within ��� radians of vertical with an
upward angular velocity of less than �rad�sec� Any
non�zero pendulum angular velocity or robot hand ve�
locity must be dissipated by the balance controller as
the pendulum gets closer to vertical�

� LEARNING THE SWING UP

TASK

��� LEARNING WORKS WELL ON AN
EASY TASK

We used a planner based on optimal control techniques
to plan a swing up trajectory for the robot� The plan�
ner used a reward function C �

P
k
r�xk�uk� k� that

penalizes deviations from the demonstration trajec�
tory sampled at ��Hz

r�xk�uk� k� � �xk � xd
k

�T�xk � xd
k

� � uT
k
uk ���

where the state is x � ��� ��� x� �x�� xd is the demon�
strated motion� k is the sample index� and the control
is u � ��x��
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Figure � The hand and pendulum motion during
robot learning from demonstration of a �two pump�
trajectory using a parametric model� No improvement
in performance is seen after the �rd trial�

In the �rst trial �dashed line in Figure � and Figure ��
the robot imitated the human hand motion� Although
this motion failed to swing up the pendulum� it did
provide data that was used to build a model of the
robot�

Learning� using a parametric model� used this data
to estimate model parameters for the knowledge base
parametric model �Equation 	� �� � ������ and
�� � ������� Trajectory optimization techniques �Co�
hen� 	

�� were used to compute a locally optimal tra�
jectory based on this model� using the human trajec�
tory as the initial trajectory to re�ne� The state con�
trol trajectories were parameterized with splines� and
the knot points of the splines were adjusted using gra�
dient descent on the optimization criterion� This opti�
mization generated a new hand trajectory for the robot
to follow� The executed hand motion and the corre�
sponding pendulum motion are indicated as the �nd
trial in Figure �� This motion succeeded in swingup
up the pendulum�

Learning using the nonparametric model was not as
fast �Figure ��� The same initial training data was
used �trial 	�� The next attempt got the pendulum up
only half way� Adding this new data to the database
and replanning resulted in a movement that succeeded
�trial � in Figure ���

��� LEARNING FAILS ON A HARD TASK

To demonstrate that the human demonstration had a
large impact on the form of the learned trajectory and
to explore learning a more di�cult trajectory� the hu�
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Figure � The hand and pendulum motion during
robot learning from demonstration of a �two pump�
trajectory using a nonparametric model� No improve�
ment in performance is seen after the �th trial�

Trial �� �� ��
	 � � �
� ������ ������ �
� ������ �����	 �
� ������ �����	 ���
� ������ ������ ���

Table 	 Model parameters and shifts of �nal position
during learning�

man demonstrator executed a di�erent swing up tra�
jectory� The �rst demonstration trajectory had one
back and forth motion of the pendulum �Figure ���
A more di�cult swing up task is to �pump� the pen�
dulum twice before swinging it up �Figure ��� This
maneuver stores energy in the pendulum that must be
recovered in the �nal swingup� The model�based learn�
ing approach becomes slow or even gets stuck using
either parametric �Figure �� or nonparametric �Fig�
ure �� models� as these models� with the given input
variables� don t capture the full complexity of the task
dynamics� In the parametric case the estimated pa�
rameters stop changing �compare �� and �� in trials �
and � in Table 	�� In the nonparametric case the new
data does not result in a changed planned trajectory
for the robot�

��� DIRECT TASK LEVEL LEARNING

Acknowledging that models are never perfect� we be�
lieve the failure of purely model�based learning to be
due to a mismatch between the model structure �the
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Figure 
 The hand and pendulum motion during
robot learning from demonstration of a �two pump�
trajectory using a parametric model�

form of the model� and the true system� In the case
of the nonparametric model the inputs may not in�
clude all relevant factors �such as the state of the
robot arm� which a�ects the robot trajectory follow�
ing errors�� We introduce direct task�level learning to
overcome the occasional failure of purely model�based
learning �Aboaf et al�� 	
�
�� For fast learning� the
planner can compensate for de�ciencies in the mod�
eling approach that block or slow down further per�
formance improvements by directly adjusting task pa�
rameters� For the swing up task we many natural ways
to do this� The task is segmented into two phases� the
swing up and the balance phase� The task planner
can use a di�erent desired pendulum target angle at
the planned transition between the swing up and the
balance phase to change the energy added to the pen�
dulum during swing up� This parameter is suggested
by the failure of the trajectory to match the planned
trajectory for this variable� We implemented this ap�
proach for parametric model�based learning� and the
adjusted position target is listed in the last column of
Table 	� The adjustments were selected using an initial
value of ���radians and changed using binary search
with an initial step size of ���radians� The additional
trajectories in Figure 
 show successful learning us�
ing this type of direct task level learning on top of
the model based learning� We have also used schemes
which adjust the desired terminal velocity with equal
success�

For nonparametric model based learning the adjust�
ment of a �nal position target or a �nal velocity target
was often not su�cient to allow the planner to �nd a
trajectory that worked� The range of validity of the
model was su�ciently limited that an increased termi�
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Figure 	� The hand and pendulum motion during
robot learning from demonstration of a �two pump�
trajectory using a nonparametric model�

nal position or velocity caused the planned trajectory
to leave the region of validity of the model� and to be
quite inaccurate� An approach that was more robust
was to adjust the demonstration not only at the end�
but throughout its extent� For example� the �th trial
in Figure 	� shows the e�ect of adjusting the demon�
stration by multiplying the demonstrated pendulum
velocity at each time t by 	 � c � t�T � where c � ���
and T is the length of the swing up trajectory segment�
We have implemented a straightforward binary search
algorithm to search for appropriate coe�cients c�

� DISCUSSION

Conclusions from the implementations include

� Simply mimicking the demonstrated human hand
motion is not adequate to perform the pendulum
swing up task�

� Learning a model and a reward function and using
planning to compute a policy can get good per�
formance rapidly �get the learner �into the ball
park��� but convergence to �nal performance can
be blocked by de�ciencies in the modeling ap�
proach�

� Incorporating a task level direct learning compo�
nent� which is non�model�based� is useful in com�
pensating for structural modeling errors and slow
model learning�

Why did direct imitation of the demonstrated
human motion fail�� Directly imitating demon�
strated motions� or directly learning a demonstrated



policy� may not work because of imperfect execution
or slight di�erences in the demonstrated and actual
task� The robot controller is not perfect� and does not
exactly reproduce the human motion� To assess how
good the robot controller is� compare the dotted line
�human demonstration� and the dashed line �robot im�
itation� in the hand position plots of Figures ��	�� It is
not clear that the response of the pendulum will be the
same even if the robot hand motion exactly matches
the demonstrated hand motion� The robot grip of the
pendulum axis is not the same as the human s grip due
to di�erences in hand structure and the orientation of
the pendulum axis relative to the motion of the hand is
slightly di�erent in the two cases� The human demon�
stration included slight deviations from a straight line
and constant hand orientation� and the robot did not
replicate those deviations in its movements�

In addition to small task di�erences� there may be ma�
jor di�erences between the demonstrated and actual
task� We have also used human demonstrations with
another pendulum with a substantially di�erent mass�
mass distribution� length� moment of inertia� and fric�
tion to train the robot to swing up the pendulum used
in this study� These demonstrations can be used to
train reward functions and to provide initial trajecto�
ries for optimization� but not to train models or di�
rectly train policies or motions� since the dynamics of
the demonstration task are quite di�erent from the ac�
tual task�

Why isn	t the learned robot hand motion more
similar to the demonstration�� The robot hand
motion after learning was often quite di�erent from
the original demonstration� There are several possible
explanations for this� As described previously� the dif�
ferent grips �and hand structure� of the robot and the
human may make the task dynamics di�erent� The
human could move faster and in more ways than the
robot� But an interesting consequence of the use of
a model!based planner is that the robot could learn
something new from demonstration� and �nd a new
and better way �for the robot� to execute the task ac�
cording to the reward function�

Why can	t nonparametric modeling techniques
eliminate the need for the task level direct
learning component�� We applied locally weighted
regression �Atkeson et al�� 	

�a� in an attempt to
avoid the structural modeling errors of the idealized
parametric models during swing up� and also to see if
a priori knowledge of the structure of the task dynam�
ics was necessary to learn the task� Although these
models enabled the balance controller to be learned
very quickly and allowed learning with less a priori
knowledge� the planner still needed to compensate for
residual modeling errors in order to successfully per�
form the swing up� Two reasons that nonparametric

models failed to eliminate the need for task level direct
learning are

� The planner needed oversmoothed models�
The planner used derivatives of the model� and took
advantage of any modeling error to reduce the cost of
the planned trajectory� so the planning process ampli�
�ed modeling errors� It was necessary to bias the non�
parametric modeling tools to oversmooth the data to
allow the planning process to �nd reasonable trajecto�
ries� Therefore� the bene�t of nonparametric modeling
was reduced�

� There wasn	t enough data� In order to learn a
model of the complexity necessary to accurately model
the full robot dynamics between the commanded and
actual hand accelerations a large amount of data is
required� independent of modeling technique� Because
there are few robot trials during learning� there is not
enough data to make such a model even just in the
vicinity of a successful trajectory� If it was required
that enough data is collected during learning to make
an accurate model� robot learning from demonstration
would be greatly slowed down�

Why does task level direct learning work�� Task
level direct learning works well in this implementa�
tion because a single parameter is available that di�
rectly relates to the task structure� Initially the robot
adds energy to the pendulum� and then the pendu�
lum coasts to the goal position� ideally having just the
right amount of energy to stop at the top� The desired
transition pendulum angle or angular velocity provide
fairly direct control over the amount of energy added to
the pendulum� This form of task level direct learning
reduces a highly complex and multidimensional learn�
ing problem to a simple low dimensional search �in
this case a one dimensional search�� greatly simpli�
fying the learning problem� Highly appropriate task
parameters are available because of the context pro�
vided by the model!based planning process� If there
was no planner� the desired transition position or ve�
locity parameter would be meaningless� If a random
task parameter was arbitrarily chosen for adjustment�
it is unlikely to be e�ective� although there are several
task parameters that could also have been used� The
task parameters to adjust can be found automatically
by comparing the planned and actual trajectories� If
a table of adjustable parameters was used to repre�
sent the robot trajectory or a more general policy� it
would be much more di�cult to �nd a comparable di�
mensionality reduction and a comparable reduction in
learning complexity�

Implications for reinforcement learning� In rein�
forcement learning� there has been a debate between
model�based �indirect� and non�model�based �direct�
approaches� In the model�based case� a task model
and�or reward function is learned from the environ�



ment� and an appropriate policy is computed� In
the non�model�based case� such as Q learning� a pol�
icy is represented and adjusted directly� and the con�
sequences of the policy adjustment are measured to
guide future policy adjustments� Just as in learning
from demonstration it is useful to combine model�
based and non�model�based approaches in a hybrid
approach� we expect that hybrid approaches will be
useful for reinforcement learning�

The role of a priori knowledge� A delicate issue is
the role of a priori knowledge in this approach to learn�
ing from demonstration� Clearly� a priori knowledge on
the part of the human programmer is used to struc�
ture the control system and select inputs� outputs� and
states� Less obviously� the problem of �guring out
what perceptual values are relevant to the task has
been addressed using a priori knowledge on the part
of the human programmer� The vision system used in
this study only measured relevant variables from the
demonstration� The planner implicitly weights the rel�
evance of each measurement in the demonstrated tra�
jectory during the planning process� The model struc�
ture for the parametric model was based on a priori
knowledge� but a nonparametric model has also been
used with somewhat slower learning� The reward func�
tion for the balancing learner was completely set by the
human programmer �based on his learning�� and while
the form of the reward function was set by the human
programmer for swing up� the values of the reward
function parameters were set based on the demonstra�
tion data� Human knowledge was used to break the
task into a swing up and a balance component� and
to use the desired angular velocity at the transition to
adjust the model�based plan� It is not clear that this
human knowledge can be easily automated�

What did the robot learn�� The human demon�
stration provided a trajectory that de�ned the task
goal and seeded the learning process� The robot
learned a model and the task level adjustments nec�
essary to compensate for the modeling error� Based
on this learned knowledge� the robot computed the
detailed trajectory that performed the task�

This research leads to further research ques

tions�

� What is the e�ect of increased dimensionality" In
future implementations the robot will be allowed
to make vertical motions� and perhaps orienta�
tion changes with its hand during swing up� which
should allow the robot to more closely imitate the
human demonstration� Will the increased dimen�
sionality make learning easier or harder"

� Can a more robust planning process be developed
which does not require oversmoothing the data� to
make more e�ective use of nonparametric model

learners"

� How can control and perceptual models be de�
veloped simultaneously� without changes in the
perceptual model causing apparent changes in the
robot or task dynamics"

� Can the task structure be found automatically�
rather than having to be set by a human pro�
grammer"

	 CONCLUSION

Human demonstration of a pendulum swing up task
enabled robot learning of the task� This paper ex�
plored an approach to learning from demonstration
based on learning a task model and a reward func�
tion from the demonstration� and using the model
and reward function to compute an appropriate pol�
icy� This approach was implemented on an anthropo�
morphic robot arm� Important lessons learned from
the implementation included 	� simply mimicking mo�
tions is not adequate to perform some tasks� �� a task
planning module can use a learned model and reward
function to compute an appropriate policy� �� this
model�based planning process supports rapid learning�
�� both parametric and nonparametric models can be
learned and used� and �� incorporating a task level
direct learning component� which is non�model�based�
in addition to the model�based planner� is useful in
compensating for structural modeling errors and slow
model learning�
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