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ABSTRACT

This paper presents an automated approach for classifying storm type from weather radar reflectivity using

decision trees. Recent research indicates a strong relationship between storm type (morphology) and severe

weather, and such information can aid in the warning process. Furthermore, new adaptive sensing tools, such

as the Center for Collaborative Adaptive Sensing of the Atmosphere’s (CASA’s) weather radar, can make

use of storm-type information in real time. Given the volume of weather radar data from those tools, manual

classification of storms is not possible when dealing with real-time data streams. An automated system can

more quickly and efficiently sort through real-time data streams and return value-added output in a form that

can be more easily manipulated and understood. The method of storm classification in this paper combines

two machine learning techniques: K-means clustering and decision trees. K-means segments the reflectivity

data into clusters, and decision trees classify each cluster. The K means was used to separate isolated cells

from linear systems. Each cell received labels such as ‘‘isolated pulse,’’ ‘‘isolated strong,’’ or ‘‘multicellular.’’

Linear systems were labeled as ‘‘trailing stratiform,’’ ‘‘leading stratiform,’’ and ‘‘parallel stratiform.’’ The

classification scheme was tested using both simulated and observed storms. The simulated training and test

datasets came from the Advanced Regional Prediction System (ARPS) simulated reflectivity data, and

observed data were collected from composite reflectivity mosaics from the CASA Integrative Project One

(IP1) network. The observations from the CASA network showed that the classification scheme is now ready

for operational use.

1. Introduction

We introduce an automated human readable ap-

proach for classifying storm type based on weather ra-

dar reflectivity and velocity, with the primary goal of

creating a technique that can be used to improve radar

scanning strategies. The technique is trained on simu-

lated storms and then tested and validated on both

simulated model output and observed storm data. Au-

tomated techniques for classification based on storm

morphology have been previously investigated by other

researchers (e.g., Schiesser et al. 1995; Alexiuk et al.

1999; Anagnostou 2004; Baldwin et al. 2005). The prin-

cipal contribution of this approach is the development

of a technique that is more easily understood by human

weather forecasters, enabling it to be more widely in-

tegrated into operations.

There are two reasons why automated storm classifi-

cation is needed. First, the type and extent of severe

weather produced by a storm is shown to be at least

moderately correlated with specific storm morphology.

Gallus et al. (2008) classified nine distinct classes of

storms based upon their radar reflectivity and identified

significant differences in the number and types of severe

weather produced by each storm class. Guillot et al.

(2008) found that tornado and severe thunderstorm

warning lead times are greater for strong supercell and

linear storms than for weaker pulse and less organized
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systems. A model output statistics (MOS)-type clima-

tology can be developed and applied in real time to

severe weather warning operations if the relationships

between storm type and morphology and the severe

weather produced from them are known.

Second, automated storm classification is needed be-

cause of the increasing development of dynamic, data-

driven application systems (Darema 2004). These ob-

serving networks are driven automatically by the data

they observe, often in real time. One such example is

the Center for the Collaborative Adaptive Sensing of

the Atmosphere (CASA; Brotzge et al. 2006). CASA

operates a network of radars that scan collaboratively

and adaptively as a function of end-user needs. This

automated radar scanning strategy, known as distrib-

uted collaborative adaptive sensing (DCAS), adapts in

real time (within one minute) to what is being observed.

DCAS operates automatically and interdependently,

based upon a complex set of quality control functions

and end-user requirements. One quality control func-

tion requires that neighboring radars operate in tandem

to minimize the effect of attenuation; a second function

defines certain integrated scanning for maximizing dual-

Doppler scanning. Experience with this system has

shown that the type and orientation of storms can have

an important effect on the ability of the system to scan

storms properly (Brotzge et al. 2006). For example,

isolated cells require narrow sector scanning by multi-

ple radars, whereas linear squall line events require

broad scans along the major axis of the feature. Thus,

increased knowledge of a storm’s morphology could

greatly enhance our ability to observe it.

Decision trees (Quinlan 1986) were chosen as the

primary approach for classification for two reasons. One

of the biggest factors is the intuitive understanding of

the model. Many other machine learning models, such

as neural networks, are difficult to interpret, particularly

by noncomputer scientists. As Fig. 1 illustrates with its

sample decision tree, the relationships between attri-

butes can be easily shown and converted into other

forms, such as rules. The other reason is that decision

trees can identify the most important attributes from a

dataset and ignore the less important ones. This ability

to be selective adds to their human readability and can

yield improved understanding about what is most im-

portant in a dataset. However, because decision trees

make their decisions based on one attribute at every

point in their structure, they are limited to identifying

only linear relationships within a dataset. Other ap-

proaches may be difficult to interpret but can possibly

lead to improved results. With this in mind, the tree-

based results were compared to several other standard

machine learning approaches.

The decision-tree approach in this study is most simi-

lar to that of Rigo and Llasat (2004). They combined

aspects of the storm cell identification and tracking

(SCIT) algorithm (Johnson et al. 1998), which tracks

the location of the storm center, and the convective–

stratiform differentiation algorithm (Steiner et al. 1995)

to serve as the basis for a structural classification system.

Rigo and Llasat (2004) used the storm areas and sta-

tistics about them as guides when classifying each im-

age. This study instead used those storm areas to train

an algorithm to automatically classify the storms in its

dataset. They also assigned only one storm type per

image, even if more than one storm appeared. With the

algorithm in this paper, multiple storm types were often

found and labeled within the dataset. This study also

incorporates two machine learning techniques—K-means

clustering and decision trees—to identify and classify

storm areas. TheK-means clustering section of the project

is derived from a technique used for image segmentation

that had previously been applied to radar reflectivity

(Lakshmanan 2001; McQueen 1967).

2. Data and methodology

a. Data sources

The data used for this study came from both simula-

tion and observed radar reflectivity. The simulations

were generated by the Advanced Regional Prediction

System (ARPS) (Xue et al. 2000, 2001, 2003), a storm-

scale model with numerical weather prediction and data

assimilation features. This model provided more than

250 simulations of mesoscale storms generated in an

environment favorable for supercell thunderstorm de-

velopment (Rosendahl 2008). For this project, simulated

FIG. 1. An example of the general-type decision tree.
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radar reflectivity was derived from model parameters

using equations described in Rosendahl (2008). These

are the same equations used in ARPS. Those equations

converted the mixing ratio values from rain, snow, and

hail into radar reflectivity and added them together to

produce the full radar reflectivity value. The radar re-

flectivity was examined at a height of 4 km above the

ground of the model. Four kilometers was chosen as the

level to be analyzed, because it incorporates a balance

of low and midlevel storm features. The simulations

used a 100 km 3 100 km grid with 500-m spacing in the

horizontal and 50 height levels having increased spacing

with increasing height. The center of the grid was ad-

justed following each time step to keep the moving

storms at the center of the grid. The reflectivity values of

the simulated data tended to be higher than the ob-

served values of reflectivity because there was no at-

tenuation.

The observed weather radar data came from the

CASA Integrative Project One (IP1) test bed, a group

of four small X-band Doppler radars located in south-

west Oklahoma (Brotzge et al. 2006). The reflectivity

measurements from all of the radars were mapped to a

single 120 km 3 120 km Cartesian grid with 500-m grid

spacing to fit the image as closely as possible to the

ARPS simulated data.

b. K-means clustering

To identify individual storm regions, each reflectivity

image was first divided into similar, congruous regions

using the K-means clustering algorithm. Doing this re-

quired the minimization of the weighted Euclidean

distance, as derived from Lakshmanan’s (2001) image

segmentation algorithm:

de 5 ljrm " rpj1 (1" l)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xm " xp)

2 1 (ym " yp)
2

q
,

(1)

where l weights the differences in reflectivity versus

Cartesian coordinates, r represents the reflectivity value

(dBZ) at a certain point, x and y are the coordinates of

that point, m designates variables derived from the

cluster means, and p designates variables derived from a

point in the reflectivity image. The first term of the

equation finds the distance of each point from the re-

flectivity means, while the second term finds the dis-

tance between the selected point and the coordinates of

the reflectivity means in the image. For this work, a l of

0.6 was chosen through empirical testing. K-means

clustering uses this similarity metric to find geographi-

cally similar areas with similar reflectivity values. The

output of K-means clustering is processed by (i) break-

ing those that are not contiguous into separate clusters

and (ii) removing clusters whose area is less than 4 km2,

thus removing regions too small to be really considered

a storm.

After clustering, the clusters are divided into con-

vective, stratiform, and low reflectivity areas. Since each

cluster contains a range of reflectivity values, simple

thresholding could not be used to differentiate the

clusters effectively. Instead, a metric that takes into

account what range of values are found in the cluster is

used. If at least 70% of the cluster contained reflectivity

between 20 and 40 dBZ, then it was considered to be

stratiform. Forty dBZ was chosen as the upper limit of

the threshold for the stratiform area because it was used

as the threshold in the convective–stratiform separation

algorithm from Steiner et al. (1995). The 70% area

threshold was used because not all of the radar re-

flectivity values in a cluster that could be considered

stratiform would be between 20 and 40 dBZ, so it allows

for a margin of error with the thresholds. Otherwise, if

less than 10% of the cluster contained reflectivity

greater than 80% of the maximum reflectivity, then the

cluster was considered to be a low reflectivity area. If

the cluster fit neither of those categories, then it was

considered to be convective. Although this system does

not necessarily detect every area of convection in a

particular radar reflectivity image, it does successfully

remove nonconvective areas and does locate the vast

majority of the remaining convective areas.

c. Attribute calculation

Given reflectivity data at every grid point in the do-

main, the number of possible ways to examine the data

is large. Humans examine the data using a variety of

visual features and combine these with their experi-

ences. Our decision-tree attributes are shown in Table 1.

The morphological attributes come from fitting the

storm region to an ellipse, which can be fit to areas that

have the more circular profile of the cells and the more

elongated profile of the linear systems. These attributes

include the eccentricity of the ellipse, the length of the

major and minor axes, the orientation of the major axis

relative to the positive x axis, and the area of the cluster.

The reflectivity attributes include the maximum, mini-

mum, mean, standard deviation, and the range of the

reflectivity values within each storm region.

The wind attributes sample the wind field from the

simulation runs within the storm regions and calculate

statistics similar to those for reflectivity for all of the

fields within the regions. Wind speed was the magnitude

of the horizontal wind vector at 4 km, and vertical ve-

locity was the magnitude of the vertical wind vector at

JULY 2009 GAGNE ET AL . 1343



4 km from the model output. Maximum, minimum, and

mean were calculated for both fields.

One attribute designed to differentiate between the

leading, trailing, and parallel stratiform rain areas is

the mean stratiform distance. To calculate this value,

the equation of the major axis line was found and solved

to find the offset value ds from the line through the

midpoint of the cluster centroids:

ds 5 mlj j(xs " xc)1 (yc " ys), (2)

where ml represents the slope of the line, the s values

represent centroid coordinates of the stratiform cluster

and the c values represent the same for the convective

clusters. A diagram of how it is calculated is shown

(Fig. 2). High positive values correlate more with the

mean stratiform area lying in front of the convective

area, values near zero indicate that the mean stratiform

center lies almost along the line, and high negative

values indicate the mean stratiform lies behind the line.

To calculate the direction of storm motion, the location

of the storm area’s centroid was compared with the

centroid from the previous time step and the center of

the ARPS grid between time steps. The angle of the

resulting vector was the storm’s direction. For cases

when a new storm appeared, a storm motion of 0 was

calculated. Storm mergers and splits were handled by

finding the storm area in the previous time step that

most closely overlapped the current storm area. The

procedure matched up the storms between time steps

correctly in most cases.

d. Hand classification

Identified ‘‘clusters’’ are assumed to represent storm

regions, and they are labeled with a hierarchal classifi-

cation system that combines types developed by Parker

and Johnson (2000) and Rigo and Llasat (2004). At

the highest level, convective areas are divided into cells

and linear systems (Fig. 3), which are referred to as the

general-type classification scheme. Within the cell cate-

gory, the storms are divided into ‘‘isolated pulse cells,’’

‘‘isolated strong cells,’’ and ‘‘multicells.’’ In the linear

system category, they are divided into ‘‘leading strati-

form,’’ ‘‘trailing stratiform,’’ and ‘‘parallel stratiform’’

depending on the relative location of the stratiform rain

area associated with the linear system (Parker and

Johnson 2000). The six types of storms are grouped into

the specific-type classification scheme.

To train the decision tree, a subset of the data was hand

labeled. The simulated training set, called ARPS-1,

contained 505 storms, and the simulated test set, called

ARPS-2, contained 378 storms. A hand-labeling inter-

face (Fig. 4) provided the basic information required to

visually classify storms. When a clustered storm appears

on the screen, an individual cluster is selected and then

the appropriate classification for it is chosen from a pull-

down menu. Isolated pulse cells tended to be small areas

of light-to-moderate reflectivity with little organization

and weak updrafts and winds. Isolated strong cells tended

to be isolated areas of high reflectivity combined with

other features such as a hook echo, strong winds, and

strong vertical velocity. Multicells were generally clusters

that contained multiple areas of high reflectivity inter-

mixed with weaker reflectivity. The stratiform area was

TABLE 1. Attribute sets used in the decision trees.

Morphological Reflectivity Wind Control

Eccentricity Max Max speed Mean stratiform

distance

Major axis length Min Min speed Storm direction

Minor axis length Mean Mean speed

Orientation Std dev Max vertical

velocity

Equivalent

diameter

Range Min vertical

velocity

Area Mean vertical

velocity

FIG. 2. Mean stratiform distance is an attribute that represents

the distance been the centroid of the stratiform rain area and the

major axis of the convective area.
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labeled as leading or trailing depending on the indicated

storm direction. Five random time steps from each of the

ARPS simulations were hand labeled.

e. Classifier training and statistical evaluation

The decision trees were trained using the Waikato

Environment for Knowledge Analysis (WEKA), ver-

sion 3.5.7, developed by the University of Waikato in

New Zealand (Witten and Frank 2005). WEKA is a

suite of various machine learning and data mining al-

gorithms. For the purposes of this project, the data were

used in WEKA to generate decision trees based on

different combinations of statistical values from the

storm data. Within WEKA, the J48 decision tree was

used as the primary decision-tree algorithm, because

it is an implementation of the commonly used C4.5

algorithm (Quinlan 1986). Decision trees were gener-

ated for the general and specific storm types based on

permutations of attribute types: the morphological,

reflectivity, and wind attributes; morphological and

reflectivity attributes; morphological and wind attri-

butes; reflectivity and wind attributes; morphological

attributes; wind attributes; and reflectivity attributes.

Figure 1 shows an example of one of the general decision

trees.

To compare the different attribute sets and algo-

rithms, the classification accuracy and the Hanssen and

Kuipers discriminant, also known as the true skill sta-

tistic (TSS) or the Peirce skill score (Woodcock 1976),

was used. TSS is a measure for comparing algorithms

that are not sensitive to the underlying distribution of

the data. In addition, TSS can handle data with more

than two labels. The classification performance was

compared against the performance of a random classi-

fier. Possible TSS scores range from 1 to21 with 0 being

the score of a random classifier and 1 being the per-

formance of a perfect classifier. Equation 3 shows how

TSS is calculated for a classifier with K labels and N

instances, where n is the number of instances at a given

cell of a confusion matrix, N(P) is the total number of

instances along a prediction row, and N(O) is the

number of instances along an observed column:

TSS5

1

N
!
K

i51
n(Pi,Oi)" 1

N2
!
K

i51
N(Pi)N(Oi)

1" 1

N2
!
K

i51
N(Po)

2

. (3)

Significance testing was performed on these datasets

by finding the distribution of correct and incorrect

predictions across the ARPS-2 dataset for each attri-

bute set. The mean of the prediction distribution was

taken to find the accuracy, and the attribute set with the

best accuracy was compared against the other attribute

sets using a paired t test at a significance of 0.01. The

best attribute set would be used for all algorithms in the

algorithm comparison test.

Comparisons against other machine learning algo-

rithms were done to show if the human-readability of the

decision trees is outweighed by significantly better clas-

sification performance from other algorithms. For our

experiments, WEKA machine learning algorithms of a

variety of types were used. The J48 tree algorithm was

compared against other decision-tree algorithms. The

REP tree is a rapid decision-tree learning algorithm that

builds with information gain and prunes with reduced-

error pruning (Witten and Frank 2005). The random tree

is simply a decision tree generated by selecting a random

attribute at each node and not pruning; this was used

as a control tree. In addition, the decision tree was

compared against more function-based algorithms. In

this study, logistic models and themultilayer perceptron,

a neural network implementation, were used. Hybrids

between the two types were also compared. The random

forest generates a weighted function from a set of ran-

dom trees (Brieman 2001), and the logistic model tree

(LMT) generates a decision tree with logistic models at

its leaves (Landwehr et al. 2005).

Because boosting (Schapire 1990, 1999) is guaranteed

to not hurt the performance and is very likely to im-

prove it, boosting of multiple algorithms was selected as

another comparison algorithm. Boosted decision trees

still satisfy the goal of being able to share results easily

with noncomputer scientists. Boosting takes a single

classification algorithm and turns it into an ensemble

algorithm. It creates multiple models of the same type

FIG. 3. Hierarchy of the different storm types used in the classifi-

cation process.
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and weighs each of them based on their classification

accuracy. The resulting weighted model will then be

able to make predictions more accurately than the in-

dividual models on which it was based. To keep the

computation time of the boosting algorithms to within

reasonable limits, boosting was expanded on J48 trees,

REP trees, and random forests.

Another technique similar to boosting is bootstrapping

aggregation, or bagging (Brieman 1996). Bagging works

by generating multiple classifiers from random subsets of

the given training set and taking a plurality vote of their

predictions to determine the ultimate prediction. It

works best for unstable classifiers, such as decision trees

and neural networks. Bagging was also implemented

with the same algorithms as boosting.

The performance of the decision-tree algorithm was

also tested on a set of observed radar data. The radar

observations were collected from the CASA IP1 radar

network. A smaller number of these storms were hand

labeled for the purpose of testing whether an algorithm

trained on model storms could still accurately classify

real-world storms. Comparisons were made using the

datasets with morphological and reflectivity attributes,

because wind attributes were not available for the

CASA data.

3. Results

Figure 5 shows the distribution of different storm

types in the hand-labeledARPS training data (ARPS-1),

ARPS testing data (ARPS-2), and the CASA observa-

tions. Because of the environmental regimes used to

generate the simulations, the storm types in ARPS-1 and

ARPS-2 data favor cell-type storms.

a. Comparisons among attributes

For the first evaluation of the decision-tree classifi-

cation algorithm, decision trees were generated using

different subsets of the attributes. The first decision tree

used all of the attribute types in the training set and the

J48 tree algorithm (Fig. 6). Each branch along the de-

cision tree forms a set of rules that describes charac-

teristics for each type. For instance, the majority of the

isolated strong storms fell into the pattern of an area

greater than 222.25 km2, a major axis length less than

54.5 km, a maximum reflectivity greater than 70.6 dBZ,

and a maximum wind speed greater than 22.1 m s21.

Those characteristics correspond strongly to those used

for labeling isolated strong storms. It can also find pat-

terns in some of the more uncommon storms, which is

evidenced by the multiple branches for other storm types.

FIG. 4. The interface for hand-labeling storms with their type. A diagram of the convective cluster locations. (b) A

storm area is selected and labeled based on the information provided by the other panels. (a) An image of the

reflectivity with wind vectors and storm direction markers overlaid. (c) The 4-km wind speed across the domain. (d)

Stratiform cluster areas are shown. (e) A display of the 4-km vertical velocity.
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FIG. 5. The distribution across storm types for the (a) training set and (b),(c) two test sets.
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Additional trees were created using different subsets

of the attributes and tested on the ARPS-2 dataset.

Across the different attribute sets, both the morpholog-

ical, reflectivity, and wind attribute set and the morpho-

logical and wind attribute set had the highest accuracy,

with the morphological and reflectivity attribute set

coming in a close second. Only the reflectivity attribute

set and the wind attribute set were significantly worse in

accuracy, as shown in Fig. 7. The TSS of most of the trees

is relatively high, indicating that strong skill is being

found in the classification process. The morphological

and reflectivity attribute set had the highest TSS, fol-

lowed by the morphological, reflectivity, and wind attri-

bute set and the morphological and wind attribute set.

The reflectivity and wind attribute set, reflectivity attri-

bute set, and wind attribute sets had the lowest TSS. For

the general-type trees, the accuracy remained very high

across most attribute sets, with the all-attribute set (in-

cludes all attributes from the morphological, reflectivity,

and wind attribute set plus simulation time step and

centroid coordinates) performing the best (0.886), and

themorphological, reflectivity, and wind attribute set was

FIG. 6. The J48 tree generated using all types of attributes in the dataset: area (km2), lengths (km), reflectivity (dBZ), and

wind speeds (m s21). The numbers in parentheses indicate the number of correctly/incorrectly classified storms that reached

that particular node.
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a close second (0.881). The reflectivity and wind attribute

set and the wind set performed statistically significantly

worse (p , 0.01).

b. Attributes discussion

The choice of attributes in the tree from Fig. 6 shows

the focus of the storm classification process very clearly.

Appearing at the root (top) and twice elsewhere is area,

making it the most gainful attribute in the tree, indi-

cating that the general size of the storm is a major factor

in separating the different types of storms. More types

of area attributes would probably further improve the

classification ability of the tree. Major axis length is an

important attribute because all of the linear storm types

are found along one of its branches since the linear

storms will have very long, stretched-out, fitted ellipses,

so their major axes will in general be much longer than

most of the smaller, more circular cell-type storms.

Wind speed and vertical velocity were also major dif-

fering attributes within the tree, since they were each

sampled 4 times and were distributed throughout most

levels of the tree. The tree identified the distinction that

isolated strong storms generally have stronger winds

and updrafts than isolated pulse storms, since most of

the isolated strong storms were isolated by maximum

wind speed or maximum vertical velocity.

Comparing the performance of decision trees from

different attribute sets showed that changing the given

attributes can have a significant effect on the decision

tree’s performance (Fig. 7). It also showed that, of the

three types of attribute sets, the morphological attri-

butes set was the strongest, because its performance

was not significantly different from the combined

sets, whereas reflectivity and wind, both singly and in

combination, performed significantly worse. Although

attributes from those two sets can be gainful to a tree,

by themselves they are a less effective choice for deter-

mining storm classification. Because storms are classified

based on their general morphology—with a little help

from reflectivity strength and wind speed—the result fits

with the human classifier’s priorities in attributes.

c. Comparisons among algorithms

The performance of the decision tree was compared

with the performances of other machine learning algo-

rithms on the ARPS-2 test set using the morphological,

reflectivity, and wind attributes set. Comparisons were

done against three types of algorithms: standard machine

learning algorithms, algorithms with boosting, and algo-

rithms with bagging. The algorithms were first trained on

the specific-type classification system, with results shown

in Fig. 8. The random forest and bagging with random

forests were found to have the best accuracy. The REP

tree, random tree, and multilayer perceptron all per-

formed statistically significantly worse (p, 0.01) than the

random forest. Boosting and bagging did not significantly

change the performance of any of the algorithms. TSS

stayed well above 0.5 for all but two of the algorithms.

The algorithms were also compared using the general

classification scheme. Overall, the algorithms all had

very high accuracy and most had high TSS. A paired

t test at a 0.01 significance revealed that none of the

algorithms is statistically significantly better or worse

than the others for classifying cells and lines. Similar

FIG. 7. The accuracy and TSS for J48 trees generated using different combinations of attributes. Bold, larger numbers indicate the highest

accuracy, and numbers followed by an asterisk (*) indicate statistically significantly worse accuracy (p , 0.01).
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results were found using the general classification

scheme. Overall, the algorithms all had very high ac-

curacy and most had high TSS, with the random forest

having the highest accuracy (0.918) and TSS (0.727). A

paired t test (p , 0.01) revealed that the REP tree,

random tree, and multilayer perceptron were statisti-

cally significantly worse than the random forest for

classifying cells and lines. The J48 tree was also statis-

tically significantly worse (p , 0.01), but the accuracy

was still very high at 0.886.

d. Algorithm discussion

The similarity between the accuracy of the decision-

tree algorithm and the accuracy of the other common

machine learning algorithms indicates that the decision

tree’s major advantage of human readability is not off-

set by any loss in classifying ability. Most of the standard

algorithms cannot display the relationships between the

attributes easily. The decision tree also had the advan-

tage of speedy training. The trees were trained faster

than every other algorithm evaluated. Boosting and

bagging on this dataset were not shown to be statisti-

cally significant (p , 0.01) ways for improving the

classification ability of the algorithm, so the increase in

training time and complexity was not found to be a

useful trade-off. Regarding the specific-type classifica-

tion scheme, random forests had the best performance

of any of the algorithms, but since their increase in per-

formance was not statistically significant (p , 0.01), the

J48 tree still holds a readability advantage over them.

Regarding the general classification scheme, random

forests did perform statistically significantly better (p ,

0.01) than J48 trees in terms of accuracy, but the real

difference in accuracy was still very small, and the ac-

curacy of the J48 tree was still extremely high.

e. CASA results

Performance was calculated on the CASA test set of

radar-observed storms within the CASA IP1 network.

Three training sets were used to make J48 trees that

were tested on the CASA set. These sets were the

ARPS-1 set, which contained 505 storms and was la-

beled with all three types of attributes; the ARPS-2 set,

which contained 378 storms and was labeled with all

three types of attributes; and the ARPS-2 without wind

set, which contained 519 storms and was labeled with

only morphological and reflectivity attributes but used

the same storm set as the ARPS-2 data. All three sets

used the same attributes to train a J48 tree to classify the

CASA data, so even though the sets were hand labeled

using wind data, the wind attributes were removed for

training. On the CASA set, the ARPS-2 without wind

data far outperformed the ARPS-1 andARPS-2 data, as

shown in Fig. 9.

f. CASA discussion

Hand-classifier attribute bias can be seen in the testing

data. Since the ARPS-1 data were classified primarily by

analyzing the shape of the storms and how strong their

winds were, the decision tree successfully identified part

of the human decision-making process in its attribute

search. On the test set, the morphological, reflectivity,

and wind characteristics all played a major role in the

FIG. 8. The accuracy and TSS for each algorithm using the specific-type classification scheme on the ARPS-2 test set. All algorithms

were compared against the random forest using a paired t test on accuracy, and the J48 tree was not significantly different from the

random forest. Same as Fig. 7 for definition of numbers. The boosted J48 tree did not receive a significant increase in performance

compared to the original algorithm.
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hand-classification process. Including wind variables

in the classification process changed how some of the

storms were labeled, which changed the underlying

trends in the dataset. When the algorithm had those wind

attributes removed, those underlying patterns could no

longer be found, so performance decreased (Fig. 9). The

algorithm based on the ARPS-2 without wind data,

which used morphological and reflectivity attributes

from the start, achieved a TSS of 0.569. Since the storms

in that set were classified using only the morphological

and reflectivity data and then trained using the mor-

phological and reflectivity attributes, all the underlying

patterns remained intact and were successfully discov-

ered by the decision tree. Even though the three data-

sets in Fig. 9 trained with the same attribute sets, the

trends in them differed significantly. From these tests,

it can be seen that matching the training and hand-

classification attributes to the attributes used to classify

the final product is vital for producing a strong and re-

liable decision-tree classifier. The tests also show that a

classifier trained only on simulated reflectivity data can

still classify observed reflectivity data to a high degree of

skill and accuracy.

The primary goal of this study was to determine the

best methodology for automated classification of storm

cells for use in real-time operations. For this purpose,

the best methodology was defined as that method which

demonstrated the combined greatest accuracy with the

greatest ease of interpretation. The ease of interpreta-

tion, in turn, allows for new science to be discovered

from the rules of the decision tree. From this study, an

examination of the rules highlights the critical value of

storm size, shape, and orientation, whereas the value of

storm reflectivity is of much less importance.

As a next step, severe weather feature information

will be included in the data, and the decision tree will be

FIG. 9. This is a comparison of classification performance on the CASA test set. Although the

ARPS-1 andARPS-2 datasets used wind attributes for hand labeling, the ARPS-2 without wind

set only used morphological and reflectivity attributes. Both datasets used the same attributes

to train a decision to classify the CASA data, but the extra data presented during hand labeling

changed the patterns in the dataset and caused a major decrease in TSS on the CASA set.
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rerun to identify those storm types that lead to the de-

velopment of severe weather. In this way, radar scan-

ning can more exclusively focus on only those storms

that exhibit severe storm characteristics. A decision tree

from this more advanced study would provide valuable

insight into those specific attributes that generate (or

inhibit) the development of severe weather features,

such as tornadoes, hail, severe winds, or flooding.

4. Conclusions

These experiments have found that decision trees are

a viable method for automatically determining storm

type. The trees had a relatively high TSS and accuracy

across all datasets, indicating strong performance over-

all. Other standard machine learning algorithms and

boosting did not perform significantly better than the

decision-tree algorithms, so the decision tree’s human-

readability advantage does not compromise its classifi-

cation performance. The decision trees could also suc-

cessfully predict the storm types on an independent

model test set with little loss in performance. When the

tree was trained within the same attribute set as real-

world radar data, it could classify real-world radar data

with little loss in performance as well. A decision tree

trained on model radar reflectivity data could poten-

tially provide real-time storm classification on any radar

system.
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