
SAXually Explicit Images: Finding Unusual Shapes
Li Wei Eamonn Keogh Xiaopeng Xi

Department of Computer Science and Engineering
University of California, Riverside

{wli, eamonn, xxi}@cs.ucr.edu

Abstract
Among the visual features of multimedia content, shape is of
particular interest because humans can often recognize objects
solely on the basis of shape. Over the past three decades, there
has been a great deal of research on shape analysis, focusing
mostly on shape indexing, clustering, and classification. In this
work, we introduce the new problem of finding shape
discords, the most unusual shapes in a collection. We motivate
the problem by considering the utility of shape discords in
diverse domains including zoology, anthropology, and
medicine. While the brute force search algorithm has quadratic
time complexity, we avoid this by using locality-sensitive
hashing to estimate similarity between shapes which enables
us to reorder the search more efficiently. An extensive
experimental evaluation demonstrates that our approach can
speed up computation by three to four orders of magnitude.

Keywords
Anomaly Detection, Shape

1. Introduction
Large image databases are used in an increasing number of
applications in fields as diverse as entertainment, business, art,
engineering, and science [36]. Among the visual features
contained in an image (e.g. shape, color, and texture), shape is
of particular importance since humans can often recognize
objects on the basis of shape alone [42]. Because of this
special property, shape analysis has received much research
attention in the past three decades. Most research effort in the
shape analysis community is focused on indexing, clustering,
and classification.
In this work, we propose the new problem of finding the shape
that is least similar to all other shapes in a dataset. We call
such shapes discords. Figure 1 gives a visual intuition of a
shape discord found in an image dataset of 1,301 marine
creatures. Note that while most creatures are represented in the
dataset several times, the starfish only appears once, and is
thus reasonably singled out as the most unusual shape.

Figure 1: Right) Samples from a dataset of 1,301 images of marine
creatures. Left) The No.1 shape discord found in this dataset is a
starfish

Note also that any intuitive definition of shape discords will
have to allow for invariance to the classic transformations that

plague shape similarity measures. For example, the seahorse in
the top left corner must be rotated approximately 40 degrees
before matching another seahorse, and eliminating itself as a
contender for discord. The utility of shape discords is very
clear; as shown in Figure 1 they allow a user to find surprising
shapes in a massive database. Nevertheless, as we are
introducing a new problem, we feel it appropriate to
concretely motivate the utility of shape discords with several
examples from diverse fields.
Medical Data Mining: Drosophila melanogaster is the
species of fruit fly that has been most commonly used for
genetic experiments in the last century. Drosophila is one of
the most studied organisms in biological research, particularly
in genetics and developmental biology. Drosophila is small
and easy to breed in the laboratory, and its genome is short
and “simple” (only four pairs of chromosomes). Genetic
transformation techniques for this organism have been
available since the late eighties. One common type of
transformation is mutagenesis, where a specific gene is
mutated and the developing organism is examined for changes
in physiology or behavior. Figure 2 shows a subset of wing
images collected for a mutagenesis experiment carried out at
Florida State University [41], and the discord discovered by
our algorithm. Note that the entire wing image was analyzed
up to, but not including, the articulation (1 mm from wing
attachment to thorax).

Figure 2: Top) A subset of 32,028 images of Drosophila wings.
Bottom) The No.1 shape discord found in this dataset is a
damaged wing

While the discord discovered in this example is likely due to a
technicians mishandling of a sample and not due to the
phenotypical mutation, the result still hints at the utility of
shape discords. Note that a brute force attempt to find this
discord would have required 512,880,378 shape comparisons.

1st Discord SQUID Dataset (subset)1st Discord SQUID Dataset (subset)

1st Discord

Specimen 20773

1st Discord

Specimen 20773

Anthropological Data Mining: Anthropology offers many
interesting challenges for data mining, particularly mining of
shapes [7]. Examples of shapes which anthropologists may be
interested in mining include petroglyphs, pottery [7], projectile
points (“arrowheads”) [30], and bones [20].
It is difficult to overstate the need for efficient algorithms
when working with such datasets. As another example, the
number of projectile points in the collection at the authors’
institution exceeds one million objects [31]. We collected
more than 16,000 projectile point images for an unrelated
project, but can consider this dataset with our discord mining
algorithm. As Figure 3 shows, the dataset comes from diverse
sources, including photographs, onsite field sketches, and
silhouettes. Since we are ignoring all but the shape
information, this diversity of data sources makes no difference
to the task at hand.

Figure 3: Right) A subset of 16,000 images of projectile points
collected from diverse sources. Left) The top two discords found
in the dataset

While some subjectivity exists, the two discords discovered
are arguably the most unusual shapes in the dataset. While the
vast majority of projectile points are symmetric, the first
discord is an unusual asymmetric point from Texas. The
second discord is a typical and common “Basal Notched”
point, except this example has its right tang broken off.
Discovering such anomalies by eye even in a mere 16,000
images is non-trivial, and motivates the need for a scalable
algorithm.
Discords may have other uses. Shape clustering algorithms
often suffer diminished utility due to a handful of outlier
shapes in the dataset. We may reasonably expect discords to
be among those tricky cases. Finding and removing them can
serve as a preprocessing step for shape clustering algorithms.
This idea may also be beneficial for image compression with
techniques that use global bases, like Principal Component
Analysis (PCA), since very unusual images are bound to
introduce more bases (or more reconstruction error among the
‘true’ bases) [14].
As we have shown, the notion of unusual shapes can be useful
in different domains. However, to the best of our knowledge,
the problem of finding these shapes has not yet been addressed.
In this paper, we introduce a novel definition that defines
discord as the shape that has the largest distance (as a
measurement of difference) to its nearest neighbor. This
definition has the advantage that the unusualness of a shape is

not tied exclusively to its structure. Instead it depends on the
similarity between it and its nearest neighbor, and is therefore
context dependent. The definition eliminates the need of an
explicit description of usual shapes. In addition, this definition
requires zero parameters, which is especially suitable for data
mining applications [19]. In particular, as we demonstrate
below, we can apply our algorithm in very diverse domains
without having to do any tuning or “tweaking” of any kind.
Our definition of shape discord would be of little use to the
data mining community without an efficient algorithm to
discover it. The brute force algorithm requires a quadratic “all-
to-all” comparison, which is simply untenable for large real-
world datasets. We introduce an algorithm that uses locality-
sensitive hashing to quickly discover likely candidates for
discords, and use this information to generate heuristics to
reorder the search in a more efficient way. The algorithm is
able to avoid many fruitless calculations and can achieve three
to four orders of magnitude speedup on real problems.
The rest of the paper is organized as follows. In Section 2, we
discuss some background material and formally define the
problem of shape discord discovery. In Section 3, we
introduce a general framework for shape discord searching and
provide observations for speeding it up. Section 4 presents an
algorithm to enable an efficient search strategy based on
locality-sensitive hashing. We perform a comprehensive
empirical evaluation in Section 5 to demonstrate both the
utility of shape discords and the efficiency of our search
strategy. Finally Section 6 offers some conclusions and
directions for future work.

2. Background and Related Work
This section begins with some necessary background material
before introducing the formal definition of shape discords. We
then discuss why existing novelty/outlier detection approaches
are not suitable for the problem at hand.

2.1 Shape Representation and Distance Measure
We consider the shape of an object as a binary image
representing the outline of the object [25]. In order to
find/index/classify a shape, the shape must be described or
represented in some way. However this is a difficult task as
shapes may be corrupted with noise, defects, arbitrary
distortions, and occlusions. There are many shape
representations and description techniques in the literature.
Among them, one-dimensional representations have been
shown to achieve comparable or superior accuracy in shape
matching [20]. Therefore this simple representation has been
used by an increasingly large fraction of the literature
[8][20][38].
There exist dozens of techniques to convert shapes into one-
dimensional representations (also known as pseudo “time
series”). We refer the interested reader to [25] and [42] for
excellent surveys. Note that our approach works for any of
these representations. To give the reader a concrete idea, in
Figure 4, we show the well-known centroid distance approach
to convert a shape into a time series [42]. This approach is
particularly attractive because it requires zero parameters and,
after suitable normalization, it removes the effects of scale and
offset. Rotation will be discussed below.

1st Discord
(Castroville
Cornertang)

2nd Discord
(Martindale

point)

1st Discord
(Castroville
Cornertang)

2nd Discord
(Martindale

point)

Figure 4: Shapes can be converted to time series. A) A bitmap of a
fruit flies wing. B) The distance from every point on the profile to
the center is measured and treated as the Y-axis value of a time
series of length n (C)

Even though this one-dimensional representation is very
simple, we claim that it is very effective in preserving features
of the original shape. To show this, we conducted a
classification experiment on several publicly available shape
datasets, as shown in Table 1. For each dataset, we converted
the shapes to one-dimensional representations and performed
one-nearest-neighbor classification using rotation invariant
Euclidean distance (explained later). The error rates, as
measured by leaving-one-out evaluation, are shown in the
second column of Table 1. In the third column, we list the best
error rates reported by other works, using more complicated
shape representations/ distance measures.

Table 1: The classification error rate on several datasets
Dataset Name Error Rate using 1D

representation (%)
Error Rate using other

representations (%)
Swedish Leaves 13.33% 17.82% [35]
Chicken 19.96% 20.5% [26]
MixedBag 4.375% 6% [40]
Diatoms 27.53% 26% [13]

These experiments show that the very simple time series
representations of shapes and the simple Euclidean distance
can be competitive to other more complex representations and
distance measures. Therefore in this work, we only consider
one-dimensional representation of the shapes.
From now on, we will use the words ‘shape’ and ‘time series’
interchangeably. Let us first formally define time series.

Definition 1. Time Series: A time series nccC ,...,1= is an
ordered set of n real-valued variables. In our case the
ordering is not temporal but spatial; it is defined by a
clockwise sweep of the shape boundary.

Recall that our task is to find the most unusual shape within a
collection. We formally define the problem below.

Definition 2. Shape Discord: Given a collection of shapes
S, shape D is the discord of S if D has the largest distance to
its nearest match. That is, ∀ shape C in S, the nearest match
MC of C and the nearest match MD of D, Dist(D, MD) >
Dist(C, MC).

Note that if there are two unusual shapes in the dataset and
they are both unusual in the same way (the “twin freak
problem”), we can simply change the definition to “find the
shape that has the maximal distance to its second nearest
neighbor”. For simplicity, we will not consider this case in this

work. However it is a trivial modification.
In many cases, we may be interested in examining the top k
discords, which is a simple extension of the previous
definition.

Definition 3. kth Shape Discord: Given a collection of
shapes S, shape D is the kth discord of S if D has the kth
largest distance to its nearest match.

A critical component of the previous two definitions is the
function to measure the distance between two time series,
which we formally define below.

Definition 4. Distance Function: Dist is a function that has
two time series Q and C (both of length n) as inputs and
returns a nonnegative value as the distance from Q to C.
For subsequent definitions to work, we require that the
function be symmetric, that is, Dist(Q, C) = Dist(C, Q).

As a concrete instantiation of a distance function, we define
the most common distance measure for time series, Euclidean
distance [6][16].

Definition 5. Euclidean Distance: Given two time series Q
and C of length n, the Euclidean distance between them is
defined as

() ()∑ −≡
=

n

i
ii cqCQED

1

2,

If the shapes are rotationally aligned, Euclidean distance will
usually reflect the intuitive similarity. However if the shapes
are not rotationally aligned, the corresponding time series will
also be misaligned. In this case, Euclidean distance can
produce extremely poor results. To overcome this problem, we
need the distance function to be rotation invariant. To achieve
this, we need to hold one shape fixed, rotate the other, and
record the minimum distance of all possible rotations. We
accomplish this in the time series space by representing all
rotations of a shape by a rotation matrix.

Definition 6. Rotation Matrix: Given a time series C of
length n, its possible rotations constitute a rotation matrix C
of size n by n

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

−

−

−

121

112

121

,,,,

,,,,
,,,,

nn

nn

nn

cccc

cccc
cccc

K

M

K

K

C

where each row of the matrix is simply a time series shifted
(rotated) by one time point from its neighbors. For
notational convenience, we denote the ith row as Ci, which
allows us to denote the rotation matrix in the more compact
form of C = {C1, C2,…, Cn}.

Note that we do not need to actually build the full matrix if
space is premium, however doing this simplifies the notation
and allows some optimizations [20].
We can now define the Rotation invariant Euclidean Distance
between two time series.

Definition 7. Rotation invariant Euclidean Distance:
Given two time series Q and C of length n, the rotation
invariant Euclidean distance between them is defined as

()j

nj
CQEDCQRED ,min),(

1 ≤≤
=

The rotation invariant Euclidean distance provides an intuitive
measure of the distance between two shapes, at the expense of

0 200 400 600 800 1000

Drosophila
melanogaster

A) B) C)

0 200 400 600 800 10000 200 400 600 800 1000

Drosophila
melanogaster

A) B) C)

efficiency. The time complexity to compare two time series of
length n is O(n2).
This long discussion of rotation invariance is motivated by the
observation that shapes are often rotated in real world domains.
For example, Figure 5 shows two sample wing images from a
collection of Drosophila images. Note that the rotation of
images can vary even in such a controlled domain.

Figure 5: Two sample wing images from a collection of
Drosophila images. Note that the rotation of images can vary even
in such a structured domain

This distance definition can be easily generalized to handle
enantiomorphic invariance (mirror image), which may be
useful in some domains. For example, when matching faces,
the best match may simply be facing the opposite direction. If
enantiomorphic invariance is required, we can trivially achieve
this by augmenting matrix C to contain Ci

 and reverse(Ci
) for

1 ≤ i ≤ n.
Before calling the distance function, each time series is
normalized to have mean zero and a standard deviation of one,
because it is well understood that it is generally meaningless to
compare time series with different offsets and scales [16].
However, when dealing with time series that are derived from
shapes, there is one important exception: if a shape is almost
round, we should not do the normalization. The reason is, for
nearly circular shapes, the distance from every point on the
profile to the center is almost the same. So the resulting time
series will be almost a flat line. However even a perfect circle
will not produce a perfectly straight line due to rasterization
effects. Normalization will exaggerate slight variations of the
flat line, producing apparent features in the time series. We
have shown such an example in Figure 6. Therefore, whenever
we detect that the sum of the differences between each data
point and the mean value of the time series is less than a
predefined threshold, we will not do the normalization. Note
that this is a very rare case that only happens in one of the six
domains we examined (see Section 5.1.2).

Figure 6: Top) The time series of two red cells are almost flat lines
and are very similar to each other. Bottom) After normalization the
two time series look very different because the tiny variances are
enlarged

2.2 Can Existing Approaches Help?
At this point, we have shown that shapes can be converted to
time series. One might ask whether the existing time series
novelty detection methods could solve the problem at hand.
We believe the answer is no. We cannot leverage off the
existing time series novelty detection techniques because most
of them assume that time series subsequences are extracted by
sliding a window across a long time series [17][18][34], while
we have individual time series here.
Another possibility would be to simply project the shape time
series into n-dimensional space and use existing outlier
detection methods [5][22]. The problem with this approach is
that most outlier detection methods require the distance
function be a metric. While the Euclidean distance is a metric,
the rotation invariant Euclidean distance is not. Even if we
could bypass or mitigate this problem, most of the current
outlier detection methods degrade to quadratic time
complexity for high dimensional data.
The above analysis suggests that existing algorithms are of
little utility for finding shape discords. This motivates the
introduction of our original algorithm in the next section. Our
work is closest in spirit to the unusual time series detection
work of [17], from which we take the name “discord”.
However, detecting unusual time series is a considerably
easier problem because they do not have to deal with the
rotation invariance problem, which (as we shall show below)
considerably adds to the complexity of the problem.

3. Shape Discords Discovery Framework
Given a shape dataset S of size m, the brute force algorithm for
finding the discord is simple and obvious. We simply take
each time series and find its distance to its nearest match. The
one that has the greatest such value is the discord. The pseudo
code of this simple algorithm is shown in Table 2.

Table 2: Brute Force Discord Discovery

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Function [dist, index] = BruteForce_Search(S)

best_so_far_dist = 0

best_so_far_index = NaN

for p = 1 to |S | // begin outer loop

 nearest_neighbor_dist = infinity

 for q = 1 to |S | // begin inner loop

 if p!= q // do not compare to self
 if Dist (Cp , Cq) < nearest_neighbor_dist

 nearest_neighbor_dist = Dist (Cp , Cq)

 end

 end

 end // end inner loop

 if nearest_neighbor_dist > best_so_far_dist

 best_so_far_dist = nearest_neighbor_dist

 best_so_far_index = p

 end

end // end outer loop

return [best_so_far_dist, best_so_far_index]

While the brute force algorithm is intuitive, we will show a
running example to develop some intuition on how to improve
this algorithm. Figure 7 shows a “trace” of the brute force
algorithm on a simple dataset of six marine creatures. The first
discord happens to be the starfish (shape 4), whose distance to
its nearest match is 26.7 (shown in bold in Figure 7). To find
the discord, the brute force algorithm searches the dataset with
nested loops, where the outer loop searches over the rows for
each candidate shape, and the inner loop scans across the

A B

0 10 20 30 40 50 60-4

-2

0

2

A

B

Before Normalization:

After Normalization:

A B

0 10 20 30 40 50 60-4

-2

0

2

A

B

Before Normalization:

After Normalization:

columns to identify the candidate’s nearest rotation invariant
match. The brute force algorithm needs to compute the
distance between 6*(6-1)/2 = 15 pairs of shapes (the upper
triangle of the distance matrix).

Figure 7: The brute force algorithm searches from top to bottom
and left to right. It needs to compute 15 cells of the distance
matrix (the shaded cells). Note that cells on the diagonal are blank
because we do not compare a shape to itself

The brute force algorithm is easy to implement and produces
exact results. However, it has O(m2) time complexity (recall
that m is the size of the dataset S), which is simply untenable
for even moderately large datasets. Note that even though the
time complexity is quadratic, the space needed by the brute
force algorithm is constant. We show the full distance matrix
only for clarity. In actual implementation, we can build and
examine only one cell at a time.
The astute reader may have already noticed a way to speed up
the search. In the inner loop, we do not actually need to find
the true nearest neighbor to the current candidate. Once we
find any shape that is closer to the current candidate than the
best_so_far_dist variable, we can stop the search in that row,
safe in the knowledge that the current candidate could not be
the shape discord. We call this simple optimization early
abandoning. If we apply this optimization to the marine
creature dataset, we only need to compute the distance
between 12 pairs of shapes. Figure 8 shows a trace of the
search process.

Figure 8: Every time we find a shape having a closer distance to
one of its neighbors than the best_so_far_dist value, we can stop
the search. This technique reduces the number of computed cells
to 12

With early abandoning, we can save some computation. The
utility of this optimization depends on the order in which the
outer loop considers the candidates for the discord, and the
order in which the inner loop visits the other shapes. Note that
there is nothing special about the top-to-bottom (outer loop),
left-to-right (inner loop) ordering that we have been using. It is
simply the classic default of nested “for” loops. As far as the
brute force algorithm is concerned, any permutation of the
orders is acceptable. However, the early abandoning
algorithm can benefit from certain permutations. For example,
imagine that a friendly oracle gives us the best possible

orderings as follows. For outer loop, shapes are sorted in
descending order of the distance to their nearest neighbor, so
that the true discord is the first object examined. For inner
loop, shapes are sorted in ascending order of the distance to
the current candidate. With these orderings, the first
invocation of the inner loop will run to completion. Thereafter,
all subsequent invocations of the inner loop will be abandoned
during the very first iteration. Returning to our running
example (see Figure 9), we only need to compute the distance
between 9 pairs of shapes by searching in the best orderings.

Figure 9: In a hypothetical situation where we know the best
orders for outer and inner loops, the search is much more efficient.
We consider the rows in the order of 4, 1, 3, 6, 5, 2. For shape 4
the inner loop runs to completion. For other shapes, the inner
loops will early abandon on the first iteration. In total, only 9 cells
of the distance matrix are computed (the shaded cells)

The above example motivates the introduction of a slightly
expanded version of the brute force algorithm. The new
algorithm is augmented by the early abandoning technique
(line 7 in Table 3) and the additional outer and inner heuristics.
The pseudo code is shown in Table 3.

Table 3: Heuristic Discord Discovery

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Function [dist, index] = Heuristic_Search(S, Outer, Inner)
best_so_far_dist = 0

best_so_far_index = NaN

for each index p given by heuristic Outer // begin outer loop

 nearest_neighbor_dist = infinity

 for each index q given by heuristic Inner // begin inner loop

 if p!= q // do not compare to self
 if Dist (Cp , Cq) < best_so_far_dist

 break // break out of inner loop

 end

 if Dist (Cp , Cq) < nearest_neighbor_dist

 nearest_neighbor_dist = Dist (Cp , Cq)

 end

 end

 end // end inner loop

 if nearest_neighbor_dist > best_so_far_dist

 best_so_far_dist = nearest_neighbor_dist

 best_so_far_index = p

 end

end // end outer loop

return [best_so_far_dist, best_so_far_index]

Now we have reduced the discord discovery problem to a
generic framework where all one needs to do is to specify the
heuristics. Our goal then is to find the best possible
approximation to the optimal ordering, which is the topic of
the next section.

4. Approximating the Optimal Ordering
When trying to approximate the optimal ordering, we need to
keep one thing in mind: we should not attempt to “cheat” the
algorithm. For example, we could provide very good orderings
if we are allowed to compute the distances between each pair

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

4.1
26.7

3.0

2.4

2.4
5.9

4.1
26.7

3.0

2.4

2.4
5.91

2

3

4

5

6

1 2 3 4 5 6 nn_dist

1

2

3

4

5

6

1

2

3

4

5

6

1 2 3 4 5 6 nn_dist1 2 3 4 5 6 nn_dist

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

1 2 3 4 5 6

1

2

3

4

5

6

bsf_dist = 5.9

2.4 < 5.9

4.1 < 5.9

bsf_dist = 26.7

2.4 < 26.7

3.0 < 26.7

comments1 2 3 4 5 61 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

bsf_dist = 5.9

2.4 < 5.9

4.1 < 5.9

bsf_dist = 26.7

2.4 < 26.7

3.0 < 26.7

comments

bsf_dist = 5.9

2.4 < 5.9

4.1 < 5.9

bsf_dist = 26.7

2.4 < 26.7

3.0 < 26.7

comments

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

8.44.128.110.15.9
28.826.728.129.029.3

28.8

26.7

29.0
29.3

3.48.43.018.4

3.44.12.419.5

3.02.410.119.1
18.419.55.919.1

1 2 3 4 5 6

1

2

3

4

5

6

1 2 3 4 5 61 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

of the shapes beforehand! However this is simply hiding the
time complexity in a different part of the implementation.
Therefore we must insist that the outer heuristic (invoked only
once) takes at most O(m) to calculate and the inner heuristic
(invoked m times) takes O(1). Note that this requirement
precludes the possibility of using R-trees, K-d trees or other
classic indexing algorithms: they require at least O(log(m))
time per lookup, but we can spare only O(1) time.
With these time constraints, the problem at hand is much
harder. The optimal heuristic requires a perfect ordering of
shapes in the inner loop, and any perfect ordering (i.e., sorting)
requires at least O(mlogm), but we are only allowed O(1).
Furthermore, the only known way to produce the perfect
ordering of shapes in the outer loop requires O(m2) time (i.e.
run the entire brute force algorithm), but we are only allowed
O(m) time. The following two observations, however, offer us
some hope for a fast algorithm.

Observation 1: In the outer loop, we do not actually need
to find a perfect ordering to achieve dramatic speedup. All
we really require is that, among the first few shapes being
examined, there is at least one that has a large distance to
its nearest neighbor. This will give the best_so_far_dist
variable a large value early on, which will make the
conditional test on line 7 of Table 3 be true more often, thus
allowing more early abandonment of the inner loop.
Observation 2: In the inner loop, we also do not actually
need to find a perfect ordering to achieve dramatic speedup.
All we really require is that, among the first few shapes
being examined there is at least one that has a distance to
the candidate that is less than the current value of the
best_so_far_dist variable. This is a sufficient condition to
allow early termination of the inner loop.

Based on these two observations, we propose an algorithm that
uses locality-sensitive hashing to estimate similarity between
pairs of shapes, and then generates heuristics to order the outer
and inner loops.

4.1 Symbolizing the Time Series
The first step of our approximation algorithm is the
symbolization of time series. Symbolization serves several
important purposes. First, it provides us with a lower
dimensional representation that reduces the noise effect in the
raw time series while preserving its properties. Second, it
gives us a string representation that will be used in the
subsequent step by the location-sensitive hash function.
There are many different symbolic approximations of time
series in the literature [2][9][11]. In this work, we choose the
Symbolic Aggregate ApproXimation (SAX) representation
introduced by Lin, et al. [23], because it allows both
dimensionality reduction and lower bounding. Below, we give
a brief review of the SAX representation. We start with the
Piecewise Aggregate Approximation (PAA) [15].

Definition 8. Piecewise Aggregate Approximation (PAA):
Given a time series nj ccccC ,...,,...,, 21= and the desired
lower dimensionality w, the Piecewise Aggregate
Approximation of time series C is a w-dimensional vector

wccC ,,1 K= where

∑
+−=

=

i
w
n

i
w
nj

ji c
n
wc

1)1(

In other words, the time series is divided into segments of
equal length and each segment is substituted by its mean value.
Having the PAA representation, we can apply a further
transformation to obtain a discrete representation. It is
desirable to have a discretization technique that will produce
symbols with equiprobability. This is easily achieved since
normalized time series have highly Gaussian distributions [23].
We can simply determine the “breakpoints” that will produce
equal-sized areas under a Gaussian curve.

Definition 9. Breakpoints: Breakpoints are a sorted list of
numbers Β = β1,…, β|Σ|-1, where |Σ| is the size of the
alphabet, such that the area under a N(0,1) Gaussian curve
from βi to βi+1 = 1/|Σ| (β0 and β|Σ| are defined as -∞ and ∞,
respectively).

These breakpoints may be determined by referring to a
statistical table. For example, Table 4 gives the breakpoints for
values of |Σ| from 3 to 6.

Table 4: A lookup table that contains the breakpoints for dividing
a Gaussian distribution into an arbitrary number (from 3 to 6) of
equiprobable regions

 |Σ|
βi 3 4 5 6

β1 -0.43 -0.67 -0.84 -0.97

β2 0.43 0 -0.25 -0.43

β3 0.67 0.25 0

β4 0.84 0.43

β5 0.97

Once the breakpoints have been obtained, we can assign the
same letter to all PAA coefficients that belong to the same
interval. For example, all PAA coefficients that are below the
smallest breakpoint are mapped to the symbol “a”, all
coefficients greater than or equal to the smallest breakpoint
and less than the second smallest breakpoint are mapped to the
symbol “b”, etc. Figure 10 illustrates this idea.

Figure 10: A time series (thin black line) is discretized by first
obtaining a PAA approximation (heavy gray line) and then using
predetermined breakpoints to map the PAA coefficients into
symbols (bold letters). In the example above, with n = 1992, w = 8,
and |Σ| = 4, the time series is mapped to the word caadcbbd

Note that in this example, the four symbols, “a”, “b”, “c”, and
“d” are equiprobable, as desired. We call the concatenation of
symbols that represent a time series a word.

Definition 10. Word: A time series C of length n can be
represented as a word wccC ˆ,,ˆˆ

1 K= . Let αi denote the ith
element of the alphabet, i.e., α1 = a and α2 = b. Then the

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c

a
a

d c

b

b

d

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

0 200 400 600 800 1000 1200 1400 1600 1800 2000

c

a
a

d c

b

b

d

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2

mapping from a PAA approximation C to a word Ĉ is
obtained as follows:

jijii cc ββα <≤= −1 iff ˆ

We have now completely defined SAX representation. Note
that the tendency of time series to have Gaussian distributions
[23] is not critical to the correctness of any algorithms that use
SAX, including those in this work. A pathological dataset that
violates this assumption will only affect the efficiency of the
algorithms.

4.2 Locality-Sensitive Hashing
As we noted earlier, to give relatively good outer and inner
orders, we need to quickly approximate the similarities
between all shapes. Estimation of similarity based on sparse
sampling of positions from feature vectors has been used in
diverse areas for different purposes, including high-
dimensional search [28], multimedia indexing [38], and motif
discovery [37], etc. Among the rich literature, the locality-
sensitive hashing search technique proposed by Indyk and
Motwani [12] is perhaps the most referenced in this area.
Since this technique is a cornerstone of our contribution, we
give the formal definition of locality-sensitive hashing below.

Definition 11. Locality-sensitive Hash Function: Consider
a string s of length w over an alphabet Σ and k indices
i1, … , ik chosen uniformly at random from the set {1, … ,
w}. Define the locality-sensitive hash function f : Σw → Σk
by

][],...,[],[)(21 kisisissf =

In other words, the locality-sensitive hash function
concatenates characters from, at most, k distinct positions of
string s. The resulting length k string is called an LSH value.
Clearly, strings similar to each other are more likely to be
hashed to the same LSH value. This is the most important
property of locality-sensitive hashing, which enables efficient
search, indexing, and many other works [12].
Unfortunately, this property does not hold for shapes because
of the rotation variance. For example, the two arrowheads in
Figure 11 are quite similar but differently aligned. Their time
series representations are shifted by some offset and the
resulting SAX words are completely different. They will not
be hashed to the same LSH value no matter which k positions
are chosen.

Figure 11: Image A) and B) are very similar to each other, but
have different orientations. The time series extracted from the two
images look different (shifted by some offset). Note that the
corresponding SAX words are not only shifted but also different
by one symbol (the underscored position)

Considering the above problem, we define a rotation invariant
locality-sensitive hash function.

Definition 12. Rotation invariant Locality-sensitive Hash
Function: Consider a string s of length w over an alphabet
Σ and k indices i1, … , ik chosen uniformly at random from
the set {1, … , w}. Define the rotation invariant locality-
sensitive hash function f’: Σw → (Σk)w by

)}(|][],...,[],[{)(' 21 sLSHIFTSpipipipsf k ∈=
where LSHIFTS(s) is the set of all possible left shifts of
string s.

The rotation invariant locality-sensitive hash function maps a
string s to a set of length k strings, each of which is the LSH
value of one shift of s. By doing this, similar shapes (even with
different orientations) are more likely to be mapped together to
some LSH value. For example, consider the same two images
in Figure 11. Using rotation invariant hashing, both of them
are mapped to the LSH value “aa”, as shown in Figure 12.

Figure 12: The same two images as in Figure 11 are both mapped
to LSH value “aa”. Here w = 4, Σ = {a, b, c, d}, and k = 2. The
indices chosen by the hash function are {1, 3}

4.3 Similarity Estimation and Optimal
Ordering Approximation

At this point, we are ready to present our algorithm of
estimating the similarity among shapes and approximating the
optimal ordering of early abandoning search.
Suppose we have a dataset S of m shapes (each has been
converted to a time series of length n), the SAX word size w,
and the SAX alphabet Σ. We begin by converting all time
series to SAX words and placing them in an array. Note that
each row index of the array refers back to the original shapes.
Figure 13 gives a visual intuition of this, where both w and |Σ|
are set to 4. Note that in spite of the redundancy of multiple
rotations, the size of the array is much smaller than the time
series data and inconsequential in size compared to the raw
images.
Once the array has been constructed, we randomly choose a
rotation invariant locality-sensitive hash function and use it to
hash SAX words into buckets. For example in Figure 13, we
choose indices {1, 3}. Therefore the SAX words in the array
are hashed into buckets based on the first and third columns of
their shifts: first SAX word daca is hashed to buckets dc, aa,
and cd; fourth SAX word adad is hashed to buckets aa and dd;
so on and so forth. If two shapes corresponding to SAX words
i and j are hashed to the same bucket, we increase the count of
cell(i, j) in the collision matrix by one, which has been
initialized to all zeros. In our example, we increase the count
of cell(1, 4) and cell(4, 1).

0 200 400 600 800 1000 1200

0 200 400 600 800 1000 1200

adad

daca

Images Time Series Representations SAX Words
A)

B)

0 200 400 600 800 1000 12000 200 400 600 800 1000 1200

0 200 400 600 800 1000 12000 200 400 600 800 1000 1200

adad

daca

Images Time Series Representations SAX Words
A)

B)

adad
dada
adad
dada

cada
adac
daca
acad

cada
adac
daca
acad

dada dada

acad acad

dd
aa
dd
aa

dc
aa
cd

dc
aa
cd

Images SAX Words
A)

Shifts LSH Values

B)

Images SAX Words
A)

Shifts LSH Values

B)

Figure 13: Illustration of the similarity estimation process. Left) The time series extracted from images are converted to SAX words and then
inserted into an array. Middle) A hash function maps SAX words into buckets. Right) Collisions are recorded by incrementing the corresponding
cells in the collision matrix

Note that the words corresponding to shapes 2 and 3 are also
hashed into a common bucket ba, yet they are not similar to
each other (even after considering all rotations). This problem
can be solved simply by repeating the hashing process a
number of times, each time with a new, randomly chosen hash
function.
The above process of time series extracting, discretizing,
hashing, and collision recording is formalized in Table 5. Note
that the collision matrix is initialized to all zeros and is being
accumulated throughout the entire process, while the hash
buckets cannot be reused from one iteration to another.

Table 5: Hash-based Optimal Order Approximation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Function [Outer, Inner] = Optimal_Approximation (S, n, w, Σ)

convert each shape in S to time series of length n

convert time series to SAX word with length w and alphabet Σ

insert each SAX word to array A

initialize collision matrix CM to all zeros

while (not stopping)

 randomly choose a rotation invariant locality-sensitive hash function f’
 for each SAX word in array A
 apply f’ on the SAX word

 insert the index of the SAX word to all buckets it maps to

 end

 for all pairs (i, j) in the same bucket

 CM (i, j) ++

 end

 delete all buckets

end

generate Outer and Inner heuristics based on CM
return [Outer, Inner]

After repeating the process an appropriate number of times,
we examine the collision matrix. If two shapes are similar, we
expect the corresponding cell in the collision matrix to have a
large value. If two shapes are different, the collision matrix
tells us nothing. However, we can infer from the lack of a
value in the collision matrix that two shapes are probably
different. So we can use collision matrix as a guideline to
decide the outer and inner orderings (line 16 in Table 5).

Outer Heuristic: We scan the collision matrix row by row
to find the largest number of collisions each shape has
with others. Then we sort the shapes in ascending order
using this value. The resulting ordering is given to the

outer loop.
The intuition behind our outer heuristic is that unusual shapes
are very likely to have fewer collisions with others. By
considering the candidate shapes in the ascendant order of the
number of collisions they have, we have an excellent chance
of giving a large value to the best_so_far_dist variable early on,
which (as noted in observation 1) will make the conditional
test on line 7 of Table 3 be true more often, thus allowing more
early abandonment of the inner loop.

Inner Heuristic: When candidate shape i is considered in
the outer loop, the inner loop examines the shapes in the
descending order of the number of collisions they have
with shape i.

The intuition behind our inner heuristic is that shapes which
frequently collide with each other are very likely to be highly
similar (this fact is at the heart of more than twenty research
efforts [3][6][19][21][24][36]). As noted in observation 2, we
just need to find one such shape that is similar enough (having
a distance to the candidate less than the current value of the
best_so_far_dist variable) to terminate the inner loop.
There are several minor optimizations we can apply to the
heuristic search algorithm. For example, imagine we are
considering candidate Ci in the outer loop, and as we traverse
through the inner loop, we find that time series Cj is close
enough to it to allow early abandonment. In addition to saving
time with the early abandonment, we can also delete Cj from
the list of candidates in the outer loop (if it has not already
been visited). The key observation is that since we are
assuming a symmetric distance measure, if nearness to Cj
disqualifies candidate Ci from being the discord, then the same
nearness to Ci would also disqualify candidate Cj from being
the discord. Empirically, this simple optimization gives a
speedup factor of approximately two. In addition, there are
several well-known optimizations to the Euclidean distance
[16] and some special optimizations to rotation invariant
Euclidean distance [20] that we can use.

dbca
baac
dada
::::::::

adab

acad
dbca
baac
dada
::::::::

adab

acad

cada
adac
daca
acad

cada
adac
daca
acad

adad
dada
adad
dada

aa:

ab:

ac:

ba:

1

m

2

3

4

1

1
22

2
11

1

12

1

1
22

2
11

1

12

4 m1 4 m1

32 32

33

32 32

1

m

2

3

4

1 m2 3 4

bd:

ca:

cd:

db:

mm

33

21 21

mm

dc: 21 21

dd: 44

…

…

Image 1

Image 4

Shifts
Array

Buckets

Collision Matrix

Time Series 1

Time Series 4

4.4 Time Complexity and Parameter Settings
Recall that we require the outer heuristic take at most O(m)
time to calculate and the inner heuristic take O(1). We will
now show that our optimal order approximation algorithm
fulfills these requirements.
As explained above, our algorithm has three steps. First, we
convert shape time series to SAX words, requiring just one
pass through the time series. So the time for this step is linear
in the size of the dataset, m. Secondly, we apply rotation
invariance hash functions on SAX words to separate them into
buckets. This again only requires one pass through the SAX
words for each iteration. In the third step, we pair the indices
in the same buckets and update the collision matrix
accordingly. This could have quadratic time complexity in the
worst case. For practical datasets, however, the number of
pairs is clearly sub-quadratic. More precisely, the time
required by this step is O(i|CM|), where i is the number of
iterations and |CM| is the number of non-zero entries in the
collision matrix CM. In general, the collision matrix is
extremely sparse, and the number of iterations is on the order
of 10 to 100. So the time for this step is linear in the size of the
dataset. To summarize, the time complexity of the optimal
order approximation algorithm is O(m).
For the optimal order approximation algorithm, we must
choose three parameters: the SAX alphabet size |Σ|, the SAX
word size w, and the number of iterations i. Recall that we
would like the shape discords hash to some rarely used
buckets, while all other shapes hash to popular buckets. If we
choose very large values for |Σ| and/or w, almost all shapes
will map to unique words; if we choose very small values for
|Σ| and/or w, all shapes will map to just a small handful of
words. Either of these situations is bad for separating shapes
into buckets.
The good news is that there is little freedom for the |Σ|
parameter. Extensive experiments carried out by the current
authors [6][17][18][19] and dozens of other researchers
worldwide [3][21][32][36] suggest that a value of either 3 or 4
is best for virtually any task on any dataset. After empirically
confirming this on the current problem with experiments on
more than 50 datasets, we will simply hardcode |Σ| = 4 for the
rest of this work. Having fixed |Σ|, we performed an
exhaustive empirical examination of the role of the w
parameter. The best value for this parameter depends on the
data. In general, relatively smooth and slowly changing
datasets favor a smaller value of w, whereas more complex
time series favor a larger value of w. Empirical studies show
that the speedup does not critically depend on w parameter.
We will simply use w = 20 for the rest of this work.
For the setting of the number of iterations i, there are three
possibilities. We can do a fixed number of iterations, or we
can stop when the user is not willing to wait more time. Since
the algorithm keeps the best_so_far_index variable, it always
has a candidate discord to show at any point of time after the
collision matrix has been built (this actually makes it an
anytime algorithm [10]). Or we can stop when the collision
matrix “converges” (the change of the values of its entries are
less than some threshold). Again, for simplicity, we fix the
number of iterations to 30 in this work.

At the risk of redundancy, we emphasize once again that our
algorithm produces exact answers. None of these parameters
affects the correctness of the algorithm. Setting these
parameters inappropriately will only affect the efficiency of
the algorithm.

5. Empirical Evaluations
We begin this section by showing the utility of the shape
discords in diverse domains, and continue by demonstrating
that the algorithm can find discords very efficiently using the
approximate optimal heuristic. For all the experiments in this
work, we use rotation invariant Euclidean distance to measure
the distance between two shapes.

5.1 The Utility of Shape Discord
To demonstrate the usage of shape discords in real world
applications, we conducted discord searches on datasets from
diverse domains.

5.1.1 Butterfly Wings Dataset
Butterfly wings are an interesting domain in which to test
image mining algorithms. Depending on the area of research,
the shape, color, texture or even fractal dimension of the wings
may be of interest [4]. Here we restrict our attention to shape.
The large size of such collections motivates the use of scalable
algorithms. For example, the Morphbank archive [27]
currently has approximately 2,000 butterfly images online, and
many lepidopterists (butterfly collectors) have much larger
personal collections.
Consider the image dataset in Figure 14, which purportedly
shows a (subset of) collection of Heliconius erato (Red
Passion Flower) Butterflies.

Figure 14: Six examples of butterflies, ostensibly all Heliconius
erato (Red Passion Flower) Butterflies

We ran our algorithm on the entire collection to find the most
unusual butterfly, which happens to be the one shown in the
lower right of Figure 14. We ask entomologist Dr. Agenor
Mafra-Neto to explain the result. In fact, the butterfly in
question is not an example of Heliconius erato, it is an
example of Heliconius melpomene (The Postman). The
uncanny resemblance of the two is not a coincidence, but an
example of Müllerian mimicry. In brief, it is believed that the
two species originally looked different, and (perhaps
independently) evolved the defense mechanism of tasting
unpalatable. Being foul tasting is only useful if you advertise
the fact, and once one species had evolved the orange/red
flashes to communicate this to predators, the other species
leveraged off the predators’ avoidance by mimicking their
appearance. Figure 15 clearly shows why the one butterfly was
singled out from the collection.

Figure 15: The six butterflies from Figure 14 shown in their time
series representations. One butterfly, shown with a bold line, is a
different species to the rest

5.1.2 Red Blood Cell Dataset
We ran some tests on images extracted from red blood cell
data. Figure 16 shows a subset of an image. The discord
discovered is a teardrop shaped cell, or dacrocyte. Such cells
are indicative of several blood disorders, including
myelofibrosis, metaplasia and anemia. Note that for those cells
which are almost round, we did not normalize the time series
derived (cf Figure 6).

Figure 16: The discord discovered in an image of red blood cells
is a teardrop shaped cell, or dacrocyte, which is indicative of
several blood disorders

5.1.3 Fungus Dataset
We perform similar experiments on images taken at even
higher resolutions. Figure 17 shows an image taken with a
scanning electron microscope. The image shows some spores
produced by a rust (fungus) known as Gymnosporangium,
which is a parasite of apple and pear trees. Note that one spore
has sprouted an “appendage” known as a germ tube, and is
thus singled out as the discord.

Figure 17: Some spores produced by a fungus. One spore is
different because it has a germ tube (Image by Charles Mims,
University of Georgia)

Note that the spore above and to the left of the discord is just
beginning to start sprouting a germ tube. If it also had a full
germ tube, then the discovered discord would not longer be so
far away from its nearest neighbour (the “twin freak problem”,
discussed in Section 2.1). As noted earlier we could mitigate
this problem by a simple change in the definition of discord.

5.2 The Utility of Heuristic Ordered Search
We compare the performance of the discord discovery
algorithm using our approximate optimal heuristic, the random
heuristic (deciding the orders of outer and inner loops
randomly), and brute force search. The measurement we use is
the number of times that the distance function is called on line
7 in Table 3. A simple analysis of the pseudo code (confirmed
with a profiler) tells us that this single line of code accounts
for more than 99% of the running time for the algorithm. This
metric is implementation-free so it avoids the bias introduced
by examining wall clock or CPU time, a problem noticed by
many researchers [16][17][40].
For our approximate optimal heuristic, we include a startup
cost of O(m), which is the time complexity required to build
the collision matrix (cf. Section 4.4). For brute force search,
the number of times that the distance function is called
depends only on m and can simply be computed (recall m is
the size of the dataset). If we had to actually run the brute
force search for all the experiments in this work, it would take
several years.
We first tested a homogeneous dataset of 10,000 projectile
point images. The time series derived are all of length 251.
The results are shown in Figure 18. Each time we use a subset
of the database (the size varies from 50 to 10,000) and
measure the number of distance function calls required by
each strategy, divided by the number of calls required by brute
force. We can see that the cost of building the collision matrix
is dwarfed by rotation invariant comparisons. The approximate
optimal heuristic is faster even for small dataset of size 50. As

A

B
C

A B C

1st Discord

A

B
C

A B C

1st Discord

1st Discord
(Dacrocyte) A B

C

D

E

A B

C D

E

1st Discord
(Dacrocyte) A B

C

D

E

A B

C D

E

0 100 200 300 400 500 600 700 800 900

Heliconius melpomene
(The Postman)

Heliconius erato
(Red Passion Flower Butterfly)

0 100 200 300 400 500 600 700 800 900

Heliconius melpomene
(The Postman)

Heliconius erato
(Red Passion Flower Butterfly)

we expect, the approximate optimal heuristic performs better
as the size of the dataset increases. By the time we have
examined the entire database, our approximate optimal
heuristic is one order of magnitude faster than the random
heuristic and several orders of magnitude faster than brute
force.

Figure 18: The relative performance for three heuristic strategies
on the Projectile Points dataset

Sometimes techniques that work well for highly homogeneous
datasets do not work well for heterogeneous datasets, and vice
versa. We consider this possibility by testing on a
heterogeneous dataset in Figure 19. The heterogeneous dataset
consists of all the data used in the classification experiments
(cf. Table 1), plus 1,000 projectile points. In total, it contains
5,844 images and the derived time series are of length 512. In
this dataset, it takes our approximate optimal heuristic slightly
longer to beat random heuristic. However by the time we have
seen 200 objects, we have already broken even and thereafter
rapidly race towards beating random heuristic by one order of
magnitude and brute force search by several orders of
magnitude.

Figure 19: The relative performance for three heuristic strategies
on the Heterogeneous dataset

As a final sanity check, we also measured the wall clock time
of our best implementation of all methods. The results are
essentially identical to those shown above, and are omitted in
the sake of brevity.

6. Conclusions
In many applications, it can be useful to discover the most
unusual shape in a collection of images. In this work, we
introduce a novel definition of such shapes: the discord. This
definition is particularly attractive to data mining applications
because it is parameter-free. In addition, we propose an
efficient algorithm to discover the shape discords. The
algorithm uses locality-sensitive hashing to estimate similarity
between pairs of shapes and generates heuristics to reorder the
search in a more efficient way. On real problems, our
algorithm is three to four orders of magnitude faster than the
brute force algorithm.
There are many directions in which this work may be
extended. We intend to investigate image discords not only
using shapes but also textures. In addition, we plan to conduct
a field study of shape discord discovery in anthropology and
archeology.

7. Acknowledgement
All images are used with permission, and remain copyright of
their respective owners. Thanks to Dr. Stefano Lonardi; Dr.
Michail Vlachos; Dr. Agenor Mafra-Neto (entomology);
Biosciences Electron Microscopy Facility, University of
British Columbia; Dr. Leslie A. Quintero and Dr. Philip J.
Wilke (projectile points); Karolina Maneva-Jakimoska
(Morphbank); Jill Brady; Daniel von Dincklage.

8. References
[1] Adamek, T. and O’Connor, N. E. A multiscale representation

method for nonrigid shapes with a single closed contour.
IEEE Circuits and Systems for Video Technology, 14(5):
742-753, 2004.

[2] Andre-Jonsson, H. and Badal, D. Using signature files for
querying time-series data. In Proc. of the 1st European
Symposium on Principles of Data Mining and Knowledge
Discovery, pp 211-220, 1997.

[3] Bentley, J. L. and Sedgewick, R. Fast algorithms for sorting
and searching strings. In Proc. of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp 360-369, 1997.

[4] Castrejon-Pita, A. A., Sarmiento-Galan, A., Castrejon-Pita, J.
R., and Castrejon-Garcia, R. Fractal dimension in butterflies'
wings: a novel approach to understanding wing patterns? J.
Math. Biol. 50, 584–594, 2005.

[5] Chen, Z., Fu, A., and Tang, J. On complementarity of cluster
and outlier detection schemes. In Proc. of the 5th
International Conference on Data Warehousing and
Knowledge Discovery (DaWaK), pp 234-243, 2004.

[6] Chiu, B., Keogh, E., and Lonardi, S. Probabilistic discovery
of time series motifs. In Proc. of the 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pp 493-498, 2004.

[7] Clark, J. T., Bergstrom, A., Landrum, J. E. III, Larson, F.,
and Slator, B. Digital archive network for anthropology
(DANA): three-dimensional modeling and database
development for internet access. In Proc. of the VAST
Euroconference, Arezzo, 2000. BAR International Series
1075.

[8] Davies, E. R. Machine Vision: Theory, Algorithms,
Practicalities. Academic Press, New York, pp 171-191, 1997.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100008000600040002000100050010050

Number of Time Series in database (m)

Brute ForceRandomApprox. Optimal

Projectile Points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100008000600040002000100050010050

100008000600040002000100050010050

Number of Time Series in database (m)

Brute ForceRandomApprox. Optimal

Projectile Points

0

0.2

0.4

0.6

0.8

1

58445000400030002000100080040020010050

Brute ForceRandomApprox. Optimal

Heterogeneous Dataset

Number of Time Series in database (m)

0

0.2

0.4

0.6

0.8

1

58445000400030002000100080040020010050

Brute ForceRandomApprox. Optimal

Heterogeneous Dataset

Number of Time Series in database (m)

[9] Daw, C. S., Finney, C. E. A., and Tracy, E. R. Symbolic
Analysis of experimental Data. Review of Scientific
Instruments, 2002-7-22.

[10] Grass, J. and Zilberstein, S. Anytime algorithm development
tools. Sigart Artificial Intelligence, 7(2), 1996.

[11] Huang, Y. and Yu. P. S. Adaptive query processing for time-
series Data. In Proc. of 5th International Conference on
Knowledge Discovery and Data Mining, pp 282-286, 1999.

[12] Indyk, P., Motwani, R., Raghavan, P., and Vempala, S.
Locality-preserving hashing in multidimensional spaces. In
Proc. of the 29th annual ACM symposium on Theory of
computing, pp 618-625, 1997.

[13] Jalba, A. C., Wilkinson, M. H. F., Roerdink, J. B. T. M.,
Bayer, M. M., and Juggins, S. Automatic diatom
identification using contour analysis by morphological
curvature scale spaces. Machine Vision and Applications,
16(4): 217-228, 2005.

[14] Jolliffe , I. T. Principle Component Analysis. Springer, 2nd
edition, 2002.

[15] Keogh, E., Chakrabati, K., Pazzani, M., and Mehrotra, S.
Dimensionality reduction for fast similarity search in large
time series databases. Journal of Knowledge and Information
Systems, 3(3): 263-286, 2001.

[16] Keogh, E. and Kasetty, S. On the need for time series data
mining benchmarks: a survey and empirical demonstration.
In Proc. of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 102-111,
2002.

[17] Keogh, E., Lin, J., and Fu, A. HOT SAX: Efficiently Finding
the Most Unusual Time Series Subsequence. In Proc. of the
5th IEEE International Conference on Data Mining, pp 226-
233, 2005.

[18] Keogh, E., Lonardi, S., and Chiu, W. Finding surprising
patterns in a time series database in linear time and space. In
Proc. of the 8th International Conference on Knowledge
Discovery and Data Mining, pp 550-556, 2002.

[19] Keogh, E., Lonardi, S., and Ratanamahatana, C. Towards
parameter-free data mining. In Proc. of the 10th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp 206-215, 2004.

[20] Keogh, E., Wei, L., Xi, X., Lee, S., and Vlachos, M.
LB_Keogh allows exact indexing of shapes under rotation
invariance with arbitrary representations and distance
measures. In Proc. of the 32nd International Conference on
Very Large Data Bases, to appear, 2006.

[21] Kitaguchi, S. Extracting feature based on motif from a
chronic hepatitis dataset. In Proc. of the 18th Annual
Conference of the Japanese Society for Artificial Intelligence
(JSAI), 2004.

[22] Knorr, E., Ng, R., and Tucakov, V. Distance-based outliers:
algorithms and applications. VLDB Journal, 8(3-4): 237-253,
2000.

[23] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. A symbolic
representation of time series, with implications for streaming
algorithms. In Proc. of the 8th ACM SIGMOD workshop on
Research Issues in Data Mining and Knowledge Discovery,
pp 2-11, 2003.

[24] Lin, J., Keogh, E., Lonardi, S., Lankford, J. P., and Nystrom,
D. M. Visually mining and monitoring massive time series.
In Proc. of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 460-469,
2004.

[25] Loncarin, S. A Survey of Shape Analysis Techniques.
Pattern Recognit., 31(5): 983-1001, 1998.

[26] Mollineda, R. A., Vidal, E., and Casacuberta, F. Cyclic
Sequence Alignments: Approximate Versus Optimal
Techniques. International Journal of Pattern Recognition
and Artificial Intelligence (IJPRAI), 16(3): 291-299, 2002.

[27] Morphbank. http://morphbank2.csit.fsu.edu/
[28] Narayanan, M. and Karp, R.M. Gapped Local Similarity

Search with Provable Guarantees. In Proc. of the 4th
Workshop on Algorithms in Bioinformatics (WABI), pp 74-86,
2004.

[29] Qamra, A., Meng, Y., and Chang, E. Enhanced Perceptual
Distance Functions and Indexing for Image Replica
Recognition. IEEE transactions on Pattern Analysis and
Machine Intelligence, 27(3): 379-391, 2005.

[30] O’Brien, M.J., Darwent, J., and Lyman, R.L. Cladistics is
useful for reconstructing archaeological phylogenies:
Paleoindian points from the southeastern United States.
Journal of Archaeological Science, 28, 1115–1136, 2001.

[31] Philip, J. W. Personal Communication. 2006.
http://anthropology.ucr.edu/lithic

[32] Rombo, S. and Terracina, G. Discovering representative
models in large time series models. In Proc. of the 6th
International Conference On Flexible Query Answering
Systems, pp 84-97, 2004.

[33] Sadakane, K. Compressed text databases with efficient query
algorithms based on the compressed suffix array. In Proc. of
the 11th Annual International Symposium on Algorithms and
Computation (ISAAC), pp 410–421, 2000.

[34] Shahabi, C., Tian, X., and Zhao, W. Tsa-tree: A wavelet-
based approach to improve the efficiency of multi-level
surprise and trend queries. In Proc. of the 12th International
Conference on Scientific and Statistical Database
Management, pp 55-68, 2000.

[35] Söderkvist, O. J. O. Computer Vision Classification of
Leaves from Swedish Trees. Master thesis, Linkoping
University, Sweden, 2001.

[36] Tanaka, Y. and Uehara, K. Motif discovery algorithm from
motion data. In Proc. of the 18th Annual Conference of the
Japanese Society for Artificial Intelligence (JSAI), 2004.

[37] Tompa, M. and Buhler, J. Finding motifs using random
projections. In Proc. of the 5th International Conference on
computational Molecular Biology, pp 67-74, 2001.

[38] Van Otterloo, P. J. A contour-oriented approach to shape
analysis. Prentice-Hall International (UK) Ltd, Englewood
Cliffs, NJ, pp 90-108, 1991.

[39] Veltkamp, R. and Hagedoorn, M. State of the art in shape
matching. Utrecht, The Netherlands, Tech. Rep. UU-CS-
1999-27, 1999.

[40] Vlachos, M., Vagena, Z., Yu, P. S., and Athitsos, V.
Rotation invariant indexing of shapes and line drawings. In
Proc. of the 4th ACM Conference on Information and
Knowledge Management, pp 131-138, 2005.

[41] Zimmerman, E., Palsson, A., and Gibson, G. Quantitative
trait loci affecting components of wing shape in Drosophila
melanogaster. Genetics 155: 671–683, 2000.

[42] Zhang, D. and Lu, G. Review of shape representation and
description techniques. Pattern Recognition, 37(1): 1-19,
2004.

