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Abstract 
Among the visual features of multimedia content, shape is of 
particular interest because humans can often recognize objects 
solely on the basis of shape. Over the past three decades, there 
has been a great deal of research on shape analysis, focusing 
mostly on shape indexing, clustering, and classification. In this 
work, we introduce the new problem of finding shape 
discords, the most unusual shapes in a collection. We motivate 
the problem by considering the utility of shape discords in 
diverse domains including zoology, anthropology, and 
medicine. While the brute force search algorithm has quadratic 
time complexity, we avoid this by using locality-sensitive 
hashing to estimate similarity between shapes which enables 
us to reorder the search more efficiently. An extensive 
experimental evaluation demonstrates that our approach can 
speed up computation by three to four orders of magnitude. 
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1. Introduction 
Large image databases are used in an increasing number of 
applications in fields as diverse as entertainment, business, art, 
engineering, and science [36]. Among the visual features 
contained in an image (e.g. shape, color, and texture), shape is 
of particular importance since humans can often recognize 
objects on the basis of shape alone [42]. Because of this 
special property, shape analysis has received much research 
attention in the past three decades. Most research effort in the 
shape analysis community is focused on indexing, clustering, 
and classification. 
In this work, we propose the new problem of finding the shape 
that is least similar to all other shapes in a dataset. We call 
such shapes discords. Figure 1 gives a visual intuition of a 
shape discord found in an image dataset of 1,301 marine 
creatures. Note that while most creatures are represented in the 
dataset several times, the starfish only appears once, and is 
thus reasonably singled out as the most unusual shape. 
 

Figure 1: Right) Samples from a dataset of 1,301 images of marine 
creatures. Left) The No.1 shape discord found in this dataset is a 
starfish 

Note also that any intuitive definition of shape discords will 
have to allow for invariance to the classic transformations that 

plague shape similarity measures. For example, the seahorse in 
the top left corner must be rotated approximately 40 degrees 
before matching another seahorse, and eliminating itself as a 
contender for discord. The utility of shape discords is very 
clear; as shown in Figure 1 they allow a user to find surprising 
shapes in a massive database. Nevertheless, as we are 
introducing a new problem, we feel it appropriate to 
concretely motivate the utility of shape discords with several 
examples from diverse fields. 
Medical Data Mining: Drosophila melanogaster is the 
species of fruit fly that has been most commonly used for 
genetic experiments in the last century. Drosophila is one of 
the most studied organisms in biological research, particularly 
in genetics and developmental biology. Drosophila is small 
and easy to breed in the laboratory, and its genome is short 
and “simple” (only four pairs of chromosomes).  Genetic 
transformation techniques for this organism have been 
available since the late eighties. One common type of 
transformation is mutagenesis, where a specific gene is 
mutated and the developing organism is examined for changes 
in physiology or behavior. Figure 2 shows a subset of wing 
images collected for a mutagenesis experiment carried out at 
Florida State University [41], and the discord discovered by 
our algorithm. Note that the entire wing image was analyzed 
up to, but not including, the articulation (1 mm from wing 
attachment to thorax). 
 

Figure 2: Top) A subset of 32,028 images of Drosophila wings. 
Bottom) The No.1 shape discord found in this dataset is a 
damaged wing 

While the discord discovered in this example is likely due to a 
technicians mishandling of a sample and not due to the 
phenotypical mutation, the result still hints at the utility of 
shape discords. Note that a brute force attempt to find this 
discord would have required 512,880,378 shape comparisons.  
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Anthropological Data Mining: Anthropology offers many 
interesting challenges for data mining, particularly mining of 
shapes [7]. Examples of shapes which anthropologists may be 
interested in mining include petroglyphs, pottery [7], projectile 
points (“arrowheads”) [30], and bones [20]. 
It is difficult to overstate the need for efficient algorithms 
when working with such datasets. As another example, the 
number of projectile points in the collection at the authors’ 
institution exceeds one million objects [31]. We collected 
more than 16,000 projectile point images for an unrelated 
project, but can consider this dataset with our discord mining 
algorithm. As Figure 3 shows, the dataset comes from diverse 
sources, including photographs, onsite field sketches, and 
silhouettes. Since we are ignoring all but the shape 
information, this diversity of data sources makes no difference 
to the task at hand. 
 

Figure 3: Right) A subset of 16,000 images of projectile points 
collected from diverse sources. Left) The top two discords found 
in the dataset 

While some subjectivity exists, the two discords discovered 
are arguably the most unusual shapes in the dataset. While the 
vast majority of projectile points are symmetric, the first 
discord is an unusual asymmetric point from Texas. The 
second discord is a typical and common “Basal Notched” 
point, except this example has its right tang broken off. 
Discovering such anomalies by eye even in a mere 16,000 
images is non-trivial, and motivates the need for a scalable 
algorithm. 
Discords may have other uses. Shape clustering algorithms 
often suffer diminished utility due to a handful of outlier 
shapes in the dataset. We may reasonably expect discords to 
be among those tricky cases. Finding and removing them can 
serve as a preprocessing step for shape clustering algorithms. 
This idea may also be beneficial for image compression with 
techniques that use global bases, like Principal Component 
Analysis (PCA), since very unusual images are bound to 
introduce more bases (or more reconstruction error among the 
‘true’ bases) [14].  
As we have shown, the notion of unusual shapes can be useful 
in different domains. However, to the best of our knowledge, 
the problem of finding these shapes has not yet been addressed. 
In this paper, we introduce a novel definition that defines 
discord as the shape that has the largest distance (as a 
measurement of difference) to its nearest neighbor. This 
definition has the advantage that the unusualness of a shape is 

not tied exclusively to its structure. Instead it depends on the 
similarity between it and its nearest neighbor, and is therefore 
context dependent. The definition eliminates the need of an 
explicit description of usual shapes. In addition, this definition 
requires zero parameters, which is especially suitable for data 
mining applications [19]. In particular, as we demonstrate 
below, we can apply our algorithm in very diverse domains 
without having to do any tuning or “tweaking” of any kind. 
Our definition of shape discord would be of little use to the 
data mining community without an efficient algorithm to 
discover it. The brute force algorithm requires a quadratic “all-
to-all” comparison, which is simply untenable for large real-
world datasets. We introduce an algorithm that uses locality-
sensitive hashing to quickly discover likely candidates for 
discords, and use this information to generate heuristics to 
reorder the search in a more efficient way. The algorithm is 
able to avoid many fruitless calculations and can achieve three 
to four orders of magnitude speedup on real problems. 
The rest of the paper is organized as follows. In Section 2, we 
discuss some background material and formally define the 
problem of shape discord discovery. In Section 3, we 
introduce a general framework for shape discord searching and 
provide observations for speeding it up. Section 4 presents an 
algorithm to enable an efficient search strategy based on 
locality-sensitive hashing. We perform a comprehensive 
empirical evaluation in Section 5 to demonstrate both the 
utility of shape discords and the efficiency of our search 
strategy. Finally Section 6 offers some conclusions and 
directions for future work. 

2. Background and Related Work 
This section begins with some necessary background material 
before introducing the formal definition of shape discords. We 
then discuss why existing novelty/outlier detection approaches 
are not suitable for the problem at hand. 

2.1 Shape Representation and Distance Measure 
We consider the shape of an object as a binary image 
representing the outline of the object [25]. In order to 
find/index/classify a shape, the shape must be described or 
represented in some way. However this is a difficult task as 
shapes may be corrupted with noise, defects, arbitrary 
distortions, and occlusions. There are many shape 
representations and description techniques in the literature. 
Among them, one-dimensional representations have been 
shown to achieve comparable or superior accuracy in shape 
matching [20]. Therefore this simple representation has been 
used by an increasingly large fraction of the literature 
[8][20][38].  
There exist dozens of techniques to convert shapes into one-
dimensional representations (also known as pseudo “time 
series”). We refer the interested reader to [25] and [42] for 
excellent surveys. Note that our approach works for any of 
these representations. To give the reader a concrete idea, in 
Figure 4, we show the well-known centroid distance approach 
to convert a shape into a time series [42]. This approach is 
particularly attractive because it requires zero parameters and, 
after suitable normalization, it removes the effects of scale and 
offset.  Rotation will be discussed below. 
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Figure 4: Shapes can be converted to time series. A) A bitmap of a 
fruit flies wing. B) The distance from every point on the profile to 
the center is measured and treated as the Y-axis value of a time 
series of length n (C) 

Even though this one-dimensional representation is very 
simple, we claim that it is very effective in preserving features 
of the original shape. To show this, we conducted a 
classification experiment on several publicly available shape 
datasets, as shown in Table 1. For each dataset, we converted 
the shapes to one-dimensional representations and performed 
one-nearest-neighbor classification using rotation invariant 
Euclidean distance (explained later). The error rates, as 
measured by leaving-one-out evaluation, are shown in the 
second column of Table 1. In the third column, we list the best 
error rates reported by other works, using more complicated 
shape representations/ distance measures. 

Table 1: The classification error rate on several datasets 
Dataset Name Error Rate using 1D 

representation (%) 
Error Rate using other 

representations (%) 
Swedish Leaves 13.33% 17.82% [35] 
Chicken 19.96% 20.5% [26] 
MixedBag 4.375% 6% [40] 
Diatoms 27.53% 26% [13] 

These experiments show that the very simple time series 
representations of shapes and the simple Euclidean distance 
can be competitive to other more complex representations and 
distance measures. Therefore in this work, we only consider 
one-dimensional representation of the shapes. 
From now on, we will use the words ‘shape’ and ‘time series’ 
interchangeably. Let us first formally define time series. 

Definition 1. Time Series: A time series nccC ,...,1=  is an 
ordered set of n real-valued variables. In our case the 
ordering is not temporal but spatial; it is defined by a 
clockwise sweep of the shape boundary. 

Recall that our task is to find the most unusual shape within a 
collection. We formally define the problem below. 

Definition 2. Shape Discord: Given a collection of shapes 
S, shape D is the discord of S if D has the largest distance to 
its nearest match. That is, ∀ shape C in S, the nearest match 
MC of C and the nearest match MD of D, Dist(D, MD) > 
Dist(C, MC). 

Note that if there are two unusual shapes in the dataset and 
they are both unusual in the same way (the “twin freak 
problem”), we can simply change the definition to “find the 
shape that has the maximal distance to its second nearest 
neighbor”. For simplicity, we will not consider this case in this 

work. However it is a trivial modification. 
In many cases, we may be interested in examining the top k 
discords, which is a simple extension of the previous 
definition. 

Definition 3. kth Shape Discord: Given a collection of 
shapes S, shape D is the kth discord of S if D has the kth 
largest distance to its nearest match. 

A critical component of the previous two definitions is the 
function to measure the distance between two time series, 
which we formally define below. 

Definition 4. Distance Function: Dist is a function that has 
two time series Q and C (both of length n) as inputs and 
returns a nonnegative value as the distance from Q to C. 
For subsequent definitions to work, we require that the 
function be symmetric, that is, Dist(Q, C) = Dist(C, Q). 

As a concrete instantiation of a distance function, we define 
the most common distance measure for time series, Euclidean 
distance [6][16]. 

Definition 5. Euclidean Distance: Given two time series Q 
and C of length n, the Euclidean distance between them is 
defined as 
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where each row of the matrix is simply a time series shifted 
(rotated) by one time point from its neighbors. For 
notational convenience, we denote the ith row as Ci, which 
allows us to denote the rotation matrix in the more compact 
form of C = {C1, C2,…, Cn}. 

Note that we do not need to actually build the full matrix if 
space is premium, however doing this simplifies the notation 
and allows some optimizations [20]. 
We can now define the Rotation invariant Euclidean Distance 
between two time series. 

Definition 7. Rotation invariant Euclidean Distance: 
Given two time series Q and C of length n, the rotation 
invariant Euclidean distance between them is defined as 
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The rotation invariant Euclidean distance provides an intuitive 
measure of the distance between two shapes, at the expense of 
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efficiency. The time complexity to compare two time series of 
length n is O(n2).  
This long discussion of rotation invariance is motivated by the 
observation that shapes are often rotated in real world domains. 
For example, Figure 5 shows two sample wing images from a 
collection of Drosophila images. Note that the rotation of 
images can vary even in such a controlled domain. 

 

Figure 5: Two sample wing images from a collection of 
Drosophila images. Note that the rotation of images can vary even 
in such a structured domain 

This distance definition can be easily generalized to handle 
enantiomorphic invariance (mirror image), which may be 
useful in some domains. For example, when matching faces, 
the best match may simply be facing the opposite direction. If 
enantiomorphic invariance is required, we can trivially achieve 
this by augmenting matrix C to contain Ci

 and reverse(Ci
 ) for 

1 ≤ i ≤ n. 
Before calling the distance function, each time series is 
normalized to have mean zero and a standard deviation of one, 
because it is well understood that it is generally meaningless to 
compare time series with different offsets and scales [16]. 
However, when dealing with time series that are derived from 
shapes, there is one important exception: if a shape is almost 
round, we should not do the normalization. The reason is, for 
nearly circular shapes, the distance from every point on the 
profile to the center is almost the same. So the resulting time 
series will be almost a flat line. However even a perfect circle 
will not produce a perfectly straight line due to rasterization 
effects. Normalization will exaggerate slight variations of the 
flat line, producing apparent features in the time series. We 
have shown such an example in Figure 6. Therefore, whenever 
we detect that the sum of the differences between each data 
point and the mean value of the time series is less than a 
predefined threshold, we will not do the normalization. Note 
that this is a very rare case that only happens in one of the six 
domains we examined (see Section 5.1.2). 
 

Figure 6: Top) The time series of two red cells are almost flat lines 
and are very similar to each other. Bottom) After normalization the 
two time series look very different because the tiny variances are 
enlarged 

2.2 Can Existing Approaches Help? 
At this point, we have shown that shapes can be converted to 
time series. One might ask whether the existing time series 
novelty detection methods could solve the problem at hand. 
We believe the answer is no. We cannot leverage off the 
existing time series novelty detection techniques because most 
of them assume that time series subsequences are extracted by 
sliding a window across a long time series [17][18][34], while 
we have individual time series here. 
Another possibility would be to simply project the shape time 
series into n-dimensional space and use existing outlier 
detection methods [5][22]. The problem with this approach is 
that most outlier detection methods require the distance 
function be a metric. While the Euclidean distance is a metric, 
the rotation invariant Euclidean distance is not. Even if we 
could bypass or mitigate this problem, most of the current 
outlier detection methods degrade to quadratic time 
complexity for high dimensional data. 
The above analysis suggests that existing algorithms are of 
little utility for finding shape discords. This motivates the 
introduction of our original algorithm in the next section. Our 
work is closest in spirit to the unusual time series detection 
work of [17], from which we take the name “discord”. 
However, detecting unusual time series is a considerably 
easier problem because they do not have to deal with the 
rotation invariance problem, which (as we shall show below) 
considerably adds to the complexity of the problem. 

3. Shape Discords Discovery Framework 
Given a shape dataset S of size m, the brute force algorithm for 
finding the discord is simple and obvious. We simply take 
each time series and find its distance to its nearest match. The 
one that has the greatest such value is the discord. The pseudo 
code of this simple algorithm is shown in Table 2.  

Table 2: Brute Force Discord Discovery 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Function  [ dist, index ] = BruteForce_Search(S ) 

best_so_far_dist = 0 

best_so_far_index = NaN 

for p = 1 to |S |                                                    // begin outer loop               

   nearest_neighbor_dist = infinity    

   for q  = 1 to |S |                                                 // begin inner loop 

      if p!= q                                                            // do not compare to self     
         if  Dist (Cp , Cq )  < nearest_neighbor_dist 

             nearest_neighbor_dist = Dist (Cp , Cq )   

          end 

      end                                                           

   end                                                                // end inner loop 

    if nearest_neighbor_dist > best_so_far_dist 

       best_so_far_dist = nearest_neighbor_dist 

       best_so_far_index  = p 

    end 

end                                                                   // end outer loop 

return [ best_so_far_dist, best_so_far_index ] 

While the brute force algorithm is intuitive, we will show a 
running example to develop some intuition on how to improve 
this algorithm. Figure 7 shows a “trace” of the brute force 
algorithm on a simple dataset of six marine creatures. The first 
discord happens to be the starfish (shape 4), whose distance to 
its nearest match is 26.7 (shown in bold in Figure 7). To find 
the discord, the brute force algorithm searches the dataset with 
nested loops, where the outer loop searches over the rows for 
each candidate shape, and the inner loop scans across the 
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columns to identify the candidate’s nearest rotation invariant 
match. The brute force algorithm needs to compute the 
distance between 6*(6-1)/2 = 15 pairs of shapes (the upper 
triangle of the distance matrix). 
 

Figure 7: The brute force algorithm searches from top to bottom 
and left to right. It needs to compute 15 cells of the distance 
matrix (the shaded cells). Note that cells on the diagonal are blank 
because we do not compare a shape to itself 

The brute force algorithm is easy to implement and produces 
exact results. However, it has O(m2) time complexity (recall 
that m is the size of the dataset S), which is simply untenable 
for even moderately large datasets. Note that even though the 
time complexity is quadratic, the space needed by the brute 
force algorithm is constant. We show the full distance matrix 
only for clarity. In actual implementation, we can build and 
examine only one cell at a time. 
The astute reader may have already noticed a way to speed up 
the search. In the inner loop, we do not actually need to find 
the true nearest neighbor to the current candidate. Once we 
find any shape that is closer to the current candidate than the 
best_so_far_dist variable, we can stop the search in that row, 
safe in the knowledge that the current candidate could not be 
the shape discord. We call this simple optimization early 
abandoning. If we apply this optimization to the marine 
creature dataset, we only need to compute the distance 
between 12 pairs of shapes. Figure 8 shows a trace of the 
search process. 
 

Figure 8: Every time we find a shape having a closer distance to 
one of its neighbors than the best_so_far_dist value, we can stop 
the search. This technique reduces the number of computed cells 
to 12 

With early abandoning, we can save some computation. The 
utility of this optimization depends on the order in which the 
outer loop considers the candidates for the discord, and the 
order in which the inner loop visits the other shapes. Note that 
there is nothing special about the top-to-bottom (outer loop), 
left-to-right (inner loop) ordering that we have been using. It is 
simply the classic default of nested “for” loops. As far as the 
brute force algorithm is concerned, any permutation of the 
orders is acceptable.  However, the early abandoning 
algorithm can benefit from certain permutations. For example, 
imagine that a friendly oracle gives us the best possible 

orderings as follows. For outer loop, shapes are sorted in 
descending order of the distance to their nearest neighbor, so 
that the true discord is the first object examined. For inner 
loop, shapes are sorted in ascending order of the distance to 
the current candidate. With these orderings, the first 
invocation of the inner loop will run to completion. Thereafter, 
all subsequent invocations of the inner loop will be abandoned 
during the very first iteration. Returning to our running 
example (see Figure 9), we only need to compute the distance 
between 9 pairs of shapes by searching in the best orderings. 
 

Figure 9: In a hypothetical situation where we know the best 
orders for outer and inner loops, the search is much more efficient. 
We consider the rows in the order of 4, 1, 3, 6, 5, 2. For shape 4 
the inner loop runs to completion. For other shapes, the inner 
loops will early abandon on the first iteration. In total, only 9 cells 
of the distance matrix are computed (the shaded cells) 

The above example motivates the introduction of a slightly 
expanded version of the brute force algorithm. The new 
algorithm is augmented by the early abandoning technique 
(line 7 in Table 3) and the additional outer and inner heuristics. 
The pseudo code is shown in Table 3. 

Table 3: Heuristic Discord Discovery 
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Function  [ dist, index ] = Heuristic_Search(S, Outer, Inner ) 
best_so_far_dist = 0 

best_so_far_index = NaN 

for each index p  given by heuristic Outer        // begin outer loop                

   nearest_neighbor_dist = infinity    

   for each index q  given  by heuristic Inner    // begin inner loop 

      if p!= q                                                          // do not compare to self       
         if  Dist (Cp , Cq )  < best_so_far_dist 

            break                                                   // break out of inner loop 

         end 

         if  Dist (Cp , Cq )  < nearest_neighbor_dist 

             nearest_neighbor_dist = Dist (Cp , Cq )   

          end 

      end                                                           

   end                                                                // end inner loop 

    if nearest_neighbor_dist > best_so_far_dist 

       best_so_far_dist = nearest_neighbor_dist 

       best_so_far_index  = p 

    end 

end                                                                   // end outer loop 

return [ best_so_far_dist, best_so_far_index ] 

Now we have reduced the discord discovery problem to a 
generic framework where all one needs to do is to specify the 
heuristics. Our goal then is to find the best possible 
approximation to the optimal ordering, which is the topic of 
the next section. 

4. Approximating the Optimal Ordering 
When trying to approximate the optimal ordering, we need to 
keep one thing in mind: we should not attempt to “cheat” the 
algorithm. For example, we could provide very good orderings 
if we are allowed to compute the distances between each pair 
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of the shapes beforehand! However this is simply hiding the 
time complexity in a different part of the implementation. 
Therefore we must insist that the outer heuristic (invoked only 
once) takes at most O(m) to calculate and the inner heuristic 
(invoked m times) takes O(1). Note that this requirement 
precludes the possibility of using R-trees, K-d trees or other 
classic indexing algorithms: they require at least O(log(m)) 
time per lookup, but we can spare only O(1) time. 
With these time constraints, the problem at hand is much 
harder. The optimal heuristic requires a perfect ordering of 
shapes in the inner loop, and any perfect ordering (i.e., sorting) 
requires at least O(mlogm), but we are only allowed O(1). 
Furthermore, the only known way to produce the perfect 
ordering of shapes in the outer loop requires O(m2) time (i.e. 
run the entire brute force algorithm), but we are only allowed 
O(m) time. The following two observations, however, offer us 
some hope for a fast algorithm. 

Observation 1:  In the outer loop, we do not actually need 
to find a perfect ordering to achieve dramatic speedup. All 
we really require is that, among the first few shapes being 
examined, there is at least one that has a large distance to 
its nearest neighbor. This will give the best_so_far_dist 
variable a large value early on, which will make the 
conditional test on line 7 of Table 3 be true more often, thus 
allowing more early abandonment of the inner loop. 
Observation 2:  In the inner loop, we also do not actually 
need to find a perfect ordering to achieve dramatic speedup. 
All we really require is that, among the first few shapes 
being examined there is at least one that has a distance to 
the candidate that is less than the current value of the 
best_so_far_dist variable. This is a sufficient condition to 
allow early termination of the inner loop. 

Based on these two observations, we propose an algorithm that 
uses locality-sensitive hashing to estimate similarity between 
pairs of shapes, and then generates heuristics to order the outer 
and inner loops.  

4.1 Symbolizing the Time Series 
The first step of our approximation algorithm is the 
symbolization of time series. Symbolization serves several 
important purposes. First, it provides us with a lower 
dimensional representation that reduces the noise effect in the 
raw time series while preserving its properties. Second, it 
gives us a string representation that will be used in the 
subsequent step by the location-sensitive hash function. 
There are many different symbolic approximations of time 
series in the literature [2][9][11]. In this work, we choose the 
Symbolic Aggregate ApproXimation (SAX) representation 
introduced by Lin, et al. [23], because it allows both 
dimensionality reduction and lower bounding. Below, we give 
a brief review of the SAX representation. We start with the 
Piecewise Aggregate Approximation (PAA) [15]. 

Definition 8. Piecewise Aggregate Approximation (PAA): 
Given a time series nj ccccC ,...,,...,, 21=  and the desired 
lower dimensionality w, the Piecewise Aggregate 
Approximation of time series C is a w-dimensional vector 

wccC ,,1 K=  where 
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In other words, the time series is divided into segments of 
equal length and each segment is substituted by its mean value.  
Having the PAA representation, we can apply a further 
transformation to obtain a discrete representation. It is 
desirable to have a discretization technique that will produce 
symbols with equiprobability. This is easily achieved since 
normalized time series have highly Gaussian distributions [23]. 
We can simply determine the “breakpoints” that will produce 
equal-sized areas under a Gaussian curve. 

Definition 9. Breakpoints: Breakpoints are a sorted list of 
numbers Β = β1,…, β|Σ|-1, where |Σ| is the size of the 
alphabet, such that the area under a N(0,1) Gaussian curve 
from βi  to βi+1 = 1/|Σ| (β0  and β|Σ|  are defined as -∞ and ∞, 
respectively). 

These breakpoints may be determined by referring to a 
statistical table. For example, Table 4 gives the breakpoints for 
values of |Σ| from 3 to 6.  

Table 4: A lookup table that contains the breakpoints for dividing 
a Gaussian distribution into an arbitrary number (from 3 to 6) of 
equiprobable regions 

           |Σ| 
βi                3 4 5 6 

β1 -0.43 -0.67 -0.84 -0.97 

β2 0.43 0 -0.25 -0.43 

β3  0.67 0.25 0 

β4   0.84 0.43 

β5    0.97 

Once the breakpoints have been obtained, we can assign the 
same letter to all PAA coefficients that belong to the same 
interval. For example, all PAA coefficients that are below the 
smallest breakpoint are mapped to the symbol “a”, all 
coefficients greater than or equal to the smallest breakpoint 
and less than the second smallest breakpoint are mapped to the 
symbol “b”, etc. Figure 10 illustrates this idea. 
 

Figure 10: A time series (thin black line) is discretized by first 
obtaining a PAA approximation (heavy gray line) and then using 
predetermined breakpoints to map the PAA coefficients into 
symbols (bold letters). In the example above, with n = 1992, w = 8, 
and |Σ| = 4, the time series is mapped to the word caadcbbd 

Note that in this example, the four symbols, “a”, “b”, “c”, and 
“d” are equiprobable, as desired. We call the concatenation of 
symbols that represent a time series a word. 

Definition 10. Word: A time series C of length n can be 
represented as a word wccC ˆ,,ˆˆ

1 K= .  Let αi denote the ith 
element of the alphabet, i.e., α1 = a and α2 = b. Then the 

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c

a
a

d c

b

b

d

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c

a
a

d c

b

b

d

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2



mapping from a PAA approximation C  to a word Ĉ  is 
obtained as follows:  

jijii cc ββα <≤= −1   iff   ˆ  

We have now completely defined SAX representation. Note 
that the tendency of time series to have Gaussian distributions 
[23] is not critical to the correctness of any algorithms that use 
SAX, including those in this work. A pathological dataset that 
violates this assumption will only affect the efficiency of the 
algorithms.  

4.2 Locality-Sensitive Hashing 
As we noted earlier, to give relatively good outer and inner 
orders, we need to quickly approximate the similarities 
between all shapes. Estimation of similarity based on sparse 
sampling of positions from feature vectors has been used in 
diverse areas for different purposes, including high-
dimensional search [28], multimedia indexing [38], and motif 
discovery [37], etc. Among the rich literature, the locality-
sensitive hashing search technique proposed by Indyk and 
Motwani [12] is perhaps the most referenced in this area. 
Since this technique is a cornerstone of our contribution, we 
give the formal definition of locality-sensitive hashing below. 

Definition 11. Locality-sensitive Hash Function: Consider 
a string s of length w over an alphabet Σ and k indices 
i1, … , ik chosen uniformly at random from the set {1, … , 
w}. Define the locality-sensitive hash function f : Σw → Σk 
by 

][],...,[],[)( 21 kisisissf =  

In other words, the locality-sensitive hash function 
concatenates characters from, at most, k distinct positions of 
string s. The resulting length k string is called an LSH value. 
Clearly, strings similar to each other are more likely to be 
hashed to the same LSH value. This is the most important 
property of locality-sensitive hashing, which enables efficient 
search, indexing, and many other works [12]. 
Unfortunately, this property does not hold for shapes because 
of the rotation variance. For example, the two arrowheads in 
Figure 11 are quite similar but differently aligned. Their time 
series representations are shifted by some offset and the 
resulting SAX words are completely different. They will not 
be hashed to the same LSH value no matter which k positions 
are chosen. 
 

Figure 11: Image A) and B) are very similar to each other, but 
have different orientations. The time series extracted from the two 
images look different (shifted by some offset). Note that the 
corresponding SAX words are not only shifted but also different 
by one symbol (the underscored position) 

Considering the above problem, we define a rotation invariant 
locality-sensitive hash function. 

Definition 12. Rotation invariant Locality-sensitive Hash 
Function: Consider a string s of length w over an alphabet 
Σ and k indices i1, … , ik chosen uniformly at random from 
the set {1, … , w}. Define the rotation invariant locality-
sensitive hash function f’: Σw → (Σk)w by 

)}(|][],...,[],[{)(' 21 sLSHIFTSpipipipsf k ∈=  
where LSHIFTS(s) is the set of all possible left shifts of 
string s. 

The rotation invariant locality-sensitive hash function maps a 
string s to a set of length k strings, each of which is the LSH 
value of one shift of s. By doing this, similar shapes (even with 
different orientations) are more likely to be mapped together to 
some LSH value. For example, consider the same two images 
in Figure 11. Using rotation invariant hashing, both of them 
are mapped to the LSH value “aa”, as shown in Figure 12. 
 

Figure 12: The same two images as in Figure 11 are both mapped 
to LSH value “aa”. Here w = 4, Σ = {a, b, c, d}, and k = 2. The 
indices chosen by the hash function are {1, 3} 

4.3 Similarity Estimation and Optimal 
Ordering Approximation 

At this point, we are ready to present our algorithm of 
estimating the similarity among shapes and approximating the 
optimal ordering of early abandoning search.   
Suppose we have a dataset S of m shapes (each has been 
converted to a time series of length n), the SAX word size w, 
and the SAX alphabet Σ. We begin by converting all time 
series to SAX words and placing them in an array. Note that 
each row index of the array refers back to the original shapes. 
Figure 13 gives a visual intuition of this, where both w and |Σ| 
are set to 4. Note that in spite of the redundancy of multiple 
rotations, the size of the array is much smaller than the time 
series data and inconsequential in size compared to the raw 
images. 
Once the array has been constructed, we randomly choose a 
rotation invariant locality-sensitive hash function and use it to 
hash SAX words into buckets. For example in Figure 13, we 
choose indices {1, 3}. Therefore the SAX words in the array 
are hashed into buckets based on the first and third columns of 
their shifts: first SAX word daca is hashed to buckets dc, aa, 
and cd; fourth SAX word adad is hashed to buckets aa and dd; 
so on and so forth.  If two shapes corresponding to SAX words 
i and j are hashed to the same bucket, we increase the count of 
cell(i, j) in the collision matrix by one, which has been 
initialized to all zeros. In our example, we increase the count 
of cell(1, 4) and cell(4, 1). 
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Figure 13: Illustration of the similarity estimation process. Left) The time series extracted from images are converted to SAX words and then 
inserted into an array. Middle) A hash function maps SAX words into buckets. Right) Collisions are recorded by incrementing the corresponding 
cells in the collision matrix 

 

Note that the words corresponding to shapes 2 and 3 are also 
hashed into a common bucket ba, yet they are not similar to 
each other (even after considering all rotations). This problem 
can be solved simply by repeating the hashing process a 
number of times, each time with a new, randomly chosen hash 
function. 
The above process of time series extracting, discretizing, 
hashing, and collision recording is formalized in Table 5. Note 
that the collision matrix is initialized to all zeros and is being 
accumulated throughout the entire process, while the hash 
buckets cannot be reused from one iteration to another. 

Table 5: Hash-based Optimal Order Approximation 
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Function  [Outer, Inner ] = Optimal_Approximation (S, n, w,  Σ) 

convert each shape in S  to time series of length n 

convert time series to SAX word with length w and alphabet Σ 

insert each SAX word to array A 

initialize collision matrix CM  to all zeros 

while (not stopping) 

  randomly choose a rotation invariant locality-sensitive hash function f’ 
  for each SAX word in array A 
    apply f’ on the SAX word 

    insert the index of the SAX word to all buckets it maps to 

  end 

  for all pairs (i, j ) in the same bucket 

    CM (i, j ) ++ 

  end 

  delete all buckets 

end 

generate Outer  and Inner  heuristics based on CM 
return [ Outer, Inner ] 

After repeating the process an appropriate number of times, 
we examine the collision matrix. If two shapes are similar, we 
expect the corresponding cell in the collision matrix to have a 
large value. If two shapes are different, the collision matrix 
tells us nothing. However, we can infer from the lack of a 
value in the collision matrix that two shapes are probably 
different. So we can use collision matrix as a guideline to 
decide the outer and inner orderings (line 16 in Table 5). 

Outer Heuristic: We scan the collision matrix row by row 
to find the largest number of collisions each shape has 
with others. Then we sort the shapes in ascending order 
using this value. The resulting ordering is given to the 

outer loop. 
The intuition behind our outer heuristic is that unusual shapes 
are very likely to have fewer collisions with others. By 
considering the candidate shapes in the ascendant order of the 
number of collisions they have, we have an excellent chance 
of giving a large value to the best_so_far_dist variable early on, 
which (as noted in observation 1) will make the conditional 
test on line 7 of Table 3 be true more often, thus allowing more 
early abandonment of the inner loop. 

Inner Heuristic: When candidate shape i is considered in 
the outer loop, the inner loop examines the shapes in the 
descending order of the number of collisions they have 
with shape i. 

The intuition behind our inner heuristic is that shapes which 
frequently collide with each other are very likely to be highly 
similar (this fact is at the heart of more than twenty research 
efforts [3][6][19][21][24][36]). As noted in observation 2, we 
just need to find one such shape that is similar enough (having 
a distance to the candidate less than the current value of the 
best_so_far_dist variable) to terminate the inner loop. 
There are several minor optimizations we can apply to the 
heuristic search algorithm. For example, imagine we are 
considering candidate Ci in the outer loop, and as we traverse 
through the inner loop, we find that time series Cj is close 
enough to it to allow early abandonment. In addition to saving 
time with the early abandonment, we can also delete Cj from 
the list of candidates in the outer loop (if it has not already 
been visited). The key observation is that since we are 
assuming a symmetric distance measure, if nearness to Cj 
disqualifies candidate Ci from being the discord, then the same 
nearness to Ci would also disqualify candidate Cj from being 
the discord. Empirically, this simple optimization gives a 
speedup factor of approximately two. In addition, there are 
several well-known optimizations to the Euclidean distance 
[16] and some special optimizations to rotation invariant 
Euclidean distance [20] that we can use. 
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4.4 Time Complexity and Parameter Settings 
Recall that we require the outer heuristic take at most O(m) 
time to calculate and the inner heuristic take O(1). We will 
now show that our optimal order approximation algorithm 
fulfills these requirements.  
As explained above, our algorithm has three steps. First, we 
convert shape time series to SAX words, requiring just one 
pass through the time series. So the time for this step is linear 
in the size of the dataset, m. Secondly, we apply rotation 
invariance hash functions on SAX words to separate them into 
buckets. This again only requires one pass through the SAX 
words for each iteration. In the third step, we pair the indices 
in the same buckets and update the collision matrix 
accordingly. This could have quadratic time complexity in the 
worst case. For practical datasets, however, the number of 
pairs is clearly sub-quadratic. More precisely, the time 
required by this step is O(i|CM|), where i is the number of 
iterations and |CM| is the number of non-zero entries in the 
collision matrix CM. In general, the collision matrix is 
extremely sparse, and the number of iterations is on the order 
of 10 to 100. So the time for this step is linear in the size of the 
dataset. To summarize, the time complexity of the optimal 
order approximation algorithm is O(m). 
For the optimal order approximation algorithm, we must 
choose three parameters: the SAX alphabet size |Σ|, the SAX 
word size w, and the number of iterations i. Recall that we 
would like the shape discords hash to some rarely used 
buckets, while all other shapes hash to popular buckets. If we 
choose very large values for |Σ| and/or w, almost all shapes 
will map to unique words; if we choose very small values for 
|Σ| and/or w, all shapes will map to just a small handful of 
words. Either of these situations is bad for separating shapes 
into buckets. 
The good news is that there is little freedom for the |Σ| 
parameter. Extensive experiments carried out by the current 
authors [6][17][18][19] and dozens of other researchers 
worldwide [3][21][32][36] suggest that a value of either 3 or 4 
is best for virtually any task on any dataset. After empirically 
confirming this on the current problem with experiments on 
more than 50 datasets, we will simply hardcode |Σ| = 4 for the 
rest of this work. Having fixed |Σ|, we performed an 
exhaustive empirical examination of the role of the w 
parameter. The best value for this parameter depends on the 
data. In general, relatively smooth and slowly changing 
datasets favor a smaller value of w, whereas more complex 
time series favor a larger value of w. Empirical studies show 
that the speedup does not critically depend on w parameter. 
We will simply use w = 20 for the rest of this work. 
For the setting of the number of iterations i, there are three 
possibilities. We can do a fixed number of iterations, or we 
can stop when the user is not willing to wait more time. Since 
the algorithm keeps the best_so_far_index variable, it always 
has a candidate discord to show at any point of time after the 
collision matrix has been built (this actually makes it an 
anytime algorithm [10]). Or we can stop when the collision 
matrix “converges” (the change of the values of its entries are 
less than some threshold). Again, for simplicity, we fix the 
number of iterations to 30 in this work. 

At the risk of redundancy, we emphasize once again that our 
algorithm produces exact answers. None of these parameters 
affects the correctness of the algorithm. Setting these 
parameters inappropriately will only affect the efficiency of 
the algorithm. 

5. Empirical Evaluations 
We begin this section by showing the utility of the shape 
discords in diverse domains, and continue by demonstrating 
that the algorithm can find discords very efficiently using the 
approximate optimal heuristic. For all the experiments in this 
work, we use rotation invariant Euclidean distance to measure 
the distance between two shapes. 

5.1 The Utility of Shape Discord 
To demonstrate the usage of shape discords in real world 
applications, we conducted discord searches on datasets from 
diverse domains.  

5.1.1 Butterfly Wings Dataset 
Butterfly wings are an interesting domain in which to test 
image mining algorithms. Depending on the area of research, 
the shape, color, texture or even fractal dimension of the wings 
may be of interest [4]. Here we restrict our attention to shape. 
The large size of such collections motivates the use of scalable 
algorithms. For example, the Morphbank archive [27] 
currently has approximately 2,000 butterfly images online, and 
many lepidopterists (butterfly collectors) have much larger 
personal collections.  
Consider the image dataset in Figure 14, which purportedly 
shows a (subset of) collection of Heliconius erato (Red 
Passion Flower) Butterflies.  
 

Figure 14: Six examples of butterflies, ostensibly all Heliconius 
erato (Red Passion Flower) Butterflies 

We ran our algorithm on the entire collection to find the most 
unusual butterfly, which happens to be the one shown in the 
lower right of Figure 14.  We ask entomologist Dr. Agenor 
Mafra-Neto to explain the result. In fact, the butterfly in 
question is not an example of Heliconius erato, it is an 
example of Heliconius melpomene (The Postman). The 
uncanny resemblance of the two is not a coincidence, but an 
example of Müllerian mimicry. In brief, it is believed that the 
two species originally looked different, and (perhaps 
independently) evolved the defense mechanism of tasting 
unpalatable. Being foul tasting is only useful if you advertise 
the fact, and once one species had evolved the orange/red 
flashes to communicate this to predators, the other species 
leveraged off the predators’ avoidance by mimicking their 
appearance. Figure 15 clearly shows why the one butterfly was 
singled out from the collection. 



 

Figure 15: The six butterflies from Figure 14 shown in their time 
series representations. One butterfly, shown with a bold line, is a 
different species to the rest 

5.1.2 Red Blood Cell Dataset 
We ran some tests on images extracted from red blood cell 
data. Figure 16 shows a subset of an image. The discord 
discovered is a teardrop shaped cell, or dacrocyte. Such cells 
are indicative of several blood disorders, including 
myelofibrosis, metaplasia and anemia. Note that for those cells 
which are almost round, we did not normalize the time series 
derived (cf Figure 6). 
 

Figure 16: The discord discovered in an image of red blood cells 
is a teardrop shaped cell, or dacrocyte, which is indicative of 
several blood disorders 

5.1.3 Fungus Dataset 
We perform similar experiments on images taken at even 
higher resolutions. Figure 17 shows an image taken with a 
scanning electron microscope. The image shows some spores 
produced by a rust (fungus) known as Gymnosporangium, 
which is a parasite of apple and pear trees. Note that one spore 
has sprouted an “appendage” known as a germ tube, and is 
thus singled out as the discord. 

 

Figure 17: Some spores produced by a fungus. One spore is 
different because it has a germ tube (Image by Charles Mims, 
University of Georgia) 

Note that the spore above and to the left of the discord is just 
beginning to start sprouting a germ tube. If it also had a full 
germ tube, then the discovered discord would not longer be so 
far away from its nearest neighbour (the “twin freak problem”, 
discussed in Section 2.1). As noted earlier we could mitigate 
this problem by a simple change in the definition of discord. 

5.2 The Utility of Heuristic Ordered Search 
We compare the performance of the discord discovery 
algorithm using our approximate optimal heuristic, the random 
heuristic (deciding the orders of outer and inner loops 
randomly), and brute force search. The measurement we use is 
the number of times that the distance function is called on line 
7 in Table 3. A simple analysis of the pseudo code (confirmed 
with a profiler) tells us that this single line of code accounts 
for more than 99% of the running time for the algorithm. This 
metric is implementation-free so it avoids the bias introduced 
by examining wall clock or CPU time, a problem noticed by 
many researchers [16][17][40]. 
For our approximate optimal heuristic, we include a startup 
cost of O(m), which is the time complexity required to build 
the collision matrix (cf. Section 4.4). For brute force search, 
the number of times that the distance function is called 
depends only on m and can simply be computed (recall m is 
the size of the dataset). If we had to actually run the brute 
force search for all the experiments in this work, it would take 
several years. 
We first tested a homogeneous dataset of 10,000 projectile 
point images. The time series derived are all of length 251. 
The results are shown in Figure 18. Each time we use a subset 
of the database (the size varies from 50 to 10,000) and 
measure the number of distance function calls required by 
each strategy, divided by the number of calls required by brute 
force. We can see that the cost of building the collision matrix 
is dwarfed by rotation invariant comparisons. The approximate 
optimal heuristic is faster even for small dataset of size 50. As 
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we expect, the approximate optimal heuristic performs better 
as the size of the dataset increases. By the time we have 
examined the entire database, our approximate optimal 
heuristic is one order of magnitude faster than the random 
heuristic and several orders of magnitude faster than brute 
force. 
 

Figure 18: The relative performance for three heuristic strategies 
on the Projectile Points dataset 

Sometimes techniques that work well for highly homogeneous 
datasets do not work well for heterogeneous datasets, and vice 
versa. We consider this possibility by testing on a 
heterogeneous dataset in Figure 19. The heterogeneous dataset 
consists of all the data used in the classification experiments 
(cf. Table 1), plus 1,000 projectile points. In total, it contains 
5,844 images and the derived time series are of length 512. In 
this dataset, it takes our approximate optimal heuristic slightly 
longer to beat random heuristic. However by the time we have 
seen 200 objects, we have already broken even and thereafter 
rapidly race towards beating random heuristic by one order of 
magnitude and brute force search by several orders of 
magnitude. 
 

Figure 19: The relative performance for three heuristic strategies 
on the Heterogeneous dataset 

As a final sanity check, we also measured the wall clock time 
of our best implementation of all methods. The results are 
essentially identical to those shown above, and are omitted in 
the sake of brevity. 

6. Conclusions 
In many applications, it can be useful to discover the most 
unusual shape in a collection of images. In this work, we 
introduce a novel definition of such shapes: the discord. This 
definition is particularly attractive to data mining applications 
because it is parameter-free. In addition, we propose an 
efficient algorithm to discover the shape discords. The 
algorithm uses locality-sensitive hashing to estimate similarity 
between pairs of shapes and generates heuristics to reorder the 
search in a more efficient way. On real problems, our 
algorithm is three to four orders of magnitude faster than the 
brute force algorithm. 
There are many directions in which this work may be 
extended. We intend to investigate image discords not only 
using shapes but also textures. In addition, we plan to conduct 
a field study of shape discord discovery in anthropology and 
archeology. 
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