
Collaborative Filtering via Gaussian
Probabilistic Latent Semantic Analysis

Thomas Hofmann
Department of Computer Science

Brown University, Providence, RI, USA
th@cs.brown.edu

ABSTRACT
Collaborative filtering aims at learning predictive models of
user preferences, interests or behavior from community data,
i.e. a database of available user preferences. In this paper,
we describe a new model-based algorithm designed for this
task, which is based on a generalization of probabilistic la-
tent semantic analysis to continuous-valued response vari-
ables. More specifically, we assume that the observed user
ratings can be modeled as a mixture of user communities
or interest groups, where users may participate probabilisti-
cally in one or more groups. Each community is character-
ized by a Gaussian distribution on the normalized ratings
for each item. The normalization of ratings is performed in
a user-specific manner to account for variations in absolute
shift and variance of ratings. Experiments on the Each-
Movie data set show that the proposed approach compares
favorably with other collaborative filtering techniques.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and retrieval—Information Filtering ; I.5.3 [Pattern
Recognition]: Clustering—Algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
collaborative filtering, recommender systems, machine learn-
ing, data mining

1. INTRODUCTION
Content-based filtering and retrieval build on the funda-

mental assumption that users are able to formulate queries
that express their interests or information needs in term of
intrinsic features of the items sought. In some cases how-
ever, it may be difficult to identify suitable descriptors such

This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definitive version
was published in SIGIR 2003, http://doi.acm.org
SIGIR’03 July 28–August 1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

as keywords, topics, genres, etc. that can be used to accu-
rately describe interests. Yet in other cases, for example
in electronic commerce, users may simply be unaware or at
least inattentive of their interests. In both cases one would
like to predict user preferences and recommend items of in-
terest without requiring the user to explicitly formulate a
query.

Collaborative filtering is a technology that is complemen-
tary to content-based filtering and that aims at learning
predictive models of user preferences, interests or behav-
ior from community data, i.e. a database of available user
preferences. Up to now, the dominant paradigm for perform-
ing collaborative filtering in recommender systems has been
based on nearest neighbor regression or so-called memory-
based techniques. These systems use a general two-step ap-
proach. First users are identified that are similar to some
active user for which a recommendation has to be made.
Then predictions and recommendations are computed based
on the preferences and judgments of these similar or like-
minded users. Recommender systems using memory-based
technology include [1], the GroupLens (and MovieLens) pro-
ject [2, 3], Ringo [4] as well as a number of commercial sys-
tems, most notably the systems deployed at Amazon.com
and CDNow.com.

Memory-based methods have reached this level of popu-
larity, because they are simple and intuitive on a conceptual
level while avoiding the complications of a potentially ex-
pensive model-building stage. At the same time, they are
deemed sufficiently accurate for many real-world problems.
Yet there are also a number of severe shortcomings, four of
which we would like to point out here: (i) The accuracy
obtained by memory-based methods may be suboptimal.
Indeed our experiments indicate that significant accuracy
gains are achievable. (ii) Since no explicit statistical model
is constructed, nothing is really learned form the available
user profiles and very little general insight is gained. Hence,
memory-based methods are only of very limited use, for ex-
ample, as data mining tools. (iii) Memory-based methods
do not scale well in terms of their resource requirements
(memory and computing time), unless further approxima-
tions – like subsampling – are made. (iv) It is difficult to
systematically tailor memory-based algorithms to maximize
the objective associated with a specific task. (v) Actual user
profiles have to be kept for prediction, potentially raising
privacy issues.

This paper deals with a model-based approach that ad-
dresses the above shortcomings and (i) achieves higher pre-
diction accuracies, (ii) compresses the data into a compact

model that automatically identifies user communities and
interest groups, (iii) enables computing preference predic-
tions in constant time, (iv) gives the system designer more
flexibility in specifying the objectives of the application and
(v) does not require to keep the original user profiles.

Model-based techniques have been investigated before,
most notably Bayesian and non-Bayesian clustering tech-
niques [5, 6, 7, 8], Bayesian networks [5], and dependency
networks [9]. The approach proposed in this paper is a
generalization of a statistical technique called probabilistic
Latent Semantic Analysis (pLSA) [10] which was originally
developed in the context of information retrieval [11]. It
bears some similarity with clustering methods in that latent
variables for user communities are introduced, yet the com-
munities can be overlapping and users are not partitioned
(not even probabilistically). In fact, the probabilistic latent
semantic models are in many ways more closely related to di-
mension reduction methods and matrix decomposition tech-
niques such as Singular Value Decomposition, which have
also been applied in the context of recommender systems [12,
13]. The main difference with respect to Bayesian networks
or dependency networks is the fact that the latter learn de-
pendency structures directly on the observables, while our
approach is based on a latent cause model that introduces
the notion of user communities or groups of items. The main
advantage over PCA and SVD-based dimension reduction
methods is that our approach offers a probabilistic seman-
tics and can build on statistical techniques for inference and
model selection.

2. MODEL-BASED COLLABORATIVE
FILTERING

2.1 Implicit and Explicit Ratings
The domains we consider consist of a set of persons or

users U = {u1, . . . , un}, a set of items Y = {y1, . . . , ym}
and a set of possible ratings V. We assume observations are
available for person/object pairs (u, y), where u ∈ U and
y ∈ Y. In the most basic case, an observation will just be the
co-occurrence of u and y, representing events like “person u
buys product y” or “person u clicks on link y”, which is also
sometimes called implicit preference data. In many cases
however, users may also provide an explicit rating v ∈ V as
part of an observation. The main focus of this paper is on
numerical ratings, which are commonly quantized to a small
number of response levels. For example, a five star rating
scale is commonly used in movie recommendation systems
such as EachMovie or MovieLens.

2.2 Prediction Problems
We will consider two type of prediction problems. The

first setting which we call forced prediction involves pre-
dicting a preference value for a particular item given the
identity of the user, i.e. one would like to learn a map-
ping g : U × Y → V. More generally, one may be inter-
ested in the conditional probability distribution p(v|u, y)
that user u will rate item y with v. Based on the latter
one may also define a deterministic prediction function by
g(u, y) =

R
V v p(v|u, y) dv, where p(v|u, y) denotes a condi-

tional probability density function.
In the second setting which we call free prediction the

item selection process is part of the predictive model and

the goal is to learn probabilities p(v, y|u) in order to pre-
dict both, the selected item y and the associated rating
v. By virtue of the chain rule this can be rewritten as
p(v, y|u) = p(v|y, u)P (y|u), thus decomposing the problem
into the prediction of the selected item (irrespective of the
rating) and a prediction of the rating conditioned on the
(hypothetically) selected item.

In the forced prediction case, the user is presented with a
particular item and provides an explicit rating for it. Here
the selection of the item on which a user vote or response is
solicited becomes part of the experimental design. A single
item is presented to the user at a time and the user’s re-
sponse is recorded. This is in contrast to the free prediction
case where the user is in control of the item selection and
one is interested in predicting both, what a user will select
and (optionally) how s/he will rate the item.

2.3 Loss and Risk Functions
Since we are pursuing a model-based approach to collab-

orative filtering, we will assume the availability of an ad-
equate loss function. A loss function L is a function that
quantifies how good or bad the prediction of a model is
compared to a true outcome. We will denote the (parame-
terized) model space by H and use a generic parameter θ to
refer to a particular model in H. We propose to utilize the
(negative) logarithmic loss function which forms the basis
of the popular maximum likelihood estimation approach in
statistics,

L((u, v, y), θ) = − log p(v|u, y; θ), or (1)

L((u, v, y), θ) = − log p(v, y|u; θ). (2)

The logarithmic loss can be used to define an empirical risk
function, which is the negative conditional log-likelihood.
Maximum likelihood estimation hence amounts to minimiz-
ing

R(θ) =
1
N

X

〈u,v,y〉

L((u, v, y), θ), (3)

where angular brackets under a summation symbol are used
as a shorthand notation to refer to all observation triplets
and N denotes the total number of observed triplets.

3. GAUSSIAN PROBABILISTIC LATENT
SEMANTIC MODEL

3.1 Co-occurrence Model
We would like to discuss a simple model for co-occurrence

data first, which is known as probabilistic latent semantic
analysis (pLSA) [10, 11]. This can be thought of as a special
case of collaborative filtering with implicit preference data.
The data thus consists of a set of user-item pairs (u, y) which
are assumed to be generated independently. The key idea of
our approach is to introduce hidden variables Z with states
z for every user-item pair, so that user u and item y are ren-
dered conditionally independent. The possible set of states
z is assumed to be finite and of size k. The resulting model
is a mixture model that can be written in the following way

P (u, y; θ) =
X

z

P (u, y, z) =
X

z

P (y|z)P (z|u)P (u), (4)

where sums over z run over all possible k states. By ap-
plying Bayes’ rule, one can alternatively use the equivalent

parameterizations P (u, y; θ′) =
P

z P (z)P (u|z)P (y|z) and
P (u, y; θ′′) =

P
z P (u|z)P (z|y). Since the more typical sit-

uation in collaborative filtering is to make personalized rec-
ommendations, we will mainly work with the conditional
model

P (y|u; θ) =
X

z

P (y|z)P (z|u) . (5)

Here the parameter vector θ summarizes the probabilities
P (z|u) which can be described by n × (k − 1) independent
parameters as well as P (y|z) which requires (m − 1) × k
independent parameters.

Notice that if k = 1, then the model simply assumes that
the selection of an item y does not depend on the identity
of the user, P (y|u) = P (y), resulting in non-personalized
predictions. The user identity and the item identity are as-
sumed to be marginally independent in this case. As the
number of hidden states increases, the set of representable
joint distributions over user-item pairs becomes less and less
constrained until a saturated model is obtained, which can
represent any joint probability over user-item pairs. In prac-
tice, k has to be chosen in a way that adjusts model com-
plexity in the light of the amount and sparseness of avail-
able data. Standard model selection techniques like cross-
validation can be used for that purpose.

While we have not associated any a priori meaning with
the states of the hidden variables, the hope though is to
recover interesting structure in the data about user commu-
nities and groups of related items. Intuitively, the state z of
a hidden variable Z associated with an observation (u, y) is
supposed to model a hidden cause, i.e. the fact that a per-
son u selects item y “because of” z. Each z is intended to
offer a hypothetical explanation for an implicit rating that
is itself not directly observable. Since the number of pos-
sible states k is typically much smaller than the number of
items and users, the model encourages grouping users into
user communities and items into groups of related items.

3.2 Models with Numerical Ratings
Since many applications of collaborative filtering involve

explicit user ratings, the pLSA model needs to be general-
ized appropriately. As discussed in [14], there are a num-
ber of ways to extend the dependency structure of the co-
occurrence model to include an additional response variable.
The extension that has proven most useful in empirical eval-
uations is to introduce direct dependencies of the response
variable on the item in question, but to mediate the depen-
dency on the user through a latent variable. The latter is
supposed to capture user communities or interest groups.
Formally, this results in the following mixture model

p(v|u, y) =
X

z

p(v|y, z)P (z|u) . (6)

In addition to specifying the dependency structure, one
also needs to define a parametric form for the conditional
probability density p(v|y, z). Whereas previous models have
only dealt with multinomial sampling models [14] which are
appropriate for categorical ratings (e.g., binary votes), we
investigate the use of a Gaussian model for p(v|y, z) here.
We hence propose to introduce location parameters µy,z ∈ %
for the mean rating and scale parameters σy,z ∈ %+ for the
spread of the ratings. This effectively defines a Gaussian

mixture model with user-specific mixing weights

p(v|u, y) =
X

z

P (z|u) p(v; µy,z, σy,z), with (7)

p(v; µ, σ) =
1√
2πσ

exp

»
− (v − µ)2

2σ2

–
(8)

Finally, notice that the expected response can be easily com-
puted as

E[v|u, y] =

Z

V
v p(v|u, y)dv =

X

z

P (z|u)µy,z . (9)

3.3 User Normalization
The Gaussian model presented so far assumes that all

users express their vote on a common scale. However, it
is known that different users may associate subjectively dif-
ferent meanings with ratings. For instance, votes on a five
star rating may mean different things for different people. In
memory-based methods, this is taken into account by simi-
larity measures such as the Pearson or Spearman correlation
coefficient [15] which effectively normalize ratings by a user’s
mean rating as well as their spread. Since Gaussian pLSA is
based on numerical response variables, this can also be ac-
commodated in our model-based approach. To that extent
we propose the following normalized model

p(v|u, y) = µu + σu

X

z

P (z|u)p

„
v − µu

σu
; µy,z, σy,z

«
, (10)

where µu denotes a user-specific mean rating and σu a user-
specific standard variation. Thus the assumption is that
the normalized ratings within a user community are nor-
mally distributed for every item, where the normalization
step performs a simple transformation of the observed rat-
ings according to

(u, v, y) '→ (u, v′, y), with v′ =
v − µu

σu
(11)

For users with a small number of ratings, one has to be
careful to perform appropriate smoothing in estimating the
user-specific parameters, which is in particular true for the
standard deviations σu, since the empirical estimates may
be very unreliable due to sampling noise. We have used the
following scheme to smooth the estimates of the means and
variances,

µu =

P
〈u′,v,y〉:u′=u v + qµ̄

Nu + q
, (12)

σ2
u =

P
〈u′,v,y〉:u′=u(v − µu)2 + qσ̄2

Nu + q
, (13)

where µ̄ denotes the overall mean vote and σ̄2 denotes the
overall variance of ratings. Nu is the number of ratings
available for user u and q is a free parameter controlling
the smoothing strength (set to q = 5 in our experiments).
Notice that we shrink the empirical (maximum likelihood)
estimate towards the pooled estimates, which is a common
scheme employed, for instance, in hierarchical Bayesian
modeling.

3.4 Expectation Maximization Algorithm
Following the maximum likelihood approach to statisti-

cal inference, we propose to fit the model parameters θ by
maximizing the (conditional) log-likelihood, or equivalently,

by minimizing the risk function in Eq. (3). The following
derivations are for the free prediction case, analogous equa-
tions for the forced prediction case can essentially be ob-
tained by replacing p(v, y|z) by p(v|y, z).

The Expectation Maximization (EM) algorithm is a stan-
dard methods for statistical inference that can be used to
(approximately) maximize the log-likelihood in mixture
models like pLSA [10]. The first step in deriving an EM
algorithm is to specify a complete data model. A complete
data model treats the hidden variables as if they were actu-
ally observed, which in our case amounts to the assumption
that for every observed triplet (u, v, y), we would in fact
observe a 4-tuple (u, v, y, z). The complete data model is
then given by p(v, y, z|u) = p(v, y|z)P (z|u) and the corre-
sponding (negative) log-likelihood function can be written
as

Rc(θ) = −
X

〈u,v,y,z〉

log p(v, y|z) + log P (z|u) . (14)

Since the states of the latent variables are not known, we
introduce a so-called variational probability distribution

Q(z|u, v, y), such that
X

z

Q(z|u, v, y) = 1 (15)

for all triplets (u, v, y). Using Q one can define a family of
risk functions (one risk function for every choice of Q)

R̄(θ, Q) = −
X

〈u,v,y〉

X

z

Q(z|u, v, y) [log p(v, y|z) (16)

+ log P (z|u)]

Exploiting the concavity of the logarithm and using Jensen’s
inequality, it can be shown that every R̄(·, Q) defines an
upper bound on R(·) (up to a constant that only depends
on Q),

R(θ) = −
X

〈u,v,y〉

log
X

z

Q(z|u, v, y)
p(v, y|z)P (z|u)

Q(z|u, v, y)

≤ −
X

〈u,v,y〉

X

z

Q(z|u, v, y) log
p(v, y|z)P (z|u)

Q(z|u, v, y)

= R̄(θ, Q) −
X

〈u,v,y〉

H(Q(·|u, v, y)) (17)

where H(Q) refers to the entropy of a probability distribu-
tion Q.

The EM algorithm now consists of two steps that are per-
formed in alternation: (i) computing the tightest bound for
given parameters θ̂, i.e. optimizing Eq. (17) with respect
to the variational distribution Q. This is called the E-step
and amounts to computing the posterior probabilities of the
hidden variable,

Q∗(z|u, v, y; θ̂)=P (z|u, v, y; θ̂)=
p̂(v, y|z)P̂ (z|u)

P
z′ p̂(v, y|z′)P̂ (z′|u)

. (18)

A formal derivation using the technique of Lagrange mul-
tipliers is straightforward. The hat indicates quantities pa-
rameterized by θ̂. Obviously the posterior probabilities need
only to be computed for triplets (u, v, y) that have actually
been observed. Averaging Rc with respect to the posterior

distribution calculated from Eq. (18) then yields

R̄(θ, θ̂) = −
X

〈u,y〉

X

z

p̂(v, y|z)P̂ (z|u)
P

z′ p̂(v, y|z′)P̂ (z′|u)

[log p(v, y|z) + log P (z|u)] (19)

which needs to be optimized with respect to the parameters
θ and which constitutes the Maximization (M) step. The
maximization problem can be readily solved by introduc-
ing Lagrange multipliers for every normalization constraint
and solving the resulting constrained optimization problem,
which leads to the following set of equations for the user-
specific mixing proportions

P (z|u) =

P
〈u′,v,y〉:u′=u P (z|u, v, y; θ̂)

P
z′

P
〈u′,v,y〉:u′=u P (z′|u, v, y; θ̂)

. (20)

Similarly, one obtains the following equations for the pa-
rameters of the Gaussian distributions,

µy,z =

P
〈u,v,y′〉:y′=y v P (z|u, v, y)

P
〈u,v,y′〉:y′=y P (z|u, v, y)

(21)

σ2
y,z =

P
〈u,v,y′〉:y′=y(v − µy,z)

2 P (z|u, v, y)
P

〈u,v,y′〉:y′=y P (z|u, v, y)
. (22)

Notice that ratings v in triplets 〈u, v, y〉 refer to the user-
normalized ratings as given by Eq. (11).

Eqs. (21,22) are essentially the standard M-step equations
of a Gaussian mixture model. The fact that mixing propor-
tions are user-specific only enters in the computation of the
posterior probabilities in the E-step. The complete EM al-
gorithm now proceeds by alternating the E-step in Eq. (18)
with the M-step in Eqs. (20-22).

3.5 Regularization
Learning statistical models with many parameters from

a limited amount of data bears the risk of overfitting. We
have hence used a regularization technique to address this
problem. While we have investigated a modification of EM,
called tempered EM in [10], a conceptually simpler and com-
putationally less expensive approach has proven to be suf-
ficient for regularizing Gaussian pLSA models. Retaining a
fraction of the data from training, we have used the held-
out data to perform early stopping, i.e. we terminate the
EM iterations once the accuracy on the held-out data de-
teriorates. Finally, we perform one last iteration of EM on
the full training data.

4. EXPERIMENTS

4.1 Data Set
The data set we have used in our experiments is the Each-

Movie data. The data has been collected by Digital Equip-
ment Research Center from 1995 through 1997. There are
1, 623 items (movies) in this data set and 61, 265 user pro-
files with a total of over 2.8 million ratings. The rating scale
is discrete, taking values from 0 (no star) to 5 (five stars).1

with 5 being the highest rating and 0 being the lowest rat-
ing. The average rating over all observed votes is ≈ 3.03
and the overall rating variance is ≈ 1.48.

1The original ratings are between 0 and 1 and have been
multiplied by a factor of 5.

0 50 100 150 200
0.9

0.95

1

1.05

1.1

1.15

communities

ab
s

0 50 100 150 200
1.15

1.2

1.25

1.3

1.35

1.4

communities

rm
s

Figure 1: Predictive performance in terms of abso-
lute (left) and rms error (right) for the normalized
Gaussian ranking model as a function of the number
of user communities.

The EachMovie data set is to our knowledge the largest
publicly available data set for collaborative filtering and pos-
sesses the advantage of offering explicit user ratings. The
latter fact allows us to study both, item selection and rating
prediction.

4.2 Evaluation Metric
A thorough empirical analysis of collaborative filtering al-

gorithms has been presented in [5] and we have adapted
most of the proposed evaluation metrics. The effectiveness
of collaborative filtering techniques can be measured in vari-
ous ways dependent on how the recommender system is used
and how results are presented to the user.

The first setting we have investigated assumes that the
goal of the system is to predict user ratings. Hence, we as-
sume that an item y is presented to a user u and the goal is to
predict the rating v̂ = g(u, y). We have used two loss func-
tions to measure the deviation between the predicted rating
v̂ and the observed rating v: the absolute deviation |v̂ − v|
and the squared error (v̂ − v)2. Empirical risks based on
the squared loss are summarized as the rooted mean square
(RMS) error, which is the square root of the empirical av-
erage of the loss. In addition we have also measured the
zero-one loss, in which case the predictions have been quan-
tized by rounding v̂ to the closest valid integer.

In the second setting, the goal is to predict both, the
selected item and the corresponding rating. Here we have
used the score for ranked lists proposed in [5]. Let us denote
a permutation of the items by τ and the rank of an item y
with respect to τ by τ (y). The top ranked item y will have
τ (y) = 1, the second item τ (y) = 2, and so forth. Ratings
for items that have been used for training are not included
in the ranking. We then use the following rank score for τ ,

R(u, τ) =
X

〈u′,v,y〉:u=u′

2− τ(y)−1
α−1 max(v − v̄, 0), (23)

with v̄ denoting the overall mean vote. The rationale behind
this score is that when presented with a ranked list of items,
users will sift through the list starting at the top, until they
find a relevant item or simply give up. The probability that
a user will ever take notice of an item at rank r is modeled as
an exponential distribution with a half-life constant α (set
to 4 in our experiments). The total score for a population

of users is then measured by (cf. [5])

R = 100

P
u R(u, τu)P

u maxτ ′ R(u, τ ′)
. (24)

This normalizes the sum of the achieved score with what
could have optimally achieved, if for every user all relevant
items would appear at the very top of the ranked list.

4.3 Evaluation Protocols
We have used a leave-one-out protocol to evaluate the ob-

tained prediction accuracies. This means we randomly leave
out exactly one rating for every user possessing at least two
observed ratings and then average the loss function over this
set of users to obtain an estimate of the risk. This protocol
has been called AllBut1 in [5]. Actually, we have eliminated
one vote for every user from the training set and trained
models on this reduced set. Notice that this uses somewhat
less data than required, but allows us to use a single model
to evaluate the leave-one-out performance averaged over all
users.

We would like to point out that we have not used the
GivenN (e.g., N = 5, 10, 20) protocols proposed in [5]. The
reason is that we cannot afford to perform a complete model
retraining for evaluating the system performance on a sin-
gle user. On the other hand, creating a training data set by
keeping only maximally N observations for every user would
sparsify the data considerably and not provide a useful ap-
proximation.

4.4 Baseline Methods
We have implemented two baseline methods to calibrate

the achieved results. As a first simple baseline, we have
used a largely non-personalized prediction/ranking function
which simply computes the average normalized rating for
each movie over the user population as a whole. Notice that
this does take user specific mean votes and variances into
account and that it is equivalent to the normalized Gaussian
pLSA model with k = 1. This methods is called “Baseline”
in Tables 1 and 2.

In addition, we have implemented a standard memory-
based method which computes similarities between user pro-
files based on the Pearson correlation coefficient. This imple-
mentation does not include possible improvements such as
inverse user frequency or case amplification [15]. The corre-
sponding results in Tables 1 and 2 are labeled as “Pearson”.

4.5 Results: Prediction Scenario
Table 1 summarizes the results, including a comparison

with the standard memory based method based on the Pear-
son correlation coefficient and results published in [5] for var-
ious methods (Bayesian clustering = BC, Bayesian networks
= BN, correlation = CR). The baseline is simply defined by
the overall mean vote for each item.

As can be seen, the proposed Gaussian pLSA model out-
performs the memory-based method and also achieves better
results than the ones published in [5]. With respect to the
latter results one has to acknowledge a somewhat different
setup though, which has lead to overall better performance
results in our experiments. However, an approximate com-
parison seems to be possible by identifying our implemen-
tation of a correlation-based filtering method with the one
implemented in [5].

It can also be seen that the accuracy of the Gaussian

Method absolute error relative improvement
ABS RMS 0/1 loss ABS RMS 0/1 loss

Baseline 1.091 1.371 71.2 ±0 ±0 ±0
Pearson 0.951 1.231 64.7 12.8% 10.2% 9.1%
Gaussian 0.975 1.252 67.1 5.8% 8.7 % 5.7%
Gauss, normalized 0.903 1.176 64.3 17.2% 14.2% 9.7%
CR [5] 0.994 - - - - -
BC [5] 1.103 - - - - -
BN [5] 1.066 - - - - -

Table 1: Prediction accuracy of various methods in forced prediction mode.

Method rank gain [5] rel. improv. abs rms
Baseline 16.76 ±0 1.091 1.371
Pearson 21.14 26.1 0.951 1.231
Gaussian 21.80 30.0 1.020 1.290
Gaussian, normalized 24.23 44.5 0.955 1.211

Table 2: Performance of different methods in free prediction mode according to ranking criterion.

model is quite poor without the user-specific normalization,
which is a crucial ingredient of the proposed model. It is also
quite remarkable that this result is obtained with a model
involving a relatively small number of communities (k = 40).
We conclude from this that the assumption of user-specific
rating scales encodes useful prior knowledge.

Figure 1 shows how the prediction accuracy for the Gaus-
sian pLSA model varies with model complexity, i.e. the car-
dinality of the state space of the latent variable, correspond-
ing to the number of latent communities searched for. The
graph shows a clear optimum around k = 40 communities,
after which the performance slowly degrades with model
size. This behavior is strikingly different from results ob-
tained with a multinomial sampling model in [16], where
the obtained accuracy constantly improves with the number
of communities until it levels off at around k = 200.

4.6 Results: Ranking Scenario
The second scenario we have experimentally investigated

is the free prediction mode. Since the prediction accuracy
in predicting votes is no longer adequate, we have used the
ranking loss in Eq. (24) to benchmark different algorithms.
Again we have used the leave-one-out protocol. The results
are summarized in Table 2.

The best ranking scores are obtained again by the nor-
malized Gaussian pLSA model. The relative performance
gain with respect to the popularity baseline is overall higher
than in the forced prediction mode - more than 40% rel-
ative improvement are achieved. Notice however that the
actual prediction error of these models is higher than for
the models that have been trained in forced mode. In fact
the absolute error is slightly higher than with the memory-
based approach.

4.7 Mining User Communities
The decomposition of user ratings may lead to the dis-

covery of interesting patterns and regularities that describe
user interests as well as disinterest. To that extent we have
visualized the items for each latent variable state by sorting
them according to the popularity within an interest group as
measured by P (y|z) (irrespective of the actual vote). The

mean vote µy,z is displayed in rectangular brackets under
the movie title. Figure 2 and 3 display the interest groups
extracted by a normalized Gaussian model with k = 40.

4.8 Computational Complexity
Finally, we would like to emphasize the fact that the com-

putational complexity for computing predictions for an ac-
tive user scales with the number of communities k, but not
with the number of users in the data base. Given that the
optimal accuracy was achieved for a model with k = 40,
this compares very favorably with (naive) memory-based
approaches which scale linearly in the total number of users
(more than 60, 000 in the case of EachMovie). Notice also
that the complexity of adding a new user to the database
scales with k as well, as long as the community parame-
ters P (y|z) and the Gaussian parameters µy,z and σy,z are
held fixed. This can be achieved by performing an opera-
tion called fold-in [11]. The model-based representation also
achieves a significant compression in terms of space.

The learning phase obviously requires more resources. No-
tice that the complexity of a single EM iteration scales with
k times the number of observed ratings. The typical num-
ber of EM iterations performed in the experiments is around
25− 30. The overall running time for training the Gaussian
pLSA model with k = 40 was very reasonable for practical
purposes: approximately 15 minutes on a standard com-
puter system powered by a Pentium III 1GHz CPU.

5. CONCLUSIONS
We have presented a powerful method for collaborative fil-

tering and for mining of user data based on a novel statistical
latent class model, Gaussian pLSA. The method achieves
competitive recommendation and prediction accuracies, is
highly scalable, and extremely flexible. Predictions and rec-
ommendations can be computed in constant time and with-
out access to the data base of original user profiles. Con-
ceptionally, the decomposition of user preferences is a fea-
ture that clearly distinguishes our approach from traditional
memory-based approaches.

Figure 2: User communities 1-20 (of 40) extracted from the EachMovie data set with a Gaussian pLSA
model. Numbers in brackets denote the means µy,z.

6. ACKNOWLEDGMENTS
This research was sponsored by an NSF-ITR grant, award

number IIS-0085836. The EachMovie preference data is by
courtesy of Digital Equipment Corporation and was gener-
ously provided by Paul McJones.

7. REFERENCES
[1] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry.

Using collaborative filtering to weave an information
tapestry. Communications of the ACM, 35(12):61–70,
1992.

[2] P. Resnik, N. Iacovou, M. Suchak, P. Bergstrom, and
J. Riedl. Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of the
ACM, Conference on Computer Supported Cooperative
Work, pages 175–186, 1994.

[3] J. Konstan, B. Miller, D. Maltz, J. Herlocker,
L. Gordon, and J. Riedl. Grouplens: Applying
collaborative filtering to usenet news.

Communications of the ACM, 40(3):77–87, 1997.
[4] U. Shardanand and P. Maes. Social information

filtering: Algorithms for automating “word of mouth”.
In Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, volume 1, pages
210–217, 1995.

[5] J. S. Breese, D. Heckerman, and C. Kardie. Empirical
analysis of predictive algorithms for collaborative
filtering. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, pages 43–52,
1998.

[6] L. Ungar and D. Foster. Clustering methods for
collaborative filtering. In Proceedings of the Workshop
on Recommendation Systems. AAAI Press, 1998.

[7] C. Basu, H. Hirsh, and W. Cohen. Recommendation
as classification: Using social and content-based
information in recommendation. In Recommender
System Workshop, pages 11–15, 1998.

[8] Y.-H. Chien and E.I. George. A Bayesian model for

Figure 3: User communities 21-40 (of 40) extracted from the EachMovie data set with a Gaussian pLSA
model. Numbers in brackets denote the means µy,z.

collaborative filtering. In Online Proceedings of The
Seventh International Workshop on Artificial
Intelligence and Statistics, 1999.

[9] D. Heckerman, D. M. Chickering, C. Meek,
R. Rounthwaite, and C. M. Kadie. Dependency
networks for inference, collaborative filtering, and
data visualization. Journal of Machine Learning
Research, 1:49–75, 2000.

[10] T. Hofmann. Unsupervised learning by probabilistic
latent semantic analysis. Machine Learning Journal,
42(1):177–196, 2001.

[11] T. Hofmann. Probabilistic latent semantic indexing.
In Proceedings of the 22nd ACM-SIGIR International
Conference on Research and Development in
Information Retrieval, pages 50–57, 1999.

[12] B. M. Sarwar, G. Karypis, J. A. Konstan, and
J. Riedl. Application of dimensionality reduction in
recommender system – a case study. In ACM
WebKDD 2000 Web Mining for E-Commerce

Workshop, 2000.
[13] J. Canny. Collaborative filtering with privacy. In

IEEE Symposium on Security and Privacy, pages
45–57, 2002.

[14] T. Hofmann and J. Puzicha. Latent class models for
collaborative filtering. In Proceedings of the
International Joint Conference in Artificial
Intelligence, 1999.

[15] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl.
An algorithmic framework for performing
collaborative filtering. In Proceedings of the 22nd
ACM-SIGIR International Conference on Research
and Development in Information Retrieval, 1999.

[16] T. Hofmann. What people (don’t) want. In European
Conference on Machine Learning (ECML), 2001.

