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Abstract
This paper introduces a new evaluation func-
tion for solving the multiple instance problem.
Our approach makes use of the main idea of di-
verse density (Maron, 1998; Maron & Lozano-
Pérez, 1998) but finds the best concept using
the chi-square statistic. This approach is sim-
pler than diverse density and allows us to search
more extensively by using properties of the con-
tingency table to prune in a guaranteed man-
ner. We demonstrate that this approach solves
the multiple-instance problem as well as or better
than diverse density and that the pruning mecha-
nism allows chi-squared to identify the best con-
cepts more quickly.

1. Introduction

Multiple instance learning (MIL) is a useful and well-
known technique for learning with ambiguous or partially
labeled data. For example, Dietterich et al. (1997) proposed
the task of identifying what part of a molecule binds with a
musk receptor in the nose. A molecule can take on a num-
ber of different shapes, or conformations, but it is likely that
only one of those shapes will bind with a musk receptor. It
is difficult to determine which shape actually matched the
musk receptor although it is possible to observe the pres-
ence of a reaction for a given molecule (and thus a set of
shapes). The task is to identify which shape and part of the
molecules causes them to smell musky. The data available
for a MIL agent is in the form of labeled sets of instances,
e.g., a set of shapes with a single label. Supervised learn-
ing uses individually labeled instances which are difficult
to obtain for many tasks. Labeling each instance in the set
with the label for the set produces too much noise for su-
pervised learning whereas MIL techniques are designed to
learn from exactly this type of data.

More specifically, a MI learner uses labeledbagswhere a
bag is a collection ofinstanceswith one label for the entire
collection. A positive bag contains at least one instance of

Table 1. Contingency table used to identify the best concept from
a set of positive and negative bags using the chi-squared statistic.
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bag label

Actual
Bag label
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the target conceptwhile a negative bag contains none. An
instance is a point in feature space and the target concept is
another point in feature space. The goal is to find a concept
that explains the labels for the bags and can predict labels
for unseen data. It is not known in advance which instance
is the one causing the bag to be labeled as positive. If this
were known, a supervised learning approach could be used
instead.

Successful applications of MIL include such tasks as rec-
ognizing MUSK molecules (Dietterich et al., 1997), pre-
dicting stock trends (Maron, 1998), image retrieval tasks
(Goldman et al., 2002; Maron & Ratan, 1998), and iden-
tifying useful subgoals (McGovern & Barto, 2001a; Mc-
Govern, 2002). One of the main MI techniques is that
of diverse density (Maron, 1998; Maron & Lozano-Pérez,
1998). This technique is widely used because of its intu-
itive appeal of its central idea: that the best concept is the
concept closest to the intersection of the positive bags and
farthest from the union of the negative bags. Because the
nearby positive instances are fromdifferent bags, Maron
denotes this idea asdiversedensity. Regular density algo-
rithms would not take into account the different bags and
would focus only at the instance level density. In spite of
the intuitive appeal of diverse density, computing the di-
verse density evaluation function is computationally expen-
sive.

We present an alternative evaluation function that uses the
chi-square statistic. This is simpler to define and imple-
ment and it allows a guaranteed pruning method. In partic-
ular, we use the contingency table shown in Table 1. The



rows of the table correspond to the predicted label for the
bag and the columns of the table correspond to the labels
on the training bags. Using the molecule example, if the
current hypothesis predicts two of three positive bags as
positive and three of four negative bags as negative, then

the contingency table could be filled out as:
2 1
1 3

The

concept with a maximal chi-squared value will have most
of its mass concentrated along the main diagonal and thus
will be correctly predicting the most positive and negative
bags. This correlates with the main idea of diverse density
by correctly predicting as many positive bags as possible
while also predicting negative bags. The use of the contin-
gency table of this form enables us to also introduce a guar-
anteed pruning method similar to (Oates & Cohen, 1996;
Webb, 1995). We discuss the pruning method in more de-
tail below.

2. Notation

For the MI notation, we follow that of Maron (1998) and
Maron and Lozano-Ṕerez (1998). The set of positive bags
is denotedB+ and theith positive bag isB+

i . Likewise, the
set of negative bags is denotedB− and theith negative bag
is B−i . If the discussion applies to both types of bags, we
drop the superscript and refer to it asB. The jth instance of
the ith bag is denotedBi j . The target concept is denotedct

and other concepts asc.

3. Diverse density

We first review diverse density and then examine how our
method relates. We use diverse density as the baseline
for comparison in the experimental results. Maron and
Lozano-Ṕerez (1998) and Maron (1998) define the diverse
density of a concept,c, to be:

DD(c) = Pr(c|B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m), (1)

wherePr(c) is the probability thatc is the correct concept,
n is the number of positive bags, andm is the number of
negative bags. The output of a DD search is the concept
with a maximal DD value. To perform this search, we must
expand Equation 1. Using Bayes’ Rule, Equation 1 can be
rewritten as:

DD(c) =
Pr(B+

1 , . . . ,B+
n ,B−1 , . . . ,B−m|c)Pr(c)

Pr(B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m)
. (2)

Assuming a uniform prior probability over the target con-
cepts and noticing that the denominator is constant with
respect to the concept, finding the concept with the maxi-
mum DD value reduces to finding the maximum likelihood
of the positive and negative bags given a specific concept:

Pr(B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m|c).

Maron assumes that the bags are conditionally independent
given the target concept, which allows the likelihood to be
rewritten as:

∏
1≤i≤n

Pr(B+
i |c) ∏

1≤i≤m

Pr(B−i |c). (3)

However, it is still not possible to calculate this exactly
without a model of how the bags were generated. Instead,
one can use Bayes’ Rule again to rewrite Expression 3 as:

∏
1≤i≤n

Pr(c|B+
i )Pr(B+

i )
Pr(c) ∏

1≤i≤m

Pr(c|B−i )Pr(B−i )
Pr(c)

.(4)

Substituting Expression 4 into Equation 2 and omitting the
terms that do not depend onc, the task reduces to that of
finding the maximum likelihood over concepts as follows:

∏
1≤i≤n

Pr(c|B+
i ) ∏

1≤i≤m

Pr(c|B−i ).

It remains to determine the probability of an instance in
a bag causing the concept to be correct,Pr(c|Bi). Maron
discusses several ways to do this. We follow his suggestion
of using a noisy-or model (Pearl, 1988), in which case we
have:

Pr(c|B+
i ) = 1− ∏

1≤ j≤p

(1−Pr(B+
i j ∈ c)), and (5)

Pr(c|B−i ) = ∏
1≤ j≤p

(1−Pr(B−i j ∈ c)), (6)

wherep is the number of instances in bagBi .

The only part of Equations 5 and 6 that is undefined is the
probability of a particular instance belonging to the target
concept:Pr(Bi j ∈ c). This can be defined in several ways.
For the results presented here, we use Maron’s single point
concept class which he defines using a Gaussian probability
distribution. The concept,c, is assumed to be ak dimen-
sional vector and the probability of an instance belong to
the concept class is:

Pr(Bi j ∈ c) =
exp

(
−∑1≤l≤k(Bi jl −cl)2

σ2

)
Z

, (7)

whereBi jl is the l th feature of thejth instance of theith
bag,cl is the l th feature of conceptc, Z is a scaling fac-
tor, andσ2 is the standard deviation. The standard devia-
tionsσ2

+ andσ2
− can be chosen separately for positive and

negative bags to allow the two types of evidence to have
different amounts of influence on the DD values.

Note that, in practice, it is more accurate to calculate the
log likelihood of the diverse density, rather than calculating
the diverse density directly, because of accuracy issues with
very small floating point numbers.



3.1. Identifying a concept with maximal DD

Concepts with maximal DD values can be found using stan-
dard search techniques. If it is feasible, e.g., if the space is
small and can be viewed as a discrete space, exhaustive
search can be used. In larger spaces, Maron used a gra-
dient based search approach with multiple restarts where
each run of the gradient search started from a random point
in a positive bag. This heuristic is useful because the MI
framework already restricts the true concept to appear only
in the positive bags. However, gradient methods have sev-
eral drawbacks. The first is that, even with the heuristics
on starting locations, gradient methods can become stuck
in local maxima. Second, they require the function being
maximized to be differentiable. While this is true for the
concepts that Maron proposed such as the single point con-
cept and for the linear concept class (McGovern & Barto,
2001b), it is not true for other types of concepts such as
relational graphs (McGovern & Jensen, 2003).

One alternative to the gradient search for diverse density
was proposed by Zhang and Goldman (2002). They com-
bined the expectation-maximization framework with the
search for a concept with maximal DD value. This ap-
proach yields high performance but is again computation-
ally expensive. Another alternative in large spaces is a sim-
ple random search technique (Rosenstein & Barto, 2001).
This is the search method that we use for the experiments
presented in this paper where exhaustive search is not feasi-
ble. In this case, the search starts from a number of random
locations such as randomly chosen instances from the pos-
itive bags, and the search proceeds in a manner similar to
genetic algorithms. The random search method can still be-
come stuck in local maxima but it can be used on functions
that are not differentiable.

4. Chi-squared

We propose an alternative way to identify the best concept
in an MI setting that is based on the main idea of diverse
density but relies on the chi-squared statistic. This is a well
known statistic with a known sampling distribution. The
contingency table used to calculate chi-squared can also be
used to prune the search.

The main idea of diverse density is that the best concept is
the concept that is at the intersection of the positive bags
and that is far away from the union of the negative bags.
Using the contingency table shown in Table 1, chi-squared
identifies the concepts that predict the most positive bags as
well as the most negative bags. This is related to the most
diversely dense concept although it does not use the idea of
being far away from the negative bags. The rows of the ta-
ble correspond to the predicted label from the concept and
the columns correspond to the actual labels for the training

bags. Assuming a method for labeling the bags given a pro-
posed target concept, the table is filled out in the following
manner. If the concept predicts that the bag will be posi-
tive and it is positive,a is incremented. If the prediction is
positive but the bag is really negative,b is incremented. If
the prediction is negative and the bag is positive,c is incre-
mented. Finally,d is incremented if the concept predicts
negative and the bag is negative.

Chi-squared is calculated by summing the squared differ-
ences for the expected values in each cell of the contin-
gency table versus the observed values. Letoa, ob, oc, and
od be the observed values for the cells of the table shown
in Table 1 and letea, eb, ec, anded be the expected values
for each of the cells. The expected values are calculated by
multiplying the row sum by the column sum and dividing
by the total number of elements. The chi-squared statistic
is calculated as:

χ2 = ∑
i∈a,b,c,d

(oi −ei)2

ei

The best concept is defined as that with the highest chi-
squared value. Chi-squared will be maximal in two cases:
when the mass is concentrated along the main diagonal
(e.g., ina andd) and when the mass is concentrated along
the off-diagonal (e.g., inb and c). In the first case, the
proposed concept is correctly predicting a maximum num-
ber of positive and negative bags, which is the overall goal.
In the second case, the concept is predicting exactly the
opposite of this goal. This is a well-known issue with the
chi-squared statistic and the signed chi-squared statistic ad-
dresses this issue. We define the best concept to have a
maximal signed chi-squared value. Signed chi-squared is
positive if the mass is on the main diagonal and negative if
it is on the off-diagonal.

There are several advantages to calculating the chi-squared
statistic over calculating diverse density. The first is it is
both simpler to calculate as well as less computationally
complex for search. Second, this approach can be used
for concept spaces that are not differentiable or are not
able to be defined clearly in the diverse density framework.
Maron’s approach assumes that the DD equation is differ-
entiable which means that the probabilityPr(Bi j ∈ c) must
be differentiable. Although this is generally true in a flat
feature space, it is not true for relational data yet we can
successfully apply the chi-squared technique to such tasks
(McGovern & Jensen, 2003). A third, and very important,
advantage of the chi-squared technique over other MI tech-
niques is that the chi-squared approach enables a guaran-
teed pruning mechanism. This means that the signed chi-
squared approach should be more effective in larger spaces
or with a limited amount of time to search because it can
search more thoroughly in the same amount of time.



4.1. Pruning

Any search technique that can make use of pruning can
be used to identify the best chi-squared concept. Pruning
works in a manner very similar to that of Oates and Cohen
(1996) and Webb (1995). In particular, assume a concept
x is being proposed as a target concept and that the con-

tingency table for this concept has values:
a b
c d

. This

contingency table can be evaluated to give a chi-squared
value but it can also be used to find the maximum possi-
ble chi-squared value for a concept based onx but that is
more specific thanx. A more specific concept could be one
whereσ2

+ or σ2
− is smaller or, for a graphical concept, one

where the graph has more nodes or edges.

A more specific concept is unable to matchmorebags than
the original concept, so the mass in the contingency table
is restricted to move from the top row (i.e. positive pre-
dictions) to the bottom row. Also, since the columns of
the table are the labels on the bags in the training set, the
mass can not move from one column to another without
the training data being relabeled. With these restrictions,
a concept based on conceptx would have a maximal chi-

squared value at either
0 b

a + c d
or

a 0
c b + d

. In the

first case, the signed chi-squared value will actually be min-
imized and the concept can be immediately pruned as it is
predicting exactly the opposite of the correct bag labels.
In the second case, if the maximum possible value that a
concept based onx can reach is worse than the best con-
cept seen so far in the search, thenx can be pruned and the
search moved to a new area.

4.2. Labeling the bags

The cells in the contingency table are filled by predicting
the label on each of the training bags using the proposed
target concept. Using the DD definitions, there are sev-
eral ways to do this that could make sense. The first is to
calculate the probability that an instance is in the concept,
Pr(Bi j ∈ c), for each instance in bagBi and to take the max-
imum value, e.g.,

labelmax(Bi |c) = max
1≤ j≤p

Pr(Bi j ∈ c)

In this case, a label of one is a prediction of a positive bag
and a label of zero is a prediction of a negative bag. A
related approach could use the sum of these probabilities:

labeladd(Bi |c) = ∑
1≤ j≤p

Pr(Bi j ∈ c)

Other approaches that might seem useful that are based on
the product or the sum of the logarithms ofPr(Bi j ∈ c)
(similar to the calculations that Maron defines forPr(c|Bi))
do not work well in practice.
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Figure 1. Sample artificial data set where there are five positive
bags and five negative bags. Positive instances are labeled with
a number corresponding to the bag and negative instances are
shown as dots. The rectangle shows the target concept. This data
set is derived from (Maron, 1998).

Using the labelmax approach, the cells of the table are
filled out as follows. Given a proposed conceptx and a
positive bagB+

i , a is incremented with labelmax(B+
i ,x)

and c by 1− labelmax(B+
i ,x). For negative bags,

b is incremented with labelmax(B−i ,x) and d with
1− labelmax(B−i ,x). For a set of bagsB+ and B− and
a proposed conceptx, the contingency table becomes:

∑m
i=1 labelmax(B+

i ,x) ∑n
i=1 labelmax(B−i ,x)

∑m
i=11− labelmax(B+

i ,x) ∑n
i=11− labelmax(B−i ,x)

The table for labeladdis constructed in a similar manner.

Under any labeling technique of this form, when the con-
cept correctly predicts the most positive and negative bags,
the mass in the contingency table will be concentrated
along the main diagonal. This means that the concept will
have a maximal chi-squared value. Each incorrect predic-
tion will decrease the signed chi-squared value by adding
mass off diagonal.

In the next section, we compare diverse density and the
signed chi-squared approaches more directly.

5. Experimental results

We compare the behavior of the diverse density and
signed chi-squared methods under varying conditions us-
ing Maron’s ’difficult artificial data set’ (Maron, 1998). We
use this data set because it allows us to control many as-
pects of the data available to the two MI learners while still
presenting a challenging task. The feature space is two di-
mensional and each feature is a real number in the range
[0,100]. The target concept is a 5x5 square in the middle of
the space surrounding the point (50,50). Bags are created
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Figure 2. Accuracy of the diverse density and signed chi-squared
methods with a varying number of positive and negative bags.
These numbers are averaged over 60 different runs.

by uniformly sampling 50 points from the space and adding
these instances to each bag. If any point falls inside the tar-
get concept, then the bag is labeled as positive, otherwise
the bag is labeled as negative.

Figure 1 shows an example data set with five positive bags
and five negative bags. This task is difficult not only be-
cause of the type of data available but also because of the
target concept itself. The concept that the MI learner is
searching for is a point in feature space while the actual
shape of the concept is a square. The single-point con-
cept class surrounds each point with a Gaussian-like sphere
but this means that points inside a square may be missed,
depending on the radius of the sphere. This makes the
task more challenging than if we randomly generated target
points and used a sphere around them to define the target
concept.

For the first experiments, we repeat Maron’s measurements
of accuracy using diverse density with a varying number
of positive and negative bags. We also measure accu-
racy using the chi-squared method under the same condi-
tions. In this case, we discretized the feature space us-
ing unit-sized grid squares and computed the negative log-
likelihood diverse density values and the chi-squared val-
ues for each point in the discretized space. We then identi-
fied the best concepts for both methods. Accuracy is mea-
sured by checking if the best concept fell within the target
region. If this was the case, that run received a score of
one and zero otherwise. We measured the average accu-
racy over 60 different runs, each starting with a different
random seed to create the bags. We varied the number of
positive bags from three to twenty and the number of nega-
tive bags from one to twenty. The average accuracy results
are shown in Figure 2. The chi-squared results shown in
this figure used the labelmax approach. The two methods
have comparable accuracies for the same number of posi-
tive and negative bags, which is expected.

It is difficult to tell from these graphs if either approach is
outperforming the other by a small but significant amount.
To determine this, we average over the varying number
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Figure 3. Average difference in accuracy for a varying number of
positive bags (averaged over the varying number of negative bags)
for the chi-squared approach using the labelmax and labeladdto
label the bags.

of negative bags and examine the difference between the
methods as a function of the number of positive bags. Fig-
ure 3 shows the average accuracy of chi-squared minus the
accuracy of diverse density using both the labelmax and
labeladd approaches. There are two things to note from
this picture. First, the labelmaxapproach completely domi-
nates the labeladdapproach. Knowing this, we only present
results using the labelmax approach for the rest of this pa-
per. Second, the chi-squared approach using labelmaxout-
performs diverse density by a few percent with this differ-
ence peaking at around four percent better than diverse den-
sity.

5.1. Parameter variations

One of the main hypotheses of this work is that the chi-
squared method will perform comparably or better than di-
verse density under a variety of conditions. With this in
mind, we varied several parameters and conditions of the
experiment and compared the accuracy of the two algo-
rithms.

The first parameter that we varied was the number of in-
stances in each bag. The results reported so far used the
parameters from Maron (1998) as we wanted to duplicate
these results for diverse density. In this experiment, we
fixed the number of positive bags at 20 and the number of
negative bags at 20 and varied the number of instances in
each bag from 5 to 750. The reason that the number of
instances in each bag could make a difference is that as
the bag size decreases to one, the problem shifts from an
MI task to a supervised learning task because the inherent
noise of the task decreases (fewer instances per bag means
that the true positive instances are easier to identify).
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Figure 4. Average accuracy for diverse density and chi-squared
with a varying number of instances in each bag. There were 20
positive bags and 20 negative bags.

A comparison of the accuracy of the two algorithms is
shown in Figure 4. These numbers are averaged over 50
different runs, where each run has different instances in
the bags. For bags with up to 100 instances per bag, there
is no difference between the two methods. However, as
the bags continue to grow in size, the signed chi-squared
method significantly outperforms diverse density. To ob-
tain these results, we used exhaustive search which means
that the differences are not due to differences in search abil-
ity and depend only on the definition of the best concept for
each method. With a constant number of bags, the problem
difficulty increases as the number of instances in the bag
increases. These results indicate that the chi-squared ap-
proach scales better with this aspect of task difficulty. We
hypothesize that this is due to the labelmaxapproach which
identifies the maximum match from a bag. This should
minimize the effect of a bag’s size on the algorithms abil-
ity to identify the best concept. Diverse density instead
multiplies a number of individual probability calculations
together over a bag which means that the larger bags may
obscure the data more.

As discussed above, one reason that this data set presents a
difficult task is that the size of the Gaussian ball around
around the target concept was smaller than the target
square. This can be adjusted by varyingσ2

− andσ2
+. We

expected the two algorithms to perform comparably with
this parameter variation because both relied on the same
underlying calculation ofPr(Bi j ∈ c). Figure 5 shows the
results of varyingσ2

+ = σ2
− from 0.1 to 5.0 in increments

of 0.1. As expected, the performance of the two algorithms
was comparable.
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Figure 5. Average accuracy for diverse density and chi-squared
whenσ varies from 0.1 to 5.0.

5.2. The power of pruning

One of the main advantages of the chi-squared approach
over diverse density is that it offers a guaranteed pruning
method. We expected that this would give a significant
advantage to the chi-squared method as the task was in-
creased in difficulty. To examine this hypothesis, we used
diverse density and chi-squared on several tasks of vary-
ing difficulty. In the first task, we varied the dimensions
of the feature vector used to describe the instance and the
concept. As the number of dimensions was increased, the
size of the potential concept space increased exponentially.
This means that pruning should be more useful as the size
of the concept space increases.

One difficulty with varying only the number of features is
that this approach assumes that the same proportion of data
is available for each new dimension. This can be accom-
plished in two ways: by increasing the number of bags
or by increasing the size of the bags. If we increase the
number of bags, the total number of instances may remain
in constant proportion over the varying dimensions but the
task is actually made easier by having more positive and
negative bags available as evidence. This is illustrated in
Figure 6 where we compare the average accuracy of diverse
density and chi-squared when each uses a number of search
steps based on the dimensionality of the task. We used the
simple random search method for both techniques1. In this
case, the chi-squared approach significantly outperformed
diverse density at the lower dimensions but as the number
of bags increased with the size of the problem, both algo-
rithms began to improve their accuracies.

A second way to vary the amount of data available to the

1Both methods relied on the same underlying code so as to
ensure no difference in performance due to coding.
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Figure 6. Average accuracy for diverse density and chi-squared
with a fixed number of steps allowed for the search. The dimen-
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MI learner is to keep the number of bags constant but to
increase the number of instances per bag as a function of
the size of the problem space. This should significantly in-
crease the difficulty of the problem as both the size of the
space increases and the ability to identify the true positive
instances from the positive bags decreases. We compared
the accuracy of the two evaluation functions under this con-
dition and we measured the total number of steps used for
search in the two cases. In this case, the chi-squared ap-
proach is able to achieve higher accuracy than diverse den-
sity in fewer steps. As the difficulty of the problem is in-
creased in both dimension and number of instances, both
methods begin to drop in accuracy as well as to take more
total steps to find the best concept.

We also compared the accuracy of the two methods with
two features but with a varying number of instances per
bag. This corresponds to the results presented earlier (c.f.,
Figure 4) but we used search with pruning instead of ex-
haustive search over the entire space. These results are pre-
sented in Figure 7. In this case, there were 20 positive bags
and 20 negative bags with the number of instances in each
bag varying from 5 to 1000. The accuracy of the diverse
density approach drops very quickly as the size of the bags
is increased while the accuracy of chi-squared drops more
slowly and levels off at a better value.

Figure 8 shows the number of search steps used to identify
the best concept for both diverse density and chi-squared in
this experiment. Chi-square takes almost a constant num-
ber of steps to find the best concept while the number of
steps required by diverse density grows in an polynomial
manner. This is significant because it highlights one of the
main advantages of the chi-squared approach: the ability to
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Figure 7. Average accuracy for diverse density and chi-squared
using search in a two dimensional space where the number of
instances in each bag varied from 5 to 1000.
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Figure 8. Average and median number of search steps used to
identify the best concept with diverse density and chi-squared in
a two dimensional space where the number of instances in each
bag varied from 5 to 1000.

prune the search effectively and accurately.

6. Discussion and Conclusions

In summary, the chi-squared method that we introduced is
a simpler approach than diverse density and it relies on a
well known statistic. Using chi-squared allows a guaran-
teed pruning mechanism which significantly increases the
efficiency of the search for the best concept. We demon-
strated that the signed chi-squared approach has compara-
ble or better results than diverse density under a varying
number of conditions.

The chi-squared approach is very general and can be used
for a number of different concept classes beyond those pre-
sented here. Any concept class, differentiable or not, can



be used with this approach. This means that other concepts
classes can make use of the pruning mechanism described
here.

Although the contingency table that we presented relies on
the bags having binary labels (e.g., positive and negative), it
could be extended to real-valued labels. This is an impor-
tant task as the real-valued labels can provide additional
information to an MI learner (Amar et al., 2001). A re-
lated aspect of the diverse density definition is the ability
to weigh the evidence in the positive or negative bags dif-
ferently by separately varyingσ2

+ andσ2
−. This fits into the

signed chi-squared framework in the mechanism for label-
ing bags.
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