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Abstract

One of the great challenges in the geosciences is understanding ecological systems in order to predict changes and
responses in space and time at scales from local to global. Ecologists are starting to recognize the value of analy-
sis methods that go beyond statistics to include data mining, visual representations, and combinations of these in
computational tools. However, the tools in use today rarely provide means to perform the kinds of rich multidimen-
sional interaction that hold promise to greatly expand possibilities for effective visual exploration and analysis. As
part of a project to develop a cyberCommons for collaborative ecological forecasting, we are developing ways to
integrate highly interactive visual analysis techniques with data mining algorithms. We describe here our work in
progress on steering mixed-dimensional KD-KMeans clustering using multiple coordinated views. Contributions
include more flexible interactive control over clustering inputs and outputs, greater consistency of cluster mem-
bership during interaction, and higher performance by caching cluster results as a function of interactive state. We
present our current tool that implements these improvements for visual analysis of Terrestrial ECOsystem (TECO)
data collected from FLUXNET towers, with feedback on utility from our ecologist collaborators.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Systems]: Information Interfaces

and Presentation—User Interfaces

1. Introduction

Ecological systems are extraordinarily complex. They vary
widely in structure within and across spatial scales, and both
drive and respond to global changes non-linearly [ZWLO8].
An essential component of ecological forecasting is under-
standing these drivers and impacts, with an eye toward pro-
viding sustainable services such as clean water, carbon se-
questration, and preserving biodiversity.

FLUXNET [BFG*01] is a geographically diverse net-
work of remote sensing towers that uses a variety of mi-
crometeorological techniques to measure various kinds of
ecological parameters such as precipitation, air and soil tem-
perature, and net CO, exchange. Despite the rich mixed-
multidimensional nature of FLUXNET data, exploration of
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this data still typically involves primarily non-visual statisti-
cal analysis of individual tower time series.

The cyberCommons is an ongoing $6M+ NSF-funded
collaboration between researchers in informatics and ecol-
ogy located at the major public universities in Oklahoma and
Kansas. A major goal of the collaboration is to establish new
analysis methods for use by the ecologists in understanding
and forecasting natural and anthropogenic impacts on eco-
logical systems in the Central Plains. We are focusing specif-
ically on integration of visual analysis and data mining tech-
niques that involve combinations of geospatial, temporal,
and relational information. Balancing the research interests
and needs of both sides of our collaboration led us quickly
to focus our efforts on Terrestrial ECOsystem (TECO) data
collected from the AmeriFlux network of FLUXNET tower
sites in the United States, Canada, and South America.

We are using Improvise [Wea04] to develop and evalu-
ate an evolving collection of tools for visually exploring and
analyzing TECO data. Improvise is a desktop application for
building and browsing visualizations with richly coordinated
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Figure 1: Cluster visualization of six years of daily data from 10 AmeriFlux sites. (The labels are described in the text.)

views of mixed-multidimensional data. At its foundation is
an extensible library of interactively driven data processing
algorithms and visualization techniques. This makes it a nat-
ural choice for developing highly interactive, flexible, visual
clustering. Although what we describe here is an ongoing
research effort, we have made progress in three directions:

e Multiple coordinated views provide control over dimen-

sions to cluster, dimensions to display, and subsets of data
values to include in clustering and/or display. Ecologists
can select particular time scales, time ranges, and towers
of interest in order to drill down into both bivariate re-
lationships and univariate patterns over time. Interactive
filtering can happen both before and after clustering, pro-
viding great flexibility of analysis.

An extension of the k-means algorithm attempts to main-
tain reasonable assignment of tower observations to clus-
ters in response to interaction, allowing for more consis-
tent color-coding of cluster membership within and across
views over the course of analysis. This allows the ecolo-
gists to visually track cluster shape by color, particularly
while interactively selecting a time range to filter on by
dragging and stretching in the time series views.
Interactive performance is improved in two ways. First,
the extended k-means algorithm calculates and caches a
multi-resolution kd-tree over the dimensions of interactive

variation, thereby substantially reducing subsequent clus-
ter calculations, allowing sub-second interactive response.
Second, cluster results are cached as a function of recent
query parameter states, including while dragging the time
range selection back and forth, providing even faster in-
teraction when revisiting previous parameter states.

2. Tool Design and Use

Figure 1 shows the current Improvise visualization of TECO
data. The user sets the number of clusters (A), then selects
one or more driving variables to use as clustering attributes
(B). They then select one independent and one dependent
variable (C) to display separately in time series plots and to-
gether in bivariate plots. A table visually summarizes these
relationships for each tower (D). Becoming interested in par-
ticular sites, the user can select any one tower (E) in order
to explore temporal and bivariate patterns in the individual
clusters for that tower (F), then explore temporal patterns
more closely in larger time series plots (G). By dragging and
stretching a time range slider (H), they can then compare
bivariate patterns of clustering for the full data set (I) with
clustering for data falling within the selected time range (J).
The effects of time range filtering on cluster membership is
also shown dynamically for both the individual clusters of
the selected tower (K) and for all clusters of every tower (L).

(© The Eurographics Association 2011.
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Acceleration of k-means clustering often involves tech-
niques such as approximation or choosing more useful start-
ing points. We used the blacklisting algorithm by Pelleg and
Moore [PM99]. It extends the multi-resolution kd-tree, a bi-
nary tree structure whose split nodes represent planes sub-
dividing the data space into hyperrectangles. While build-
ing the tree, the space of data points is evenly partitioned
and the relation of data points in space is easily discernable.
As such, they are often used in nearest-neighbor algorithms.
Using this data structure, it is usually possible to identify at
upper nodes some centers to which no data points in the par-
tition could be assigned, effectively blacklisting them. When
points below that are assigned, there is no need to measure
their distance to that center. Often, entire partitions can be
assigned far from the leaf nodes, skipping many distance cal-
culations. The result is an algorithm, KD-KMeans, that runs
significantly faster on average. We added the KD-KMeans
algorithm to the Improvise data transformation library. Be-
cause Improvise already caches transformation results as a
function of query parameter states, this benefit accrued au-
tomatically to interactive steering of the algorithm.

The AmeriFlux network records observations at various
time scales and then generates from these raw data four ad-
ditional data sets of increasing levels of quality. We used
processed observations of the highest (level 4) quality, which
are gap-filled and contain flags to indicate the quality of both
the original data values and those estimated for gap-filling.
The AmeriFlux website (http://public.ornl.gov/
ameriflux/) provides tower data from 1991 to 2010.
However, the time required to process level 4 data means that
it is not available for all towers in all years. Consequently,
we chose ten sites from the North American Region that
contain level 4 data from 1999-2004. Initial attempts with
half hourly data over six years resulted in unreasonably slow
interaction. The ecologists indicated more interest in explor-
ing daily/seasonal characteristics than hourly characteristics
anyway, motivating our switch to daily aggregated data.

Ideally, ecologists could select clustering attributes as
they deem necessary for their analyses. The drawback is
that selecting a large number of attributes reduces cluster-
ing speed substantially. Conveniently, there are two types
of ecological variables in the AmeriFlux data: driving vari-
ables that are directly observed by the remote sensing tow-
ers (DoY, Rg, Ta, VpD, TS, Precipitation, SWC, Le, etc.)
and dependent variables that are calculated as a function of
observations (Reco_sf, NEE, GPP, etc.) The ecologists are
strongly interested in looking at dependent variables over
time. So, we limit possible clustering attributes to the set of
driving variables. The clustering algorithm calculates simi-
larity/distance using the selected subset of those attributes.

Whenever the user drags the time range slider, cluster-
ing is performed on the correspondingly filtered set of data
points. Centroids for clusters can be randomly chosen and
then converged iteratively depending on the similarity mea-
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Figure 2: Annual production and absorption of CO;.

sure. For each new set of filtered data points, however, ran-
domly chosen centroids not only increases calculation time
but also leads to seemingly haphazard changes in cluster
structure. We incorporated a naive cluster centroid caching
scheme in which the previous cluster centroids are subse-
quently reused, with later runs iteratively converging to a
new set of centroids from the cached ones. The new set of
centroid points replaces the previously cached ones.

A qualitative color scheme encodes cluster membership
in all views. However, cluster identification often changes
unpredictably during interactive filtering, meaning that the
cluster-to-color encoding can update in a discontinuous and
thus visually confusing manner. For this reason, we track
cluster numbers as a function of cluster membership to main-
tain consistent cluster coloring.

Figure 2 shows an example of an interesting discovery by
one of the ecologists. In order to explore the change in uni-
variate patterns over time, he chose day of year with decimal
fraction for time of day (DoY) as both the clustering and the
driving variable, and gross primary production of CO, based
on the net environmental exchange (GPP) as the dependent
variable. In a particular year, GPP rises from zero to a peak
value then back down again. In a broad sense, this means
that the amount of CO, that the environment produces is
absorbed by the environment in an annual cycle. Varia-
tion in clusters reveals different time stages throughout the
year: flat (first cluster), slow accumulation (second cluster),
rapid accumulation (third cluster), then to peak value (fourth
cluster). In the fifth, sixth, and seventh clusters, the oppo-
site (absorption) occurs. Despite using a naive similarity
measurement—FEuclidian distance—clustering still reveals
distinct annual regimes. The ecologist became interested in
how these regimes have changed over time. He dragged the
time range back and forth; the larger plots showed updated
cluster membership immediately. This revealed that GPP ab-
sorption was lower in summer 1999 than in other years. His
expert conclusion was that this was due to drought, i.e., few
rainfall events, low precipitation, high temperature, etc.


http://public.ornl.gov/ameriflux/
http://public.ornl.gov/ameriflux/

Z. Ahmed, et al. / Steerable Clustering for Visual Analysis of Ecosystems

3. Related Work

Visual data mining is emerging as a mainstream methodol-
ogy for analyzing large amounts of multidimensional data
[KMSZ06]. Visual data analysis includes clustering for
grouping and revealing trends in such data. A relatively re-
cent survey [XWO5] on this topic discusses several kinds
of clustering algorithms and the similarity measures that are
typically used with them.

Ankherst’s [ABK98] heuristic optimization technique of
grouping the dimensions of data and Choo’s [CBP09] work
on dimensionality reduction to preserve clustering is com-
plementary to our work in that we can preprocess the dimen-
sions of the data and provide visual interaction mechanisms
in the dimension selection process. Nam [NHM*07] and
iVibrate [CLO6] are integrated interactive clustering frame-
works in which clusters are calculated on a data set and then
the user interacts with data points. Users can validate and la-
bel clusters but cannot perform multidimensional drill-down
to look for and analyze patterns and trends. Jeong [JDN*08]
has combined visualization with clustering to create tools
for visual analysis of gene expression data, although without
taking advantage of the benefits of rapid interaction across
many dimensions in multiple views. Andrienko’s [AA(09]
and Guo’s [GCMLO06] work shows analysis using clustering
and visual interactions of data with space and time attributes.
The visualization system and analysis facilities are limited to
spatio-temporal visual tools. Our work is unique in that we
allow users to pose a wider range of pertinent multidimen-
sional questions interactively within a single visual tool.

4. Conclusion and Future Work

Highly interactive clustering appears to provide powerful
support for visual analysis of complicated ecological data.
Our immediate next goal is to add geospatial capabilities to
the current tool. Moving forward with the AmeriFlux data,
our goal is to help ecologists materialize their discoveries
from interactive clusters in a tangible way by supporting
visual comparison of cluster structure over time and be-
tween towers, including a feature to record and annotate
progressions of interactions that reveal interesting individ-
ual and differential cluster shapes. We are also working on
a heuristic-based cluster centroid caching scheme to smooth
interaction by reducing the number of iterations necessary in
the clustering algorithm while preserving valid results. More
generally, we plan to extend and implement additional clus-
tering algorithms and evaluate their usage and knowledge
extraction performance by comparing them with other visual
and non-visual tools that use similar approaches.
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