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ABSTRACT

Forecasting severe hail accurately requires predicting how well atmospheric conditions support the develop-

ment of thunderstorms, the growth of large hail, and the minimal loss of hail mass to melting before reaching the

surface. Existing hail forecasting techniques incorporate information about these processes from proximity

soundings and numerical weather prediction models, but they make many simplifying assumptions, are sensitive

to differences in numerical model configuration, and are often not calibrated to observations. In this paper a

storm-based probabilistic machine learning hail forecasting method is developed to overcome the deficiencies of

existing methods. An object identification and tracking algorithm locates potential hailstorms in convection-

allowing model output and gridded radar data. Forecast storms are matched with observed storms to determine

hail occurrence and the parameters of the radar-estimated hail size distribution. The database of forecast storms

contains information about storm properties and the conditions of the prestorm environment. Machine learning

models are used to synthesize that information to predict the probability of a storm producing hail and the radar-

estimated hail size distribution parameters for each forecast storm. Forecasts from the machine learning models

are produced using two convection-allowing ensemble systems and the results are compared to other hail

forecastingmethods. Themachine learning forecasts have a higher critical success index (CSI) atmost probability

thresholds and greater reliability for predicting both severe and significant hail.

1. Introduction

Hail causes billions of dollars in property and crop

damage in the United States each year (Changnon 2009)

and is a major liability for insurance companies (Brown

et al. 2015) with $850 million in average annual claims.

Urban sprawl and population growth in large cities such

as Dallas/Fort Worth, Texas; St. Louis, Missouri; Chi-

cago, Illinois; and Denver, Colorado, have made large

amounts of property damage from hail events more

likely (Rosencrants and Ashley 2015). Hail growth and

melting is governed by the microphysical processes

that a hailstone experiences along its trajectory through

a storm. Foote (1984) and Nelson (1983) found that the

amount of hail growth strongly depends on the path
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through the updraft and the amount of supercooled

liquid water encountered. Rasmussen and Heymsfield

(1987) identified how differences in ice density, relative

humidity, and hail diameter can affect the rate of melt-

ing. However, hail forecasting methods have relied on a

combination of coarse approximations of the expected

storm environment and local hail climatology with

varying degrees of success (Johns and Doswell 1992).

Most existing hail forecast methods (e.g., Fawbush and

Miller 1953; Moore and Pino 1990; Brimelow et al. 2002)

are based on information extracted from a sounding

representative of the convective environment. All of

these models estimate potential updraft strength from

the integrated buoyancy between the melting layer and

the equilibrium level. To determine the hail size at the

ground, the hail size models also include a melting com-

ponent based on the height where the wet-bulb temper-

ature reaches 08C, which is approximately where melting

would begin in hail falling through downdraft air. Shal-

lower, cooler, and drier melting layers lead to lessmelting

(Rasmussen and Heymsfield 1987), and larger hailstones

have higher terminal fall speeds, leading to shorter transit

times (Johns and Doswell 1992).

Sounding-based hail forecasting has fundamental

limitations. For best results, the sounding should be

representative of the storm environment, which can be

problematic when observed soundings are only avail-

able at discrete locations and twice a day. This issue can

be addressed by correcting the sounding based on sur-

face observations (Moore and Pino 1990) or by utilizing

model soundings near the time and location of expected

hail, but this may not be representative of the updrafts

that actually produce hail. Also, updraft speed from

CAPE is estimated at the top of the updraft, not within

the hail growth region. The largest hail may not come

from the strongest part of the updraft because hail may

be lofted elsewhere if the speed is too high (Foote 1984;

Johns and Doswell 1992). In storms with broader up-

drafts, hailstones may have significant horizontal mo-

tions in their growth trajectories (Nelson 1983; Foote

1984), leading to additional growing time. Hail embryos

also may not traverse the optimal growth trajectory

through the updraft and thus fail to achieve the largest

size possible for that updraft speed (Dennis and

Kumjian 2017).

Some of the shortcomings with sounding-based hail

diagnostics were previously addressed by feeding

sounding information into a one-dimensional hail

growth model called HAILCAST (Brimelow et al.

2002). This model creates an ensemble of updrafts based

on perturbations of the temperature and moisture pro-

file. The energy shear index estimates the updraft life-

time and the amount of entrainment. Hail embryos are

released into the updraft and grow until they can no

longer be sustained or the updraft collapses. A bulk

melting scheme is then applied to approximate the hail

size at the ground. Jewell and Brimelow (2009) found

that HAILCAST generally provides a reliable hail size

forecast, especially when compared to other sounding

methods. Adams-Selin and Ziegler (2016) implemented

an updated version of HAILCAST with many physical

improvements based on observational hail studies in the

WRF Model. WRF-HAILCAST, using modeled cloud

liquid and ice water and vertical velocities in place of

those estimated from a sounding and in spatial verifi-

cation experiments, was found to forecast hail sizes

within 12mmof observed 66%of the time (Adams-Selin

and Ziegler 2016). Although WRF-HAILCAST does

incorporate many physical processes into its hail growth

model, it does have to make some simplifying assump-

tions about hail growth trajectories to be computation-

ally efficient. It is also sensitive to the sizes of the initial

hail embryos and the density of the hailstones (Adams-

Selin and Ziegler 2016), but that sensitivity is addressed

by growing an ensemble of hail embryos with varied

initial sizes.

As computational speed and storage capacities have

increased in the past 20 years, research and operational

groups have run real-time NWP models capable of ex-

plicitly representing deep, moist convection (Kain et al.

2008).While not all convective processes are adequately

resolved, individual updrafts and their associated heat

and moisture fluxes can be represented reasonably well.

Because some convective processes are not fully re-

solved, these models are called convection-allowing

models (CAMs). CAMs have shown skill over meso-

scale NWP models in precipitation forecasting and in

forecasting convective evolution and morphology

(Weisman et al. 2008). Storms generally occur over a

small subset of an area with favorable conditions, so

explicit forecasts of convection help constrain the fore-

cast severe threat area. However, errors in the initial

conditions and model physics lead to spatial errors in

storm placement and timing errors in convective initia-

tion and evolution. To account for this uncertainty,

CAM ensembles perturb the initial and boundary con-

ditions, physics parameterizations, and the dynamical

cores to capture the range of possible convective solu-

tions. CAM ensembles have run in real time as part of

NOAA’s Hazardous Weather Testbed Spring Experi-

ment since 2007 (Clark et al. 2012). The National

Weather Service is already running deterministic CAMs

and will be deploying ensembles soon (Benjamin 2014).

While CAMs cannot resolve severe hazards, such as

tornadoes, hail, and high winds, storm diagnostics have

shown skill in inferring hazard potential. Because storms
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develop and intensify in minutes, hourly snapshots of

CAM output may miss the time when the storm is at its

greatest intensity. More frequent model output may

capture these extremes, but this would require more

computational resources. A compromise is to track the

maximum value at a point over a given time period and

regularly output that field. These hourly maximum fields

provide a surrogate for both storm track and intensity

(Kain et al. 2010). For severe weather forecasting, up-

draft helicity (UH), the integrated product of vertical

velocity and vertical vorticity between 2 and 5km, is a

proxy for strong, rotating updrafts (Kain et al. 2008) and

correlates with tornado pathlength (Clark et al. 2013).

Other hourlymaximumfields include updraft and down-

draft speeds, simulated radar reflectivity at the 2108C
level and column total graupel (CTG) mass. Storm

surrogate products have some limitations. Current storm

surrogates do not directly predict the occurrence of se-

vere weather hazards. The intensity distributions of the

storm surrogates are dependent on the dynamical core,

grid spacing, and parameterization scheme (Kain et al.

2008), which make them more challenging for forecasters

to interpret when examining mixed ensembles. Most

storm surrogates are indirectly verifiable through storm

reports. A forecast product that directly forecasts the

probability of a severe hazard is most useful if the pre-

dictions are well calibrated and physically consistent with

the model forecast.

Machine learning (ML) models integrate data from

multiple sources together to produce calibrated hazard

predictions. Unlike physics-based models, which derive

prognostic and diagnostic equations from primitive

equations, a set of assumptions, and initial and boundary

conditions, ML models identify patterns in a set of data

and then find a relationship between those patterns and

an outcome that optimizes an error metric. In meteo-

rology, ML and statistical models are often used to link

observations or NWP model fields to hazards and other

events of importance that are not resolved or described

well by NWP models or our current observing systems.

Examples of ML for hazard identification include storm

classification (Lakshmanan et al. 2010; Gagne et al.

2009), convection initiation (Ahijevych et al. 2016),

aircraft turbulence (Williams 2014), and hurricane

power outages (Nateghi et al. 2014). In the hail pre-

diction domain, Manzato (2013) used neural network

ensembles to predict hail occurrence and spatial extent

in Italy using sounding parameters as input, and

Marzban and Witt (2001) trained a neural network on

radar parameters to nowcast hail size categories. ML

models trained on observed data generally can only

make accurate predictions out to a few hours ahead, but

when given NWP model output within a model output

statistics framework (Glahn andLowry 1972), calibrated

predictions for one ormore days in advance are possible.

ML and statistical models generally require a large

dataset of historical NWP model runs and observations

to build an accurate predictive model. These historical

model runs should have similar configurations so that

the ML model can identify systematic patterns and

biases. Domain knowledge is still necessary to identify a

reasonable set of relevant input variables for the ML

models and to transform the output variables between

forms that are easier for the ML models to fit and forms

that are interpretable for end users.

The purpose of this paper is to describe track-based

day-ahead probabilistic hail forecasts generated from

ML models. The ML hail forecasts are compared with

hail-related storm surrogate variables (Sobash et al.

2011), such as UHandCTG, andwithHAILCAST. This

evaluation tests the hypotheses that ML models will

produce accurate and reliable hail forecasts, that theML

forecasts can detect more hailstorms and produce fewer

false alarms than other hail size methods, and that ML

model performance is more consistent across different

NWP configurations than other hail size diagnostics.

This work builds upon the hail size regression model

described in Gagne et al. (2015), which predicted a

storm’s maximum hail size but could not predict hail

larger than 50mm. The ML regression model in this

paper predicts the parametric distribution parameters of

the radar-estimated maximum expected size of hail over

the area of a storm instead of predicting the maximum

hail size within the storm. Predicting the distribution of

hail sizes instead of themost likely size value allows us to

estimate the probability of hail exceeding any size

threshold consistently with one model. The predicted

spatial hail size distribution is mapped to the areas of

forecast storms in a manner akin to the probability-

matched mean (Ebert 2001) in order to produce spa-

tially realistic deterministic gridded hail size forecasts

that can be compared directly with other hail forecast

products from CAMs. This paper is adapted from the

dissertation ofGagne (2016), and a summary description

of the ML hail forecast model appears in McGovern

et al. (2017).

2. Methods

a. Data

The ML hail forecast method was evaluated on two

CAM ensemble systems to demonstrate the robustness

of the hail forecast method to differences in member

configurations, data assimilation choices, training pe-

riods, and input variables. The first comes from the
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Center for Analysis and Prediction of Storms’ (CAPS)

Storm-Scale Ensemble Forecast system, called the

CAPS ensemble, which consists of 12 WRF-ARW

models with varied combinations of microphysics and

planetary boundary layer (PBL) parameterizations and

perturbed initial and boundary conditions. The 2014

CAPS ensemble uses 4-km horizontal grid spacing,

while the 2015 CAPS ensemble uses 3-km grid spacing.

The CAPS ensemble is initialized with three-dimensional

variational data assimilation (3DVAR) that includes ra-

dar and begins at 0000 UTC with hourly output for 60h.

Individual member parameterization configurations are

listed in Table 1. The CAPS ensemble uses the follow-

ing microphysics schemes: Thompson (Thompson et al.

2004), Morrison [with graupel settings for the rimed ice

species; Morrison et al. (2009)], Milbrandt and Yau two-

moment (MY; Milbrandt and Yau 2005), WRF double-

moment 6-class (WDM6; Lim and Hong 2010), and

Predicted Particle Properties (P3; Morrison and Milbrandt

2015; Morrison et al. 2015).

The second ensemble forecast set is from the National

Center for Atmospheric Research (NCAR) ensemble

(Schwartz et al. 2015), which consists of ten 3-km-grid-

spacing WRF members initialized from mesoscale ana-

lyses produced using the Data Assimilation Research

Testbed (DART; Anderson et al. 2009) ensemble ad-

justment Kalman filter data assimilation system on a

15-km grid. Allmembers use the Thompsonmicrophysics

scheme (Thompson et al. 2004) and the Mellor–

Yamada–Janjić (MYJ; Mellor and Yamada 1982) PBL

scheme. The ensemble began running daily inApril 2015

at 0000 UTC with plans to continue running through at

least summer 2017. For this project, model runs from

1 May through 31 July 2015 were used.

Hail size observations are derived from the NOAA/

National Severe Storms Laboratory Multi-Radar

Multi-Sensor (MRMS) radar mosaic (Zhang et al. 2011).

MRMS merges radar reflectivity from multiple radars

onto a 0.018 3 0.018 uniform grid with 2-min updates and

performs a series of quality control procedures. The

MRMS maximum expected size of hail (MESH; Witt

et al. 1998; Cintineo et al. 2012) product is used for the

hail size observations. MESH is a power-law relation-

ship between the severe hail index, which is a product

derived from radar reflectivity values above the melting

level, and hail reports from nine hail events in 1992 in

Oklahoma and Florida. The MESH relationship is

calibrated such that the MESH value should exceed

75% of reported hail sizes for a given severe hail index

value. Because MRMS provides more complete in-

formation about the full depth of a storm than a single

radar, and because MESH indirectly accounts for

melting effects through melting-layer height informa-

tion and calibration to hail reports, MRMS MESH

shows good spatial coverage when compared with high-

resolution hail reports (Cintineo et al. 2012) and is less

biased by population compared to NOAA Storm Data

hail reports. However, MESH hail sizes exhibit a large

size bias compared with high-resolution hail reports

(Cintineo et al. 2012) and were not designed for identi-

fying hail sizes below 19mm. If the distribution of

MESH sizes below 19mm is extremely biased, it would

also bias the size distribution forecasts from the ML

models. Even with these known issues, MRMS MESH

offers the best spatial and temporal coverage, and any

size or location issues withMESHare small compared to

the spatial and intensity forecast errors in the 24-h NWP

predictions.

b. Storm object identification, tracking, and matching

The storm data processing procedure is summarized

in Fig. 1. An object-identification method locates

TABLE 1. CAPS ensemble member physics parameterizations for 2014 and 2015. The PBL schemes tested are the MYJ (Mellor and

Yamada 1982), Yonsei University (YSU; Hong et al. 2006), Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino 2004), and

Quasi-Normal Scale Elimination (QNSE; Sukoriansky et al. 2005).

Member 2014 microphysics 2015 microphysics 2014 PBL 2015 PBL

CN Thompson Thompson MYJ MYJ

M3 Morrison P3 YSU MYNN

M4 Thompson MY QNSE YSU

M5 Morrison Morrison MYNN MYNN

M6 MY MY MYJ MYJ

M7 WDM6 P3 YSU YSU

M8 WDM6 P3 QNSE MYJ

M9 MY MY MYNN MYNN

M10 Morrison Morrison YSU YSU

M11 Thompson Thompson YSU YSU

M12 Thompson Thompson MYNN MYNN

M13 Morrison Morrison QNSE MYJ
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storms, and data extraction and forecasting processes

are performed. Object-based forecasting provides the

advantages of identifying relevant areas for predicting

severe weather and reducing the volume of data pro-

cessed. These methods exhibit parameter sensitivity,

which can vary the composition of the object set. The

enhanced watershed method (Lakshmanan et al. 2009)

identifies potential hailstorm objects from a storm field

by identifying local maxima (Fig. 2) and then growing

the objects until they meet area and intensity criteria.

Hourly maximum CTG mass is used as a potential

hailstorm surrogate because it identifies any storm

containing a large amount of graupel, including both

ordinary thunderstorms and supercells. Graupel is used

instead of hail because most of the CAM members’

microphysics schemes feature one rimed ice species with

fixed graupel-like properties. The exceptions are the

MY scheme, which has separate hail and graupel spe-

cies, and the P3 scheme, which allows the particle

properties to vary based on atmospheric conditions.

Large CTG mass may originate from large graupel or

many small graupel, but either could lead to surface hail.

ML models utilize environmental information to de-

termine the difference. Aminimum intensity of 3 kgm22

captures both weak and strong storms and captures the

varied distributions of graupel found with the different

microphysics schemes. A minimum area of 144 km2 (16

grid cells on a grid with 3-km spacing) and a maximum

area of 900 km2 are specified to isolate individual storm

cells. The minimum area corresponds to the minimum

resolvable area for a single storm cell, and the maximum

area roughly corresponds to the area that a storm cell of

FIG. 1. Diagramof how hail forecast and observation data are preprocessed before being used

in the ML model.
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area 300 km2 could traverse within an hour. Grid points

outside the contiguous United States are excluded be-

cause of the lack of reliable verification data.

Once storm objects are identified in the models and

observations, the objects are linked together through time

into tracks. The tracking algorithm identifies trends within

the storms and captures the full life cycle of each storm.

The Hungarian method (Munkres 1957), a globally opti-

mal matching algorithm, links tracks. The Hungarian

method also forms the basis of the Thunderstorm Iden-

tification, Tracking, Analysis, and Nowcasting (TITAN)

storm tracking algorithm (Dixon and Wiener 1993). Al-

though Euclidean centroid distance works well with

circular objects and frequent temporal updates, hourly

maximum storm objects tend to be elongated along the

axis of motion. To mitigate this issue, spatial cross-

correlation motion estimation (Lakshmanan and Smith

2010) translates the centroid before matching (Fig. 2).

FIG. 2. An example of the enhanced watershed storm identification algorithm and the storm

tracking algorithm applied to two synthetic storms. (top) Two bivariate normal distributions

that have been translated northeast. (middle) The enhanced watershed determines which grid

points are part of each object. (bottom) The tracking algorithm correctly links the simulated

storm objects between time steps.
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The cross-correlation search is constrained by the storm

dimensions to minimize motion estimation error. The

maximum centroid distance for tracking is 24km, which

is empirically found to connect storms appropriately

while minimizing the issue of tracks jumping to adjacent

storms. Although tracking has been empirically tuned,

not all connections will be correct, which adds some

uncertainty to the tracking-related variables.

Forecast and observed storm tracks are matched as-

suming that the storms in similar locations and times

should have a stronger connection. Matching tracks

requires a metric that can account for both spatial and

temporal differences and can compare different dura-

tions. This track matching distance is

D
tm

5 0:5
d
s

160 km
1 0:3

t
s

3 h
1 0:1

t
d

16 h
1 0:1

a
d

200 km2
. (1)

Equation (1) contains the distance between the starting

points ds, the difference in start times ts, the duration

difference td, and the mean area difference ad. Tight

maximum distances, which are the denominators in (1),

for start location difference (160km) and start time dif-

ference (3h) are used to limit the search area. Duration

(16h) and area (200km2) break ties. The distances have

units of kilometers, time and duration differences use

hours, and area differences use square kilometers. If any

components exceed their maximum, the track pairing is

excluded from consideration. The scaling values are cho-

sen empirically based on inspection of matches and an

examination of the percentage of matched storms in the

training data. Each forecast track is paired with the closest

observed track, somultiple forecast tracks can bematched

with the same observed track. This approach accounts for

inherent spatial and temporal errors in storm placement.

The main limitation is that small changes in the weights

could result in different matches. The choice of matching

function parameters is inherently subjective, but some

combination of space, time, and storm properties should

provide reasonable results.

c. Machine learning procedure

After storm tracking and matching has occurred,

other meteorological variables are extracted from each

forecast storm. This approach extracts statistics about

the distribution of meteorological variable values from

grid cells within the extent of a storm. These statistics

are the mean, standard deviation, minimum, maximum,

median, 10th and 90th percentiles, and skew. The full list

of input variables for the CAPS ensemble is listed in

Table 2, and the full list for the NCAR ensemble is in

Table 3. Storm variables are extracted from model grids

at the same forecast time as the storm, and environment

variables are extracted from the previous hour to sample

the environment before the storm traverses that area.

The CAPS and NCAR ensembles use different archive

and postprocessing systems, so some variables are

available in one system but not the other.

The ML hail forecast procedure is summarized in

Fig. 3. The goal of the ML algorithm is to use the me-

teorological variables within each storm footprint to

TABLE 2. Input variables for the CAPS ensemble ML models. The mean, maximum, minimum, median, standard deviation, skewness,

10th percentile, and 90th percentile of the gridpoint values within the boundaries of each storm object were calculated for the storm proxy

and environment variables. CAPE is convective available potential energy, CIN is convective inhibition, ML is the mean layer, MU is the

most unstable layer, SR is storm relative, and LCL is the lifting condensation level.

Storm proxy Environment Morphological Location

CTG MLCAPE Area Forecast hour

2–5-km UH MLCIN Eccentricity Valid hour (UTC)

Reflectivity 2108C MUCAPE Major axis length Current duration

Updraft speed MUCIN Minor axis length Total duration

Downdraft speed LCL height Orientation W–E storm motion

Echo-top height 0–3-km SR helicity Extent S–N storm motion

Precipitation 0–6-km wind shear

Precipitable water 500-hPa temp

Bunkers U 700-hPa temp

Bunkers V 2-m dewpoint

2-m temp

850-hPa specific humidity

0–3-km lapse rate

700–500-hPa lapse rate

10-m U wind

10-m V wind

700-hPa U wind

700-hPa V wind
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forecast hail occurrence and a parametric approxima-

tion of the observed spatial MESH distribution. To

distinguish the ML forecast product from the output of

NWP model microphysics schemes, the output of the

ML models will be named as a forecast MESH distri-

bution instead of a forecast hail size distribution. If a

forecast storm track ismatchedwith aMESH track, then

hail is assumed to have occurred. The spatial MESH

distribution is modeled as a gamma distribution fit to the

MESH values using maximum likelihood estimation.

Fitting a parametric distribution to the spatial MESH

values reduces the dimensionality of the prediction

problem and preserves the proportional relationships

between small and large hail areas within each storm.

The gamma distribution probability density function

takes the following form:

f (x)5
(x/b)a21 exp(2x/b)

bG(a)
2 x

0
, a,b. 0, (2)

where G is the gamma function, a is the shape parame-

ter, x0 is the location parameter, and b is the scale pa-

rameter. Unlike a bulk microphysics scheme, which

estimates the moments of a parametric hail or graupel

size distribution describing the sizes within each grid

cell, this MESH distribution describes the radar-

estimated hail sizes over the entire area of a storm. An

example of a MESH object and the gamma distribution

fit to its MESH distribution is shown in Fig. 4. The shape

parameter affects the skewness, with small shape pa-

rameter values causing more skew and larger values

leading to less skew. The location parameter determines

the minimum value of the distribution and is fixed at

6mm. The scale parameter adjusts the width of the

gamma distribution and has the same units as the

modeled quantity (Wilks 2011).

We use ML models from the Scikit-learn package ver-

sion 0.16.1 (Pedregosa et al. 2011). A stacked model ap-

proach is used with a classifier model predicting whether

or not hail occurs, along with a regression model that

predicts the MESH distribution parameters. A random

forest (RF; Breiman 2001) model is used as the hail oc-

currence classifier. RF is an ensemble of decision trees in

which each decision tree is grown from a resampled ver-

sion of the original training set, and in which a different

random subset of input variables is evaluated for inclusion

into the tree at each branch in the growing process. These

sources of randomness ensure the independence of each

tree. The RF classifier uses a configuration that weights

each training example by the inverse of its class frequency,

has 500 trees, and 10 minimum samples at each leaf node.

Themaximum number of features sampled at each split is

chosen from the square root of the total number of fea-

tures: 20, 30, or 50 features based on which choice maxi-

mizes the area under the receiver operating characteristic

(ROC) curve (Mason 1982) through a grid search with

fivefold cross validation.

Multitask learning (Caruana 1997) is used by RF and

an elastic net to predict the shape and scale parameters

of the MESH distribution simultaneously. During

training, the models choose parameters to minimize the

total error across all outputs. Multitask learning pro-

vides additional information about the fitting process

and maintains correlations among the output values. If

separate ML models predict the shape and scale pa-

rameter values independently, then the predicted values

will be uncorrelated. The spatial MESH distribution

parameters are log transformed and normalized before

being fit by the ML models in order to capture the

log-linear relationship between the shape and scale pa-

rameters, as shown in Fig. 5, and to ensure that both

parameters are weighted equally by the ML loss func-

tions. Both RFs and elastic net regression (Zou and

Hastie 2005) support multitask learning and are used in

this experiment. The elastic net is a linear regression

model with additional terms in its optimization function

that penalize large weights. A default RF, called random

forest, has 500 trees, minimum samples at the split node

TABLE 3. As in Table 2, but for the NCAR ensemble ML models. SB stands for surface based.

Storm proxy Environment Morphological Location

CTG SBCAPE Area Forecast hour

2–5-km UH SBCIN Eccentricity Valid hour (UTC)

Composite reflectivity MUCAPE Major axis length Current duration

Updraft speed Precipitable water Minor axis length Total duration

Downdraft speed LCL Height Orientation W–E storm motion

Thompson hail size max 0–3-km SR helicity Extent S–N storm motion

Thompson hail size surface 0–6-km wind shear

0–3-km UH 0–1-km wind shear

2–5-km min UH

10-m wind speed

0–1-km vorticity
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of 10, and sampling square root of the total number of

features. An optimized RF, called random forest CV,

has 500 trees; fivefold cross-validated grid searching of

the maximum number of features from the square root,

30, 50, and 100 features; and minimum samples at a

splitting node from 5, 10, and 20 samples. The elastic net

determines the ratio between the ridge and lasso terms

from an independent validation set and normalizes the

input features.

An RF classifier forecasts the probability of hail oc-

curring, and RF and elastic net forecast the MESH size

distribution for each storm in the testing set. To compare

the ML model forecasts with other hail forecasting

methods, the MLMESH distribution is translated into a

deterministic set of MESH values overlaid onto the

original storm in the NWP model (Fig. 3). The resulting

grid can then be treated like any other diagnostic

product and different gridded products, such as storm

surrogate ensemble probabilities and ensemble maxi-

mum fields, can be generated. These products are used

by forecasters at NOAA’s Storm Prediction Center to

create day-ahead hail outlooks, so presenting the fore-

casts in a familiar format helps build trust in the product

and simplifies incorporating the information into a

forecaster’s existing workflow. If a forecast storm has a

probability of hail occurrence less than 50%, it is

FIG. 3. ML hail size forecasting procedure diagram.
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removed from the grid. Weighting each training exam-

ple by the inverse of the class frequency (examples

from the no-hail class are weighted less than examples

from the hail class) ensures that the 50% threshold

maximizes the separation between the prediction dis-

tributions of the two classes. A deterministic threshold is

used to retain or remove individual forecast hailstorms

because we did not want to decrease the range of fore-

cast hail sizes artificially by combining the hail occur-

rence probability with the spatial MESH distribution.

Because the gamma distribution has no upper limit, we

utilized Monte Carlo sampling to generate hail size

values for each storm grid point. For each grid point

occupied by a forecast storm, 1000 random samples are

drawn from the forecast spatial MESH distribution

[Eq. (2)], corresponding to 1000 statistical realizations of

the MESH spatial field. The MESH values within each

statistical realization are sorted by size. The sorted sizes

are then associated with each grid cell occupied by the

forecast storm in order of CTG intensity. For example,

the set of largest sampled MESH sizes are associated

with the largest CTG grid point. Within each set of

MESH samples, the mean and percentiles of the MESH

sizes are then calculated and output as gridded de-

terministic fields. The mean forecast MESH size field is

used for further evaluation and comparison with other

hail forecast methods.

Storm-surrogate ensemble probabilities (Sobash et al.

2011) of hail at different sizes are created from the ML

models and are compared with similar probabilities

derived from thresholding the storm surrogate variables

and HAILCAST. A storm surrogate probability fore-

cast creates a smooth probability field from a de-

terministic forecast that mimics a convective outlook

from the Storm Prediction Center, which is the intended

product for which these hail forecasts would provide

guidance. The 3-km grid for each ensemble member is

subsampled into a 42-km grid, and each point on the

42-km grid is marked with a 1 if at least one 3-km grid

point within a 42-km radius over a 24-h period exceeds a

specified intensity threshold. The 42-km radius has been

chosen based on the StormPredictionCenter convective

outlook criteria of at least one report within 40km of a

point (Hamill et al. 2005) and to be divisible by the 3-km

grid spacing. A Gaussian filter with a standard deviation

of 42 km is then applied to the coarse binary grid and

spreads the probability mass to surrounding grid points

to reflect the estimated spatial uncertainty. Larger

standard deviations for the Gaussian filter result in a

greater probability of detection but also decrease the

sharpness and increase the false alarm ratio. Storm-

surrogate neighborhood probabilities are also calcu-

lated for HAILCAST and storm surrogate variables,

including simulated radar reflectivity at the2108C level,

UH, and CTG. UH thresholds of 75 and 150m2 s22, a

reflectivity threshold of 60 dBZ (used for both 25- and

50-mm hail), and CTG thresholds of 25 and 50 kgm22

were used to discriminate 25- and 50-mm-diameter hail,

respectively. These thresholds were chosen based on

previous experience with storm surrogate parameters

and sensitivity studies for severe weather forecasting,

such as Sobash et al. (2016).

d. Evaluation

The training data for the ML models were pooled so

as to maximize the size of the dataset while preserving

the temporal independence of the evaluation data. For

the CAPS ensemble, eachMLmodel is trained on a pool

of ensemble members sharing the same microphysics

parameterization scheme. The 2014 CAPS ensemble

output is used to train the ML models, and the 2015

ensemble is used for evaluation. The training set consists

FIG. 4. An example MESH object and the resulting discrete and parametric MESH size distributions.
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of 20 model runs on weekdays between 6 May and

6 June 2014. Because the 2015 ensemble used the P3

microphysics scheme in place ofWDM6, the P3members

are evaluated using models trained on the Milbrandt and

Yau members. The testing dataset includes 18 runs on

weekdays from 12 May to 5 June 2015. One run with

missing MESH observation data during that period is

excluded from the evaluation.

Training and evaluation for the NCAR ensemble

is performed cyclically with a new round of training

performed every 2 weeks and testing performed over

the subsequent 2 weeks. Since each member uses the

same parameterizations and is equally likely, all mem-

bers are pooled into the training dataset for the ML

models. The forecasting period runs from 15May through

30 July 2015. Because the CAPS and NCAR ensem-

bles have different training and evaluation periods,

the evaluation statistics cannot be used to determine

whether one ensemble configuration is better than

the other.

The forecast methods are evaluated using ROC

curves, performance diagrams, reliability diagrams, and

attributes diagrams, as well as metrics related to all of

those diagrams. The formulas for every score are shown

in Table 4. ROC curves (Mason 1982) divide a proba-

bilistic forecast into a set of binary forecasts by varying

the decision threshold. The goal of a ROC curve is to

show how well a forecasting method discriminates be-

tween two outcomes. The probability of detection

(POD) for each decision threshold is plotted against the

probability of false detection (POFD). Skilled forecasts

will consistently have a higher POD than POFD for each

decision threshold. The amount of skill is quantified by

the area under the ROC curve (AUC). An AUC higher

than 0.5 is considered skilled. The performance diagram

(Roebber 2009) is a variation of the ROC curve in which

the POFD is replaced with the success ratio (SR), which

is the additive inverse of the false alarm ratio (FAR). In

addition to these scores, the frequency bias (FB) is

shown as rays expanding outward from the origin and

FIG. 5. Joint distribution of the shape and scale parameters for the (top) CAPS and (bottom) NCAR ensemble

control member RF forecast and observations. The other CAPS and NCAR ensemble members exhibited similar

relationships.
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the critical success index (CSI) as contours that maxi-

mize in the top-right corner of the plot. These statistics

are all independent of the number of true negatives, so

they are more sensitive to how well the positive event is

predicted. This feature is particularly important for rare

event forecast evaluation.

Probabilistic forecasts are also assessed for their

reliability and resolution. Reliability is the difference

between the forecast probability and the relative fre-

quency of the forecast event occurring conditional on

that probability being forecast. Resolution is the dif-

ference between the climatological probability of an

event and the relative frequency of the event occurring

for a given forecast probability. Information about re-

liability and resolution is contained within the Brier

score (BS; Brier 1950), which can be decomposed into

reliability, resolution, and uncertainty components

(Murphy 1973). These components can be reorganized

to calculate the Brier skill score (BSS), which is the

difference between reliability and resolution divided by

the uncertainty. The reliability diagram displays the

observed relative frequency versus the forecast proba-

bility. If the forecast probability is greater than the

observed relative frequency, then the model is over-

forecasting. The attributes diagram (Hsu and Murphy

1986) is a reliability diagram that also shows the

climatological probability and the regions where the

resolution is larger than the reliability and thus the BSS

is positive. The attributes diagram also contains an inset

showing the frequency of forecasts made at each proba-

bility threshold, which can be used to assess the sharp-

ness, or variance across probabilities, of the forecasts.

Reliability diagrams can also be used to evaluate the

predictions of regression models by discretizing the fore-

cast values and determining themean observed value for a

given range of forecast values.

3. Results

a. Individual hailstorm forecast evaluation

Probabilistic forecasts of hail occurrence from the RF

classifier are evaluated for the CAPS and NCAR en-

sembles. The top panel in Fig. 6 shows the ROC curve

and reliability diagram for the CAPS ensemble mem-

bers. Both diagrams evaluate probabilities in increments

of 0.05 from 0 to 1. The observed relative frequency in

the reliability diagrams refers to the percentage of

hailstorms observed when a certain probability was

forecast. The member ROC curves cluster by micro-

physics. The ML forecasts for Thompson members

possess the lowest AUCs (about 0.73), and P3 members

have higher POD at low probability thresholds and

AUCs around 0.78. In the reliability diagram, all mem-

bers display a consistent underforecasting bias, which

may be caused by the change in grid spacing between the

2014 and 2015 CAPS ensembles and any resulting

changes in the forecast variable distributions. At low

forecast probabilities, the Thompson microphysics

members display a higher observed relative frequency

than other members, resulting in a lower BSS. For the

NCAR ensemble (Fig. 6, bottom), the RF shows AUCs

of about 0.70. The reliability diagram indicates that the

probability forecasts are reliable but have a small

overforecasting bias. The CAPS ensemble members

showmore variability in performance, which is expected

from using multiple microphysics schemes. The differ-

ences in scores have not been evaluated for statistical

significance.

Reliability diagrams for the shape and scale parame-

ters in the CAPS and NCAR ensembles indicate how

closely the forecast values correspond to the observed

values on average (Fig. 7). The CAPS ensemble exhibits

poor calibration with an underforecasting bias for small

values of the shape and scale parameter and an over-

forecasting bias for large values. All of the ensemble

members show similar issues. The NCAR ensemble re-

liability curves exhibit better calibration than the CAPS

ensemble but still show biases at extreme parameter

TABLE 4. Scores used to evaluate the hail forecasts. TP is a true

positive, FP is a false positive, FN is a false negative, and TN is

a true negative. The number of forecasts is N, the number of

forecasts for a given probability threshold k is nk, and the number

of probability thresholds is K.

Score Formula

Probability of detection POD5
TP

TP1FN

Probability of false detection POFD5
FP

FP1TN

Success ratio SR5
TP

TP1FP

Critical success index CSI5
TP

TP1FP1FN

Frequency bias FB5
TP1FP

TP1FN

Area under ROC AUC5

ð1
POFD50

POD dPOFD

Forecast probability pk

Observed relative frequency ok

Climatological probability o

Reliability REL5
1

N
�
K

k51

nk(pk 2ok)
2

Resolution RES5
1

N
�
K

k51

nk(ok 2o)2

Uncertainty UNC5o(12o)

Brier score BS5REL2RES1UNC

Brier skill score BSS5
RES2REL

UNC
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values. Poor sharpness in the shape and scale parameter

forecasts results in forecast MESH distributions that

underestimate the probability of very large hail when

conditions are favorable and overestimate the proba-

bility of large hail when conditions are not favorable.

b. Full-period forecast evaluation

Storm surrogate probabilities were calculated over

the 24-h period from 1200 to 1200 UTC for the ML

models and raw storm surrogate variables over the

testing sets. These probabilities are analogous to Storm

Prediction Center convective outlooks and allow for a

more direct comparison between the two types of fore-

cast methods.

The performance diagrams in Fig. 8 show the POD

and success ratio at 5% probability intervals. Lower

probability thresholds will have higher POD and ap-

pear in the upper portion of the diagram. Because POD

decreases faster than FAR for all models, we focus our

analysis on the differences in FAR over a range of

probability thresholds. For the 25-mm-diameter hail

threshold, the ML methods all have lower FAR values

than every other model at all probability thresholds

(Fig. 8). The FAR for UH is nearly as low as the

FIG. 6. ROC curve and reliability diagram of RF hail occurrence forecasts from each member of the 2015 CAPS

and NCAR ensembles. Members are colored by microphysics scheme. The AUC for each member is indicated in

the ROC curve legend, and the BSS for each member is in the reliability diagram legend.
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ML models. For the 50-mm hail threshold, all models

have a much higher FAR, but their relative rankings

stay the same (Fig. 8). At higher probability thresholds

(near the bottom of the diagram), the ML models have

much lower FAR compared with the other methods

but are only able to detect a small percentage of

events. The NCAR ensemble performance diagrams

highlight the difference in false alarms for each method

at high probability thresholds. UH has a lower POD

than total graupel for 25-mm hail but also has a lower

FAR for most probability thresholds (Fig. 8). The ML

methods are able to maintain a lower FAR than UH

for all thresholds. The RFs maintain a higher CSI

consistently (Fig. 8). The elastic net underperforms

compared to the RFs, and the performance of UH is

comparable.

The attributes diagrams in Fig. 9 indicate the re-

liability and sharpness of each method for predicting the

probability of 25- and 50-mm hail over a 40-km area,

unlike the reliability diagrams in Fig. 6, which evaluated

the probability of hail occurring for each potential hail

storm object. The ML methods and UH are all reliable

FIG. 7. Reliability diagrams showing the (top) CAPS and (bottom) NCAR ensemble mean RF observed hail size

distribution parameters for each forecast parameter value.
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at the 25-mm threshold (Fig. 9) while the other storm

surrogate methods are all overconfident. The over-

confidence improves their AUC, because they detect

more events at a given probability threshold, but hurts

their reliability. All of the methods are sharp but

HAILCAST has the largest number of forecasts at high

probabilities. Every method is overconfident and less

sharp at the 50-mm threshold (Fig. 9). The ML methods

have less of an overconfidence bias than reflectivity

and greater sharpness than CTG. HAILCAST is more

overconfident than the ML models but still produces

sharp forecasts. In addition to being better discriminators

for the NCAR ensemble, theMLmethods also produce

more reliable probabilities. While an overconfidence

bias is apparent at both hail size thresholds, the ML

methods have higher BSSs for 25- (Fig. 9) and 50-mm-

diameter hail (Fig. 9). Both UH and theMLmodels are

underconfident at low probability thresholds and then

trend toward overconfidence at higher thresholds while

still showing skill. The elastic net produces the most

reliable probabilities for hail sizes of 50mm at the ex-

pense of some sharpness compared with UH (Fig. 9).

The RFs are overconfident with 50-mm-diameter hail

probabilities.

FIG. 8. Performance curves for each (top) CAPS and (bottom) NCAR ensemble mean storm-surrogate probability

for 25- and 50-mm hail. The maximum CSI for each curve is in the legend.
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The spatial distribution of probabilistic hail forecasts

from the 2015 CAPS ensemble over all evaluated runs is

shown in Fig. 10. The chosen 10% probability threshold

displays themaximum spatial extent of the forecasts at a

threshold commonly used by forecasters to assess hail

risk. RF and UH capture the two observed maxima in

25-mm hail frequency in the Texas Panhandle and

across northeast Colorado. Overall, the RF and UH

methods are comparable in their spatial forecast fre-

quencies. The frequency maxima for HAILCAST and

CTG are displaced eastward compared to the observed

maximum. HAILCAST and CTG also produce large

numbers of hail forecasts along the Gulf coast whereas

the RF andUH have none in that area. The RF captures

the extent of the 50-mm reports (Fig. 10) while the other

methods produce more 50-mm hail forecasts to the east

of the observed maximum. RF and UH present two

local maxima in Texas and northeast Colorado whereas

CTG and HAILCAST have one maximum in north-

central Texas.

The spatial distribution of hail forecasts from the

NCAR ensemble is displayed in Fig. 11. Most of the

observed hail reports occur along the high plains east of

the Rocky Mountains with a smaller secondary maxi-

mum in the Southeast. For 25-mm hail, the ML

methods capture the full extent of the high plains hail

FIG. 9. Reliability curves for each (top) CAPS and (bottom) NCAR ensemble mean storm-surrogate probability

of 25- and 50-mm hail. The BSS for each curve is shown in the legend. Points in the gray-shaded areas contribute

positively to the BSS, and points outside the gray areas contribute negatively.
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observations while slightly underforecasting in the

Southeast. UH follows a similar pattern. CTG greatly

overforecasts hail frequency in the Southeast and un-

derforecasts hail in the high plains with an eastward

bias in the maximum. An eastward bulge in eastern

Nebraska from overnight MCSs is also visible in both

the forecast and the observed relative frequencies from

all models. The ML models overforecast the frequency

FIG. 10. The 2015 CAPS ensemble spatial distributions of 10% hail forecasts from select models at the 25- and

50-mm hail thresholds for storm-surrogate probability forecasts over the period from 1200 UTC the day the model

is initialized to 1200 UTC the following day. The blue filled contours are forecast relative frequencies, and the red

contours are observed relative frequencies at 20% increments starting at 10%.
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of hail in the high plains while CTG does the same over

the eastern half of the United States. The ML methods

and UH have the most misses along the Gulf Coast. For

50-mm hail, the RF captures the full extent of the hail

events in the high plains while the elastic net is more

concentrated in central Kansas (Fig. 11). The UH

forecasts concentrate their presence in western Ne-

braska with a secondary maximum in Iowa, while CTG

features the local maximum in Iowa but not in

Nebraska.

FIG. 11. As in Fig. 10, but for the NCAR ensemble. The spatial frequencies cover the period from 15 May through

31 Jul 2015.
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4. Discussion

ML storm-based hail forecasts were evaluated and

compared with other diagnostic hail forecasting

methods to determine what value may be added to raw

CAM ensemble output by these approaches. The dif-

ferent forecasting methods were evaluated using spring

and summer 2015 runs of the CAPS and NCAR CAM

ensembles and validated against gridded radar-

estimated hail sizes. The ML models showed skill in

discriminating between forecast storms that produced

hail and those that did not but were underdispersive with

the hail size forecasts. Additional calibration of the raw

ML forecasts improved the sharpness of the size fore-

casts for the NCAR ensemble. For 24-h hail outlooks,

the ML methods were better able to identify hail threat

areas while minimizing false alarms compared with

HAILCAST and other storm-surrogatemethods. Of the

existing storm surrogates, UH provided the best in-

dicator of large hail. This result is expected given that

UH is a good proxy for the strong, rotating updrafts

found in supercells. The skill of ML hail forecasts is

more sensitive to the choices made during preprocessing

than to the choice of the ML model. Any statistical or

ML model will produce less skilled forecasts if NWP

model configuration changes result in large alternations

to the distributions of important input variables because

the correlation with the forecast output variable will

have changed. The NCAR ensemble ML algorithms

benefited from having a larger amount of training data

due to the longer training period and the ability to ag-

gregate across 10 diverse but similarly configured en-

semble members.

The verification statistics and spatial maps showed

that the hail forecasting methods exhibit more pro-

nounced forecasting biases in particular areas. The ML

models and UHwork very well for discriminating hail in

plains supercells, particularly storms in the high plains

and just east of the Rockies. Both of these methods take

into account shear and updraft intensity. CTG and the

2015 HAILCAST are more influenced by CAPE and

less by shear, so they produce hail in any storm that has a

strong updraft. For a given CAPE environment, the

amount of shear has a significant impact on the amount

of hail growth (Dennis and Kumjian 2017). The ML

model uses the LCL height to account for relative hu-

midity effects onmelting and gives lower probabilities to

areas with low LCL heights, but it is too aggressive with

lowering probabilities in the Southeast and misses too

many storms. In addition, CTG does not account for

melting, and HAILCAST melts hail in cloud based on

hailstone temperature, cloud temperature, and collisions

with liquid water and below cloud level based on the

mean wet-bulb temperature in that layer. HAILCAST

and CTG do not fully account for the melting that occurs

with storms in the Southeast and tend to overpredict hail

there. Because of the updraft issue, HAILCAST was sig-

nificantly updated following the 2015 HWT Spring Ex-

periment to account for hail growth occurring more on the

edge of updrafts than in the center; these improvements

are discussed by Adams-Selin and Ziegler (2016). The

hailstorms in the Southeast inMay–July tend to be pulse

thunderstorms (Smith et al. 2012), which lack rotating

updrafts, so hail methods calibrated to plains supercells

that make up the bulk of hail events will not detect them

as well. Using a lower decision threshold may help capture

some of these cases that are currently missed with the

50%decision threshold.Alternatively, regionally calibrated

decision thresholds may capture different environments

more accurately.

While constraining ML hail forecasts to areas where

the NWP model produces storms does produce better

forecasts, there are situations in which this approach will

struggle compared with ingredients-based methods. If

the CAM forecast contains errors with the placement,

timing, and evolution of storms, then the hail forecasts

dependent on those storm forecasts will also contain

those errors. These struggles tend to occur in scenarios

where large-scale forcing is weaker, leading to convec-

tion initiation and evolution being governed by poorly

observed mesoscale effects. When an area receives

multiple days of convection, errors in forecasting the

diurnal cycle of convection lead to additional spatial and

temporal biases. Hail forecasts based solely on envi-

ronmental parameters will tend to have better coverage

in these situations and will detect hail threat areas that

storm-based methods may miss.

Further improvements to ML model forecasts are

possible with some additions to the current modeling

framework. Additional diagnostic variables describing

conditions within the hail growth region and the melting

layer near the ground may provide stronger links be-

tween those processes and the forecast hail size. A more

thorough sensitivity study of the forecast and observed

storm object identification and matching procedure

could lead to stronger correlations between the different

weather variables and radar-estimated hail size. Longer

convection-allowing model archives with more consis-

tent configurations over multiple severe weather sea-

sons could allow the ML models to capture a larger

sample of extreme hail events. The evaluation of hail

forecast accuracy conditioned on the storm environment

could assist forecasters with knowing when to trust

certain models more. Probabilities from the MESH

distributions themselves could be interrogated by a

forecaster in an interactive viewer to identify which
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areas have storms with a higher probability of very large

hail. Creating and evaluating these visualizations is

an area of future research. The ML hail forecasts

were produced using the Hagelslag (https://github.com/

djgagne/hagelslag) open-source Python package de-

veloped by the lead author. Data used for this project

are available upon request.
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