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Abstract—Severe hail, or spherical ice precipitation over 1
inch in diameter, has caused billions of dollars in damage to
crops, buildings, automobiles, and aircraft. Accurate predictions
of severe hail with enough lead time can allow people to mitigate
some hail damage by sheltering themselves and their vehicles and
by rerouting their aircraft. Current pinpoint forecasts of severe
hail rely on detection of hail in existing storms with radar-based
methods. Predictions beyond an hour are limited to probabilistic
predictions over larger areas based on expected environmental
conditions. This paper describes a technique that could increase
the accuracy of severe hail forecasts by incorporating output
from an ensemble of storm scale numerical weather prediction
models into a spatiotemporal relational data mining model that
would produce probabilistic predictions of severe hail. The
spatiotemporal relational framework represents the ensemble
output as a network of storm objects connected by spatial
relationships. Composites of the ensemble data show spatial
biases in the placement of severe and non severe hail storms.
The spatiotemporal relational model performs significantly better
at discriminating between severe and non-severe hail compared
to a traditional data mining model of the same type. Variable
importance rankings show results physically consistent with
previous studies and highlight the importance of the relational
data.

Index Terms—Spatiotemporal data mining, Relational learn-
ing, Random forests, Environmental hazards, Hail

I. INTRODUCTION

Severe hail, defined as precipitation in the form of spherical
aggregates of ice with a diameter larger than 1 inch [1], is
responsible for economic damage that has totaled over $1
billion [2], [3]. Hail most often damages crops, buildings, and
vehicles, which has resulted in a continuing interest from the
research and insurance community [4] in understanding the
ingredients for severe hail and finding ways to anticipate its
occurrence. Given enough lead time, people can mitigate dam-
age to vulnerable assets by moving people indoors, sheltering
vehicles, and rerouting aircraft.

Any severe hail forecasts beyond the lead time of an
hour are limited to probabilities over broad regions due to
difficulties in forecasting the track and intensities of the parent
storms. Forecasters at the National Oceanic and Atmospheric
Administration Storm Prediction Center currently issue prob-
abilistic severe hail convective outlooks 1 day in advance and
Severe Thunderstorm Watches within a few hours of an event.

National Weather Service Severe Thunderstorm Warnings pro-
vide an expected hail size over the area of a warning polygon.
In 2012, the warnings provided an average lead time of 18.7
minutes, detected 83% of the severe storm reports, and raised
a false alarm 46% of the time [5] (because a severe storm
includes several criteria, these statistics include tornado and
wind reports). Physics-based [6] and neural network models
[7], [8] have also been used to predict the probability of severe
hail (POSH) and maximum expected hail size (MEHS) from
radar data and observed and forecast proximity soundings.
Statistical models that have derived hail size from numerical
model output have used coarse resolution models that can
resolve the large scale environmental conditions but cannot
predict individual storms. Some microphysics parameteriza-
tion schemes within higher resolution numerical models can
explicitly predict the size distributions of graupel, which is
a small ice particle, and hail but require some additional
assumptions in order to predict a maximum hail size [9], [10].

Ensembles of numerical models with the horizontal grid
spacing capable of resolving individual storms have been run
experimentally with the NOAA Hazardous Weather Testbed
Spring Experiment by the Center for the Analysis and Pre-
diction of Storms (CAPS) [11] since 2007. Each ensemble
member outputs the expected position of storms as well as a
wide range of variables describing the storm environment and
strength. The members produce predictions of hail and graupel
mixing ratios and number concentrations, which can be used
to derive an estimate of the maximum hail size assuming
a parametric bulk distribution of hail diameter [10]. Those
values could be derived in an additional procedure involving
the quantization of an assumed empirical distribution of sizes
[9], but it would require so many extra computations that it
would not be operationally feasible. Instead, output from each
ensemble member can be used by statistical post-processing
algorithms, which are much less computationally expensive
and can be run independently of the numerical models, in order
to produce probabilistic predictions of high impact weather
events. Previous projects have focused on probabilities of
heavy rain using grid point [12] or local neighborhood data
[13]. There has been no work focusing on deriving severe hail
probabilities from these ensembles up to this point.

Neither the grid point nor neighborhood data collection



methods capture the potentially complex relationships among
a set of storms in the model. In a traditional supervised
classification framework, each case is associated with a set
of independent attributes. While they may be related to each
other, there is no way to specify connections explicitly. A spa-
tiotemporal relational framework provides a way to organize
complex spatially and temporally varying data into a high-
level network while still interrogating low-level data values.
Discrete areas/regions of interest are classified as objects. In
this domain, a single thunderstorm could be considered an
object. Objects can exist for periods of time, change shape, and
move in space. The data values contained within or derived
from those objects are stored as attributes of each object.
For example, the thunderstorm object could have attributes
describing size of the storm and the intensity of the rainfall
within it. Attributes can be static, time series, or fielded in two
or three dimensions. The fielded attributes can be either scalar
or vector values. The individual objects are then connected
through spatial relationships, which can also have associated
attributes, such as distance and direction. The framework has
successfully captured the complex relationships in the domains
of tornado and turbulence prediction [14] in which very short-
range forecasts were made from a fusion of multiple data
sources. This project extends that framework to severe hail
prediction and ensemble forecasting by making day-ahead
forecasts that learn patterns from objects and relationships
representing ensemble predictions.

The primary goals of this paper are to introduce a proba-
bilistic severe hail prediction algorithm utilizing storm scale
ensemble model forecasts, to extend the spatiotemporal rela-
tional framework to non-deterministic datasets and predictions
at longer time frames, and to compare the performance of
a spatiotemporal relational model with traditional machine
learning methods, and to compare the relative importance
of neighborhood and object-based data representations. The
model presented here is the first step in a larger project to
improve severe hail prediction by more accurately representing
hail in numerical models and by applying data mining tech-
niques to numerical weather prediction ensemble forecasts.

II. DATA

A. Verification Data

There is currently no operational automated system to
observe hail size directly. Hail pads, which are styrofoam
rectangles covered in aluminum foil that are placed outside on
the ground and then dented by hail impacts [8], can be used
to measure hail size regularly but require a human observer to
check the pad regularly. Verification data for this project come
from two sources of hail reports. The National Oceanic and
Atmospheric Administration (NOAA) Storm Prediction Center
(SPC) aggregates local storm reports for tornadoes, hail, and
high winds on its website. The NOAA National Severe Storms
Laboratory (NSSL) Meteorological Phenomena Identification
Near the Ground (mPING) project collects precipitation type
and severe weather reports from the general public using a
smartphone app. Both the SPC and mPING reports provide

direct confirmation of severe hail along with a size estimate,
and the mPING dataset also contains reports of non-severe
hail and rain, which makes mPING especially valuable as a
source for null events.

Both report databases have many limitations. They only
provide one hail size per report, so the actual distribution of
hail within a storm is unknown. The reports are subject to
population biases, so hail near cities and major highways are
more likely to be reported. Reports also give no indication
of the spatial coverage or duration of the hail. Lack of a hail
report does not necessarily mean that hail did not occur at that
location.

In future work, we plan to incorporate radar-derived hail
estimates [15], [16] into the verification dataset. They would
provide much finer spatial and temporal coverage while con-
trolling for population biases in the report datasets. The radar-
derived hail sizes are based on radar returns from above
the ground, so they can overestimate the size of hail that
reaches the ground, and the algorithm was calibrated for the
southern Plains, so it tends to perform worse in the eastern
US. A combination of the reports and radar-derived data
would provide the best estimates of “truth.” We will also
acquire more reports from the NSSL Severe Hazards Analysis
and Verification Experiment [17], which actively collects hail
reports through phone interviews in potentially affected areas.

For this paper, we selected SPC and mPING hail reports
from between 1800 UTC and 0600 UTC for each model run.
The period covers the peak time for severe weather, which
runs from noon to midnight CST in the Great Plains states.
Reports of hail 1 inch or larger were considered severe, in
accordance with the National Weather Service definition [1];
and hail reports smaller than 1 inch were considered non-
severe. With this form of report sampling, only locations that
actually received hail are included, and since severe hail is
more likely to be reported than non-severe hail, the distribution
of severe versus non-severe hail may not approximate the true
climatological distribution of hail as non-severe hail tends to
occur more often [4]. A map of all hail reports in the time
period of the study is shown in Fig. 1. Most of the reports
occur in the Plains region of the country, which is to be
expected for the May-June time period [15]. Other parts of
the country do receive inclusion in the dataset, such as the
cluster of reports in North Carolina and in Pennsylvania. There
are also reports in the climatologically rare areas west of the
Rockies in Idaho, California, Montana, and Washington.

B. Ensemble Forecast Data

This project uses the 2013 CAPS Storm Scale Ensemble
Forecast (SSEF) system for its ensemble forecast data [18].
The 2013 SSEF consists of 30 numerical weather prediction
models run at 4-km horizontal resolution with varied initial
and boundary conditions as well as different combinations of
physical parameterization schemes. Each model is initialized
at 0000 UTC and outputs predictions every hour for 48 hours
in a domain covering the contiguous United States. The SSEF
was run every weekday from April 24 through June 6 with
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Fig. 1: All hail reports from 18 UTC to 6 UTC for each day of the 2013 SSEF. Reports are colored by size (left) and by
whether or not the report is severe (right).

special weekend runs for major severe weather events. The
ensemble output consists of a series of two-dimensional grids
containing forecast values for a wide range of parameters that
describe environmental conditions related to storm potential.
Because storms can form and die within a single hour, some
of the grids contain the maximum value of a parameter over
the previous hour, and others are derived from column sums
or maximums. Of the 30 total ensemble members, the 15
that used perturbed initial and boundary conditions as well
as varied physical parameterizations were mined. The others
were excluded because they used identical initial conditions to
the control run and may bias the results of any aggregations
if included.

The configurations of the ensemble members are shown in
Table I. The control members receive their initial conditions
from the 0000 UTC Advanced Regional Prediction System
(ARPS) model [19], [20], [21] analysis and boundary condi-
tions from the 0000 UTC North American Mesoscale (NAM)
model. The other ensemble members use the initial conditions
from the control member plus a perturbation from one of the
members of the coarser resolution 2100 UTC Short Range
Ensemble Forecast system. All ensemble members except
for the ARPS control member use the Advanced Research
Weather Research and Forecasting (WRF) model [22]. The
microphysics parameterization schemes are responsible for
determining the distributions and amounts of each precipitation
type in the model. All of the microphysics schemes produce
explicit predictions of graupel, but only the Milbrandt and Yau
(M-Y) scheme has a hail term. Because of that, we will only
be using the graupel mixing ratio fields from the models.

III. METHODS

A. Data Sampling

Each instance in the training and testing datasets was
centered on either a severe or non-severe hail report. Over the
period of the SSEF there were 1257 severe hail reports and
588 non-severe hail reports (Fig. 1). Each report was matched

TABLE I: Initial conditions, boundary conditions, and physical
parameterization scheme choices for each ensemble member.

Member IC BC Microphysics LSM PBL

arw cn ARPSa NAMf Thompson Noah MYJ
arps cn ARPSa NAMf Lin – –
arw m3 +em-p1 em-p1 Morrison RUC YSU
arw m4 +nmm-n2 nmm-n2 Morrison Noah MYJ
arw m5 +em-n2 em-n2 Thompson Noah ACM2
arw m6 +nmmb-p2 nmmb-p2 M-Y RUC ACM2
arw m7 +nmm-p1 nmm-p1 Morrison Noah MYNN
arw m8 +nmmb-n1 nmmb-n1 WDM6 RUC MYJ
arw m9 -nmmb-p1 nmmb-p1 M-Y Noah YSU
arw m10 +em-n1 em-n1 WDM6 Noah QNSE
arw m11 -em-p2 em-p2 M-Y Noah MYNN
arw m12 -nmmb-p3 nmmb-p3 WDM6 Noah YSU
arw m13 -nmmb-p3 nmmb-p3 Thompson Noah YSU
arw m14 -em-p3 em-p3 Thompson Noah MYNN
arw m15 -nmm-p2 nmm-p2 Morrison Noah QNSE

with the nearest and preceding forecast hours. Ensemble data
and objects were extracted from a 84 × 84 km box centered
on each report. Neighborhood objects contain fielded attributes
consisting of data from the centermost 10×10 grid points for
each variable being mined. Storm regions in the surrounding
area were extracted and connected to the neighborhood object
with spatial relationships (Fig. 2). Each spatial relationship
contains time-series attributes describing the distance and
direction from the neighborhood object.

B. Object Segmentation and Tracking

Within the box of interest, spatiotemporal objects related to
forecasted storms were extracted from each ensemble member.
Object segmentation was performed using the enhanced wa-
tershed method [23]. The traditional watershed method grows
regions from local maxima in a grid until the regions meet
or a minimum depth is reached in the data. The enhanced
watershed adds minimum size and maximum depth criteria
into the region growing step while keeping track of foothills,
which are buffer zones around each region. The size and depth
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Fig. 2: Schema showing the different types of objects (ovals)
in each hail case and how spatial relationships (diamonds and
arrows) connect them.

Fig. 3: Example of the enhanced watershed segmentation
process applied on 20 May 2013 at 2100 UTC for a severe
hail report in Oklahoma City. The left column shows the
intensities of the 1-Hour Max Column Graupel Mixing Ratio
(WUPMAX) for both ensemble members while the right
column shows the objects that the enhanced watershed selected
from the grids on the left.

criteria can be used to find objects at varying scales while
filtering smaller peaks. It produces more physically accurate
objects and does not require any global thresholds. Watershed
parameters for each variable were based on their distributions
of values and the ranges that were physically significant.
The size parameters were set to find objects on the scale of
individual storm cells.

The enhanced watershed was run on grids most likely
to produce discrete objects associated with storms: 1-hour
max column graupel mixing ratio, radar reflectivity in the
-10oC layer, 1-hour max updraft helicity, 1-hour accumu-
lated precipitation, precipitable water, and 1-hour max upward
vertical velocity. The 1-hour max column graupel mixing
ratio measures the amount of ice balls in a column of air,
which would be high in grid cells containing hail cores.
The radar reflectivity indicates the presence of storms, and
hail results in high reflectivity values. The updraft helicity is
high in the updrafts of supercell thunderstorms, which are the
primary producer of severe hail. High upward vertical velocity
indicates the presence of a strong updraft, which produces
large hail by lofting hailstones higher in the atmosphere and
holding them aloft longer. Accumulated precipitation indicates
the extent of the storms as well.

An example case of the enhanced watershed is shown in Fig.
3. The predicted 1-Hour Max Column Graupel Mixing Ratio is
shown for the WRF Control and WRF M5 Perturbations. Both
show multiple graupel cores over central Oklahoma with some
differences in location and size. In both cases, the enhanced
watershed is able to identify the major graupel cores while
either ignoring objects that do not meet the minimum size
criteria or merging them with nearby objects if the two are
close enough together and linked with high enough values.

The objects found at each time step were then linked
through a customized object tracking technique. Objects from
the first time step were associated with objects in the following
time step by calculating the Euclidean distance to each object
and keeping those within a tracking radius that corresponds to
the approximate distance a storm could travel in 1 hour. If only
one object is within the tracking radius, then it is selected.
For more than one matching object, the percent overlap is
used to select the best match. If no overlaps occur, then the
object with the closest centroid is selected. This technique
can handle storm splits and mergers. It is a variant of the
techniques discussed in [24].

C. Spatiotemporal Relational Random Forests

We used the spatiotemporal relational random forest (SRRF)
[14] to perform the severe hail predictions. The SRRF is an
ensemble of spatiotemporal relational probability trees, which
are probability estimation trees that learn from relational data
incorporating space and time variations. The SRRF uses the
Random Forest [25] procedures of bagging the training set
for each tree, selecting a random subset of questions at each
node, and not pruning. The trees use a traditional greedy
growth algorithm but differ from traditional decision trees in
the questions used to split the data. Instead of splitting based



on a category or single value, the tree can ask questions about
the objects, attributes, and relationships, such as “Is there a
precipitation object with attribute 1 hour accumulated precip-
itation that exceeds 5 mm?”. Additional attributes are pre-
computed from the provided data in order to examine dynamic
statistics and spatiotemporal derivatives, such as gradients. The
objects are also decomposed into shapelets [26], which are
pieces of time-series derived from the shapes of objects [27].
The shapelets found from each case can be matched against a
reference shapelet. Questions can be generated based on the
match or based on comparisons of the statistical distributions
of the shapes. Spatial relationships can also be discovered
between fielded objects with location information.

For the experiments in this paper, we used a 46-tree SRRF
that sampled 1000 questions at each node in each tree with a
maximum tree depth of 10. These settings balanced predictive
and computational performance. These settings have provided
strong performance in the past while allowing the forests to
be generated in a reasonable amount of computational time.
For our baseline comparison, we used a 46-tree random forest
from the R randomForest library. Since the full spatiotemporal
relational dataset would not be translatable to a traditional
framework, we extracted the mean and standard deviation of
the last time step of the neighborhood objects for each variable
and ensemble member for a total of 180 attributes.

Both the SRRF and Random Forest can produce rankings of
permutation-based variable importance [25]. For each attribute
in the dataset, the values are randomly permuted among the
cases that were in the training set but not used for training
each tree due to resampling. The permuted cases are then re-
evaluated by each tree, and the average decrease in accuracy
compared to the original performance is the variable impor-
tance score. Unlike procedures used for stepwise selection
in regression problems, permutation variable importance can
account for nonlinear interactions among variables, but it is
unstable due to its random components. For that reason, the
variable importance scores are averaged over 30 runs of the
SRRF and Random Forest to filter the variability.

D. Verification and Analysis

The models are evaluated with statistics examining aspects
of how well they discriminate between severe and non-
severe hail. For each run of each model, 1466 cases were
uniformly randomly selected for training, and the remaining
367 were used for testing. Some days may be represented in
both the training and test sets, but the relative performance
should not be affected. The primary evaluation tool is the
Receiver Operator Characteristic (ROC) curve [28], a plot
of the probability detection (POD) versus the probability of
false detection (POFD). The POD and POFD are calculated
over all thresholds. A larger area under the ROC curve (AUC)
corresponds to larger skill relative to climatology. The Peirce
Skill Score (PSS) [29], or POD−POFD, can be used to find
the optimal threshold for the classifier at the point on the ROC
curve where it is maximized [30]. At that threshold, other two-
class verification scores such as False Alarm Ratio (FAR) and

frequency bias can be calculated from the binary contingency
table. The formulas for each of the scores used in the paper
are shown in Table II. Statistical significance of the differences
in the distributions of the scores was tested calculating the
bootstrap confidence intervals of the ratios of the SRRF and
RF scores and determining if

TABLE II: Contingency Table Scores. H is a hit, m is a miss,
f is a false alarm, and n is a true negative.

Score Formula

PSS h
h+m

− f
f+n

POD h
h+m

POFD f
f+n

FAR f
f+h

Bias h+f
h+m
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Fig. 4: Frequency of hail reports by size in 0.25 inch incre-
ments.

IV. RESULTS

A. Data Distributions

The distribution of hail size in the training data shows shows
of the biases of the report dataset. The frequency of reports by
size is shown in Fig. 4. Hail reports are binned in 0.25 inch
increments, and the smallest reported hail size is 0.25 inches.
The spikes at 1 inch and 1.75 inches are due to the public
reporting the hail size based on comparisons to quarters and
golfballs, respectively instead of directly measuring the hail
[17]. Incorporating additional reports and remotely-sensed hail
datasets should help to correct those biases.

In order to visually examine the differences among the
different SSEF ensemble members, composites were made of
the last time step of the neighborhood objects (Fig. 5). The
control member (Fig. 5a) shows relatively small differences
in the neighborhood values for each of the variables, but
the non severe cases do have relatively higher values in the
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Fig. 5: Neighborhood composites for the WRF control member
and one of the perturbations.

TABLE III: Comparison of the 30-run mean and the 95%
bootstrap confidence intervals for various verification scores
between the SRRF and random forest.

SRRF RF
Score 2.5 Median 97.5 2.5 Median 97.5

AUC 0.740 0.747 0.755 0.716 0.726 0.736
PSS 0.371 0.385 0.398 0.368 0.386 0.403

POD 0.780 0.813 0.843 0.792 0.822 0.849
POFD 0.390 0.428 0.465 0.406 0.436 0.466

FAR 0.188 0.199 0.210 0.185 0.196 0.207
Bias 0.968 1.019 1.067 0.9810 1.026 1.067

TABLE IV: Top 10 variable importance rankings for 30
SRRFs.

Type Item Attribute Mean SD

Object pwat gridded values 214.75 30.90
Object wupmax gridded values 193.29 31.61

Relation nearby distance 155.97 41.49
Object neighborhood mlcape 131.73 27.15
Object echotp gridded values 129.91 21.56
Object accppt gridded values 110.85 22.85

Relation nearby east-distance 78.31 18.16
Relation nearby direction 77.02 17.71
Relation nearby north-distance 73.34 16.15
Object r10cmx gridded values 71.14 12.99

western half of the neighborhood and stronger gradients. The
MLCAPE is consistently higher in the severe cases and has
little gradient. In the WRF ARW M6 perturbation, the severe
cases show higher values in the neighborhood for 3 of the
6 variables. Some of the variability may be due to storms
being outside of the immediate neighborhood of the reports
or differing biases in different regimes.

B. SRRF Verification

Fig. 6 shows the ROC curves for all 30 runs of the SRRF
and the mean of those runs. All of the SRRF and RF runs show
positive skill in terms of Area Under the ROC Curve. The
range of ROC curves indicates a smaller variance in the SRRF
runs compared to the RF. At the higher probability thresholds
the SRRF maintains higher PODs for a given POFD, and at
lower probability thresholds the performance is similar.

Table III compares the verification scores of the SRRF and
Random Forest. The median and 95% bootstrap confidence
intervals are provided. The SRRF has a statistically signifi-
cantly (α < 0.01) larger AUC compared with the Random
Forest. The differences in the other scores are not statistically
significant. This supports the similar POD and POFDs seen
in Fig. 6. Both the SRRF and the RF show little to no
frequency bias. The high POD and low FAR for both models
is encouraging in that it is successfully picking severe hail
cases without causing too many false alarms. Given that it is
effectively making an 18 to 30 hour forecast when making this
distinction, the scores are particularly impressive.

C. Variable Importance

Variable importance rankings averaged over 30 SRRF runs
are shown in Table IV. The objects most prominent in the
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Fig. 6: ROC curves for each of the 30 runs (green) and the
mean of the curves (blue). The dashed line indicates the no-
skill threshold.

TABLE V: Top 10 variable importance rankings for 30 random
forests.

Attribute Mean Score

ARW M8 MLCAPE Mean 0.148
ARW M13 MLCAPE SD 0.145
ARW M6 MLCAPE SD 0.139
ARW M14 MLCAPE SD 0.137
ARW M11 MLCAPE SD 0.137
ARW M07 Wupmax SD 0.134
ARW M13 Cqgmax SD 0.133
ARW M14 R10cmx SD 0.129
ARW M12 MLCAPE Mean 0.126
ARW M15 MLCAPE SD 0.125

rankings are wupmax, or 1-hour max upward vertical veloc-
ity, and pwat, or precipitable water. Precipitable water tends
to be correlated with heavy precipitation events and when
coupled with other factors correlates with large hail. The
wupmax object corresponds to the updrafts of storms in the
model. Stronger updrafts tend to be associated with larger
hail size because the hailstones can be lofted higher into
the storm and stay in the hail growth region of the storm
for a longer period of time. All of the attributes associated
with the nearby relationship were also very important. The
direction, east-distance, and north-distance all provide some
information about the position of the storms relative to the hail
report. This kind of information is typically not captured in
more traditional statistical post-processing methods, so its high
importance vindicates the usefulness of the spatiotemporal
relational framework. The neighborhood objects did not appear
to provide significant information except for MLCAPE, which
tends to be fairly constant throughout storm regions. The
echotp, or echo top object indicates the height of the storm
and tends to be higher in storms with strong updrafts.

The variable importance rankings for the average of 30
Random Forest runs are shown in Table V. Unlike the SRRF,
each ensemble member had separate, independent attributes,
so it may provide some indication of which model had the
most impact on the predictions. Most of the top 10 was
dominated by the MLCAPE from various ensemble members.
The upward vertical velocity and radar reflectivity were also
important for similar reasons as in the SRRF. The column
graupel did appear in the top 10 but not in the SRRF top 10.
While it is directly connected to the presence of hail, it may
occur in large values for cases in which there is a lot of small
graupel and hail, so it is not as effective as a discriminator.
None of the ensemble members was consistently used more
often in the upper section of the variable importance rankings,
so no preferences can be ascertained from this dataset.

V. DISCUSSION

The SRRF and the spatiotemporal relational framework
show great initial promise for predicting severe hail. The
additional spatiotemporal data was shown to have provided
additional predictive skill compared to data in a traditional
framework with a traditional Random Forest. Variable impor-
tance rankings also show high rankings for objects outside of



the grid point neighborhood and for the relationships showing
the positions of those more distant objects. Discovering the
full significance of those objects and relationships requires
more in-depth analysis of their associated tendencies. One
possible hypothesis for their significance is that the SRRF is
discovering spatial biases in each ensemble member in terms
of storm placement.

These initial results lead to many potential avenues for
future exploration. Although the data do capture some of the
major ingredients of large hail events, the large storage and
computational requirements make running the over anything
other than a coarse grid or a grid over a small domain
infeasible. We plan to explore making model storm-centric
hail predictions and on finding ways to characterize the spatial
uncertainty of the predictions more accurately and efficiently.
We also plan to expand the predictions from severe/non-severe
to multi class based on major size categories and also try exact
prediction of hail size with regression techniques.

Reproducibility of research: In conjunction with the pub-
lication of this paper, we have released the full SRPT/SRRF
code and the hail training and testing data in the format used
by our algorithm at http://idea.cs.ou.edu/software.html.
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