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Abstract

Several researchers have proposed reinforcement learning methods that obtain ad�

vantages in learning by using temporally extended actions� or macro�actions� but none

has carefully analyzed what these advantages are� In this paper� we separate and an�

alyze two advantages of using macro�actions in reinforcement learning� the e�ect on

exploratory behavior� independent of learning� and the e�ect on the speed with which

the learning process propagates accurate value information� We empirically measure

the separate contributions of these two e�ects in gridworld and simulated robotic envi�

ronments� In these environments� both e�ects were signi�cant� but the e�ect of value

propagation was larger� We also compare the accelerations of value propagation due

to macro�actions and eligibility traces in the gridworld environment� Although eligi�

bility traces increased the rate of convergence to the optimal value function compared

to learning with macro�actions but without eligibility traces� eligibility traces did not

permit the optimal policy to be learned as quickly as it was using macro�actions�



� Introduction

Many problems in arti�cial intelligence are too large to be solved practically at the level

of the most primitive actions� One strategy for overcoming this di�culty is to combine

smaller actions into larger� temporally�extended actions� thus reducing the e�ective length

of the solutions� For example� Korf ��	
��� Laird et al� ��	

�� and Iba ��	
	� have studied

the use of macro�operators� or �xed sequences of actions treated as single larger actions�

They and others have shown that searching with macro�operators can yield solutions much

more quickly than when search is restricted to primitive actions�

The work described in this paper is part of an ongoing e�ort to understand how we

can achieve something similar in the realm of reinforcement learning and Markov decision

processes� This framework is appealing because the temporally extended actions are not

limited to open�loop sequences� but can be closed�loop subpolicies that are conditional on

environmental events�

Many researchers have explored issues related to temporally extended actions� modu�

larity and hierarchy in reinforcement learning �e�g�� Lin� �		�� Kaelbling� �		�� Dayan �

Hinton� �		�� Singh� �		��� Recently� several researchers have focused on a representation

of temporally extended actions as the combination of a policy and a termination condition

�e�g�� McGovern� Sutton� � Fagg �		�� Parr � Russell� �		�� Precup� Sutton� � Singh�

�		
� Dietterich� �		
� Hauskrecht et al�� �		
� Huber � Grupen� �		��� Some of this re�

search has extended the theory of reinforcement learning with temporally extended actions

and some has proposed new methods for learning and planning with such actions� In this

paper� we use the term macro�actions to refer to temporally extended actions� whereas

Sutton� Precup� � Singh ��		
� use the term options� Options may be either multiple

step policies or primitive actions while macro�actions are restricted to temporally extended

actions� This paper focuses on analyzing the e�ects of macro�actions in accelerating �or

decelerating� learning�

� Reinforcement Learning and Macro�actions

Reinforcement learning is a collection of methods for approximating optimal solutions to

stochastic sequential decision problems �Sutton � Barto� �		
�� A reinforcement learning
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system does not not require a teacher to specify correct actions� Instead� the learning agent

tries di�erent actions and observes the consequences to determine which are best� More

speci�cally� in the reinforcement learning framework� a learning agent interacts with an

environment at some discrete time scale t � �� �� �� �� � � �� At each time step t� the environ�

ment is in some state� st� The agent chooses an action� at� which causes the environment

to transition to state st�� and to emit a reward� rt��� The next state and reward depend

only on the preceding state and action� but they may depend on it in a stochastic fashion�

The objective is to learn a �possibly stochastic� mapping from states to actions called a

policy� �� which maximizes the cumulative discounted reward received by the agent� More

precisely� the objective is to choose action at� for all t � �� so as to maximize the expected

return� E
�P

�

i�� �
irt�i��

�
� where � � ��� �� is a discount�rate parameter�

A common solution strategy is to approximate the optimal action�value function� Q��

which maps state�action pairs �s� a� to the maximal expected return that can be obtained

starting in state s and taking action a�

Q��s� a� � max
�

E frt�� � �rt�� � � � � jst � s� at � ag �

In this paper we use a method to approximate Q� known as one�step tabular Q�learning

�Watkins� �	
	�� In this method� the approximation to Q� is represented by a table with an

entry� Q�s� a�� for each state�action pair� After each transition from state st to state st���

under action at and with reward rt��� the estimated action value Q�st� at� is updated by�

Q�st� at� � Q�st� at� � �
h
rt�� � �max

a
Q�st��� a��Q�st� at�

i
� ���

where � is a positive step�size parameter�

Macro�actions are policies with termination conditions� On each time step� the agent

can choose either a macro�action or a primitive action� unless it is already executing a

macro�action� Once the agent has chosen a macro�action� it selects the primitive actions in

accordance with the macro�action�s policy until the macro�action�s termination condition

is satis�ed� For example� walking from the lab to the cafeteria could be a macro�action�

This macro�action enables the walker to skip thinking or planning at the level of muscle

movements or even at the level of gross body movements� If a pile of snow is encountered

along the way� the walker can safely change the primitive actions of walking to keep from

falling while still executing the macro�action of going to the cafeteria�

�



To provide for learning when to select macro�actions� we extend the notion of the optimal

action�value function� Q�� to include macro�actions� That is� for each state s and macro�

action m we de�ne a macro value Q��s�m�� as the maximal expected return given that

we start in state s and take macro�action m� This de�nition naturally leads to an update

rule� Upon each termination of a macro�action� its value is updated using the cumulative

discounted reward received while executing the macro�action and the maximum value at

the resulting state� More precisely� after a multi�step transition from state st to state st�n

using macro�action m� the approximate action value Q�st�m� is updated by�

Q�st�m� � Q�st�m� � �
h
r � �nmax

a
Q�st�n� a��Q�st�m�

i
� ���

where the max is taken over both actions and macro�actions� and

r � rt�� � �rt�� � � � �� �n��rt�n�

This is a discrete�time version of the Semi�Markov Decision Process Q�learning method

studied by Bradtke � Du� ��		
� and proven to converge by Parr ��		
�� The algorithm

that we focus on in this paper performs update ��� as well as the conventional Q�learning

update for each primitive action given by ���� We call the resulting algorithm Macro Q�

learning �McGovern� Sutton� � Fagg� �		���

� Illustrative Example

As an illustration of the e�ects of macro�actions on learning� consider the two gridworld

environments shown inset in Figure �� The task in each case is to travel from the start

state labeled �S� to the goal state labeled �G� as quickly as possible� Each gridworld is

�� states long� �� states high� and is surrounded by four walls� There are four primitive

actions� up� down� right� and left� which have stochastic e�ects� ��� of the time each

action causes motion in the named direction� and ��� of the time each action causes a

motion in one of the three other directions� In any event� if the movement would take the

agent into a wall� then the agent remains in the same state� There are also four macro�

actions� macro�up� macro�down� macro�right� macro�left� Each macro�action takes the

corresponding primitive�action as many steps as needed �possibly zero� until the agent
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Figure �� Comparison of Q�learning and Macro Q�learning on two gridworld navigation

tasks� Each line is averaged over �� runs�

reaches a wall� The macro�action terminates just before hitting the wall� Note that one

gridworld has the goal at the edge of the grid whereas the other has the goal in the center�

We applied Q�learning and Macro Q�learning to both environments� In both cases� ac�

tions were selected according to the ��greedy method �Sutton � Barto� �		
�� The learning

parameters were � � ����� � � ����� and � � ��	� Figure � shows the number of primitive

steps used to transition from the start state to the goal state for ��� episodes of each al�

gorithm� An episode consists of one trajectory from the start state to the goal state� Each

data point is an average over �� runs� where a run is a �xed number of episodes starting with

a di�erent random seed� In the edge�goal environment� Macro Q�learning converged to the

optimal policy much faster �approximately �ve episodes� than Q�learning �approximately

�� episodes�� However� in the center�goal environment� Q�learning converged much more

quickly �approximately �� episodes� than Macro Q�learning �greater than ��� episodes��

This experiment demonstrates the intuitive idea that macro�actions will sometimes help

and sometimes hinder learning� depending on their appropriateness to the task� In the next

two sections we isolate and evaluate two di�erent hypotheses about how macro�actions af�

fect the rate of learning� The �rst hypothesis is that macro�actions in�uence the exploratory

behavior of the agent such that more relevant states are visited more often� The second hy�
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Figure �� State�visitation histograms for the gridworld environment when randomly selecting

from the primitive actions �left� or both primitive and macro�actions �right��

pothesis is that the macro�action backup propagates correct value information more widely

and more rapidly� We analyze these two e�ects �rst in these gridworld environments and

then in a larger simulated robot task�

� Hypothesis �� E�ect on Exploration

We �rst consider the hypothesis that macro�actions bias the behavior of the agent to

spend more time in relevant states� i�e�� states that are closer to the goal� In the case of

the gridworlds described above� we hypothesize that the macro�actions cause the learner to

spend the majority of its time near the edges of the grid�

To examine this e�ect independently of learning e�ects� we measured how often each

state was visited when primitive actions and macro�actions were selected at random� We

used the same gridworlds as described above �Section �� but with no goal state� Each agent

started in the lower left hand corner state� chose an action at random� and transitioned

to a neighboring state� This continued for ������� steps� Figure � shows two histograms

indicating how often each state was visited on average when actions were selected randomly

from the primitives �left panel� and from both the primitives and the macro�actions �right

panel� for the ������� steps� These histograms average over �� runs� In the case with only






primitive actions� all states were visited equally often� whereas with the macro�actions the

edge states were visited much more often than the other states�

This di�erence in exploratory behavior� independent of learning� explains part of the

performance di�erences between Q�learning and Macro Q�learning observed in the experi�

ment described in Section �� When macro�actions were taken� the goal state in the edge�goal

gridworld was visited on average about ���
 times out of ������� steps� With only primi�

tive actions� this state was visited only about ��	� times� However� this di�erence does not

seem large enough to fully explain the dramatic performance di�erences shown in Figure

�� Another possibility is that the Macro Q�learning algorithm may be more e�cient at

learning the value function than conventional Q�learning�

� Hypothesis �� E�ect on Value Propagation

Our second hypothesis about the e�ect of macro�actions on learning is that they a�ect

the rate at which correct action�values propagate through the state space� In one�step Q�

learning� values propagate backwards one time step per backup� However� when backing

up macro values� value information can propagate over several time steps� When a macro�

action takes the agent to a good �or bad� state� the macro value for the state in which the

macro�action was chosen is updated immediately with useful information even though that

state may be many primitive actions away from the good state�

To examine the e�ect that macro�actions have on the rate of value propagation indepen�

dent of behavior� we compared the propagation rate for Q�learning and Macro Q�learning

when operating on exactly the same experience� This experience was generated by the

random selection among both primitive and macro�actions as described in the experiment

in Section �� Each algorithm was applied separately to this experience� By applying each

algorithm to the same behavior� we eliminate any e�ect due to state visitation di�erences�

and the e�ect of macro�actions on value propagation can be seen more clearly�

Figure � shows two snapshots of the average value propagation for the two algorithms�

The �rst row shows the values after the goal has been reached twice� and the second row

shows the values after the goal has been reached �� times� Each graph is the average over

�� runs� After the goal state had been reached only twice� Macro Q�learning� on average�

had already learned non�zero values for states all the way back to the start state� This is
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Figure �� Comparison of the propagation of state values by Q�learning and Macro Q�learning

for the same behavior early and late during learning� Circle area is proportional to the

maximum of the action values �Q�learning� or action and macro values �Macro Q�learning�

in that state�

shown in the �rst row of Figure �� In fact� the greedy policy formed by evaluating Macro

Q�learning�s value function at this point was already e�ective in bringing it to the goal�

In contrast� Q�learning had only learned a few action values� and its greedy policy was

not e�ective in bringing it from the start state to the goal state� After reaching the goal

�� times� Macro Q�learning had good value information on all but � states in the average

case� while Q�learning was missing values for �	 states� Also� the values were propagated

di�erently by the two algorithms� While Q�learning spread the values backwards from the






goal almost uniformly on average� Macro Q�learning �rst spread the information around

the edges of the grid� and then into the center�

Clearly� adding macro values to the backup equation a�ects the propagation rate of

value information� This can lead to faster convergence to the optimal policy� In the next

section we discuss how this e�ect compares to the e�ect of eligibility traces�

	 Comparison with Eligibility Traces

Eligibility traces are a well�known mechanism for speeding value propagation in rein�

forcement learning� Each state�action pair is marked as eligible for backup with a trace

indicating how recently it has been experienced� Then� on each step� the values of all

state�action pairs are updated in proportion to their eligibility traces at the time� Because

many recent state�action pairs may have non�zero traces� value information is propagated

backwards many steps and may become accurate more quickly� In these experiments we

use standard replacing eligibility traces �Singh � Sutton� �		
��

Figure � compares the performance of Q�learning and Macro Q�learning with the el�

igibility trace method known as Watkins�s Q��� �Watkins� �	
	� Sutton � Barto� �		
�

on the edge�goal gridworld� when processing the same random experience as used in the

experiment described in Section �� Again� by using a �xed behavior� we isolate the e�ect

of the algorithm on value propagation from any e�ects of experience� For Q��� we used a

variety of values for the trace parameter� � � ��� ��� which determines the duration of the

traces� that is� how quickly they fade away� or how far back values propagate during a single

episode� We used � values to produce half�lives of �� �� 
� �
� ��� and 
� time steps� and

also � � �� corresponding to in�nite�length traces�

We evaluated Q���Macro Q�learning� and Q�learning in two ways� To evaluate the

convergence to the optimal action�value function� we calculated the optimal action�value

function� Q�� using Dynamic Programming and summed the absolute di�erences between

the optimal action�value function and the current learned value function after each time the

goal was reached� To evaluate the optimal policy� we froze the value function and evaluated

it greedily� This was done after each time the agent reached the goal state� Figure � shows

the results of these experiments�

Q��� with � 	 � converged to the optimal policy faster than one�step Q�learning� but
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Figure �� Comparison with Q��� on the edge�goal task� with experience held constant �ran�

dom selection among both primitive and macro�actions�� Averages over �� runs�

Macro Q�learning was faster still �Figure �� left panel�� However� Q��� with � 	 � converged

to the optimal action values more quickly than either Q�learning or Macro Q�learning �Fig�

ure �� right panel�� and Macro Q�learning converged more quickly than one�step Q�learning�

Q��� learned the optimal value function more quickly because it disseminated the value in�

formation at an even more rapid rate than Macro Q�learning� However� it accomplished this

at the cost of the policy� Macro Q�learning learned values for the edge states �rst �as shown

in Section ��� Because these states are on the path from the start state to the goal state�

Macro Q�learning learned correct action�values for the relevant states faster than Q��� and

was able to learn the optimal policy more quickly�

With appropriate macro�actions� convergence to the optimal policy and the optimal

action�value function can be faster than learning without macro�actions� Combining eligi�

bility traces with macro�actions may produce an even more e�cient algorithm�


 A Larger Illustration

As a larger illustration of these e�ects we used a continuous two�dimensional �x�y plane�

simulated robot foraging task� The circular robot inhabits a world with two rooms� one
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door� and one food object as shown in Figure �� Each room is �� feet by �� feet with

a � foot wide doorway� The robot is able to discern which room it is in� The robot has

simulated sonars to sense the distance to the nearest wall in each of �ve �xed directions�

three forward and two back� The forward sonars are �xed at �o� ��o� and � ��o from the

heading of the robot� The back sonars are at ����o and ���o from the robot�s heading�

The robot can also sense the direction and distance to the doorway from any point in the

room� and to the food object if it is within �� feet of the robot� When food comes within

a smaller distance of the robot �� feet�� it is consumed and the agent receives a reward of

�� �otherwise the reward is zero�� After the food is consumed� it re�appears in the middle

of the room that the robot is not in� All experiments in this world use a starting position

�x� y� � ��� ��� The �rst piece of food starts in the same room as the robot�

The robot uses simple inertial dynamics� with friction and inelastic collisions with the

walls� There are �� possible primitive actions� On each step� the robot can either lin�

early accelerate in the direction in which it is oriented �to one of � positive and � neg�

ative degrees�� apply an angular acceleration �to one of � positive and � negative de�

grees�� or apply no acceleration at all� The available discrete linear and rotational ac�

celerations are ������������������� ����� ����� ������ Two macro�actions are also available�

orient�to�door and forward�until�wall� The former activates a PD �position and

derivative� controller to turn the robot to face the doorway� The latter activates a PD

controller to go forward unless the sonars indicate a wall nearby� The PD controllers for the

macro�actions can only select from the set of available primitive actions� To do this� they

round the continuous suggested move to the nearest available primitive action� Both PD

controllers were critically damped� The orient�to�door controller used a position gain of

���� and a velocity gain of ��� while the forward�until�wall controller used a position

gain of ������ and a velocity gain of ����

The robot�s equations of the motion are as follows�

xt�� � xt � vt cos 
t

yt�� � yt � vt sin 
t

vt�� � ��� ��vt � at


t�� � 
t � �
t

�
t�� � ��� �� �
t �  
t

��
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Figure �� The simulated robotic foraging task�

where �xt� yt� are the global coordinates of the robot at time t� at is the linear acceleration�

 
t is the rotational acceleration� � � ��� is the coe�cient of friction� 
t � ��� ��� is the

robot�s absolute angle of orientation� vt is the robot�s linear speed� and �
t is the robot�s

directional velocity� If the robot chooses a rotational acceleration� at is set to zero� Likewise�

if the robot accelerates linearly�  
t is set to zero� The robot has a maximum linear speed

and rotational velocity ���� and �

�
respectively� past which positive accelerations have no

e�ect� The linear speed v is further constrained to be non�negative� The rotational velocity

may be either positive �clockwise� or negative �counter�clockwise�� The robot�s position is

constrained only by the walls of the world� Collisions with the walls are inelastic� which

means that if a robot�s new position �xt��� yt��� at time t � � intersects a wall� the robot

remains at position �xt� yt� and its linear speed and rotational velocity are set to zero�

Although the simulator had complete and perfect knowledge of the robot�s state� the

robot could only see egocentric information� the sonar readings� the food sensors� the

doorway sensors� its linear speed� rotational velocity� and the room number� Because the

state space is continuous� we used a tile�coding function approximator� also known as a

CMAC �Albus� �	
� and Sutton � Barto� �		
�� The robot had �� tilings over di�erent

subsets of the available information as summarized in Table ��

We structured the experiments in this robotic domain to be similar to those presented

��



� of Tilings Variables Size

� room color� door distance� door angle� forward sonar dis�

tances� linear speed� rotational velocity� food eaten in cur�

rent room

���� 
��

� all � sonar distances� room number� linear speed� rota�

tional velocity� food eaten in current room

�
�� ���


 activation in each �

�
slice of the robot�s food sensors� linear

speed� rotational velocity� all � sonar distances


�� ��� each

Table �� Tile coding for the simulated robot experiments

earlier with the gridworlds� The �rst set of experiments compared the online performance

of Macro Q�learning to Q�learning for one million steps� The parameters were � � �����

� � ����� and � � ��	� Figure 
 �left panel� shows the cumulative reward received by each

method� Both curves are averages over �� runs� Figure 
 �right panel� also shows the

cumulative reward received using random behavior for one million steps with and without

macro�actions� Although both learning methods outperformed their respective random

behaviors� Macro Q�learning converged to a solution for �nding food much more quickly

than did Q�learning� This is in accord with what we found in the gridworld domain where

Macro Q�learning with appropriate macro�actions vastly outperformed Q�learning� The

robot�s two macro�actions cut the learning time in half�

The second set of experiments examined the behavior for one million steps when the

actions were selected randomly from the primitive actions and from both the primitive and

macro�actions� The two right panels in Figure � show a projection of the �rst �������

steps of one such trajectory onto the two spatial dimensions� We cannot simply present a

histogram of state visitation in this task� as we did for the gridworlds� because the state

space here is of higher dimension� Nevertheless� it is clear that here� as in the gridworlds�

the macro�actions have a large in�uence on the initial exploratory behavior�

With macro�actions� the robot more often crosses between the two rooms and travels

with a higher speed� This is shown graphically in Figure 
� The left panel shows the

average number of time steps that the robot spent in the �rst room for each ������� steps

��
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Figure 
� The left panel shows cumulative reward for online Macro Q�learning and Q�

learning� The right panel shows the cumulative reward for random behavior with and without

macro�actions on the same scale as the left�hand graph�

of the million�step random walk taken with and without macro�actions� These numbers

are all averages over �� runs� Although the overall means do not di�er by much ���� for

macro�actions and �
� without macro�actions�� the visitations over time are di�erent for

each random walk� For example� without macro�actions the robot remained in the room in

which it started for 

� of the �rst ������� steps of its random trajectory� whereas with

macro�actions it spent only about ��� of those steps in the initial room� The right hand

panel of Figure 
 shows the total number of steps that the robot spent in the �rst room

for each of the �� runs� The random walks with only primitive actions have more variance

and tend to spend more time in the �rst room than when macro�actions are used� When

macro�actions are added to the set of available actions� there is less variation across runs�

The results of the experiments with random behavior show that the use of macro�

actions a�ected the exploratory behavior of the agent in both the gridworld and in the

more complicated continuous domain� In the gridworld� the macro�actions caused a non�

uniform visitation of the states� whereas in the robotic domain� they caused a more uniform

initial visitation of the world�

The �nal experiments examined the e�ect of macro�actions on learning independent of
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Without Macro�actions With Macro�actions

Figure �� The graphs on the right hand side represent the position of the robot during a

random walk�

behavior� To do this� both Macro Q�learning and Q�learning were applied to the �xed set

of experiences generated from the million�step random walks using both macro�actions and

primitive actions� The parameters of this experiment were the same as in the previous set

of experiments in this world� In the similar gridworld experiment� we were able to examine

the value function for each state directly and measure how quickly values were backed up�

Because the state space in the robotic domain is continuous and multi�dimensional� we

could not examine it in the same way� Instead� we examined the value function indirectly

by freezing the values and evaluating the behavior� Every ������ steps� the value�function

was frozen and the resulting ��greedy �� � ����� policy was executed for ����� steps� Figure

	 shows the cumulative reward achieved by Macro Q�learning and Q�learning over the ��

evaluations� It is clear that backing up values for both macro�actions and primitive actions

leads to faster convergence to a good foraging policy� This agrees with the results found

in the gridworld experiments �Section �� where learning with macro�actions caused the

value information to propagate more rapidly through the state space than did learning with

primitive actions only�

� Conclusions

Our experiments in the simulated robot task are broadly consistent with those obtained

in the gridworld tasks� and in our earlier work �McGovern� Sutton� � Fagg� �		��� We

have veri�ed and demonstrated the hypothesis that macro�actions may either speed or

��
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Figure 
� The left panel shows the average number of time steps that the random walks spent

in the 	rst room over each 
������ time slice� The dashed line in the middle represents the

��� line� The right panel shows the total number of steps over all one million steps that

the robot spent in the 	rst room for both types of random walks�

slow learning depending on their appropriateness to the task� More importantly� we have

separated the e�ect of macro�actions into components and measured them independently�

In particular� we have analyzed the contributions to performance of macro�actions� e�ects

on exploratory behavior and on value propagation� both of which can be substantial� Value

propagation can also be accelerated through the use of eligibility traces� we have assessed

this e�ect and compared it to the e�ect of macro�actions� An obvious extension would be

to combine macro�action methods with eligibility traces to obtain the advantages of both�

Although all of our results are empirical� we believe this is not inappropriate� Today�s

understanding of temporally abstract actions is limited� we need more empirical experience

before we can answer� or even ask� the most important questions�
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