
Modern artificial intelligence (AI) techniques can aid forecasters on a wide variety of 

high-impact weather phenomena.
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Weather significantly impacts society for better 
and for worse. For example, severe weather 
hazards caused over $7.9 billion of property 

damage in 2015 (National Oceanic and Atmospheric 
Administration/National Centers for Environmental 
Information 2016; CoreLogic 2016). The National 
Academies of Sciences, Engineering, and Medicine 
(2016) cites improving forecasting of such events 
as a critical priority, and the European Centre for 
Medium-Range Weather Forecasts (ECMWF) re-
cently announced goals for 2025 (ECMWF 2016) that 
stress the importance of improving these forecasts. 
On the positive side, improvements in forecasting 
solar power, which increasingly impacts the electrical 
grid, are expected to save utility companies $455 mil-
lion by 2040 (Haupt et al. 2016). Additional savings 
can be found through improved forecasting in other 
areas of computational sustainability. Computational 
sustainability is a new and growing interdisciplinary 
research area focusing on computational solutions for 
questions of Earth sustainability.

In recent years, operational numerical weather 
prediction (NWP) models have significantly in-
creased in resolution (e.g., Weygandt et al. 2009). 
At the same time, the number and quality of 

observational systems has grown, and new systems, 
such as Geostationary Operational Environmental 
Satellite R series (GOES-R), will generate high-quality 
data at fine spatial and temporal resolutions. These 
data contain valuable information, but their variety 
and volume can be overwhelming to forecasters, 
and this can hinder decision-making if not handled 
properly (Karstens et al. 2015, 2016). This data deluge 
is commonly termed “big data.” Artificial intelligence 
(AI) and related data science methods have been 
developed to work with big data across a variety of 
disciplines.

Applying AI techniques in conjunction with a 
physical understanding of the environment can 
substantially improve prediction skill for multiple 
types of high-impact weather. This approach ex-
pands on traditional model output statistics (MOS) 
techniques (Glahn and Lowry 1972), which derive 
probabilistic, categorical, and deterministic forecasts 
from NWP model output. Because of their simplic-
ity and longevity, forecasters have gained trust in 
MOS techniques. AI techniques provide a number 
of advantages, including easily generalizing spatially 
and temporally, handling large numbers of predictor 
variables, integrating physical understanding into the 
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models, and discovering additional knowledge from 
the data. In recent years, forecasters and researchers 
have begun to adopt AI techniques much more widely, 
as they demonstrate their power in a wide variety of 
applications, including postmodel bias correction, 
handling large datasets, reducing cognitive overload, 
and discovering new knowledge in large datasets. 
With the growth in applications for data science 
techniques outside of atmospheric science as well, 
AI techniques promise to continue to enhance pre-
diction and understanding of many weather-related 
phenomena. The primary goals of this paper are to 
introduce modern AI techniques to a broad audience 
and to demonstrate their utility in predicting a wide 
variety of high-impact weather phenomena.

The rest of this paper is organized as follows: We 
first review related work and provide a brief overview 
of some AI techniques highlighted in this paper, fol-
lowed by demonstrations of how we have applied AI 
techniques to multiple high-impact weather applica-
tions. We discuss the benefits of AI and automation 
to both researchers and forecasters and conclude by 
discussing how AI techniques can be further used to 
help meteorologists and decision-makers.

RELATED WORK. Statistical models for postpro-
cessing NWP model output have evolved within two 
general frameworks. “Perfect prog” models fit rela-
tionships between observed or analyzed variables and 
observations of a weather feature, such as temperature 

or precipitation (Klein et al. 1959). The models are then 
applied to NWP forecasts, thus implicitly assuming 
that the NWP model is perfect. In contrast, MOS fits 
a statistical model between NWP output at a given 
time horizon and subsequent observations at that time 
(Glahn and Lowry 1972), often using linear regression. 
Because MOS fits use the NWP output directly, they 
can correct for systematic biases in a model. When 
NWP model configurations are updated, MOS must 
be retrained after a sufficient number of new model 
forecasts are collected. Perfect-prog models are gener-
ally less accurate than a well-tuned MOS model, but 
they are less sensitive to model configuration changes 
and tend to be more robust over time. AI techniques 
can be used in both frameworks.

Haupt et al. (2008) provide an overview of AI 
techniques applied to the environmental sciences, 
including artificial neural networks (ANNs), decision 
trees, genetic algorithms (Allen et al. 2007), fuzzy 
logic, and principal component analysis (Elmore and 
Richman 2001). Baldwin et al. (2005) used hierarchical 
clustering to classify precipitation areas, Gagne et al. 
(2009) used k-means clustering to segment a radar 
image, Lakshmanan et al. (2010, 2014) used k-means 
clustering to segment a map of radar-echo classifica-
tions, and Miller et al. (2013) used clustering to identify 
storm tracks. 

ANNs are interconnected networks of weighted 
nonlinear functions. When connected and trained in 
multiple layers, ANNs can represent any nonlinear 
function. They also provide the foundation for deep 
learning methods. ANNs have been used in a wide 
variety of meteorology applications since the late 
1980s (Key et al. 1989), including cloud classification 
(Bankert 1994), tornado prediction and detection 
(Marzban and Stumpf 1996; Lakshmanan et al. 2005), 
damaging winds (Marzban and Stumpf 1998), hail size 
(Marzban and Witt 2001; Manzato 2013), precipita-
tion classification (Anagnostou 2004; Lakshmanan 
et al. 2014), tracking storms (Lakshmanan et al. 2000), 
and radar quality control (Lakshmanan et al. 2007; 
Newman et al. 2013). 

Support vector machines (SVMs) have also been 
used to detect and predict tornadoes (Trafalis et al. 
2003; Adrianto et al. 2009). SVMs learn a linear model 
in a nonlinear space by transforming the data to the 
nonlinear space using kernels. Both ANNs and SVMs 
are f lexible and powerful but produce models that 
are often difficult to interpret in terms of underly-
ing physical concepts that the model has identified. 
For the ANNs, it is difficult to interpret the weights 
through the nonlinear functions. For the SVMs, the 
data transformation makes it difficult to identify the 
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most important features of the data or what the model 
has identified.

One of the simplest and most well-known statisti-
cal learning methods, linear regression, has been used 
in weather prediction since at least the early 1950s 
(Malone 1955). Kitzmiller et al. (1995) used regres-
sion to forecast the probability of severe weather, 
Billet et al. (1997) used it to forecast maximum 
hail size and large-hail probability, and Mecikalski 
et al. (2015) used logistic regression to forecast the 
probability of convective initiation, to name just a 
few recent examples. In linear regression, a set of 
weights is chosen to combine input features xi so as 
to best predict an output variable ŷ, for example, to 
minimize the summed squared prediction error. The 
weights can be trained using matrix inversion or other 
optimization schemes, ranging from basic gradient 
descent through genetic algorithms if the matrix 
is poorly conditioned. Although linear regression 
learns quickly even on large datasets, it works best 
with problems that require a linear model and have 
a limited feature set. If features are redundant or not 
predictive, they can make learning more challenging. 
Ridge regression (Hoerl and Kennard 1988) penal-
izes the sum of squared weights in order to simplify 
models and improve their generalization. The lasso 
method penalizes the sum of the weights’ absolute 
values, which tends to remove irrelevant variables 
(Tibshirani 1996). Elastic nets (Zou and Hastie 2005) 
combine both penalties.

Decision-tree-based methods are popular in data 
science for handling big data. They are able to iden-
tify and learn with only the most relevant variables, 
enabling users to provide many possible predictive 
features without worrying whether extraneous vari-
ables will overwhelm the training process. Decision 
trees are also human read-
able, which can provide 
insight into what relation-
ships the model has iden-
tified related to the event 
being forecasted. Decision-
tree-based methods have 
proven quite powerful in 
a wide variety of weather 
applicat ions (Wil l iams 
et al. 2008a,b; Gagne et al. 
2009; McGovern et al. 2014; 
Williams 2014; McGovern 
et al. 2015; Clark et al. 2015; 
Elmore and Grams 2016).

Although the first objec-
tive decision-tree learning 

method was not developed until the mid-1980s 
(Quinlan 1986, 1993), subjective (human derived) 
decision trees have been used in meteorology since 
at least the mid-1960s (Chisholm et al. 1968). A de-
cision tree splits data recursively by identifying the 
most relevant question at each level of the data. The 
tree shown in Fig. 1 was automatically developed to 
predict whether hail will occur. At the root node, the 
data are split with the question “Is the mean radar 
reflectivity ≤ 43.4 dBZ?” The data are further refined 
down each of the yes and no branches until a predic-
tion is made at a leaf node, which may contain a class 
label (e.g., hail: yes), probability p [e.g., p(hail) = 0.8; 
Provost and Domingos 2000], scalar prediction [hail 
size = 3.1 in. (~7.9 cm)], or a linear predictive function.

A powerful related method is random forests 
(RFs; Breiman 2001). An RF is an ensemble of deci-
sion trees, each of which is trained on a separate set 
of bootstrapped resampled training data and selects 
from a random subset of questions at each node. 
Since they are trained on different data and using 
different predictors, the individual trees in the forest 
are diverse, providing an “ensemble of experts” that 
performs better than any individual tree.

Gradient boosted regression trees (GBRT; 
Friedman 2002) construct an ensemble of decision 
trees trained using boosting (Schapire 2003). Whereas 
each tree in an RF is equally weighted and trained on 
equally weighted examples, a GBRT trains on dif-
ferently weighted subsets of data, where the weights 
are determined by the error residuals of the previous 
training step.

We will demonstrate the use of both RFs and 
GBRTs in several of the high-impact weather domains 
described below. While both methods are similar 
in performance in some cases, because of the equal 

Fig. 1. An example of a decision tree for predicting if hail will occur. A version 
of this decision tree first appeared in Gagne (2016).
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weighting of the individual trees in the forest, an RF 
will tend to regress to the mean predictions and thus 
not produce as sharp of a forecast. GBRTs can address 
this issue, but sometimes, postmodel correction is also 
needed. We typically use isotonic regression for post-
model correction (Niculescu-Mizil and Caruana 2005).

Both RFs and GBRTs provide the ability to mea-
sure the importance of each attribute in the dataset, 
which is called variable importance. After the trees 
are trained, each variable’s data are permuted, and 
performance is measured with both the permuted 
and original data. The most important variables are 
those that cause the largest drop in performance. 
These importance estimates can be used to gain in-
sight into the choices made by the forests, enabling 
physical interpretation of the models.

AI FOR HIGH-IMPACT WEATHER. This sec-
tion presents some of our recent work in applying AI 
to a variety of high-impact weather applications. The 
diversity in applications is intentional, to demonstrate 
to the reader that AI can be used for multiple problems.

Storm duration. Predicting a storm’s lifetime is impor-
tant for forecasters as it helps to guide the creation of 
watches and warnings. This task requires knowledge 
of the current status of the storm as well as knowledge 
of the nearby environment. The training data for 
this task come from a preoperational product called 
ProbSevere (Cintineo et al. 2014). ProbSevere identi-
fies and tracks storms in real time using composite 

reflectivity (maximum column reflectivity derived 
from multiple radars simultaneously) from the op-
erational Multi-Radar Multi-Sensor (MRMS; Smith 
et al. 2016) system over the continental United States. 
ProbSevere also provides a small number of attributes 
that summarize information about the environment 
near the storm along with information on the current 
speed of the storm. The training labels are provided 
by running a post hoc storm-tracking program called 
best track (Lakshmanan et al. 2015). These labels 
were obtained by using data from the Multi-Year 
Reanalysis of Remotely Sensed Storms (MYRORSS; 
Ortega et al. 2012) project. The training and test-
ing data were drawn from 9 April 2015 through 31 
January 2016. Data are available for each storm cell 
on an approximate 2-min basis. To ensure there was 
no cross contamination between the training and 
the testing set, training was on all data except July, 
with testing on July and the day closest to the testing 
data dropped from training. For bias correction, we 
withheld an extra month of data (August). The train-
ing data were also subsampled for all storms lasting 
less than 7,200 s. Only 10% of this data were used for 
training. All storms lasting longer than 7,200 s in the 
training set were retained. This still yielded 2,872,680 
samples for training. Testing data were evaluated 
independently on each day in July, enabling us to 
bootstrap the results for statistical analysis. Testing 
data were not subsampled.

We tested three machine-learning methods: 
GBRT, RF, and elastic nets. We also examined post-

training bias corrected us-
ing isotonic regression. We 
examined multiple settings 
of the standard parameters 
to the RF and GBRT using 
a validation set (results not 
shown because of space). 
The best choices for the RF 
and GBRT were 100 trees 
and a maximum depth of 5. 
For the GBRTs, the Huber 
loss function was signifi-
cantly better than the other 
loss functions. For elastic 
nets, we used an alpha of 
0.05 and the L1 ratio of 0.9.

Figure 2 displays the 
predicted distributions 
versus the observed dis-
tributions. GBRT stands 
out as the best-performing 
method across the range Fig. 2. Reliability diagram for predicting a storm’s lifetime.
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of predictions. While bias 
correction is able to im-
prove the performance at 
the end points, it is not an 
overall improvement on the 
models and was left out of 
the real-time testing.

The best duration pre-
diction method, GBRT, 
was implemented into a 
real-time system running 
in National Oceanic and 
Atmospheric Administra-
tion (NOAA)’s Hazardous 
Weather Testbed (HWT) 
called Probabilistic Haz-
ard Informat ion (PHI; 
Karstens et al. 2015) that 
uses ProbSevere to gener-
ate automated probabilistic 
forecasts for thunderstorm 
hazards. The forecasts were 
tested and evaluated with nine National Weather Ser-
vice (NWS) forecasters in a 3-week human–machine-
mix experiment during May and June of 2016, and the 
acceptance of the duration predictions was evaluated. 
As shown in Fig. 3, forecasters on average used the 
predicted ProbSevere duration in approximately 75% 
of all forecasts, while individual acceptance of these 
predictions varied from as low as approximately 25% 
to as much as 100%. These results imply that most 
forecasters trust these predictions or that the predic-
tions are within an acceptable range at the time of 
warning decision. However, evidence (not shown) 
suggests that forecasters have a strong tendency to 
accept the default duration value so long as it is “good 
enough,” and the default duration value during the 
experiment was assigned from our duration predic-
tions. Therefore, forecasters may not be giving much 
thought to this predictive aspect of the forecast. In-
terestingly, research in optimizing decision-making 
suggests that “choice architects” should account for 
inaction bias by assigning the most likely best option 
to the available default (Milkman et al. 2008).

Severe wind. Real-time prediction of severe wind, de-
fined by the NWS as a gust ≥50 knots (kt; 25.7 m s−1), 
is another important task for forecasters. This proj-
ect uses AI techniques to predict the probability of 
severe wind within various buffer distances (0, 5, 
and 10 km around the storm cell) and time windows 
(0–15, 15–30, 30–45, 45–60, and 60–90 min into the 
future). We use two datasets to create predictors: 

quality-controlled radar images from MYRORSS and 
near-storm environment soundings from the Rapid 
Update Cycle (RUC) model (Benjamin et al. 2004). 
MYRORSS has a resolution of 1 km and 5 min, while 
the RUC has a resolution of 13 km (20 km for earlier 
times) and 1 h. To determine when and where severe 
winds occurred (verification data), we use surface 
observations from four datasets: the Meteorological 
Assimilation Data Ingest System (MADIS; McNitt 
et al. 2008), Oklahoma Mesoscale Network (Mesonet; 
McPherson et al. 2007), 1-min meteorological aero-
drome reports (METARs; National Climatic Data 
Center 2006), and NWS local storm reports (Storm 
Prediction Center 2015).

Before training the models, four types of data 
processing are applied. First, storm cells are identi-
fied and tracked through time using both real-time 
(Lakshmanan and Smith 2010) and postevent (Lak-
shmanan et al. 2015) methods. Real-time tracking 
outlines the edge of each storm cell, and postevent 
tracking corrects deficiencies in real-time tracking, 
mainly false truncations. Data are processed for 
804 days in the continental United States (all days 
from 2004 to 2011 with ≥30 NWS wind reports and 
available MYRORSS data). This results in nearly 20 
million storm objects, where a “storm object” is one 
storm cell at one time step. Second, wind observa-
tions are causally linked to storm cells. For each wind 
observation W, storm objects are interpolated along 
their respective tracks to the same time as W. If the 
edge of the nearest storm object S is within the given 

Fig. 3. Observed usage of the storm duration predictions by forecasters in 
the spring 2016 HWT experiment. Numbers on the chart are the counts in 
each bin.
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buffer distance (0, 5, or 10 km), W is linked to S and 
all other storm objects in the same track.

Third, predictors are calculated for each storm ob-
ject. There are four types of predictors: radar statistics 
(mean, standard deviation, skewness, kurtosis, and 
seven percentiles calculated for each of 12 variables, 
based only on pixels inside the storm object; the same 
statistics are calculated for gradient magnitudes of 
the 12 variables), storm motion (speed and direction), 
shape parameters (area, orientation, eccentricity, etc., 
of the storm object), and sounding indices (both 
dynamic and thermodynamic). Sounding indices 
are calculated from interpolated RUC data using the 
Sounding and Hodograph Analysis and Research 
Program in Python (SHARPpy) software (Halbert 

et al. 2015). There are a total of 431 predictors. The 
fourth step is to label each storm object S. If S is 
linked to a wind observation ≥50 kt (25.7 m s−1) over 
the given buffer distance and time window, its label 
is “true” (Fig. 4a).

For each buffer distance and time window, a 
GBRT ensemble is trained. Then, isotonic regres-
sion (IR) is trained with independent data (no case 
within 24 h of a GBRT-training case) to bias correct 
the GBRTs. Next, the calibrated model (GBRT + IR) 
is tested on independent data. Results are shown in 
Fig. 4 for the median buffer distance (5 km) and lead 
time (30–45 min). The model shown in Fig. 4 is an 
ensemble of 500 GBRTs trained with the AdaBoost 
algorithm (Freund and Schapire 1997), resampling 

Fig. 4. (a) Labeling of storm object S (dark green polygon). Label is based on wind gusts in light green area, which 
is a 5-km buffer around storm objects occurring 30–45 min later in the same track. (b) ROC curve (Metz 1978). 
The gray line is the ROC curve for a random predictor, and AUC is the area under the curve. (c) Performance 
diagram (Roebber 2009). The gray lines are frequency bias, and the color fill is CSI. (d) Attributes diagram (Hsu 
and Murphy 1986). The orange line is the reliability curve, the diagonal gray line is a perfect reliability curve, 
the vertical gray line is climatology, and the horizontal gray line is the no-resolution line (reliability curve for a 
model that always predicts climatology). In all cases, the orange line is the mean, and the envelope is the 95% 
confidence interval, determined by bootstrapping.

2078 | OCTOBER 2017



factor of 0.15 (with replacement), learning rate of 0.1, 
25 variables tested per branch node, and a minimum 
of 10 storm objects per leaf node. Results are based 
on 12,155 test cases. No premodel variable selection 
was done, because decision trees perform built-in 
variable selection. The area under the receiver op-
erating characteristic (ROC) curve (AUC) is >0.9, 
which is generally considered excellent (Luna-Herrera 
et al. 2003; Muller et al. 2005; Mehdi et al. 2011), and 
the reliability curve (Fig. 4d) is very close to perfect 
(x = y). Furthermore, the maximum critical suc-
cess index (CSI) occurs with a frequency bias of 1.0 
(unbiased model), which suggests that bias need not 
be sacrificed for other performance metrics. These 
results are based on Lagerquist (2016).

Severe hail. Prediction of hail occurrence and size days 
to hours ahead is needed to guide the issuance of con-
vective outlooks and watches. Convection-allowing 
model (CAM) ensembles provide information about 
storm intensity, location, and evolution but do not 
forecast maximum hail size at the surface directly. 
Machine-learning models have been developed to 
predict the probability of hail occurrence and the ex-
pected hail-size distribution given information about 
storms and their environment from CAM output. The 
machine-learning hail models have been run in real 
time on two CAM ensemble systems and have been 
validated against the HAILCAST diagnostic (Adams-
Selin and Ziegler 2016) and storm surrogate variables, 
such as updraft helicity (Sobash et al. 2016).

A storm-centered method is used for producing 
machine-learning hail forecasts. First, potential 
hailstorms are identified from the hourly maximum 
column total graupel field in the 2014 and 2015 Center 
for Analysis and Prediction of Storms (CAPS) CAM 
ensemble using the enhanced watershed feature iden-
tification technique. Observed hailstorms are identi-
fied from the maximum expected size of hail (MESH) 
field (Witt et al. 1998) in the NOAA National Severe 
Storms Laboratory (NSSL) Multi-Radar Multi-Sensor 
mosaic (Smith et al. 2016). Both forecast and observed 
storms are tracked through time and then matched 
based on proximity in space and time. Statistics 
describing the storm and environmental variables 
from within the bounds of each forecast storm are 
extracted and are used as input into the machine-
learning models. A gamma distribution is fit to the 
distribution of MESH within an observed hailstorm, 
and the parameters of the gamma distribution are 
used as target labels for the machine-learning models.

An RF classification model predicts whether hail 
will occur based on whether an observed storm was 

matched with a given forecast storm and the hail-size 
distribution parameters given that hail occurred. 
An RF regression model estimates both the shape 
and scale parameters of the gamma distribution 
simultaneously to preserve the correlations among 
the parameters in the predictions. Gridded hail-size 
forecasts are produced by sampling hail sizes from 
the predicted distribution and applying them in rank 
order onto the column total graupel field. Potential 
hailstorms with less than 50% chance of hail occur-
rence are removed from the grid.

Verification results and a single forecast case are 
shown in Fig. 5 for the machine-learning hail fore-
casts and other storm surrogate probability forecasts, 
including HAILCAST, column total graupel, and 
updraft helicity. The RF used for this experiment was 
trained on CAPS ensemble forecasts from May to June 
2014 and evaluated on CAPS ensemble forecasts for 
the same period in 2015. These results were based on 
analysis from Gagne (2016). The performance dia-
gram (Roebber 2009) in Fig. 5a shows that for a given 
probability threshold, the machine-learning models 
tend to have fewer false alarms, lower frequency 
bias, and higher accuracy than other methods. The 
attributes diagram (Hsu and Murphy 1986) in Fig. 5b 
indicates the probabilities from the machine-learning 
models and updraft helicity are generally reliable, 
while other methods tend to produce probabilities 
that are overconfident. The case study in Fig. 5c 
shows that the RF model performed best at capturing 
the area where 50-mm hail occurred. The other two 
methods had both lower probabilities and enhanced 
probabilities in areas where 50-mm hail did not occur.

Precipitation classif ication. The Meteorological Phe-
nomena Identification Near the Ground (mPING; 
Elmore et al. 2014) project has collected over 1.1 
million observations since its launch on 19 Decem-
ber 2012. The mPING project uses crowdsourced 
observations of precipitation type (ptype) submitted 
anonymously through a smartphone app. Various 
other weather conditions can also be reported, such 
as floods, visibility restrictions, wind damage, hail, 
and tornadoes. The ptype observations have been 
used to help characterize the sensitivity of various 
ptype algorithms to model errors (Reeves et al. 2014) 
and to verify current NWP model performance and, 
in the process, find an outright error within the 
postprocessing of the RAP model (Elmore et al. 2015).

Given that the skill of NWP ptype forecasts have 
been characterized with mPING observations, a com-
pelling next step is to use the mPING observations to 
build a new, hopefully improved, ptype algorithm. As 
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a first attempt, the wet-bulb temperature Tw profiles 
from 5,000 m AGL to the surface created by each 
NWP model are characterized as one of four different 
types that are identical to the four types described 
in Schuur et al. (2012): type 1 is all Tw below freezing 
(273.16 K); type 2 has one freezing level such that Tw at 
the surface is above freezing; type 3 has three freezing 
levels with an elevated warm layer, an elevated cold 
layer, and Tw at the surface above freezing; and type 
4 is the “classic” elevated-warm-layer profile with 
Tw at the surface below freezing. Multiple predictors 
are computed for each profile type, including area 
above and below freezing for each layer, height of the 
various freezing levels, wind shear [both bulk and 
in latitudinal and meridional (u and υ, respectively) 
directions] in warm and cold layers and across the 
entire depth of the profile, area of relative humidity 

(RH) above and below 0.8 for each layer along with 
the mean RH in each layer, and minimum Tw in the 
cold surface layers. Each profile type has a different 
set of predictors, though some predictors are common 
across all profile types. Overall, type 1 profiles have 
28 predictors, type 2 profiles have 23, type 3 profiles 
have 49, and type 4 profiles have 38.

Because each profile type has a different set of pre-
dictors, each has its own RF. Training data consist of 
80% of the available hours of data selected randomly. 
The remaining 20% of the hours are used for test-
ing. Hours, instead of individual observations, are 
chosen so as to lessen cross contamination of testing 
data with training data. Thus, a training profile and 
a testing profile cannot come from the same hour.

These data are not balanced, in that there are 
far more snow and rain reports than ice pellets and 

Fig. 5. (a) Performance diagram comparing different hail forecasting methods. (b) Attributes diagram indicating 
the reliability of different forecasting methods. (c) Forecast case showing the probability of 50-mm-or-larger 
hail in filled contours and observed 50-mm hail in green contours.
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freezing rain. Sampling 
weights and maximum tree 
size are adjusted by trial 
and error such that the bias 
for each of the four classes 
generated by each random 
forest is close to 1. No other 
adjustments are made.

Applying RFs in this 
way results in marked im-
provement in the ptype 
pred ic t ion form N WP 
models. Figure 6 is an 
example of this improve-
ment for the Rapid Refresh 
(RAP) model over the cold 
season of 2014/15 with con-
fidence intervals for each 
score. The right set of bars 
shows the output of the 
RAP postprocess ptype 
algorithm while the left set 
of bars displays the results 
of an RF ptype algorithm. 
Scores for the RF algorithm 
come from a smaller num-
ber of cases (the test data) 
than the scores for the RAP, 
which use the entire avail-
able dataset. There is not much room for improvement 
in predicting rain and snow, but the improvement for 
freezing rain and ice pellets is quite dramatic. In ad-
dition, the RF ptype output is unbiased, unlike the 
postprocessed ptype output. RFs can also provide 
probabilistic information about the ptype, which 
will likely be useful to operational forecasters and 
those involved in maintaining infrastructure systems. 
Clearly, if sufficient data are available, an RF approach 
to forecast ptype can lead to significant improvement 
to the most troublesome winter precipitation types.

Variable importance is examined for each forest 
for each model. No variable stands out as much more 
important than another. At the most extreme, the most 
important variable is roughly twice as important as 
the least important variable. No variable in particular 
stands out; because of this characteristic, variable 
selection is deemed unnecessary.

Renewable energy. Forecasting for renewable energy 
resources is another example of high-impact weather 
forecasts. In this case, forecasting enables using 
clean, locally available, but highly variable renewable 
resources to produce energy in place of fossil fuel 

energy sources. Because the wind, water, and solar 
resources are highly variable, forecasting is needed to 
blend renewable power with other energy sources to 
assure reliable, efficient, and economic deployment. 
Utilities require forecasts on various scales. Here, we 
describe two shorter-range scales: the nowcast, for the 
next 3–6 h, and the day-ahead forecast (which can 
extend to 72 h to cover weekends). The nowcast is 
necessary to blend renewable energy into the grid in 
order to meet the electric load in real time. The day-
ahead forecast is used for planning unit allocation 
and trading energy with other utilities. We specifi-
cally discuss how AI is used for forecasting for wind 
and solar energy, with more detailed descriptions of 
additional prediction methods being provided by 
Ahlstrom et al. (2013), Orwig et al. (2014), Tuohy et al. 
(2015), and Haupt et al. (2016).

The nowcast typically leverages observations from 
the wind or solar plant or remotely sensed data. The 
goal is to improve upon a persistence forecast at the 
location of the plant. Statistical learning and AI meth-
ods capture changes or deviations from persistence. 
One statistical learning method for wind speed now-
casts is the Markov-switching vector autoregressive 

Fig. 6. Scores for the RAP postprocess ptype algorithm (left set of bars) and 
the RF ptype algorithm (right set of bars) based on mPING data for winter 
2014/15. Score values are oriented such that larger positive numbers are bet-
ter. The colored bars show the Pierce skill score for rain (green), snow (blue), 
ice pellets (magenta), and freezing rain (red). The gray bar is the Gerrity 
score for all four types taken together ordered as snow, rain, ice pellets, and 
freezing rain (Elmore et al. 2015).
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model (Hering et al. 2015). Solar power nowcasting 
has leveraged various statistical learning methods. 
Hassanzadeh et al. (2010) and Yang et al. (2012) used 
autoregressive integrated moving average (ARIMA) 
models to predict solar irradiance and power, dem-
onstrating lower errors than other time series models. 
ANNs are commonly used for nonlinear solar predic-
tions (Mellit 2008) and have shown skill over other 
baseline techniques (Marquez and Coimbra 2011; 
Wang et al. 2012; Chu et al. 2013). Support vector 
machines have also shown skill over linear regres-
sion in postprocessing NWP model output (Sharma 
et al. 2011).

Solar models typically predict the clearness index, 
the ratio of the global horizontal irradiance (GHI) 
that reaches the surface of Earth to that at the top of 
the atmosphere. The clearness index ranges between 
0 and 1 and depicts the depletion of solar energy via 
absorption and scattering by clouds and aerosols on 
its path through the atmosphere. It also removes the 
effects of the seasonal cycles and partially accounts 
for diurnal effects. One can explicitly compute the 
GHI at the top of the atmosphere given the solar angle 
and location information.

Some recent work has sought to identify regimes 
and forecast solar irradiance changes specific to those 
regimes through both implicit and explicit meth-
ods. The implicit method employs a regression tree 

approach (Quinlan 1996) with an embedded nearest 
neighbor scheme to forecast both deterministic ir-
radiance and its variability (McCandless et al. 2015). 
Explicit regime identification using k-means cluster-
ing and training ANNs for each cluster was shown 
to improve over training a single ANN on the entire 
training dataset (McCandless et al. 2016b,a). These 
approaches to statistical forecasting outperformed a 
“smart persistence” approach that includes the change 
in solar angle. When compared to other nowcasting 
products, the statistical forecasting approach outper-
formed all others for the first hour (Haupt et al. 2016), 
as demonstrated in Fig. 7.

Day-ahead forecasting approaches use AI mod-
els to postprocess and correct NWP model output 
toward observations. Common methods of post-
processing include ANNs and blended optimization 
methods. The Dynamic Integrated Forecast (DICast) 
system (Myers et al. 2011; Mahoney et al. 2012) first 
applies a dynamic MOS approach followed by opti-
mized blending. This system has improved forecasts 
of wind and solar power by at least 15% (Mahoney 
et al. 2012; Haupt et al. 2016).

For true decision support, utilities and grid 
operators do not want only wind speed or GHI 
forecasts; they actually require power predictions. 
Although manufacturers of wind turbines and solar 
panels provide average power curves, these are not 

perfectly representative 
of actual power produced 
at a site because of varia-
tion in terrain elevation, 
turbulence, and other fac-
tors. Thus, training an AI 
method to convert from 
wind or GHI to power can 
produce better power pre-
dictions for a specific site 
(Parks et al. 2011) and does 
not require the detailed 
metadata needed to apply 
alternative methods for 
solar irradiance (Haupt and 
Kosovic 2016). The Nation-
al Center for Atmospheric 
Research (NCAR) has suc-
cessfully applied the cubist 
regression tree approach to 
both wind (Kosovic et al. 
2015) and solar (Haupt and 
Kosovic 2016).

Fina l ly,  many ut i l i-
ties request probabilistic 

Fig. 7. Mean absolute error (MAE; W m−2) calculated over a 15-month period 
for all nowcast components aggregated over all sites (New York, Colorado, 
and California) for cloudy conditions. Note that StatCast performs the best, 
on average, for these difficult-to-forecast conditions.
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predictions to estimate the forecast uncertainty and 
to plan their reserve requirements. Although NWP 
model ensembles traditionally provide probabilistic 
forecasts, the analog ensemble approach (AnEn; Delle 
Monache et al. 2013) has successfully produced proba-
bilistic forecasts based on a single high-quality fore-
cast from a consistent prediction system. The AnEn 
searches through historical forecasts for those most 
similar to the current forecast. Observations associ-
ated with each historical forecast form a probability 
density function that defines the forecast uncertainty. 
The AnEn mean can correct for systematic biases. 
This approach has proven to be at least as reliable as 
some of the best dynamical ensembles for wind speed 
(Delle Monache et al. 2013; Haupt and Delle Monache 
2014), wind power (Kosovic et al. 2015), and solar 
power (Alessandrini et al. 2015).

AI methods are directly providing decision sup-
port for utilities and grid operators around the world 
and are enabling increases in the deployment of the 
variable renewable energy resources. All of the meth-
ods described in this section have been operational-
ized and used by utilities. In this way, enabling higher 
capacities of renewable energy can lead to energy 
security, lower the use of water in energy production, 
and lower the emissions of carbon dioxide and other 
pollutants, thus providing the world with a clean 
source of sustainable energy.

Aviation turbulence. Although much of the severe 
weather of concern to humans occurs near the 
surface, conditions far above the ground may be 
equally hazardous. Commercial aviation is impacted 
by various weather threats, including airframe ic-
ing by supercooled liquid water, engine f lameouts 
in areas of high ice water content, hail, lightning, 
and atmospheric turbulence. Turbulence is one of 
the most significant en route aviation hazards from 
an operational standpoint. Flying through turbu-
lent eddies causes an aircraft to bounce from side 
to side and up and down, making passengers and 
crew uncomfortable and occasionally injuring them 
or damaging the aircraft. Turbulence is created by 
wind shear in regions of low stability, which may 
result from jet streams and fronts, mountain-wave or 
convectively induced gravity wave breaking, or the 
updrafts and downdrafts of thunderstorms. Because 
it is often a small-scale and fundamentally stochas-
tic phenomenon, turbulence is difficult to forecast 
or even nowcast. Moreover, NWP models are not 
generally tuned to accurately forecast aviation-scale 
turbulence, and output variables such as subgrid 
turbulent kinetic energy (TKE) are not skillful 

in predicting aircraft observations of turbulence 
(Sharman 2016).

AI has become a key tool for observing, now-
casting, and forecasting aviation turbulence. For 
observing turbulence in clouds and storms, a fuzzy 
logic algorithm was developed to carefully qual-
ity control ground-based Doppler radar spectrum 
width measurements, allowing them to be scaled 
and combined into an estimate of the turbulence 
eddy dissipation rate (EDR). Fuzzy logic is a tool for 
building expert systems that mimic human reason-
ing, smoothly combining various sources of evidence 
to form a final assessment (Williams 2009). For the 
turbulence detection algorithm, the likelihood of 
radar spectrum width contamination is scored as 
a “confidence” between 0 and 1 for each of several 
diagnostic quantities derived from the radar signal 
or its spatial context and then these are combined in 
a geometric average to obtain an overall assessment. 
The spectrum widths are scaled to EDR based on 
distance from the radar, and a confidence-weighted 
average is performed to obtain the final EDR estimate 
(Williams and Meymaris 2016).

Aviation turbulence forecasting utilizes diagnostics, 
or indices, computed from NWP model-resolved wind 
shear, stability, and various other functions of the 
modeled variables (Sharman 2016). Although none of 
these explicitly represents aircraft-scale turbulence, 
the form of the turbulent energy cascade means that 
they may be related to it and thus may be transformed 
and weighted to form a good estimate. The Graphical 
Turbulence Guidance (GTG) algorithm (Sharman 
et al. 2006) evaluates each diagnostic against aircraft 
observations of turbulence, rescales it using a piecewise 
linear function, and uses weights based on the resulting 
skill scores to compute a weighted-mean consensus. 
More recent versions of GTG incorporate lognormal 
remapping functions. A weakness of this approach is 
that it does not take into account the linear and non-
linear dependencies between the diagnostics, many of 
which are highly correlated.

Decision-tree-based techniques offer the abil-
ity to incorporate features not proportional or even 
monotonically related to turbulence severity. Williams 
(2014) used RFs to combine both NWP diagnostics 
and features derived from satellite and radar products 
to create turbulence nowcasts. Predictors included 
NWP-derived turbulence diagnostics and thermody-
namic variables such as convective available potential 
energy (CAPE) and convective inhibition (CIN); 
distances to relevant reflectivity, echo top, lightning, 
and in-cloud turbulence objects; and disc statistics 
over various radii from both the radar and satellite 
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imagery. Several hundred candidate predictors were 
whittled down first through the RF’s variable impor-
tance analyses and then through forward and back-
ward selection, where an RF is trained and evaluated 
on independent datasets and the predictor variables 
producing the best discrimination skill are preserved. 
The RF is then calibrated to produce either EDR or 
turbulence probability, and the resulting algorithm is 
run at every point in a predefined grid to produce a 
map suitable for use by pilots, dispatchers, or air traffic 
controllers. Although the benefits of an AI approach 
are particularly clear for fusing multiple data sources 
for turbulence nowcasting, Table 1 indicates that lo-
gistic regression, k-nearest neighbor, and especially RF 
exceed GTG’s skill even in the case when only NWP 
model data are used as predictors. A similar approach 
has been used to forecast convection (Mecikalski 
et al. 2015; Ahijevych et al. 2016). A downside of this 
approach is the need for significant feature engineer-
ing, that is, calculating many different features and 
then testing which are relevant. This requirement is 
somewhat mitigated by McGovern et al. (2014), who 
used spatiotemporal relational random forests guided 
by a schema identifying possibly relevant relationships 
between an aircraft location and various storm-related 
objects. In the future, convolutional neural networks 
operating in a deep learning framework may reduce 
the need for feature engineering even further. The use 
of AI for turbulence prediction will continue to make 
flights safer and more comfortable.

DISCUSSION. Application of modern AI tech-
niques to high-impact weather forecasting is improv-
ing our ability to sift through the deluge of big data 
to extract insights and accurate, timely guidance for 
human weather forecasters and decision-makers. 

AI techniques build on traditional methods, such 
as MOS, by providing more f lexible and powerful 
models capable of identifying complex relationships 
between a huge number of modeled and observed 
weather features or derived quantities. In addition, AI 
methods extend easily to directly predicting impacts 
of high-impact weather, such as power generated 
by variable sources such as solar or wind, energy 
consumption in an area, or airport arrival capacity.

This paper raises the interesting question of the 
role of automated guidance in forecasts. While we 
have demonstrated that AI/data science techniques 
can be used to significantly improve forecasts in a va-
riety of high-impact weather domains, it is not simply 
a matter of bringing these techniques to operations. 
The forecasters must be able to trust the forecast pro-
duced by such techniques, as has been demonstrated 
in the HWT/PHI experiments (Karstens et al. 2016).

For forecasts of standard weather variables, such 
as temperature and precipitation, the NWS currently 
operates with a human-in-the-loop paradigm in which 
forecasters subjectively blend and adjust multiple 
sources. Local offices add predictive value in situations 
where local effects have a larger impact on the forecast. 
At the NWS Weather Prediction Center, which issues 
temperature and precipitation forecasts over the en-
tire United States, the human forecasts now perform 
significantly worse than downscaled, bias-corrected 
ensemble forecasts for temperature and precipitation 
(Novak et al. 2014). Official NWS track forecasts of 
hurricanes, a major form of high-impact weather, also 
perform worse than weighted ensemble consensus 
forecasts (Cangialosi and Franklin 2015). There are 
also issues with spatial discontinuities in forecasts and 
warnings between the domains of different forecast 
offices (Gilbert et al. 2015). Private weather firms, in-

cluding The Weather Com-
pany, operate in a human-
over-the-loop paradigm in 
which an optimal blend of 
bias-corrected model out-
put is generated as needed 
by users, and human fore-
casters can add filters and 
qualifiers to account for 
observed short-term bi-
ases or data quality issues 
(Williams et al. 2016). This 
approach scales easily and 
only requires a small team 
of meteorologists to oversee 
a mostly automated system. 
The downside of a heavily 

Table 1. High-altitude turbulence forecast skill scores for years 2010 and 
2011, evaluated using pilot reports and automated aircraft turbulence 
reports. AI methods were trained on 40,000 random samples from 2011 
with 30% turbulence cases and evaluated on all of 2010, and vice versa. The 
k-nearest neighbors method used 100 analogs. TSS is the true skill score.

Method Year ROC AUC Max CSI Max TSS

GTG weighted mean
2010 0.791 0.137 0.443

2011 0.775 0.132 0.418

Logistic regression
2010 0.822 0.162 0.496

2011 0.805 0.149 0.461

k-nearest neighbors
2010 0.832 0.167 0.514

2011 0.818 0.163 0.482

Random forest
2010 0.849 0.179 0.541

2011 0.830 0.169 0.499
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automated approach is that forecasters may become 
disengaged from the forecast process (Pliske et al. 2004) 
and struggle to take appropriate corrective action when 
automation fails (Skitka et al. 1999; Pagano et al. 2016).

By studying the error characteristics of different 
machine-learning methods in high-impact weather 
situations, researchers and forecasters can identify 
when the automated guidance should be trusted and 
when it is more likely to struggle. The methods 
presented in this paper are able to blend physical 
knowledge with automated corrections to produce 
critical products in this age of information overload.
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