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Abstr

) ) bstract ) Table 1. Contingency table used to identify the best concept from
This paper introduces a new evaluation func- a set of positive and negative bags using the chi-squared statistic.
tion for solving the multiple instance problem.

Our approach makes use of the main idea of di- BActlua:)I |
verse density (Maron, 1998; Maron & Lozano- : eq labe
Predicted + -

Pérez, 1998) but finds the best concept using
the chi-square statistic. This approach is sim- baglabel + | a|b
pler than diverse density and allows us to search -lcld
more extensively by using properties of the con-
tingency table to prune in a guaranteed man-
ner. We demonstrate that this approach solves  thetarget concepthile a negative bag contains none. An
the multiple-instance problem as well as or better instance is a point in feature space and the target concept is
than diverse density and that the pruning mecha-  another point in feature space. The goal is to find a concept
nism allows chi-squared to identify the best con- that explains the labels for the bags and can predict labels
cepts more quickly. for unseen data. It is not known in advance which instance
is the one causing the bag to be labeled as positive. If this

] were known, a supervised learning approach could be used
1. Introduction instead.

Multiple instance learning (MIL) is a useful and well- Successful applications of MIL include such tasks as rec-
known technique for learning with ambiguous or partially ognizing MUSK molecules (Dietterich et al., 1997), pre-
labeled data. For example, Dietterich et al. (1997) proposedicting stock trends (Maron, 1998), image retrieval tasks
the task of identifying what part of a molecule binds with a (Goldman et al., 2002; Maron & Ratan, 1998), and iden-
musk receptor in the nose. A molecule can take on a numtifying useful subgoals (McGovern & Barto, 2001a; Mc-
ber of different shapes, or conformations, butitis likely thatGovern, 2002). One of the main MI techniques is that
only one of those shapes will bind with a musk receptor. Itof diverse density (Maron, 1998; Maron & Lozané+Bz,

is difficult to determine which shape actually matched the1998). This technique is widely used because of its intu-
musk receptor although it is possible to observe the prestive appeal of its central idea: that the best concept is the
ence of a reaction for a given molecule (and thus a set ofoncept closest to the intersection of the positive bags and
shapes). The task is to identify which shape and part of théarthest from the union of the negative bags. Because the
molecules causes them to smell musky. The data availableearby positive instances are fraifferent bags, Maron

for a MIL agent is in the form of labeled sets of instances,denotes this idea ativersedensity. Regular density algo-
e.g., a set of shapes with a single label. Supervised learmithms would not take into account the different bags and
ing uses individually labeled instances which are difficultwould focus only at the instance level density. In spite of
to obtain for many tasks. Labeling each instance in the sehe intuitive appeal of diverse density, computing the di-
with the label for the set produces too much noise for suverse density evaluation function is computationally expen-
pervised learning whereas MIL techniques are designed tsive.

leamn from exactly this type of data. We present an alternative evaluation function that uses the

More specifically, a Ml learner uses labeledgswhere a  chi-square statistic. This is simpler to define and imple-
bag is a collection oihstanceswith one label for the entire  ment and it allows a guaranteed pruning method. In partic-
collection. A positive bag contains at least one instance ofilar, we use the contingency table shown in Table 1. The



rows of the table correspond to the predicted label for theMaron assumes that the bags are conditionally independent
bag and the columns of the table correspond to the labelgiven the target concept, which allows the likelihood to be
on the training bags. Using the molecule example, if therewritten as:

current hypothesis predicts two of three positive bags as

positive and three of four negative bags as negative, then l|__| Pr(Bﬁ|c)l [ Pr(Blc). 3)
<i<n <i<m
the contingency table could be filled out as; 1 The o ] ) )
1|3 However, it is still not possible to calculate this exactly

concept with a maximal chi-squared value will have mostwithout a model of how the bags were generated. Instead,

of its mass concentrated along the main diagonal and thugne can use Bayes’ Rule again to rewrite Expression 3 as:
will be correctly predicting the most positive and negative

bags. This correlates with the main idea of diverse density Pr(c|B/")Pr(B;") Pr(c|B;)Pr(B;")
by correctly predicting as many positive bags as possible [] Pr(c) [] ~ Pr(c)
while also predicting negative bags. The use of the contin-

gency table of this form enables us to also introduce a guarSubstituting Expression 4 into Equation 2 and omitting the
anteed pruning method similar to (Oates & Cohen, 1996terms that do not depend a@nthe task reduces to that of
Webb, 1995). We discuss the pruning method in more definding the maximum likelihood over concepts as follows:

tail below.
[1 Pr(clB’) [] Pr(clB).

1<i<n 1<i<m

-(4)

1<i<n 1<i<m

2. Notation

d It remains to determine the probability of an instance in
a bag causing the concept to be corréut,c|B;). Maron
discusses several ways to do this. We follow his suggestion
of using a noisy-or model (Pearl, 1988), in which case we

For the MI notation, we follow that of Maron (1998) an
Maron and Lozano-&ez (1998). The set of positive bags
is denotedd™ and theith positive bag i8;". Likewise, the
set of negative bags is denotBd and theith negative bag

is B;. If the discussion applies to both types of bags, we ave.
drop the su.perscript and refer to itBsThe jth instance of Pr(cB) = 1-— (1-Pr(8; c)), and (5)
theith bag is denote@;;. The target concept is denoted 12j<p J
and other concepts as _ L _
P PrcB;) = [] (1-Pr(8; o)), ©)
1<j<p

. Diver nsi
3 erse density wherep is the number of instances in b8g

We first review diverse density and then examine how ourr,

method relates. We use diverse density as the baseline e only part of Equations 5 and 6 that is undefined is the

for comparison in the exoerimental results. Maron anoprobability of a particular instance belonging to the target
P p : concept:Pr(B;jj € c). This can be defined in several ways.

;giiﬂo-ﬁféérlngsgt); atl(r)lcég/.laron (1998) define the dlVerseFor the results presented here, we use Maron’s single point
y P, ' concept class which he defines using a Gaussian probability
DD(c) = Pr(c|Bf,...,B},B],...,Bn), (1)  distribution. The concept;, is assumed to be ladimen-

) N ) sional vector and the probability of an instance belong to
wherePr(c) is the probability that is the correct concept, ihe concept class is:

n is the number of positive bags, andis the number of
negative bags. The output of a DD search is the concept — S 1<1<k(Bij 7C|)z
with a maximal DD value. To perform this search, we must exp o?

expand Equation 1. Using Bayes’ Rule, Equation 1 can be Pr(Bij cc) = Z @
rewritten as: . I .
N . B whereB;j is thelth feature of thejth instance of théth
DD(c) — Pr(B;,....By,By ... Bplo)Pr(c) (2) bag,a is thelth feature of concept, Z is a scaling fac-

Pr(B;,...,B4,B1,....Bm) tor, ando? is the standard deviation. The standard devia-

tions oi ando? can be chosen separately for positive and

Assuming a uniform prior probability over the target con- negative bags to allow the two types of evidence to have

cepts and noticing that the denominator is constant wittdifferent amounts of influence on the DD values.

respect to the concept, finding the concept with the maxi- . L

mum DD value reduces to finding the maximum likelihood NOtG_} th_at, n practlce_, Itis more accurate to calculate _the

of the positive and negative bags given a specific concept:Iog I|I§eI|hood of t_he @verse density, rather than cglculatlng
the diverse density directly, because of accuracy issues with

Pr(B;,...,B},B],...,By[C). very small floating point numbers.



3.1. Identifying a concept with maximal DD bags. Assuming a method for labeling the bags given a pro-
posed target concept, the table is filled out in the following

Concepts with maximal DD values can be found using Stan.?nanner. If the concept predicts that the bag will be posi-

dard search techmqyes. Ifitis feq3|ble, €.g., if the space "ive and it is positivea is incremented. If the prediction is
small and can be viewed as a discrete space, exhausti

h b d Inl M q f)%sitive but the bag is really negativejs incremented. If
searcn can be used. 1n 1arger spaces, viaron used a grge, prediction is negative and the bag is positais,incre-

dient based search approach with multiple restarts Wherfﬁented. Finallyd is incremented if the concept predicts
each run of the gradient search started from a random poirht !

in a positive bag. This heuristic is useful because the M egative and the bag is negative.

framework already restricts the true concept to appear onlfhi-squared is calculated by summing the squared differ-
in the positive bags. However, gradient methods have sewences for the expected values in each cell of the contin-
eral drawbacks. The first is that, even with the heuristicgency table versus the observed values.dsgby, o, and

on starting locations, gradient methods can become studiy be the observed values for the cells of the table shown
in local maxima. Second, they require the function beingin Table 1 and leg,, &,, e, andey be the expected values
maximized to be differentiable. While this is true for the for each of the cells. The expected values are calculated by
concepts that Maron proposed such as the single point comaultiplying the row sum by the column sum and dividing
cept and for the linear concept class (McGovern & Barto,by the total number of elements. The chi-squared statistic
2001b), it is not true for other types of concepts such ags calculated as:

relational graphs (McGovern & Jensen, 2003).

o —a)2
One alternative to the gradient search for diverse density X = A % %

was proposed by Zhang and Goldman (2002). They com- iea,bed

bined the expectation-maximization framework with the

search for a concept with maximal DD value. This ap_The best concept is defined as that with the hlghest chi-
proach y|e|dS h|gh performance but is again ComputationsquarEd value. Chi-squared will be maximal in two cases:
ally expensive. Another alternative in large spaces is a simvhen the mass is concentrated along the main diagonal
ple random search technique (Rosenstein & Barto, 2001)€.9., ina andd) and when the mass is concentrated along
This is the search method that we use for the experimentdie off-diagonal (e.g., ib andc). In the first case, the
presented in this paper where exhaustive search is not feagitoposed concept is correctly predicting a maximum num-
ble. In this case, the search starts from a number of rando€r of positive and negative bags, which is the overall goal.
locations such as randomly chosen instances from the po4? the second case, the concept is predicting exactly the
itive bags, and the search proceeds in a manner similar t8PpPosite of this goal. This is a well-known issue with the
genetic algorithms. The random search method can still bechi-squared statistic and the signed chi-squared statistic ad-

come stuck in local maxima but it can be used on functionglresses this issue. We define the best concept to have a
that are not differentiable. maximal signed chi-squared value. Signed chi-squared is

positive if the mass is on the main diagonal and negative if

4. Chi-squared it is on the off-diagonal.

. ] ] There are several advantages to calculating the chi-squared
We propose an alternative way to identify the best concepliaistic over calculating diverse density. The first is it is

in an MI setting that is based on the main idea of divers,oth simpler to calculate as well as less computationally
density but_re_lles on the ch|-squared_stat|s_:t|c._ Th_|s is aweltomplex for search. Second, this approach can be used
known statistic with a known sampling distribution. The for concept spaces that are not differentiable or are not
contingency table used to calculate chi-squared can also bgyje 1o be defined clearly in the diverse density framework.
used to prune the search. Maron’s approach assumes that the DD equation is differ-

The main idea of diverse density is that the best concept i§ntiable which means that the probabiRy(B;; € c) must

the concept that is at the intersection of the positive bag¥e differentiable. Although this is generally true in a flat
and that is far away from the union of the negative bagsfeature space, it is not true for relational data yet we can
Using the contingency table shown in Table 1, chi-squareguccessfully apply the chi-squared technique to such tasks
identifies the concepts that predict the most positive bags d&icGovern & Jensen, 2003). A third, and very important,
well as the most negative bags. This is related to the mogtdvantage of the chi-squared technique over other Mi tech-
diversely dense concept although it does not use the idea #fdues is that the chi-squared approach enables a guaran-
being far away from the negative bags. The rows of the tateed pruning mechanism. This means that the signed chi-
ble correspond to the predicted label from the concept angquared approach should be more effective in larger spaces

the columns correspond to the actual labels for the trainin@" With a limited amount of time to search because it can
search more thoroughly in the same amount of time.



4.1. Pruning 100; %

Any search technique that can make use of pruning ca %[ ;5 ~ 2 % I gt
be used to identify the best chi-squared concept. Prunin 8o

]

L] 5 ..
works in a manner very similar to that of Oates and Coher 70, . ® Fesnz a2 4 Bl 195
(1996) and Webb (1995). In particular, assume a concef 607.15 4 3 -5.1?; ' Wiy
X is being proposed as a target concept and that the col'p 5 5‘ 2 4, 41 7 253 s 221

2 § 4 :o . o . .« °
tingency table for this concept has valu-sg 3 . This k: 2" 355' e 4334.3-255 54. .;24134 ) 5“;1?3 o4,
5

contingency table can be evaluated to give a chi-square 3ot * 23

value but it can also be used to find the maximum possi- 5|5 4 -;é--. . . T efy Sw
ble chi-squared value for a concept basedkdnt that is st b5 e 2 1 Z s 5 434--?5" 5 s,
more specific thar. A more specific concept could be one 3 5 .21%,' .5 *3eq 4" . Tee &-121
wherea? or a2 is smaller or, for a graphical concept, one % 20 40 50 80 100

where the graph has more nodes or edges. Feature 1

A more specific concept is unable to matabrebags than  Figure 1. Sample artificial data set where there are five positive
the original concept, so the mass in the contingency tableags and five negative bags. Positive instances are labeled with
is restricted to move from the top row (i.e. positive pre-a number corresponding to the bag and negative instances are
dictions) to the bottom row. Also, since the columns of shown as dots. The rectangle shows the target concept. This data
the table are the labels on the bags in the training set, th&et is derived from (Maron, 1998).

mass can not move from one column to another without

the training data being relabeled. With these restrictions,

a concept based on concepwould have a maximal chi-  ysing the labehax approach, the cells of the table are

0 |b orl.2 0 Inthe filled out as follows. Given a proposed concepand a

_ _ a+tc|d c|b+d _ positive bagB;", a is incremented with labglax(B;",X)
first case, the signed chi-squared value will actually be minang ¢ by 1 — labelnax(Bi',x). For negative bags,
imized and the concept can be immediately pruned as it i§, s incremented with Ilabﬁiax(B(,x) and d with
predicting exactly the opposite of the correct bag labelsy labeax(B",x). For a set of bag8" andB~ and

In the second case, if the maximum possible value that g proposed concept, the contingency table becomes:
concept based or can reach is worse than the best con- sM labeax(B,X) s labemax(B,~,X)

cept seen so far in the search, theran be pruned and the sM, 1—labemax(B7,X) | I, 1—labemax(B; ,X)
search moved to a new area. 3 s i m

squared value at eith

The table for labg]y4s constructed in a similar manner.

4.2. Labeling the bags Under any Iabeling technique of thi.s.form, when t_he con-
cept correctly predicts the most positive and negative bags,
The cells in the contingency table are filled by predictingthe mass in the contingency table will be concentrated
the label on each of the training bags using the proposediong the main diagonal. This means that the concept will
target concept. Using the DD definitions, there are sevhave a maximal chi-squared value. Each incorrect predic-
eral ways to do this that could make sense. The first is taion will decrease the signed chi-squared value by adding
calculate the probability that an instance is in the conceptinass off diagonal.
Pr(Bjj € c), for each instance in bagy and to take the max-

imum value, e.g., In the next section, we compare diverse density and the

signed chi-squared approaches more directly.
labeiax(Bilc) = maxPr(Bjj €c)
1<j<p
_ , o . 5. Experimental results
In this case, a label of one is a prediction of a positive bag
and a label of zero is a prediction of a negative bag. AWe compare the behavior of the diverse density and
related approach could use the sum of these probabilities:signed chi-squared methods under varying conditions us-
ing Maron’s 'difficult artificial data set’ (Maron, 1998). We
labehgyBilc) = > Pr(Bjec) use this data set because it allows us to control many as-
1sip pects of the data available to the two MI learners while still
Other approaches that might seem useful that are based @nesenting a challenging task. The feature space is two di-
the product or the sum of the logarithms Bf(B;j; € c) mensional and each feature is a real number in the range
(similar to the calculations that Maron defines Ry c|B;)) [0,100. The target concept is a 5x5 square in the middle of
do not work well in practice. the space surrounding the point (50,50). Bags are created
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by uniformly sampling 50 points from the space and adding
these instances to each bag. If any point falls inside the tarigure 3. Average difference in accuracy for a varying number of
get concept, then the bag is labeled as positive, otherwiseositive bags (averaged over the varying number of negative bags)
the bag is labeled as negative. for the chi-squared approach using the lafgt and labejyqto
label the bags.
Figure 1 shows an example data set with five positive bags

and five negative bags. This task is difficult not only be-

cause of the type of data available but also because of the

target concept itself. The concept that the MI learner isof negative bags and examine the difference between the
searching for is a point in feature space while the actuamethods as a function of the number of positive bags. Fig-
shape of the concept is a square. The single-point cortre 3 shows the average accuracy of chi-squared minus the
cept class surrounds each point with a Gaussian-like sphegecuracy of diverse density using both the lakgk and

but this means that points inside a square may be missetibeljq approaches. There are two things to note from
depending on the radius of the sphere. This makes thBis picture. First, the labglaxapproach completely domi-
task more challenging than if we randomly generated targefiates the labgyqapproach. Knowing this, we only present

points and used a sphere around them to define the targiasults using the labglax approach for the rest of this pa-
concept. per. Second, the chi-squared approach using fagebut-

rforms diverse density by a few percent with this differ-

. . , e
For the first experiments, we repeat Maron’s mgasuremenénce peaking at around four percent better than diverse den-
of accuracy using diverse density with a varying numbersity_

of positive and negative bags. We also measure accu-

racy using the chi-squared method under the same cond%—_l_ Parameter variations

tions. In this case, we discretized the feature space us-

ing unit-sized grid squares and computed the negative logone of the main hypotheses of this work is that the chi-
likelihood diverse density values and the chi-squared valsquared method will perform comparably or better than di-
ues for each point in the discretized space. We then identiverse density under a variety of conditions. With this in

fied the best concepts for both methods. Accuracy is meamind, we varied several parameters and conditions of the
sured by checking if the best concept fell within the targetexperiment and compared the accuracy of the two algo-
region. If this was the case, that run received a score ofithms.

one and zero otherwise. We measured the average acCilie first parameter that we varied was the number of in-

racy over 60 different runs, each starting with a different .

. sfances in each bag. The results reported so far used the

random seed to create the bags. We varied the number ¢ .

" parameters from Maron (1998) as we wanted to duplicate

positive bags from three to twenty and the number of nega; . 4 . .
these results for diverse density. In this experiment, we

ive bags frgm one to twenty. The average accuracy resu!t ixed the number of positive bags at 20 and the number of
are shown in Figure 2. The chi-squared results shown in . X i .
o negative bags at 20 and varied the number of instances in
this figure used the labglax approach. The two methods
4 each bag from 5 to 750. The reason that the number of
have comparable accuracies for the same number of posi- . . .
. ) o Instances in each bag could make a difference is that as
tive and negative bags, which is expected. . .
the bag size decreases to one, the problem shifts from an
It is difficult to tell from these graphs if either approach is Ml task to a supervised learning task because the inherent
outperforming the other by a small but significant amount.noise of the task decreases (fewer instances per bag means

To determine this, we average over the varying numbethat the true positive instances are easier to identify).
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Figure 4. Average accuracy for diverse density and chi-square
with a varying number of instances in each bag. There were 2
positive bags and 20 negative bags.

igure 5. Average accuracy for diverse density and chi-squared
wheno varies from 01 to 50.

5.2. The power of pruning

One of the main advantages of the chi-squared approach

over diverse density is that it offers a guaranteed pruning
A comparison of the accuracy of the two algorithms ismethod. We expected that this would give a significant
shown in Figure 4. These numbers are averaged over S8dvantage to the chi-squared method as the task was in-
different runs, where each run has different instances itreased in difficulty. To examine this hypothesis, we used
the bags. For bags with up to 100 instances per bag, thetiverse density and chi-squared on several tasks of vary-
is no difference between the two methods. However, agng difficulty. In the first task, we varied the dimensions
the bags continue to grow in size, the signed chi-squaredf the feature vector used to describe the instance and the
method significantly outperforms diverse density. To ob-concept. As the number of dimensions was increased, the
tain these results, we used exhaustive search which measize of the potential concept space increased exponentially.
that the differences are not due to differences in search abifFhis means that pruning should be more useful as the size
ity and depend only on the definition of the best concept forof the concept space increases.
each method. With a constant number of bags, the proble
difficulty increases as the number of instances in the ba . ;
increases. These results indicate that the chi-squared a jat th.|s approach assumes'that the same proportion of data
proach scales better with this aspect of task difficulty. Wes_avalla_ble for each.new _dlmens_lon. This can be accom-
hypothesize that this is due to the lgialx approach which plished in two ways: by increasing the number of bags

identifies the maximum match from a bag. This should®" by increasing the size of the bagg. If we increase thg
minimize the effect of a bag's size on the algorithms abil_number of bags, the total number of instances may remain

ity to identify the best concept. Diverse density instead'tn CIST‘Sta”tt p:loportlgn over thi va;:ymg dlmenS|ons't'but thed
multiplies a number of individual probability calculations ask IS actually made easier by having more positive an

together over a bag which means that the larger bags m _egatlvg bﬁgs avallable as ?r\]ndence. This is |I|ustr];ag_ed in
obscure the data more. igure 6 where we compare the average accuracy of diverse

density and chi-squared when each uses a number of search
As discussed above, one reason that this data set presentstaps based on the dimensionality of the task. We used the
difficult task is that the size of the Gaussian ball aroundsimple random search method for both techniduésthis
around the target concept was smaller than the targetase, the chi-squared approach significantly outperformed
square. This can be adjusted by varyiny and oi. We  diverse density at the lower dimensions but as the number
expected the two algorithms to perform comparably withof bags increased with the size of the problem, both algo-
this parameter variation because both relied on the saméthms began to improve their accuracies.
underlying calculation oPr(B;j; € c). Figure 5 shows the
results of varyingjz+ =02 from 0.1 to 50 in increments
of 0.1. As expected, the performance of the two algorithms  1Both methods relied on the same underlying code so as to
was comparable. ensure no difference in performance due to coding.

ne difficulty with varying only the number of features is

A second way to vary the amount of data available to the
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the size of the problem space. This should significantly in-fe“ [\ S
crease the difficulty of the problem as both the size of the 1500 T
space increases and the ability to identify the true positive S /\ I - )
instances from the positive bags decreases. We compar¢g 10007 /.
the accuracy of the two evaluation functions under this con 2 / -
dition and we measured the total number of steps used fc 500/
search in the two cases. In this case, the chi-squared a| L
p.roa_ch is able to achieve hlghgr accuracy than dlver_se.der % 200 400 600 800 1000
sity in fewer steps. As the difficulty of the problem is in- Size of bags

creased in both dimension and number of instances, both
methods begin to drop in accuracy as well as to take moréigure 8. Average and median number of search steps used to
total steps to find the best concept. identify the best concept with diverse density and chi-squared in

_ a two dimensional space where the number of instances in each
We also compared the accuracy of the two methods withyag varied from 5 to 1000.

two features but with a varying number of instances per

bag. This corresponds to the results presented earlier (c.f.,

Figure 4) but we used search with pruning instead of exprune the search effectively and accurately.

haustive search over the entire space. These results are pre-

sented in Figl_Jre 7.1n this case, there were 20 positi\(e ba _Discussion and Conclusions

and 20 negative bags with the number of instances in eac

bag varying from 5 to 1000. The accuracy of the diverseln summary, the chi-squared method that we introduced is
density approach drops very quickly as the size of the baga simpler approach than diverse density and it relies on a
is increased while the accuracy of chi-squared drops morevell known statistic. Using chi-squared allows a guaran-

slowly and levels off at a better value. teed pruning mechanism which significantly increases the
fficiency of the search for the best concept. We demon-

Figure 8 shows the number of search steps used to identi ; .
. ; : strated that the signed chi-squared approach has compara-
the best concept for both diverse density and chi-squared e or better results than diverse density under a varying

this experiment. Chi-square takes almost a constant num- I
ber of steps to find the best concept while the number Opumber of conditions.

steps required by diverse density grows in an polynomiallhe chi-squared approach is very general and can be used
manner. This is significant because it highlights one of thedor a number of different concept classes beyond those pre-

main advantages of the chi-squared approach: the ability teented here. Any concept class, differentiable or not, can



be used with this approach. This means that other concepts Fifteenth International Conference on Machine Learn-
classes can make use of the pruning mechanism describeding (pp. 341-349). Morgan Kaufmann, San Francisco,
here. CA.

Although the. cont.ingency table that we presented reli.es OlMcGovern, A. (2002).Autonomous discovery of temporal
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could be extended to real-valued labels. This is an impor- toral dissertation, University of Massachusetts Amherst.
tant task as the real-valued labels can provide additional

information to an MI learner (Amar et al., 2001). A re- McGovern, A., & Barto, A. G. (2001a). Automatic dis-
lated aspect of the diverse density definition is the ability covery of subgoals in reinforcement learning using di-
to weigh the evidence in the positive or negative bags dif- Vverse density. Proceedings of the Eighteenth Interna-
ferently by separately varying? anda? . This fits into the tional Conference on Machine Learnirfgp. 361-368).
signed chi-squared framework in the mechanism for label- San Francisco, CA: Morgan Kaufmann Publishers.
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