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1. INTRODUCTION 
 

This project expands upon the work 
outlined in McGovern et al (2007) and 
Rosendahl (2008) in two important ways: 
changing the definition of storm cells and 
extending the data mining techniques. The 
overall goal of each of these projects is to 
identify key parameters for tornadogenesis by 
applying data mining techniques to a full set of 
meteorological fields. This significantly differs 
from the traditional approach of analyzing 
radar data containing only reflectivity and the 
radial wind component. 

Tornadoes kill an average of 33.7 people 
annually1 and cause, in part, the $13B (Pielke 
and Carbone, 2002) of economic impact due 
to mesoscale storms annually in the United 
States.  Although tornado forecasting has 
improved significantly with the introduction of 
Doppler radars, there is still room for 
improvement.  The probability of detection 
(POD) is currently about 75%, and the false 
alarm ratio (FAR) is currently around 78%. 

                                                
1http://www.nssl.noaa.gov/users/brooks/public
_html/deathtrivia/ 

Improving these numbers would help to 
mitigate the loss of life and property. 

The current primary instrumentation for 
observing mesoscale convection is the WSR-
88D NEXRAD radar system. However, due to 
the earthʼs curvature, current WSR-88D 
radars are unable to see 76% of the volume 
between the ground and two kilometers 
(Brotzge et al., 2006), which is where a 
tornado forms. Another constraint of radars is 
that the current WSR-88Ds can only observe 
reflectivity and radial velocity. In order to gain 
an understanding of the dynamic and physical 
properties that are causing tornadogenesis, a 
rich dataset that includes many derived and 
observable meteorological quantities is 
needed.  To address this issue, we use 
simulated data from the Advanced Regional 
Prediction System (ARPS), which is a top 
weather forecasting system for mesoscale 
data (Xue et al. 2000, 2001, 2003).  When 
assimilated data is available in larger 
quantities, we can study that data as well. 

We introduce a spatiotemporal model that 
will produce human readable results.  The 
spatiotemporal relational probability tree 
(SRPT) is an extension of the relational 
probability tree (Neville et al, 2003) to 
spatiotemporal data.  Both of these models 
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are built on the successful decision tree model 
(Rusell & Norvig, 2002). Like all weather 
phenomenon, tornadoes are the result of 
many processes that change in both space 
and time, and the only way to understand the 
processes is to be able to model and analyze 
them in both space and time. The SRPTs are 
able to analyze both spatial and temporal 
data, making them an ideal candidate to use 
for exploring tornadogenesis. Using the 
SRPTs should give meteorologists a better 
understanding of the important dynamic 
processes that result in tornadogenesis, 
leading to better understanding and prediction 
of tornadoes as well as mitigation of the loss 
of life and property. 
 
2. Meteorological Data 
 
Our data was created using over 250 ARPS 
simulations, each lasting 3 hours.  The 
simulations use supercell-favorable conditions 
(Rosendahl, 2008).  The horizontal grid 
spacing is 500m with a stretched hyperbolic 
tangent in the vertical.   Each grid point 
contains derived and fundamental quantities 
that are important for understanding storm 
morphology and tornadogenesis. Each 
simulation can contain multiple storms, and 
each storm can be abstractly broken down 
into high level features that are dynamically 
important to its morphology. Unfortunately, the 
grid spacing currently being used is too large 
for a definitive resolution of a tornado, so the 
storms exhibiting attributes commonly 
associated with a tornado will be called 
ʻstrong low level rotationsʼ in this paper. 
  

2a. Data Extraction 
 
Any given storm simulation may generate 
several separate storms. We define a storm 
based on a combination of the maximum 
updraft and reflectivity in the 4km through 8km 
section of the simulation. The algorithm for 
identifying and tracking individual storms is 
given in Table 1. 
    Once a single storm is being tracked, new 
storms can be identified if their maximum 
reflectivity or updraft goes beyond a 
determined threshold.  Using a weighted 
Voronoi diagram (Aurenhammer, 1991), the 
area a storm receives is based upon the 
maximum vertical wind speed of the 
competing storms. For example, if there is a 
storm with a maximum updraft of 30 m/s and 
another storm with a maximum updraft of 15 
m/s and each storm begins with roughly the 
same area, as they expand, the 30 m/s storm 
would get roughly twice the area that the 15 
m/s storm would get. An example of this is 
shown in Figure 1. 
 
2b. Identifying storm features 
 
Our eventual goal is to examine the data 
using a large array of high level features, such 
as those shown in Figure 2c, which more 
accurately describe current important features 
in supercell and tornado development. 
Automated identification and tracking of high 
level features is difficult and requires creating 
a description that a majority of meteorologists 
will agree on or at least creating a large 
enough labeled data set such that a machine 

Identify-and-track-storms(time t) 
 
 wmax   domain-wide maximum vertical wind velocity (w) at 4-8 km height 
 reflmax  domain-wide maximum reflectivity at 4-8km height 
 If wmax < 15 m s−1 or reflmax < 55 dbZ 
  return 
 Otherwise 
  Measure Euclidean distance from location of wmax or reflmax to the storms identified at time t-1 
         If the closest previous storm shares the most common points, assume it is the same storm 
   Otherwise, mark this as a new storm. 
  For all storms identified on the previous step and the new storm if it exists 
   Extract the storm attributes. 
   If wmax within a storm drops below 10 m s−1, stop tracking this storm 
 
 
Table 1: Storm identification and tracking algorithm. 



learning algorithm could learn to extract these 
features. 
     
    We will be addressing these issues in 
future work. For the results in this paper, we 
chose to extract a set of fundamental and 
derived meteorological quantities using 
thresholds derived from the literature. These 
quantities are listed in Table 2. These 
represent some of the most important 
meteorological quantities and enable us to 
observe each storm with a significant 
reduction in data size over examining each 
variable at each grid point.   
   We take a relational view of the data where 
we identify discrete regions, which we call 
high-level features, of interest based on 
current theories of tornadogenesis.  In 
addition, we identify possibly relationships 
between each high level feature and we 
measure attributes on each feature. Attributes 
are a part of the high level features, and 
describe meteorological quantities and 
statistical distributions of quantities that exist 
within that feature. Relations describe how 
multiple high level features interact with one 
another.  All of this information is summarized 
in Table 2. In this experiment, six relations, 
nine high level features, and an average of 
thirteen attributes per high level features are 
measured.  
    Figure 2a shows a top down view of the 
reflectivity at 4km in the simulation. Figure 2b 
is an example of the same storm at the same 
time step using high level features such as 
updrafts and downdrafts. Figure 2c was the 
inspiration for choosing many of the high level 
features.  This figure is one of the canonical 
figures in current theories of tornado 
development. 

 
3. SPATIOTEMPORAL RELATIONAL 
PROBABILITY TREES 
 
A decision tree can be viewed as a series of 
questions asked about data with respect to a 
classification task.  For example, our task is 
predicting strong low-level rotations and a 
possible question may be “is there an 
updraft?”  The data is split based on the 
answer to this question and a new tree is built 
recursively using the subsets of data.  The 
tree growth process continues until either all 
the data agrees at the leaf or there is no 
statistically significant question remaining to 
split the data.  A standard decision tree 
contains a single answer at a leaf node, 
usually the modal answer of the data at that 
leaf.  A probability tree instead yields a 
probability of each class (in our case, 
probability of a strong low level rotation 
occurring or of it not occurring).   
    SRPTs come from relational data, which 
are comprised of high level features, relations, 
and attributes. The tree can differentiate the 
data using the objects, relationships, 
attributes, and temporal questions based on 
the objects or relationships.  For example, the 
tree can ask if an updraft exists or how long it 
has existed. The questions are chosen based 
on their χ2 value. Only questions that have 
statistically significant values of χ2 are 
chosen.  
    To facilitate better understanding of the 
algorithm, an example follows: Assume there 
is a single positive storm that is being run 
through the SRPT algorithm. Assume that in 
this positive storm, the high level features that 
have caused a rotation initiation is an updraft 
that has lasted longer than 23 minutes and a 

High Level Features Relations Attributes 
Updraft (w > 15 m/s) 
Downdraft (w < -5 m/s) 
Baroclinic generation ( bg > 1e-6 s-2) 
Hail (qh  > 0.01 kg/kg) 
Pressure Perturbation (pp < -900 pa) 
Rain (qr > 0.0025 kg/kg) 
Tilting (tilt  > 0.0001 s-2) 
Vertical stretching (vs > 0.0001 s-2) 
Vertical vorticity (vv > 0.02 s-1) 

Contains 
Equals 
Contained By 
Overlaps 

Volume 
Max/Min of variable 
Start time 
End time 
Standard deviation 
Median 
Mean 
Volume 
Base height 
Ceiling height 
Thickness 
Horizontal composite area 

 
Table 2: A full listing of all of the high level features, relations, and attributes being used in this 
experiment.  



downdraft that has lasted longer than 10 
minutes. The SRPT algorithm would look 
through a user-defined number of possible 
inquires to see if the storm had that particular 
feature being sought by the inquiry and if that 
storm was positive. For this example, assume 
the first question that has both a positive 
inquiry and a positive label would be “Does 
the storm have an updraft lasting longer than 
23 minutes?” If no other question produces a 
better χ2 value, then it will be the top question, 
or ʻrootʼ of the SRPT. The SRPT algorithm 
would then search for a new question using 
only the subset of storms that answered the 
last question positive or ʻyesʼ. The positive 
storm also had an attribute involving the 
downdraft lasting for longer than 10 minutes, 
so it would be the next question chosen in the 
SRPT and would be positioned below the root. 
As there are no other attributes for this storm 
that are important to rotation initiation, the 
SRPT would be complete. 
 
4. PRELIMINARY RESULTS 
 
The SRPT generated during this experiment, 
as seen in Figure 3, shows that the most 
significant question is the existence of 
stretching vertical vorticity for at least 15 
minutes. The yes branch then uses the 
existence of baroclinic generation of vertical 
vorticity as its most significant question.  After 
baroclinic generation of vertical vorticity, the 
existence of hail for various times is used for 
the subsequent branches. Going down the 
ʻnoʼ branch for the root node, the existence of 
stretching of vertical vorticity for various times 
is seen in the subsequent child and grandchild 
nodes. The probabilities range from a 
maximum of 1 to a minimum of 0. The p-value 
threshold for significance was set to 3e-03.  
    The six-fold cross validation produced an 
Area Under the Curve (AUC) of 0.77 with a 
standard deviation of 0.14. AUC is a measure 
of performance that does not rely on the 
underlying class distributions (Bradley, 1997 
and Foster and Provost, 1997), something 
that is critical for understanding rare events 
such as thunderstorms that develop strong 
low level rotations.  AUC is calculated as the 
area under the Receiver Operating Curve, a 
plot that shows how the false positive ratio 
and true positive ratio varies as the class label 

cutoff varies.  An AUC of 1 means the 
algorithm is performing perfectly while an 
AUC of 0.5 means the algorithm is performing 
as well as randomly guessing.  Anything 
below 0.5 is worse than random. A total of 
1023 storms were used in this experiment, 
with 38 of them being classified as having a 
strong low level rotation. 
    Our hypothesis, that using the SRPT would 
help gain valuable insights into possible 
causes for rotation initiation, was supported 
by the results in that both stretching of vertical 
vorticity was found to be the most significant 
question, and that this type of data was able 
to be properly investigated using a SRPT. 
Those familiar with the current theories of 
supercell storm evolution may be surprised 
that neither updraft nor downdraft were found 
in the SRPT. This can be explained for two 
reasons; one being that the limited set of 
questions being asked in this experiment had 
no inquiry of the attributes of the high level 
features except for time in existence. The 
other explanation is that supercell 
thunderstorms are defined by having a 
rotating updraft, and are expected to have at 
least one downdraft. Since all storms used in 
this experiment were of a supercellular nature, 
all would be expected to have a sustained 
updraft and downdraft, meaning that the 
presence or absence of strong low-level 
rotation couldnʼt be differentiated using these 
types of questions.  The AUC value being 
above 0.50 shows that the SRPT was able to 
perform better than randomly guessing.  The 
model itself shows that SRPTʼs can be 
successfully used to find meaningful 
knowledge about spatiotemporal data sets 
that potentially have higher order objects 
related to strong low-level rotation that are 
currently not well understood. 
    One note of particular interest in the SRPT 
was the ʻnoʼ branch beginning with the root 
node. All subsequent significant questions 
along the ʻnoʼ branch dealt with the stretching 
of vertical vorticity for varying time intervals, 
but each time interval became smaller the 
further down the tree it was. This could be 
signs of an implicit cyclical pattern in the 
relative strength of a supercell thunderstorm. 
A supercell thunderstorm could begin as 
strong, weaken and reorganize, and 



strengthen again in order to produce a strong 
low-level rotation. 
 
5. CURRENT AND FUTURE WORK 
 
This work is preliminary and we are 
expanding on it in several directions.  
Meteorologically, the number of high level 
features and relations that we used in this 
work is limited.  We are actively identifying 
potential new features from the literature.  
Second, the resolution of our simulations, 
500m, is too coarse to resolve a tornado.  
Making the resolution smaller requires an 
exponential increase in both computing time 
and storage space.  In the near future, we 
hope to develop a set of simulations at 250m 
resolution but 25m resolution will wait until 
technology is capable of generating such a 
simulation in a reasonable amount of time 
(Xue et al., 2007). 
    The SRPT algorithm presented here is also 
preliminary and we are actively expanding the 
approach.  We are working to address 
questions of bias in the algorithm when spatial 
and temporal autocorrelation exist, something 
known to be common in meteorology.  
Although autocorrelation can be used to 
improve predictions by knowing that the 
temperature at one location is autocorrelated 
to a nearby location, it can introduce bias into 
the decision tree model where the model 
chooses inappropriate features in the tree 
(Neville et al., 2003).  In addition to handling 
autocorrelation, we are also expanding the 
number of distinctions that the tree can ask, 
both spatially and temporally. 
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Figure 1: An example of how the storm identification algorithm tracks and splits storms. Individual 
storms are colored in shades of red in this image.  The central updraft is shown with a white 
outline. 



 
 

 
 
(a) Reflectivity (dbZ) at 4km.                                    (b) Three-dimensional view of simulated storm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) Structure of a supercell 
 
Figure 2: These figures are best viewed in color. A: Reflectivity at 4km altitude B: High-level 
three-dimensional features based on updrafts, downdrafts, and vertical vorticity. C: Structure of a 
classic supercell (adapted from Lemon and Doswell, III, 1979; Davies-Jones, 1986; Bluestein, 
1993). 



 
 
Figure 3: The SRPT generated during our preliminary experiment. 
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