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Introduction

Large-scale global optimization problems arise in all �elds of science, engineering, and business; and
exact solution algorithms are available all too infrequently. Thus, there has been a great deal of work
on general-purpose heuristic methods for �nding approximate optima, including such iterative techniques
as hillclimbing, simulated annealing, and genetic algorithms (e.g., [4]). Despite their lack of theoretical
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guarantees, these techniques are popular because they are simple to implement and often perform well in
practice.

Recently, there has been a surge of interest in analyzing and improving these heuristic algorithms with
the tools of statistical machine learning. Statistical methods, working from the data generated by heuristic
search trials, can discover relationships between the search space and the objective function that the current
techniques ignore, but that may be pro�tably exploited in future trials. Research questions include the
following:

� Can one learn a pattern about local minima from which one could locate superior local minima more
eÆciently than by simple repeated trials?

� Can multiple heuristics be combined on the 
y, or perhaps by pre-computation?

� Is the outcome of a search trajectory predictable in advance, and if so, how can such predictions be
learned and exploited?

� Can e�ective high-level search moves be learned automatically?

� Does the problem have a natural clustering or hierarchy that enables the search space to be scaled
down?

� Can the statistical models built in the course of solving one problem instance be pro�tably transferred
to related, new instances?

These questions are starting to be answered aÆrmatively by researchers from a variety of communities,
including reinforcement learning, decision theory, Bayesian learning, connectionism, genetic algorithms, sat-
is�ability, response surface methodology, and computer-aided design. In this survey, we bring together short
summaries of 14 recent studies that engage these questions.

The 14 studies overlap in many ways, but perhaps are best categorized according to the goal of their
statistical learning. We consider each of the following goals of learning in turn: (1) understanding search
spaces; (2) algorithm selection and tuning; (3) learning generative models of solutions; and (4) learning
evaluation functions.

Understanding search spaces

Statistical analyses of the search spaces that arise in optimization problems have produced remarkable
insights into the global structure of those problems. The analyses give essential guidance to those who would
design algorithms to exploit such structure. Our survey includes three abstracts in this category:

� Boese de�nes the \central limit catastrophe" of multi-start optimization, illustrates the \big valley"
cost surface that empirically describes many large-scale optimization problems, and outlines a number
of promising research directions.

� Caruana and Mullin introduce a probabilistic method for counting the local optima in a large search
space, with application to improving the cuto� criteria in genetic algorithms and simulated annealing.

� Carson and Impagliazzo introduce the property of \local expansion" of a search graph, show how
to test for that property in large-scale domains, and use the test to predict how easy or diÆcult an
optimization instance will be for a given heuristic.

Algorithm selection and tuning

A natural yet under-investigated approach to accelerating optimization performance is to apply machine
learning to tune the optimizer's parameters automatically. Such parameters may include domain-speci�c
terms, such as the coeÆcients of extra objective-function terms; generic parameters of the heuristic, such
as the cooling-rate schedule in simulated annealing; and even high-level discrete parameters, such as which
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of a set of heuristics to apply. From sample optimization runs, a mapping from parameters to expected
performance can be learned. This mapping can then itself be \meta-optimized" to generate the best set of
parameters for a family of problems.

Two abstracts in our survey fall into this category:

� Cook, Gmytrasiewicz, and Tseng apply machine learning to the task of automatically selecting the best
heuristic for use by Eureka, their parallel search architecture, on a given problem instance. They
compare decision-tree and Bayes-network learning methods.

� Jagota and Sanchis describe several heuristics for the NP-hard Maximum-Clique problem. The heuris-
tics are parameterized by an initial state and/or a weight vector, which adapt from iteration to iteration
depending on their e�ect on optimization performance.

Learning generative models of solutions

Boese's \big valley" hypothesis indicates that in practical problems, high-quality local optima tend to be
\centrally located" among the local optima in the search space. This suggests an adaptive strategy of
collecting the best local optima found during search and training a model of those solutions. If the model is
generative, it can be called upon to generate new, previously untried solutions similar to the good solutions
on which it was trained. This survey includes two relevant abstracts:

� Baluja and Davies point out that implicitly, genetic algorithms do precisely this sort of modeling: the
\population" stores good solutions that have already been found, and the mutation and recombination
operators generate new, similar solutions. Their abstract summarizes three algorithms that make the
genetic algorithm's modeling function explicit, consequently improving optimization performance.

� Buntine, Su and Newton learn a generative model in the problem of hyper-graph partitioning, crucial
in VLSI design [3]. The model is in the form of a clustering of the graph nodes, based on a statistical
analysis of the best solutions found so far in the search. The clustering e�ectively scales down the size
of the search space, enabling good new candidate solutions to be generated very quickly.

Learning evaluation functions

Finally, the fourth and most active category of research covers learning evaluation functions. An evaluation
function is a mapping from domain solutions to real numbers|the same form as the objective function
itself. And just as the objective function is used to guide search through the state space, so may any other
evaluation function be used for that purpose. In fact, there are many ways in which a learned evaluation
function might usefully supplement the domain's given objective function:

Evaluation speedup: In cases where the domain objective function is expensive to calculate, a fast ap-
proximate model of the objective function could lead search to the vicinity of the optimum with less
computation (e.g., [5]).

Move selection: An appropriately built evaluation function could be used in place of the original objective
function to guide search. Ideally, such a function would share its global optimum with that of the
original objective, but would eliminate the local optima and plateaus that impede search from reaching
that goal (e.g., [7]).

Restarting: Iterative algorithms are often run repeatedly, each time starting from an independent random
\restart" state. Instead, an evaluation function may be trained to guide search to new states that are
promising restart states. Such a function can e�ectively provide large-step \kick moves" that guide
the search out of a local optimum and into a more promising region of space. Generative models may
also be used this way.
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Move sampling: In domains with many search moves available at each step, it is time-consuming to sample
moves at random, hoping for an improvement. Instead, a \state-action" evaluation function (one that
estimates the long-term e�ect of trying a given move in a given state) may be applied to screen out
unpromising moves very quickly.

Trajectory �ltering: An evaluation function that predicts the long-term outcome of a search trajectory
may be employed as a criterion for cutting o� an unpromising trajectory and beginning a new one.

Abstraction: Some problems naturally divide into two or more hierarchical levels; e.g., in traditional VLSI
design, place-then-route. Although the true objective function is only de�ned over fully instantiated
solutions (at the lowest level), learned evaluation functions can provide an accurate heuristic to guide
search at higher levels.

Transfer: Evaluation functions de�ned over a small set of high-level state-space \features" may readily be
transferred|i.e., built from a training set of instances, and then applied quickly to novel instances in
any of the ways described above.

How can useful evaluation functions be learned automatically, through only trial-and-error simulations of
the heuristic? In most cases, what is desired of the evaluation function is that it provide an assessment of the
long-range utility of searching from a given state. Tools for exactly this problem are being developed in the
reinforcement learning community under the rubric of \value function approximation" [2]. Alternatives to
value function approximation include learning from \rollouts" (e.g., [1]) and treating the evaluation function
weights as parameters to \meta-optimize" (e.g., [6]), as described above in the section on algorithm tuning.

Our survey includes summaries of �ve studies on learning evaluation functions for optimization:

� McGovern, Moss, and Barto learn an evaluation function for move selection in the domain of optimizing
compiled machine code, comparing a reinforcement-learning-based scheduler with one based on rollouts.

� Boyan and Moore use reinforcement learning to build a secondary evaluation function for smart restart-
ing. Their \STAGE" system alternately guides search with the learned evaluation function and the
original objective function.

� Moll, Perkins, and Barto apply an algorithm similar to STAGE to the NP-hard \dial-a-ride" problem
(DARP). The learned function is instance-independent, so it applies quickly and e�ectively to new
DARP instances.

� Su, Buntine, Newton, and Peters learn a \state-action" evaluation function that allows eÆcient move
sampling. They report impressive results in the domain of VLSI Standard Cell Placement.

� Wolpert and Tumer give a principled method for decomposing a global objective function into a col-
lection of localized objective functions, for use by independent computational agents. The approach
is demonstrated on the domain of packet routing. (Also see Boese's abstract for other results on
multi-agent optimization.)

Finally, since the techniques of reinforcement learning are so relevant to this line of research, we include
summaries of two contributions that do not deal directly with large-scale optimization, but rather advance
the state of the art in large-scale reinforcement learning:

� Wang and Dietterich summarize the types of models that have been used for value function approxi-
mation, and introduce a promising new model based on regression trees.

� Dean, Kim, and Hazlehurst describe an innovative, compact representation for large-scale sparse matrix
operations, with application to eÆcient value function approximation.
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It is our hope that these 14 summaries, taken together, provide a coherent overview of some of the �rst steps
in applying machine learning to large-scale optimization. Numerous open yet manageable research problems
remain unexplored, paving the way for rapid progress in this area. Moreover, the improvements that result
from the maturation of this research are not merely of academic interest, but can deliver signi�cant gains
to computer-aided design, supply-chain optimization, genomics, drug design, and many other realms of
enormous economic and scienti�c importance.
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A Review of Iterative Global Optimization

Kenneth D. Boese

Cadence Design Systems, San Jose, USA,

An instance of �nite global optimization consists of a �nite solution set S and a real-valued cost function
f : S ! <. Global optimization seeks a solution s� 2 S which (without loss of generality) minimizes f .
Combinatorial optimizations of this type arise in a wide variety of computational domains such as com-
puter architecture, operations research, computational chemistry and biology, and neural network training.
Because many of these optimization problems are NP-hard [8], and probably impossible to solve optimally
in polynomial time, heuristic algorithms are necessary for large instances. These heuristics often use an
iterative search that is broadly be described by the iterative global optimization (IGO) template below.

Iterative Global Optimization (IGO)

1. for i = 0 to +1
2. Given the current solution si, generate a new trial solution s

0

3. Decide whether to set si+1 = si or si+1 = s
0

4. if a stopping condition is satis�ed
5. return the best solution found

Typically, s0 in Line 2 of the template is generated by a well-de�ned, often randomized, perturbation to
si, i.e., s

0 2 N(si) where N(si) indicates the set of neighboring solutions or neighborhood, of si. Together
with N , the cost function f de�nes a cost surface over the neighborhood topology.

Some important variations of the general IGO framework include 1) greedy descent IGO; 2) hill-climbing
IGO; 3) multi-start or multi-agent IGO; and 4) IGO with problem-size reduction. In greedy descent, the
candidate solution s0 is chosen as si+1 only if it has lower cost than si. Sophisticated implementations of
greedy descent can quickly search a large neighborhood of si for an improving solution. Examples include
Bentley's fast implementation of the 3-Opt neighborhood for the traveling salesman problem (TSP) [2] and
other more complicated greedy algorithms, such as the Lin-Kernighan algorithm [18] for the TSP and the
Kernighan-Lin algorithm [16] for graph partitioning.

The main weakness of greedy descent is that it becomes stuck at any locally minimum solution. IGO
variations 2 and 3 are designed to avoid this weakness. Hill-climbing allows some disimproving or \up-
hill" moves, i.e., f(si+1) > f(si). Some popular algorithms in this class are simulated annealing [17], tabu
search [9], threshold acceptance [6], and simulated tempering [19]. Tabu search and simulated tempering
are also adaptive, i.e., they modify their own parameters during the run based on earlier results of the same
run. Another way to avoid getting stuck at local minima is multi-start IGO, which restarts a new greedy
descent from a new starting solution s0 whenever a local minima is encountered. Multi-start IGO is easily
parallelizable by executing separate runs on di�erent processors or \agents". Some examples of multi-start
heuristics include [20] [5] [11].

The simplest hill-climbing and multi-start implementations may still have trouble �nding near-optimal
solutions, however. For many NP-Hard problems, as the problem size increases, the number of local minima
appears to grow exponentially, and most local minima may be signi�cantly worse than the optimal solution.
We have called this phenomenon the \central limit catastrophe" [5] [3], while elsewhere it has been described
as the \complexity catastrophe" [13, 14, 15] and the \error catastrophe" [7]. The problem is that if the
distribution of the costs of the local minima is approximately Gaussian, and if the number of local minima
increases exponentially, then an increasing percentage of the local minima costs will be clustered near the
average local minima cost and far from the optimal cost.

One way to avoid the central limit catastrophe is to exploit the structure of the cost surface de�ned
by the neighborhood operator N and cost function f . For example, Figure [3] plots solution cost versus
distance to the optimal solution and versus average distance to the other local minima for 2,500 di�erent
local minima of the ATT532 TSP test case. It appears from these plots that lower-cost local minima are
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Figure 1: Intuitive picture of a \big valley" cost surface.

located closer to the global minimum and closer to the \center" of the set of local minima. This suggests a
\big valley" appearance or structure, as illustrated in Figure 1. One way to exploit the big valley is to run
multi-start IGO using starting points s0 generated an \averaging" of previously found local minima [5]. In
general, the goal is to generate an interaction between the di�erent multi-start or multi-agent runs in order
to exploit the structure of the cost surface.

The fourth IGO variation of problem-size reduction provides another way to avoid the central limit
catastrophe. It uses clustering to dramatically reduce the size of the solution space. This approach, combined
with multi-start, has been particularly successful for circuit partitioning in VLSI computer circuit design [1]
[10] [12].
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Single Agent

Sequential 
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Figure 2: Hierarchy of dominance between di�erent models of adaptive annealing. Each arrow points
from a dominating to a dominated model.
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Estimating the Number of Local Minima in Complex Search Spaces

Rich Caruana y,z and Matthew Mullinz

y UCLA; z JustResearch,

Most optimization research is devoted to new or improved algorithms. Little e�ort is spent characterizing
search spaces so that appropriate algorithms can be selected. We present an eÆcient method for estimating
the number of local minima in big search spaces. The method is based on the statistics of the birthday
problem: "How many people must be in a room before the probability is 1/2 that two people share the same
birthday?" Assuming that the probability of birthdays is uniform on a 365 day year, one can estimate that
the probability of a birthday being duplicated is 0.5 when there are 23 people in the room.

We reverse the birthday problem to address the question \How long is the year if a birthday is duplicated
when we put k people in the room?" Generalizing the usual approximation for the birthday problem and
solving for N, the number of days in the year, as a function of k, the number of people in the room, and PD ,
the probability of duplication, yields:

N �
k2

�2ln(1� PD)

By counting the number of local minima explored by search before some local minimum is visited twice,
we can estimate the total number of local minima in the search space. One procedure for doing this is to
randomly sample local minima, recording each one, until one of the minima is visited a second time. This
yields an estimate of the number of minima needed for the probability to be about 0.5 that a minimum
is duplicated. Unfortunately, it is diÆcult to eÆciently sample local minima uniformly. In the absence
of an eÆcient means of uniformly sampling local minima we can either use an ineÆcient uniform sampling
procedure, or an eÆcient non-uniform sampling procedure. Here we sacri�ce accuracy for a gain in eÆciency.
If sampling is not uniform, fewer samples will be needed for duplication to occur, so the expected total number
of local minima will be underestimated. This is acceptable because lower bounds on the number of local
minima are more useful than upper bounds. Iterated hillclimbing using steepest, nearest, or stochastic
descent starting from randomly selected initial points is one way to eÆciently sample local minima in many
search spaces.

We used this method to estimate the number of local minima in the search spaces of multiplierless FIR
digital �lters. Optimal tap values for full-precision FIR �lters can be computed analytically [1], but full-
precision �lters are slow and consume a lot of chip area. Restricting tap values to powers of 2 allows fast,
compact shift registers to be used instead of multipliers [2]. There are no analytic techniques for selecting
optimal tap values for these �lters, so we use numerical optimization. Low-pass multiplierless �lters with
31, 41 and 51 taps yield search spaces with 16, 21 and 26 dimensions, respectively, because tap values are
symmetric about the central tap. Taps can take 15 values (zero, and positive and negative reciprocal powers
of two). The search spaces are large, contain a large number of poorly performing local minima, and the
proportion of good �lters grows increasingly small as the number of taps gets large [3].

We performed 10,000 hillclimbs with iterated steepest descent for �lters with 31, 41, and 51 taps. On
average, 27 steps were required for each descent to become trapped in a local minimum. A duplicated local
minimum was found in only the smallest search space (31 taps). Thus the estimates for the 41 and 51 tap
search spaces are lower bounds on the estimated lower bounds. The results indicate that there are more than
4:22� 107 local minima in the 31-tap search space. Thus the minima comprise at least 6:4� 10�8 percent of
the 31-tap search space. A simple upper bound analysis shows that there are fewer than 1014 local minima
in the 31-tap search space, or less than 1:5� 10�3 of the points in the space are local minima.

The birthday procedure is eÆcient for two reasons: 1) it needs sample sizes of roughly the square root of
the total number of local minima to estimate the total number; 2) it uses optimization to �nd local minima.
The savings can be dramatic. In the 31-tap space, each hillclimb required about 27 steps to �nd a local
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Table 1: Estimated Number of Local Minima in the Search Spaces
# Taps # of States # of Local

Minima until 1st
Duplicate

Estimated # of
Local Minima in
Space

31 6:6� 1018 7,651 4:22� 107

41 5:0� 1024 >10,000 > 7:21� 107

51 3:8� 1030 >10,000 > 7:21� 107

minimum, and each step required 32 function evaluations to determine the direction of steepest descent.
Thus the 7651 hillclimbs required 6:4� 106 function evaluations to �nd the �rst duplicate. A nave approach
to estimating the number of local minima is to randomly sample points in the space and determine what
fraction of these are minima. If minima comprise 6:4� 10�8 percent of the space, we would have to sample
7:8� 1010 points to have a 50% chance of �nding a single minimum, and at each of these points 33 function
evaluations would be required to determine if the point is a local minimum. Thus 2:6 � 1012 evaluations
would be required to estimate the number of local minima using random point sampling. This is 105 times
more function evaluations than required using birthday statistics. Moreover, if we stop sampling points after
using the 104 samples used with the birthday method, we almost certainly will not have found even one local
minimum, so all we'll know is that there probably are fewer than 6:6� 1014 local minima in the space. That
upper bound isn't very informative. One key advantage of the birthday procedure is that the information
needed to estimate the number of local minima is available whenever optimization is run multiple times. It
is not necessary to run a di�erent, and possibly costly procedure to make an estimate.

It can be estimated that seeing most points in a space containing N points requires about N lnN random
samples. Thus it would take at least 7 � 107 samples of local minima in the 31-tap space to have a high
probability of seeing the global minimum. This is 7�103 times more hillclimbs than were needed to make this
estimate. 104 hillclimbs took 1 CPU day, so it would take at least 20 years of iterated hillclimbing to reliably
�nd the optimal �lter. A more eÆcient search procedure (or a faster computer) probably is required. With
a small amount of search, we can estimate how much more search is required for that search method to �nd
the global optimum (and that estimate can be made without knowing the true global optimum). Estimating
the number of local minima gives us a criterion for halting search long before the �rst duplicate minimum is
found: If it is important to �nd the global optimum, we can stop running a search procedure
as soon as we collect enough unique local minima so that the estimated lower bound on the
total number of local minima is larger than we can a�ord to search with that procedure.

Another use of estimates made with the birthday method is to select what optimization procedure to
use: Suppose we run simulated annealing (SA) 15 times using a slow cooling schedule and estimate that
SA-SLOW e�ectively searches a space containing at least 75 local minima. Suppose we run SA again, doing
150 trials with a fast cooling schedule that is more likely to get stuck in inferior local minima, and estimate
that SA-FAST e�ectively searches a space containing about 5,000 local minima. Assuming these are tight
lower bounds, if SA-FAST is more than

5000 log5000

75 log 75
� 131:5

times faster than SA-SLOW, and we want to �nd the global optimum, it probably will be better to run
more SA-FASTs despite the fact that each run of SA-FAST is more likely to �nd inferior local minima than
SA-SLOW. This decision making can be automated and embedded in a tool that interleaves execution of
di�erent optimization methods, and uses the accumulating statistics to decide which optimization method
to allocate future trials to.

The main diÆculty when using the birthday method to estimate the number of local minima in a search
space is the problem of non-uniform sampling. If some minima have larger basins of attraction than other
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minima, search procedures like iterated hillclimbing will fall into the larger basins more often, skewing the
statistics so that duplicates occur more frequently, and degrading the tightness of the lower bound. (If
sampling were uniform the method would yield an unbiased estimate instead of an estimate of a lower
bound.) There are a number of ways to deal with the problem of non-uniform sampling of local min-
ima, depending on how extreme the di�erences in basin sizes are and how tight the bound must be. (See
http:/www.cs.cmu.edu/ caruana/pubs/ijcai99 for details.)

References

[1] L.R. Rabiner and B. Gould. Theory and Application of Digital Signal Processing . Prentice Hall, Engle-
wood Cli�s, NJ, 1975.

[2] D. Koo and A. Miron. Design of Multiplierless FIR Digital Filters with two to the Nth Power CoeÆcients.
Philips Labs Report #TR-86-036, September 20, 1986.

[3] R.A. Caruana and B.J. Co�ey. Searching for Optimal FIR Multiplierless Digital Filters with Simulated
Annealing. Philips Labs Report #TR-88-031, March 21, 1988.



Neural Computing Surveys 3, 1{58, 2000, http://www.icsi.berkeley.edu/~jagota/NCS 13

Experimentally Determining Regions of Related Solutions for Graph Bisection
Problems

Ted Carson and Russell Impagliazzo

University of California, San Diego,

Local search heuristic algorithms (e.g. Metropolis, simulated annealing [5, 7], WalkSAT [1], Go-With-the-
Winners [2, 3, 4], etc.) present intuitively appealing mechanisms to mix greedy behavior with diversity, and
have achieved remarkable success on some problem domains. However, it is often the case that there is little
understanding, either theoretical or empirical, of why a heuristic succeeds or fails for various problem do-
mains, or of how to optimize a method for a particular domain. Implementations of these algorithms for hard
combinatorial optimization problems is therefore often by trail-and-error, and performance predictability and
con�dence are low.

We propose a general method for the experimental study of such heuristics. This method is intended to
relate performance of a heuristic directly to the combinatorial features of the search graph upon which it
operates. To do this we gather statistics with respect to the clustering and connectedness of solutions with
roughly the same cost. Since for small costs these solutions are rare this cannot be done simply by random
sampling. However, if the sub-graphs of low cost solutions have the a property called \local expansion"
(intuitively meaning that there are a few highly connected components covering the sub-graph), they can
be uniformly sampled by using a Go-With-the-Winners (GWW) algorithm [2, 3, 4]. Once we gather such
statistics, they are used to give a quantitative analysis of the search space, de�ning key characteristics that
a�ect local search heuristic performance. This analysis is �nally used to build a causal model of performance
for various heuristics.

The method we propose can be divided into three phases: validation, mapping, and prediction.

Validation: Before we can use the data from the GWW algorithm, we must establish con�dence that
the algorithm is sampling uniformly. This will be true if the search graph has the local expansion property,
however we cannot directly test for or prove that this is the case (else we could prove e�ectiveness of the
GWW algorithm directly!). We instead o�er falsi�able tests that this is the case. These tests are intended to
verify that the lowest cost solutions are being found, that known structures in the search space are re
ected in
the samples, that the samples and consistent across runs, and that the algorithm is behaving asymptotically
with regard to its parameters.

Mapping: Once it is established that the GWW algorithm is generating uniform samples, these samples
can be used to build a map of the structure of the search graph. We are interested in features of the
search graph that a�ect local search heuristics. The number of connected components of the sub-graph of
some quality. and the connectedness (expansion) of these components are two such features of particular
importance.

Prediction: Using this map we can model what would happen if we applied a particular local search
heuristic to the problem. The entire run of the heuristic is modeled, and not just the �nal solution value. In
this way the e�ects of various algorithm techniques and parameters can be examined and optimized.

Our method has the following advantages: 1) Causal models of heuristic performance are produced
allowing us to predict the performance of an algorithm, and explain why it behaves as it does. In addition
this provides for principled ways to select parameters of various algorithms, often a diÆcult problem when
applying general purpose heuristics. 2) The models are falsi�able in the sense of the natural sciences: i.e.
although proofs of performance are not obtained by the experiments, consequences and predictions can be
rigorously tested. 3) Our method gives insight into which problems are susceptible to a broad class of
heuristics and which are not.

As an example of this method we considered the minimum bisection problem. We examined problems
instances drawn from a random graph model, Gn;p;q , which are generated by dividing a graph into a preferred
bisection and adding edges with high probability p between vertices on the same side of the partition and
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with lower probability q between vertices on opposite sides. Intuitively this \planted bisection" in
uences
the search space by placing a bias that solutions closer to the planted bisection are of expected lower value.
We selected a small separation between p and q where the problems are most diÆcult.

Once we validated the uniformity of the GWW algorithm (10000 particles and 4096 random walk steps for
a 400 node and 1195 edge graph), we proceeded to map the search graph for this problem. As expected, the
search space was smoothly biased with lower cuts occurring closer to the planted bisection. Cuts that were at
an average distance from the planted bisection for their value were never local minima. However, those that
were farther than average from the planted bisection were often local minima. Further, greedy algorithms
tended to move toward these bisections with low cuts but high distances from the planted bisection (left)
and consequently fail. These observations led to the creation of several simple algorithms designed to avoid
this overly optimized region by mixing random walks with greedy moves. We show the traces of two such
algorithms (right). Algorithm A introduces a random walk when the greedy method �nds a plateau in the
search space, while algorithm B mixes greedy and random moves more smoothly.

We see that the algorithms behaved as predicted by the map of the search space, avoiding the diÆcult
region of overly optimized bisections. The map generated by our method proved accurate and useful for
algorithm creation and optimization.
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Optimization of Parallel Search Using Machine Learning and Uncertainty
Reasoning

Diane J. Cook, Piotr J. Gmytrasiewicz, and Chiu-Che Tseng

University of Texas at Arlington,

Because of the dependence AI techniques demonstrate upon heuristic search algorithms, researchers
continually seek more eÆcient search methods. Advances in parallel and distributed computing o�er potential
performance improvement, and in response a number of approaches to parallel search have been developed.
While these approaches have many contributions to o�er, determining the best use of each contribution is
diÆcult because of the diverse search algorithms, machines, and applications reported in the literature.

In response to this problem, we have developed the Eureka parallel search engine that combines many
of these approaches to parallel heuristic search. Eureka is a parallel IDA* search architecture that merges
multiple approaches to task distribution, load balancing, and tree ordering, and can be run on a MIMD
parallel processor, a distributed network of workstations, or a single machine with multithreading. Our goal
is to create a system that automatically selects an optimal parallel search strategy for a given problem space
and hardware architecture.

A parallel search algorithm requires a balanced division of work among processors. One method of
dividing IDA* is to give a copy of the entire search tree to each processor with a unique cost threshold [11].
Using this approach, processors search the tree simultaneously to their own threshold and terminate when
a goal is found. An alternative approach distributes the tree among processors [4]. Using this approach,
the root node of the search space is given to the �rst processor and other processors are assigned subtrees
of that root node as they request work. A compromise between these approaches is to divide the set of
processors into clusters [1]. Each cluster is given a unique cost threshold, and the search space is divided
between processors within each cluster.

Because one processor may run out of work before others, load balancing is used to activate the idle
processor. Approaches must be selected for deciding when to load balance, which processor to approach for
more work, and how much work to share. In addition, methods for modifying the left-to-right order of the
tree during search can yield substantial performance improvements for serial and parallel search algorithms.

The Eureka system merges together many parallel search strategies. Parameters can be set that control
the task distribution strategy, the load balancing strategies, and the ordering techniques. To automate the
selection of parallel search strategies, Eureka The system searches a sampling of the space and calculates
search space features including average branching factor, average heuristic estimate error, tree imbalance,
heuristic branching factor, and heuristic distance estimate of the root. Information describing the hardware
is also used such as the number of processors and average communication latency.

Initially, we used C4.5 to induce a decision tree from pre-classi�ed training examples. Training examples
represent runs of sample problem spaces with varying search strategies, and the correct \classi�cation" of
each training example represents the search strategy yielding the greatest speedup. For each new problem,
Eureka performs a shallow search through the space to collect features describing the new problem space
and architecture. Features of the tree are calculated and used to index appropriate learned rules. Eureka
then initiates a parallel search employing the selected strategies.

Two sources of uncertainty arise in this domain that can prevent traditional machine learning techniques
from performing well. First, the search space feature values are estimates and thus not always accurate.
Second, there does not always exist a clear strategy winner for each training case. On some problem
instances two or more strategy selections perform almost equally well, and some run time variances occur
on many machines.

Due to these uncertainties in the domain, we next model the problem with a belief network. We use
an extension of belief networks known as in
uence diagrams. Apart from nodes that represent uncertain
variables (oval nodes), in
uence diagrams also have decision nodes (rectangular nodes) and a utility node
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Figure 4: A model of the factors that in
uence speedup of parallel search algorithms.

Approach 1 Cluster 2 Clusters 4 Clusters C4.5 C4.5Fil BeliefNetwork
Speedup 55.30 60.98 58.79 57.14 86.76 68.66

Table 2: Clustering Speedup Results

(hexagonal node). By representing the way alternative decisions in
uence the state of the domain, the
in
uence diagram can be used to arrive at optimal decisions.

A graphical representation of our in
uence diagram is shown in Figure 4. Decisions to be made include
the task distribution strategy, number of clusters, amount of work to share, anticipatory load balancing
trigger, type of load balancing, and tree ordering. For our parallel search problem, Eureka's utility node in
Figure 4 directly depends on a single node of the domain { speedup. Conditional probability tables modeling
the probabilistic dependencies between nodes in the network are learned from provided training data.

We tested the ability of the in
uence diagram to provide a basis of making parallel search strategy
decisions by comparing decisions based on predicted speedup values from the in
uence diagram built using
Netica with decisions based on the C4.5 learning system. To create test cases, we ran 100 Fifteen Puzzle
problem instances multiple times on 32 processors of an nCUBE, once using each parallel search strategy in
isolation. Features of the search space, and architecture are stored for each problem.

We compared the results of Netica-selected strategies on test data to C4.5-selected strategies and to each
strategy used exclusively for all problem instances. Speedup results for various strategy decisions averaged
over all problem instances are shown in Table 2 below.

From the results of this experiment, the belief network did outperform all of the �xed strategies as well
as C4.5 using all 100 problem instances. C4.5Fil yielded the best results, but was only trained and tested on
cases with clear winners. Each of the automated approaches to selected search strategies resulted in better
performance than using just one �xed parallel search strategy. These results indicate that machine learning
and uncertainty reasoning techniques can be e�ectively used to perform automatic selection of parallel search
strategies, and may be e�ective for other optimization problems as well.
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Adaptive Heuristic Methods for Maximum Clique

Arun Jagota y and Laura A. Sanchis z

y University of California, Santa Cruz; z Colgate University,

Maximum Clique is the problem of �nding a largest set of pairwise adjacent vertices in a given graph
G [5]. This problem is NP-hard even to approximate well [1], and arises in several applications [2]. This
problem has attracted considerable attention over the years (see the review published by Pardalos and Xue
with about 260 references [15]).

For NP-hard problems such as Maximum Clique no eÆcient exact algorithms exist. Heuristic methods
therefore abound. In recent years researchers have begun to recognize the value of incorporating adaptation
into heuristic methods (as one example, see [4]). This short paper surveys our own work along these lines
[11, 7, 17] which incorporates adaptation into multiple restarts methods in which each restart performs
randomized local search.

We found in extensive experiments on Maximum Clique that the adaptive restarts we employed consis-
tently worked no worse (and often better) than nonadaptive restarts, while imposing an almost negligible
computational overhead. Simple forms of adaptation are also easy to add on to otherwise nonadaptive
methods. Thus it seems there is no reason not to do so.

In this short paper we present our methods, then discuss some experimental results. Two types of
adaptation are explored|one in which vertex weights are adapted, and the other in which the initial clique
is adapted. On di�erent types of graphs, the di�erent types of adaptation seem to work better.

The Adaptive Methods

The algorithms are best described as evolving from a base algorithm, which we call randomized greedy search
(RGS).

FinalClique RGS(Graph G, WeightVector w, Clique Ci )
// w = (wi) where wi is vertex i's weight

1. C = Ci;
2. S = f v 2 GnC j v is adjacent to every vertex in Cg;
3. while S is not empty do
4. Pick vertex i from S with probability wi=

P
j2S wj ;

5. Add vertex i to C;
6. Recompute S as in step 2;
7. return C;

RGS works by extending the initial, possibly empty, clique Ci to a �nal clique C by adding feasible
vertices one by one in a randomized greedy way. The greediness comes in in step 4, since the chosen non-
uniform distribution favors picking those vertices from S that have large weights. The idea is to add some
randomization to avoid the usual traps that greedy falls into but not too much so as to totally wipe out the
greediness. The randomization in RGS will also work well with multiple restarts.

Next, we describe a nonadaptive restarts method, called NA, on top of RGS. NA takes two arguments
in addition to the graph: a vector w of weights on the vertices, and the number k of restarts.

FinalClique NA(Graph G, WeightVector w, integer k)
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1. C = ;;
2. for r = 1 to k do
3. Cr = RGS( G, w, ; );
4. C = larger-set-of (C, Cr);
5. return C;

Notice that NA always calls RGS from the same initial clique, the empty set. It is obvious why NA will
work better than (a single call to) RGS.

In our work, we investigated two choices for w = (wi): (i) wi = 1 for all i and (ii) wi = d(i) for all
i. Here d(i) is the degree of vertex i in the given graph G. We will denote the �rst choice as NA(1) and
the second as NA(d). Interestingly, despite the intuitive appeal of the second weighting (vertices in large
cliques have large degree), we found via extensive experimentation that NA(d) worked better than NA(1)
only occasionally (and sometimes worse). Perhaps the restarts o�set any possible bene�ts of degree-based
weighting.

The third method, which we call AW, is an extension of NA that adapts the vertex weights from restart
to restart.

FinalClique AW(Graph G, WeightVector w, integer k)

1. C := ;;
2. �1 := �2 := 1;
3. for r := 1 to k do
4. Cr := RGS( G, w, ; );
5. if jCrj > jCj then
6. wi := wi + �1 � (jCrj � jCj) for all i 2 Cr;
7. else
8. wi := wi + (�1 + �2 � (jCrj � jCj)) for all i 2 Cr;
9. C := larger-set-of (C, Cr);
10. �1 := 1:01� �1;
11. �2 := 0:99� �2;
12. return C;

The vertex weights are adapted as follows. AW keeps track of the size of the best clique it has found so
far. If in the next restart, it �nds a better clique then it \rewards" the vertices in the clique by increasing
their weight, otherwise it \punishes" them by decreasing their weight. The magnitude of the reward (or
punishment) is made to depend on the magnitude of the improvement (or worsening) and also on the restart
number. With regards to the latter, an improvement found in a late restart counts for more, as does a
worsening found in an early restart.

We �nd that the method exhibits the following characteristics. If an improved clique is found in some
restart, AW focuses subsequent search into its \neighborhood". If no further improvement is found soon
enough, the search gradually gets defocused from this neighborhood.

In extensive testing, AW often found signi�cantly larger cliques than NA in the same amount of alloted
time [11, sec 4.3].

Like with NA, we investigated AW with the same two types of initial weighting, denoted AW(1) and
AW(d) respectively. Once again, there was no clear winner between AW(1) and AW(d). AW(1) seemed to
work a bit better overall. Perhaps the adaptive restarts o�set any possible bene�t of degree-based weighting.

The fourth method, which we call AIC, is an alternative extension of NA that adapts the initial clique,
rather than the vertex weights, from restart to restart. Thus, unlike AW, AIC does not always start a restart
from the same initial clique. For the same number of restarts, AIC runs faster than AW because it often
starts from a large clique and thus has to grow it less. On the other hand, in extensive experiments we �nd
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that AIC often takes many more restarts to �nd the same quality solution than does AW. The reason for
this is not clear.

FinalClique AIC(Graph G, WeightVector w, integer k)

1. C = ;;
2. Ci = ;;
3. for r = 1 to k do
4. Cr = RGS( w, Ci );
5. if jCrj > jCj then
6. Ci = Cr;
7. Ci = Cin f one randomly-chosen vertex in Ci g
8. C = larger-set-of (C, Cr);
9. return C;

AIC exhibits characteristics similar to those of AW, focusing the search into the neighborhood of a newly-
found better clique, defocusing subsequent search gradually when this does not lead to an improvement.

Like with NA and AW, we investigated AIC with the same two types of weighting, denoted AIC(1)
and AIC(d) respectively. Once again the results were mixed (sometimes AIC(1) worked better, sometimes
AIC(d)).

The AIC principle was in
uenced by the work of T. Grossman [6] where the power of a simple greedy
algorithm for Maximum Clique was boosted signi�cantly and demonstrably (via extensive experiments)
by adaptive initialization of a somewhat similar kind. Adaptations from restart to restart have also been
used in [4] and [3].

Most of our experiments were done on slightly di�erent versions of NA, AW, and AIC in which the number
of restarts given to each method was not �xed in advance. Rather, the restart parameter k in each of these
methods was replaced by a \no progress" parameter np, and the method terminated when np successive
restarts led to no improvement in solution quality. Although this does not reduce the number of parameters
to be set, the np parameter is clearly superior to the k parameter.

Experimental Results Summary

This section reports a summary of our computational experiments and results on NA(1), NA(d), AW(1),
AW(d), AIC(1), and AIC(d). These methods were all evaluated on di�erent kinds of graphs: (i) graphs
with prespeci�ed maximum clique size designed to be hard for the problem, (ii) random graphs of various
densities, and (iii) highly compressible graphs of a certain type.

The graphs of type (i) are described in detail in [11, 17]. Experiments were conducted on a variety of
graphs (parametrized by maximum clique size C, and density D) of this type on 800 vertices. The value
of the np parameter was (by trial and error) �xed to 100, for all the methods. On 800-vertex graphs of
density 0.70, AW(1) worked best. Interestingly, NA(1) worked better than AIC(1). On graphs of density
0.9, AW(1) still worked best. This time however AIC(1) worked better than NA(1). The di�erences between
the performances were striking for the larger values of C. On graphs of density 0.9, AIC(1) worked best on
graphs with larger C. AW(1) worked better than NA(1). From these experiments, the following clear trends
emerged: AIC(1) worked better on the denser graphs, AW(1) on the less dense graphs; for the same density,
the solution quality di�erential was highest on graphs with the larger cliques.

The graphs of type (ii) are parametrized by p, the probability of independently introducing an edge
between a pair of vertices. The six methods were tested on ten 1000-vertex graphs each for three values of
p. (The variance in the results was seen to be small, indicating that the small sample size should suÆce.)
For p = 0:5 and p = 0:7, there was little di�erence in solution quality. For p = 0:99, AIC(d) worked best,
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with AIC(1) a close second. The remaining methods were signi�cantly poorer, with AW(1) edging out the
others.

The graphs of type (iii) are highly compressible in nature, and were designed to elicit poor performance
from simple methods. It is diÆcult to describe these graphs here, the reader is refered to [10]. (In that
paper it was experimentally demonstrated that these graphs weed out the poorer methods from the better
ones, while random graphs don't.) Experiments were conducted on �fty 100-vertex graphs of this type. On
average, there was little di�erence between the solution quality found by all methods. AW(1) edged out the
others. Both NA methods were a close second. Both AI methods were a bit poorer.

Here we examine how well the new algorithms perform on these graphs. To facilitate comparisons, we
evaluate the new algorithms on the exact same graphs evaluated earlier. The results are presented in the
full paper; here we summarize them. Both the NA algorithms perform very well. This correlates well with
the previous result that NA0(1,400) and NA0'(1,400) also worked very well. Here NA0' is a variant of NA0
which begins from the initial state V rather than from ;. Note that the only di�erence between NA and NA0
is in the number of restarts used. It is reassuring to see that the current performance of NA(1,150) is almost
identical to that of the earlier recorded performance of NA0(1,400). The AW(1) algorithm performs the
best among the new algorithms; its performance is virtually identical to that of NA0'(1,400) which worked
best in the original experiments. Note that AW(1) achieves this performance in roughly three-�fths as many
restarts as did NA0'(1,400). Interestingly, both AI algorithms perform somewhat poorer.

Conclusions and Future Work

No single winner emerged. Adding on adaptation to NA nonetheless never hurt (and often helped consider-
ably).

Our methods are easily extendible to a wider class of problems, that we call induced subgraph optimization
problems, de�ned as follows: given a graph G and a property P on vertex-induced subgraphs of G, we wish
to �nd a maximum-cardinality set U � V (G) which satis�es P. Maximum Clique is a member of this class.
There is a general theorem establishing intractability of a large subclass of problems in this class [14, 13].
Our future work will involve testing how well our methods work on some other problems in this class.
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Probabilistic Modeling for Combinatorial Optimization

Shumeet Baluja, Scott Davies
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This work originated in an attempt to create an explicit probabilistic model of the behavior of genetic
algorithms [12][17][18]. Genetic algorithms, or GAs, can be viewed as creating implicit probabilistic models
over possible solutions by maintaining a population of previously evaluated solutions. Rather than using
explicit models of how the parameters of high-quality solutions tend to relate to one another, GAs attempt to
preserve these relationships by using crossover-based recombination operators on members of the population
in order to generate new candidate solutions.

One attempt towards making the GA's probabilistic model more explicit was the Population-Based
Incremental Learning algorithm (PBIL) [1][3]; this was further explored in [19][20][16]. PBIL uses a very
simple probabilistic model that does not model inter-parameter dependencies | each parameter is handled
independently. The PBIL algorithm works as follows: instead of using recombination/crossover to create a
new population, a real-valued vector, P, is sampled. Assuming the solutions are represented as bit strings,
P speci�es the probability of generating a 1 in each bit position. Initially, all values in P are set to 0.5, so
that solutions are generated from the uniform distribution over bit strings. A number of solution vectors are
generated by stochastically sampling each bit independently according to P. The probability vector is then
moved towards the highest-quality solution vectors thus generated, in a manner similar to the updates used
in unsupervised competitive learning [15]. This cycle is then repeated. The �nal result of the PBIL algorithm
is the best solution generated. This basic version of PBIL is similar to early work in cooperative systems
of discrete learning automata [23] and to the Bit-Based Simulated Crossover algorithm [22]. Numerous
extensions to this basic algorithm are possible; many are similar to those commonly used with genetic
algorithms, such as variable or constant mutation rates, maintenance of the best solution found throughout
the search, parallel searches, or local optimization heuristics.

One of the goals of crossover in GAs is to combine \building blocks" from two di�erent solutions to create
new sampling points. Because all parameters are modeled independently, PBIL cannot propagate building
blocks in a manner similar to standard GAs. Nonetheless, in a variety of standard benchmark problems used
to test GAs and Simulated Annealing approaches, PBIL performed extremely well [2]. While GAs attempt
to preserve important relationships betweem solution parameters, they do not do so explicitly, and so must
rely on the recombination operator to combine random subsets of two \parent" solutions in hopes of coming
up with a child solution that maintains the important building blocks. Would algorithms that employed
probabilistic models in which these relationships were accounted for explicitly perform even better?

The �rst extension to PBIL that captured dependencies was Mutual Information Maximization for Input
Clustering (MIMIC) [7]. MIMIC measured the mutual information [10] between each pair of parameters
across a set of high-quality solutions, and then used these statistics to greedily build a probabilistic model in
the form of a Markov chain over the solution parameters. Subsequent research [4] generalized this Markov
chain formalism to Bayesian networks [21]. In particular, the same type of statistics used by MIMIC were
used to learn a more general class of models | namely, trees rather than chains | and the optimal model
within that class was found using Chow and Liu's algorithm [9]. Figure 5 illustrates the types of models used
by PBIL, MIMIC, and this tree-based algorithm on a noisy version of a two-color graph coloring problem.
We use Bayesian network notation for our graphs: an arrow from a node X to a node Y indicates that Y 's
probability distribution is conditionally dependent upon the value of X . The chain- and tree-shaped models
shown were automatically learned during the process of optimization. (Note, however, that learned networks
may not typically mirror optimization problems' structures so closely | in this example, the noise actually
helped the algorithms recover the problem structure.)

Researchers have conducted numerous empirical comparisons (e.g. [19],[2], [4], [13]) of genetic algorithms
and algorithms based on probabilistic modeling. Surprisingly, in many of the larger, real-world problems,
simple models that do not maintain dependency information (such as PBIL) outperform GAs, which attempt
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the tree-based optimization algorithm.

to capture this information implicitly. On test problems designed to exhibit large amounts of inter-parameter
dependencies, PBIL's success was less predictable [11]. However, in the large majority of these problems,
the dependency-tree-based algorithm consistently outperformed the other optimization techniques [6].

Perhaps the most interesting result found in this line of study is that the performance of the combina-
torial optimization algorithms consistently improved as the accuracy of their statistical models increased:
trees generally performed better than chains, and chains generally performed better than models with no
dependencies. This suggests the possibility of using even more complex probabilistic models, although using
models that are too complex would hurt the optimization algorithms by preventing them from performing
enough exploration of the search space. Unfortunately, when we move toward network models in which
variables can have more than one parent variable, the problem of �nding an optimal network with which to
model a given set of data becomes NP-complete [8]. Heuristics have been developed for �nding good networks
in such situations (e.g. [14]), and employing such methods in conjunction with combinatorial optimization
is an exciting direction for future research. However, the O(n2) running time per iteration (where n is the
number of solution parameters) required by the chain- and tree-based optimization algorithms is already
prohibitively expensive on large-scale problems.

This computational problem can be alleviated by learning expensive probabilistic models only to generate
starting points for simpler, faster optimization algorithms. COMIT [5] (for \Combining Optimizers with
Mutual Information Trees") learned tree-based probabilistic models from the best solutions found during
previous runs of hill-climbing or PBIL, and stochastically sampled these models to generate starting points
for further runs of these algorithms. In the experimental results, employing the tree-based models in this
manner typically signi�cantly improved the solutions found by the faster optimization algorithms. Using
more sophisticated probabilistic models for similar restarting algorithms is an interesting possible line of
research, as is extending this methodology to optimization in real-valued spaces.
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Figure 6: Diagramatic view of clustering

Adaptive Approaches to Clustering for Discrete Optimization

Wray Buntine, Lixin Su, and A. Richard Newton

University of California, Berkeley,

Many optimization algorithms in the �eld of computer aided design (CAD) of VLSI systems su�er from
the fact that they do not scale linearly with the problem complexity. Clustering techniques have been
adopted in some of these algorithms to address complexity but they are unfortunately limited to classes
of problems where good intuitions about locality hold. In this paper, we demonstrate that learning good
clusters is feasible for hyper-graph partitioning problem using a learning model for adaptive clustering.

Introduction

CAD tasks like place and route and hyper-graph partitioning use a technique called clustering to achieve
signi�cant performance increases. In fact, on those problems where clustering is used, it seems to be essential
to achieve state-of-the-art performance on large problems. Clustering can be applied to SAT, place-and-route
and hyper-graph partitioning by �nding "nearby" nodes/variables and forcing their values to be identical.

Consider the hypergraph partitioning problem. In this, a hypergraph (a graph with n-ary edges instead
of binary edges, e.g., VLSI circuit) is to be split into two pieces such that the number of hyper-edges split is
minimum. Clustering on this works as follows: certain nodes are tied together or clustered so that, thereafter,
they always occur in the same partition. Nodes so tied together form a single super-node and induce a
new problem with fewer nodes and often fewer hyper-edges (these merge or are absorbed within a single
super-node) For a generic graph partitioning problem (where all hyper-edges are of size 2), a representative
clustering is illustrated on the right of Figure 1. Notice the induced edges onthe reduced problem.

An engineering-oriented study of several methods appears in [Hauck and Boriello, 1997].

Clustering has typically been based on ad hoc heuristics for a neighborhood metric together with standard
clustering algorithms from the pattern recognition community, such as agglomerative clustering. Methods
using clustering typically generate a sequence of solutions to the one problem. The current solution is
mapped down into the reduced space, some optimization is done on this reduced problem, and then the
solution mapped back up into the original space, thus a�ecting a non-local move guided by the clustering.
Search then continues in the full space, and the process is repeated. Since the sequence of solutions is
discarded, clustering is currently a static approach that cannot improve during an extensive run on a single
problem or on multiple problems.

Clustering in Hypergraph partitioning

The optimization problem we consider here is standard hypergraph partitioning where the area of each
partition is restricted to be less than 55% of the total area. Experiments were run on some of the larger
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problems in the ACM/SIGDA Layout Benchmark Suite from MCNC 1, where our copy was obtained from
Charles Alpert's website at UCLA. Smaller problems are uninteresting for clustering methods.

One recent innovation in clustering is by Hagen and Kahng [3] whereby the intermediate results of local
search are combined to create clusters. Note a p-way partition of a variable space induces a clustering with
p super-nodes. Overlaying k binary partitions to form their �nest multi-way partitioning, similarly, induces
a clustering with up to 2k super-nodes. Hagen and Kahng recommend using k = 1:5 log2 C partitions for
this construction, for C the number of nodes. Experiments on benchmarks reveal the problems here. As one
increases k, the number of nodes in the induced clustering increases. For k > log2 C the induced clustering
can have up to C nodes, so nodes no longer occur in the same �nest partition by chance. For k large enough,
the complexity of the search on the induced problem can be just as bad as the compexity on the full problem.
Note that if you are learning clusters from data \correctly," in some sense, then as k increases, the quality of
the clustering should only improve as you get more data, not decrease as is the case here. For k smaller than
log2 C, clustering is now introducing a random element, and thus as k decreases, the results of the search
on the induced problem should degrade to produce a poor partition. Yet standard connectivity clustering
methods work well, essentially with k = 0. Hagen and Kahng found k = 1:5 log2 C to be a happy medium
producing competitive results.

Our simple probabilistic model of local minima is as follows: we claim characteristics of the global
optimum occur with frequency (1� q) in the perturbed local optimum. When we sample a local minima, it
will have on average noise q on top of the global minimum. Therefore, to estimate whether a characteristic
X holds in the global minimum, we estimate the frequency with which X occurs in local minima. If this
frequency is greater than (1 � q), then under this model with high probability, X also occurs in the global
minimum. Note that q is a free parameter in our model. We claim di�erent optimization problems with
have di�erent intrinsic noise levels in the broader solution neighborhood, and thus we leave q free to vary.
Thus statistical information about the local minima are used to infer characteristics of the global minimum.

We apply this model to clustering as follows: the characteristics X we investigate take the form \node A
and node B fall in the same partition." We have taken 200 FM runs to �nd a sample of local minima and
have recorded partitions as well as the least cut-size for the entire 200 FM runs, We have taken statistics
from these samples and for every pair of nodes (A;B) we then estimate the frequency with which they lie
in the same partition. For a given noise level q under the simple model above, we can therefore estimate
which nodes should belong in the same partition of the global minimum. Contingent on a value for q, this
information is then collated for all nodes (A;B) to produce a clustering of the nodes, since \node A and node
B" fall in the same partition is an equivalence relation. This approach is labelled \adaptive clustering".

Experiments

To provide a benchmark, we have compared these results against clustering obtained using the agglomerative
clustering method of Alpert et al. [1] excepting that recursive re-evaluation of the connectivity measure is not
done. We also looked at 8 di�erent levels of agglomeration and chose the one giving the minimum cut-size. We
claim these modi�cations are fair since no recursive re-evaluation was done for the adaptive clustering method
above, and the choice of optimum cut-size from 8 can only favor this method. Connectivity clustering and
adaptive clustering are evaluated by running a high-performance non-clustering algorithm on them, ASFM
of [2]. Because this is run on the clustered/reduced problems, its computation time is insigni�cant. We
also extracted the best published results for each circuit from the literature [5, 4, 3, 2]. q is set in adaptice
clustering by running the algorithm for q = 0:8; 0:85; 0:9; 0:95; 0:97 and picking the best, the additional
computational overhead being insigni�cant. The geometric mean of the cut-sizes are reported in Table 1.
Also note that connectivity clustering produced problems with nodes/hypergraphs having a geometric mean
of 2142/2424 whereas for adaptive clustering, this is 704/1046.

1Being industry2, industry3, avq-small, avq-large, S9234, S13207, S15850, S35932, SS38417, S38584, 19ks and primary2,

with nodes and hyper-edges of the order of 8000{20000.
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best published connectivity clustering adaptive clustering on 200 FM best of 200 FM
81.25 99.22 93.56 165.27

Table 3: Geometric mean cut-sizes from 12 industry benchmark

From the results we can conclude the following: (1) The adaptive clustering method generates signi�cantly
smaller hyper-graphs with signi�cantly smaller cut-size. The di�erence is generally consistent across circuits.
Thus adaptive clustering is signi�cantly superior in forming clusters to methods attaining current best
published. (2) Running ASFM once on a adaptive clustered hyper-graph, and no other computation, the
results on the far smaller clustered hyper-graph are near best published for the problem. Typical state-
of-art algorithms, considerably more sophisticated with recursive clustering and multiple iterations, score
a geometric mean of about 86 on this measure so this simple approach is near state-of-the-art. (3) The
clustering results provide a full 200% increase over the best cut-size resulting from the entire 200 FM runs.
Thus there is clear evidence that under this model we learnt signi�cant information from the local minima
about the global minimum.

Notice the method of adaptive clustering described above uses 200 runs of FM as its sample. As a �nal
experiment, we produced a hybrid of adaptive clustering and connectivity clustering using Bayesian statistics.
We mapped the connectivity of an edge (A;B), c(A;B), into a probability distribution on the probability
that nodes A and B lie in the same partition at the global maximum. Lets call this probability p(A;B).
From calibration data for numerous problems, we modeled the probability p(A;B) with a Beta distribution
with mean m(X) = 0:5 + 0:5 � (c(A;B)=0:6)0:7 and sample size 5. This means we place a density function
over p(A;B). Data from the FM runs is then used to update this Beta distribution using binomial sampling
to obtain an estimate of p(A;B) incorporating both the data from the FM runs and the connectivity c(A;B).
In statistical terms, the initial Beta distribution is a conjugate prior and the information from the sample
(nodes A;B in same partition or not) is its complementary likelihood function. Using k = 0:8 log2 C, a half
that of Hagen and Kahng, we were able to achieved results with this method comparable to the adaptive
clustering on 200 FM runs. Moreover, the method yields clusters identical to connectivity clustering for
k = 0.

Conclusion

In this paper, we proposed a simple probabilistic model of local minima and applied it to clustering for
hyper-graph partitioning. The clustering metric in the model can also be improved through learning as more
problems and their solutions are encountered. The experimental results on the tested benchmark circuits
provided a clear evidence that under this model we learnt signi�cant information from the local minima
about the global minimum.
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Building a Basic Block Instruction Scheduler with
Reinforcement Learning and Rollouts

Amy McGovern, Eliot Moss, and Andrew G. Barto

University of Massachusetts, Amherst,

Although high-level code is generally written as if it were going to be executed sequentially, most modern
computers exhibit parallelism in instruction execution using techniques such as the simultaneous issue of
multiple instructions. To take the best advantage of multiple pipelines, a compiler employs an instruction
scheduler to reorder the machine code. Building this instruction scheduler is a large-scale optimization
problem. Because schedulers are speci�c to the architecture of each machine, and the general problem of
scheduling instructions is NP-Complete, schedulers are currently hand-crafted using heuristic algorithms.
Building algorithms to select and combine heuristics automatically using machine learning techniques can
save time and money. As computer architects develop new machines, new schedulers would be built auto-
matically to test design changes rather than requiring hand-built schedulers for each change. This would
allow architects to explore the design space more thoroughly and to use more accurate metrics in evaluating
designs.

We formulated and tested two methods for automating the design of instruction schedulers: one uses
rollouts, the other uses reinforcement learning (RL). We also investigated a combination of these two methods.
Rollouts evaluate schedules online during compilation, whereas RL trains on more general programs and runs
more quickly at compile time. Both types of schedulers use a greedy algorithm to build schedules sequentially
with no backtracking (list scheduling).

We focused on scheduling basic blocks of instructions on the 21064 version [2] of the Compaq Alpha
processor [6]. A basic block is a set of machine instructions with a single entry point and a single exit point.
It does not contain any branches or loops. Our schedulers reorder the machine instructions within a basic
block but cannot rewrite, add, or remove instructions. The goal of the scheduler is to �nd an ordering of
the instructions in a block that preserves the semantically necessary ordering constraints of the original code
while minimizing the execution time of the block.

The 21064 is a dual-issue machine with two execution pipelines. Compaq has made a 21064 simulator
publicly available that also includes a heuristic scheduler for basic blocks, which we refer to as DEC (to
maintain consistency with our earlier papers). The simulator gives the running time of a scheduled block
assuming all memory references hit the cache and all resources are available at the beginning of the block.
We also ran the schedules on a cluster of Compaq Alpha 21064 machines to obtain actual run-time results.

We tested each scheduling algorithm on the 18 SPEC95 benchmark programs (Reilly, 1995). Ten of these
are FORTRAN programs, containing mostly 
oating point calculations, and eight are C programs, focusing
more on integer, string, and pointer calculations. Each was compiled using the commercial Compaq compiler
at the highest level of optimization. We call the schedules output by the compiler COM. A more detailed
description of the problem and experimental setup can be found in [4]. As a performance measure, we used
the ratio of a weighted execution time of the scheduler being assessed to a weighted execution time of DEC,
where the weight of each block is the number of times that block is executed. This ratio is less than one
whenever a scheduler produced a faster running time than DEC.

Rollout Scheduling

Rollout scheduling works like this: given a set of candidate instructions to add to a partial schedule, the
scheduler appends each candidate to the partial schedule and then follows a �xed policy, �, to schedule the
remaining instructions. The running time of each completed schedule is determined. After rolling out each
candidate (repeatedly for stochastic policies), the scheduler selects the instruction with the best estimated
running time. (Rollouts were used in backgammon by Woolsey, 1991, Galperin, 1994, and Tesauro and
Galperin, 1996). ).
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Bertsekas et al. (1997) proved that if we used the DEC scheduler as �, we would perform no worse than
DEC, but an architect proposing a new machine would not have such a good heuristic policy available.
Therefore, we considered rollouts using (1) the random policy, denoted RANDOM-�, in which a rollout
makes all choices in a valid but uniformly random fashion (20 rollouts per instruction); (2) the the optimizing
compiler COM, denoted COM-�; and (3) the DEC scheduler itself, denoted DEC-�. (For the latter two,
only one rollout per instruction was needed since each is deterministic). As a baseline scheduler, we also
scheduled each block with a valid but uniformly random ordering, denoted RANDOM.

The following table summarizes the performance of the rollout scheduler for each policy as compared
DEC on all 18 benchmark programs for both the simulator and the actual execution times. All numbers are
geometric means of the performance measure over 30 runs of each benchmark. Ratios less than one (italics)
mean that the scheduler outperformed DEC.

RANDOM RANDOM-� COM COM-� DEC-�

Sim Real Sim Real Sim Real Sim Real Sim Real

Fortran geometric mean: 1.417 1.112 1.093 1.050 1.040 1.003 1.008 1.000 0.987 1.001

C geometric mean: 1.123 1.028 1.003 0.996 1.017 0.991 0.995 0.994 0.991 1.008

Overall geometric mean: 1.278 1.074 1.052 1.026 1.030 0.998 1.002 0.998 0.989 1.004

As expected, the random scheduler performed very poorly (27:8% slower than DEC for simulation mode).
In contrast, RANDOM-� came within 5% of the running time of DEC. COM was only 3% slower than DEC
and outperformed DEC on two applications; and COM-� outperformed DEC on 6 applications. The DEC-�
scheduler was able to outperform DEC on all applications, producing schedules that ran about 1:1% faster
than those produced by DEC. Although this improvement may seem small, the DEC scheduler is known to
make optimal choices 99:13% of the time for blocks of size 10 or less [7]. The actual performance of the
binaries built using each of our schedulers was similar to the performance in the simulator, although with
smaller di�erences, showing that the assumptions that DEC makes for the simulator can be detrimental on
the actual machine.

Although the performance of the rollout scheduler can be excellent, rollouts are inherently computation-
ally expensive. Rollouts can be used to optimize schedules for important blocks (those with long running
times or which are frequently executed) within a program but not for scheduling large programs unless com-
putation time improves. With the performance and the timing of the rollout schedulers in mind, we looked
to RL to obtain high performance at faster running times.

Reinforcement Learning

We used a temporal di�erence (TD) algorithm to estimate the value function of the current scheduling policy.
At the same time, we used this estimate to update the current policy. This results in a kind of generalized
policy iteration (Sutton and Barto, 1998) that tends to improve the policy over time. Instead of learning the
direct value of choosing instruction A or instruction B, our RL system learned a preference function between
candidate instructions: it learned the di�erence of the returns resulting from choosing instruction A over
instruction B. The preference function was represented as a weighted sum of a set of feature values describing
the current partial schedule and two candidate instructions. Each feature was derived from knowledge of the
DEC simulator. At each choice point during learning, the RL scheduler chooses the most preferred action
according to the current value function with a high probability, and otherwise chooses a random but valid
instruction. The reward was zero until a block was scheduled, in which case it was a measure of how well the
schedule outperformed DEC, normalized by the block size. A discussion of how well other reward functions
performed can be found in [4].

We trained the RL scheduler for 100 epochs on the application compress95, and we used the best resulting
value function to schedule the other 17 benchmarks. The results are shown below. As before, we also tested
the schedules on Compaq Alphas.
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Performance using the DEC reward function

Fortran programs C programs

App Sim Real App Sim Real App Sim Real App Sim Real

applu 1.094 1.017 apsi 1.090 1.029 cc1 1.023 1.007 compress95 0.991 0.967

fpppp 1.086 1.038 hydro2d 1.036 1.002 go 1.034 0.925 ijpeg 1.025 1.031

mgrid 1.410 1.132 su2cor 1.035 1.012 li 1.016 1.004 m88ksim 1.012 0.983

swim 1.569 1.007 tomcatv 1.061 1.028 perl 1.022 0.997 vortex 1.035 0.977

turb3d 1.145 1.016 wave5 1.089 0.994 C geometric mean: 1.020 0.986

Fortran geometric mean: 1.151 1.027 Overall geometric mean: 1.090 1.009

By training the RL scheduler on compress95 for 100 epochs, we were able to outperform DEC on com-
press95. The RL scheduler came within 2% of the performance of DEC on all C applications and within 15%
on unseen Fortran applications. Although the Fortran performance is not as good as that on the C applica-
tions, the RL scheduler has more than halved the di�erence between RANDOM and DEC. This demonstrates
good generalization across basic blocks. Although there are benchmarks that perform much more poorly
than the rest (mgrid and swim), those benchmarks perform more than 100% worse than DEC under the
RANDOM scheduler. In actual execution of the learned schedules, the RL scheduler outperformed DEC
on the C applications while coming within 2% of DEC on the Fortran applications. We also experimented
with training the RL scheduler on the Fortran program applu. By doing so, the simulated performance on
Fortran applications improved from 15% slower than DEC to only 8% slower than DEC. At the same time,
performance on unseen C programs slowed by slightly less than 1%.

Combining Reinforcement Learning with Rollouts

We also experimented with a scheduler, RL-�, that used the value function learned by RL on compress95 as
the rollout policy. The results are shown below.

Fortran programs C programs

App Sim Real App Sim Real App Sim Real App Sim Real

applu 1.017 0.999 apsi 1.015 1.012 cc1 1.000 1.005 compress95 0.974 1.014

fpppp 1.021 0.992 hydro2d 1.006 0.999 go 1.001 0.991 ijpeg 0.986 0.986

mgrid 1.143 1.027 su2cor 1.006 1.010 li 0.995 1.005 m88ksim 0.998 0.979

swim 1.176 1.003 tomcatv 1.035 0.999 perl 0.996 0.981 vortex 1.001 0.984

turb3d 1.039 0.988 wave5 1.025 0.992 C geometric mean: 0.994 0.993

Fortran geometric mean: 1.047 1.002 Overall geometric mean: 1.023 0.998

By adding only one rollout, we were able to improve the C results to be faster than DEC overall. The
Fortran results improved from 15% slower to only 4:7% slower than DEC. When executing the binaries from
the RL-� schedules, a user would see slightly faster performance than DEC.

Conclusions

We have demonstrated two successful methods of building instruction schedulers for straight line code.
The �rst method, using rollouts, was able to outperform a commercial scheduler both in simulation and in
actual run-time results. The downside of using a rollout scheduler is its inherently slow running time. By
using an RL scheduler, we were able to maintain good performance while signi�cantly reducing scheduling
time. Finally, we showed that a combination of RL and rollouts was able to compete with the commercial
scheduler. In a system where multiple architectures are being tested, any of these methods could provide a
good scheduler with minimal setup and training.
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\STAGE" Learning for Local Search

Justin A. Boyan y and Andrew W. Moore z

y NASA Ames Research Center; z Carnegie-Mellon University,

Stage is a machine-learning algorithm for accelerating the performance of local search. Collecting data
from sample search trajectories, Stage builds an auxiliary evaluation function which is then used to bias
future search trajectories toward better optima. The algorithm is described only brie
y here; for fuller
descriptions please see [3, 1]. Other algorithms related to STAGE that are also described in this survey
include the contributions of Moll et al. and Su and Buntine.

The auxiliary evaluation function that Stage builds is an approximation to this predictive function:

V �(x)
def
= expected best Obj value seen on a trajectory that starts from state x and

follows local search method �

Here, � represents a local search method such as hillclimbing or simulated annealing, and Obj : X ! < is
the objective function which we would like to minimize. From a reinforcement learning perspective, � can
be seen as a policy for exploring a Markov Decision Process, and V � is the value function of that policy:
it predicts the eventual expected outcome from every state. Thus, well-studied learning algorithms such as
TD(�) [7, 2] may be applied to approximate V � from sampled search trajectories. Here, we approximate
V � using a regression model, where states x are encoded as real-valued feature vectors. (Such features are
plentiful in real-world applications.) We denote the mapping from states to features by F : X ! <D, and
our approximation of V �(x) by ~V �(F (x)).

The approximate value function ~V �(F (x)) evaluates the promise of state x as a starting point for algo-
rithm �. To �nd the most promising starting point, then, we must optimize ~V � over X . Stage does this
by applying hillclimbing with ~V � instead of Obj as the evaluation function. As illustrated in Figure 7a,
Stage repeatedly interleaves two di�erent stages of local search: running the original method � on Obj, and
running hillclimbing on ~V � to �nd a promising new starting state for �. Thus, Stage can be viewed as a
learning multi-restart approach to local search.
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Figure 7: Stage working on the bin-packing example

We illustrate Stage's operation with a small example from the NP-complete domain of bin-packing [4],
shown in Figure 7b. Packed optimally, this set of 30 items �lls 9 bins exactly to capacity (Figure 7c). We
de�ne a local-search operator which moves a single random item to a random new bin with suÆcient spare
capacity, and we de�ne two state features F (x) for use by Stage:
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1. The actual objective function, Obj = # of bins used.

2. Var = the variance in fullness of the non-empty bins. (This feature is similar to a cost function term
introduced in [5].)

Two trajectories of stochastic hillclimbing in this 2-D feature space are plotted in Figure 7d. Both trajectories
start at the initial state where each item is in its own bin (Obj = 30;Var = 0:011), and they end at di�erent
local optima: (Obj = 13;Var = 0:019) and (Obj = 11;Var = 0:022), respectively. Stage, trained by
quadratic regression to predict the observed outcomes 13 and 11 from those two trajectories, learns the
approximate value function shown in Figure 7e. Note how the contour lines shown on the base of the surface
plot correspond to smoothed versions of the training trajectories. Extrapolating, ~V � predicts that the the
best starting points for hillclimbing are on arcs with higher Var(x).

Stage switches to the auxiliary evaluation function ~V � and hillclimbs to try to �nd a good new starting
point. The resulting trajectory, shown as a dashed line in Figure 7f, goes from (Obj = 11;Var = 0:022) up
to (Obj = 12;Var = 0:105). Note that the search was willing to accept some harm to the true objective
function during this stage. From the new starting state, hillclimbing on Obj does indeed lead to a yet better
local optimum at (Obj = 10;Var = 0:053). During further iterations, the approximation of ~V � is further
re�ned, and Stage manages to discover the global optimum at (Obj = 9;Var = 0) on iteration seven.

Results

Extensive experimental results are given in Table 4. We constrast the performance of Stage with that of
multi-start stochastic hillclimbing, simulated annealing, and domain-speci�c algorithms where applicable,
on six domains:

Bin-packing. As in the example above, but with a 250-item benchmark instance.

Channel routing. Lay out wires so as to minimize the width of a channel in VLSI.

Bayes Net Structure-Finding. Find the graph structure that best captures the dependencies among the
attributes of a data set.

Radiotherapy Treatment Planning. Produce a treatment plan that meets target radiation doses for a
tumor while minimizing damage to sensitive nearby structures. (Experiments were conducted on a
simpli�ed 2-D version of the problem.)

Cartogram Design. For geographic visualization purposes, redraw a map of the USA so that the states'
areas are proportional to population, while minimally deforming the overall shape.

Boolean Satis�ability. Minimize the number of unsatis�ed clauses of a Boolean formula expressed in
CNF. Here, Walksat [6] rather than hillclimbing was used as the baseline local search procedure for
Stage's learning.

On each instance, all algorithms were held to the same number M of total search moves considered, and
run N times. Full details of these experiments may be found in [1]. The results, summarized in Table 4,
indicate that Stage always learned to outperform the baseline local search method on which it was trained,
and usually outperformed simulated annealing as well.

Transfer

In the above experiments, the computational cost of training a function approximator on V � was minimal|
typically, 0{10% of total execution time. However, Stage's extra overhead would become signi�cant if many
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Problem Algorithm Performance over N runs
Instance mean best worst

Bin-packing Hillclimbing, patience=250 109.38� 0.10 108 110
(u250 13, opt=103) Simulated annealing 108.19� 0.09 107 109
M = 105; N = 100 Best-Fit Randomized 106.78� 0.08 106 107

Stage, quadratic regression 104.77� 0.09 103 105
Channel routing Hillclimbing, patience=250 22.35� 0.19 20 24
(YK4, opt=10) Simulated annealing, Obj(x) = w 14.32� 0.10 13 15
M = 5�105; N = 100 Stage, linear regression 12.42� 0.11 11 14
Bayes net Hillclimbing, patience=200 440567� 52 439912 441171
(ADULT2) Simulated annealing 440924� 134 439551 444094
M = 105; N = 100 Stage, quadratic regression 440432� 57 439773 441052
Radiotherapy Hillclimbing, patience=200 18.822�0.030 18.003 19.294
(5E) Simulated annealing 18.817�0.043 18.376 19.395
M = 104; N = 200 Stage, quadratic regression 18.721�0.029 18.294 19.155
Cartogram Hillclimbing, patience=200 0.174�0.002 0.152 0.195
(US49) Simulated annealing 0.037�0.003 0.031 0.170
M = 106; N = 100 Stage, quadratic regression 0.056�0.003 0.038 0.132
Satis�ability Walksat + Æw = 0 (hillclimbing) 690.52� 1.96 661 708
(par32-1.cnf, opt=0) Walksat, noise=0, cuto�=106, tries=100 15.22� 0.35 9 19
M = 108; N = 100 Stage(Walksat), quadratic regression 5.36� 0.33 1 9

Table 4: Comparative results on a variety of minimization domains. For each problem, all algorithms were
allowed to consider the same �xed number of movesM . Each line reports the mean, 95% con�dence interval
of the mean, best, and worst solutions found by N independent runs of one algorithm on one problem.
Stage was best on average (boldfaced) in �ve of six domains.

more features or more sophisticated function approximators were used. For some problems such cost is worth
it in comparison to a non-learning method, because a better or equally good solution is obtained with overall
less computation. But in those cases where we use more computation, the Stage method may nevertheless
be preferable if we are then asked to solve further similar problems (e.g., a new channel routing problem
with di�erent pin assignments). Then we can hope that the computation we invested in solving the �rst
problem will pay o� in the second, and future, problems because we will already have a ~V � estimate. This
e�ect is termed transfer.
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Figure 8: Optimization performance with transfer (X-STAGE) and without transfer (STAGE) on bin-packing
(a) and channel routing (b). Note the logarithmic scale of the x-axis.
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We investigated the potential for transfer in local search with a modi�ed algorithm called X-Stage.
The X-Stage algorithm uses a simple voting mechanism to combine arbitrarily many previously trained ~V �

functions; full details of the voting mechanism are given in [1]. Figure 8 shows performance curves illustrating
transfer in the domains of bin-packing and channel routing. In the bin-packing experiment (a), X-Stage
combined 19 previously trained ~V � functions; it reaches good performance levels more quickly than Stage.
However, after only about 10 learning iterations and 10,000 evaluations, the average performance of Stage
exceeds that of X-Stage on the new instance. In the channel-routing experiment (b), X-Stage combined 8
previously trained ~V � functions. This time, the voting-based restart policy maintained its superiority over
the instance-speci�c learned policy for the duration of the run.

These preliminary experiments indicate that the knowledge STAGE learns during problem-solving can
indeed be pro�tably transferred to novel problem instances. Future work will consider ways of combining
previously learned knowledge with new knowledge learned during a run, so as to have the best of both worlds:
exploiting general knowledge about a family of instances to reach good solutions quickly, and exploiting
instance-speci�c knowledge to reach the best possible solutions.

Discussion

Under what conditions will Stage work? Intuitively, Stage maps out the attracting basins of a domain's
local minima. When there is a coherent structure among these attracting basins, Stage can exploit it.
Identifying such a coherent structure depends crucially on the user-selected state features, the domain's
move operators, and the regression models considered. What this work has shown is that for a wide variety
of large-scale problems, with very simple choices of features and models, a useful structure can be identi�ed
and exploited.
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Enhancing Discrete Optimization with Reinforcement Learning:
Case Studies Using DARP

Robert Moll, Theodore J. Perkins, and Andrew G. Barto

University of Massachusetts, Amherst,

Introduction

Reinforcement learning methods can be used to improve the performance of algorithms for discrete optimiza-
tion by learning evaluation functions that predict the outcome of search. In this study we use reinforcement
learning (RL) for developing good solutions to a particular NP-complete logistics problem, namely the Dial-
A-Ride Problem (DARP), a variant of the better-known traveling salesman's problem. DARP is a useful
problem for study because the space of feasible solutions to a DARP instance has a nonuniform structure
which is nevertheless coherent, in the sense that relatively simple and easily computable features behave
similarly for all instances of all sizes, and can therefore be combined to form a reasonably accurate instance-
independent optimal value function approximation.

We summarize our technique as follows. Using the TD(�) algorithm in an o�-line learning phase, a value
function is learned for DARP which estimates performance along local search trajectories in the space of
feasible solutions. Because of the general coherence of the Dial-A-Ride problem, the resulting value function
is e�ective as a local search cost function for all DARP instances of all sizes. We believe our methodology is
broadly applicable to many combinatorial optimization problems. Our research on enhancement techniques
for local search combines aspects of previous work by Zhang and Dietterich [5], Boyan and Moore [1], Boyan
[2], Healy and Moll [3], and Healy [4].

The Dial-A-Ride Problem

DARP has the following formulation. A van is parked at a terminal. The driver receives calls from N cus-
tomers who need rides. Each call identi�es the location of a customer, as well as that customer's destination.
The van must be routed so that it starts from the terminal, visits each customer pick-up and drop-o� site,
and then returns to the terminal. For a tour to be feasible, every pick-up site must precede its paired drop-o�
site. The van has unlimited capacity. The objective of the problem is to minimize tour length.

We impose a neighborhood structure on the space of feasible solutions to a DARP instance. If s is a
legal tour, we write A(s) for the neighbors of s. Most prominent in our work is the \2-opt" neighborhood
structure of [7], in which two tours are neighbors if the �rst can be transformed into the second by reversing a
subsequence of site visits in the �rst tour. This neighborhood structure is highly non-uniform: neighborhood
size varies between O(N) and O(N2). A \3-opt" neighborhood structure also makes sense for DARP [8],
and the "3-opt" algorithm of [7], suitably modi�ed, is extremely e�ective but very slow.

Following [5, 1, 3], we note that secondary characteristics of feasible solutions can provide valuable infor-
mation for search algorithms. From the point of view of local seach, such characteristics can be important
components of a generalized cost function for hill-climbing. A value function, constructed using RL, and
associating, with every state, an estimate of performance along a local search trajectory starting from that
state, is precisely such a generalized cost function. Indeed, by adjusting the parameters of a function approx-
imation system whose inputs are feature vectors describing feasible solutions, a computationally tractable
RL algorithm can produce a compact representation of such an approximate optimal value function V .

Elaborating on this scheme, our approach operates in two phases. In the learning phase, a value function is
learned by applying the TD(�) algorithm to several thousand suitably normalized randomly chosen instances
of the problem. In the performance phase, the resulting value function, now held �xed, is used to guide local
search for additional problem instances. This approach is in principle applicable to any suitably coherent
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combinatorial optimization problem.

Enhanced 2-opt for DARP

In the learning phase identifed above, we conduct training episodes until we are satis�ed that the function
approximator's weighting scheme has stabilized. For each episode we select a problem size N at random
(from a predetermined range) and generate a random DARP instance of that size, i.e., we form a symmetric
Euclidean distance matrix by generating random points in the plane inside the square bounded by the points
(0,0), (0,100), (100,100) and (100,0). We set the \terminal site" to point (50,50) and the initial tour to a
randomly generated feasible tour. We then conduct a modi�ed �rst-improvement 2-opt local search using the
negated current value function, �Vk, as the cost function. The modi�cation is that termination is controlled
by a nonnegative parameter � as follows: the search terminates at a tour s if there is no s0 2 A(s) such that
Vk(s

0) > Vk(s)+ �. In other words, a step is taken only if it produces an improvement of at least � according
to the current value function. The episode returns a �nal tour sf . We next run one unmodi�ed 2-opt local
search, this time using the standard DARP cost function c (tour length), from sf to compute 2-opt(sf ).
We then apply a batch version of undiscounted TD(�) to the saved search trajectory using the following
immediate rewards: �� for each transition, and �c(2-opt(sf ))=SteinN as a terminal reward, where SteinN
is the estimated optimal tour for size N as calculated theoretically by Stein in [9].

We can now use the learned value function V in the performance phase, which consists of applying to
new instances the modi�ed �rst-improvement 2-opt local search with cost function �V , followed by a 2-opt
application to the resulting tour. The results described here were obtained using a simple linear approximator
with a bias weight and three features: normalized cost; normalized neighborhood size; and a third feature
we call proximity, which re
ects the positioning of the N=4 least expensive pairs of sites in a DARP tour.

Comparisons among algorithms were done at �ve representative sizes, N = 20, 30, 40, 50, and 60. For the
learning phase, we conducted approximately 3,000 learning episodes, each one using a randomly generated
instance of a size selected randomly between 20 and 60 inclusive. The result of the learning phase was a
reasonably stable value function V . Table 5 compares the tour quality found by six di�erent local search
algorithms. For the algorithms using learned value functions, the results are for the performance phase after
learning using the algorithm listed. Table entries are the percent by which tour length exceeded SteinN for
instance size N , averaged over 100 instances of each representative size. Thus, 2-opt exceeded Stein20 = 645
on the 100 instance sample set by an average of 42%. The last row in the table gives the results of using
the �ve di�erent value functions VN , for the corresponding N . Results for TD(�) appeared to be best with
� = :8. The learning-enhanced algorithms do well against 2-opt when running time is ignored, and indeed
TD(.8), � = 0, is about 35% percent better (according to this measure) by size 60. Note that 3-opt clearly
produces the best tours, and a non-zero � for TD(.8) decreases tour quality, as expected since it causes
shorter search trajectories.

Table 5: Comparison of Six Algorithms at Sizes N = 20, 30, 40, 50, 60. Entries are percentage above SteinN
averaged over 100 random instances of size N .

Algorithm N=20 N=30 N=40 N=50 N=60
2-opt 42 47 53 56 60
3-opt 8 8 11 10 10
TD(1) 28 31 34 39 40
TD(.8) � = 0 27 30 35 37 39
TD(.8) � = :01=N 29 35 37 41 44
TD(.8) � = 0, VN 29 30 32 36 40

The algorithm TD(.8) � = :01=N ran between 2 and 3 times longer than traditional 2-opt on problem
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instances in the range N=20-60; TD(.8) � = 0 ran 3 to 7 times slower. When performance is equalized
for time, both algorithms still outperform traditional 2-opt, and by size N=60 these algorithms are 30-
40% better. Thus a methodology that constructs a learned value function involving secondary problem
characteristics, and uses the value functiona as a generalized cost function for local search, can signi�cantly
enhance local search performance for combinatorial optimization problems.

Other DARP Case Studies

We also investigated two other learning-based enhancements to combinatorial optimization algorithms, again
using DARP as our test problem. We considered the rollout method [13, 12, 10], and we used it to extend
a very e�ective constructive DARP algorithm developed by Kubo and Kasugai [14]. Although our rollout
extension is extremely long-running, it signi�cantly outperforms the best algorithm reported in [14]. Indeed
even a drastically truncated rollout algorithm outperforms the Kubo-Kasugai algorithm at small problem
sizes.

Finally we considered a variation of the STAGE algorithm [1, 2] called the Expected Improvement
Algorithm, which uses the same control structure as STAGE, but which learns a di�erent hill-climbing
function|one that seeks to maximize the expected improvement over the best-so-far solution, rather than
just the expected value of hill-climbing. Our results here are preliminary and inconclusive, but we believe
that this approach shows promise as yet another learning-based technique for combinatorial optimization.

This research was supported by a grant from the Air Force OÆce of Scienti�c Research, Bolling AFB
(AFOSR F49620-96-1-0254).
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Stochastic Optimization with Learning for Standard Cell Placement

Lixin Su, Wray Buntine, and A. Richard Newton

University of California at Berkeley,

Introduction

Stochastic combinatorial optimization techniques, such as simulated annealing [2] and genetic algorithms [3],
have become increasingly important in design automation [4, 5] as the size of design problems have grown
and the design objectives have become increasingly complex. In addition, as we move towards deep-sub-
micron technologies, the cost function must often evolve over time or handle a variety of tradeo�s between
area, power, and timing, for example. Design technologists can often tackle simpli�ed versions of some of
these problems, where the objective can be stated in terms of a small number of well-de�ned variables, using
deterministic algorithms. Such algorithms may produce as good or even better results than the stochastic
approaches in a shorter period of time. Unfortunately, these algorithms run into a variety of diÆculties
as the problems scale up and the objective functions begin to capture the real constraints imposed on the
design, such as complex timing, power dissipation, or test requirements. Stochastic algorithms are naturally
suited to these larger and more complex problems since they are very general, making random perturbations
to designs and, in a controlled way, letting a cost function determine whether to keep the resulting change.

However, stochastic algorithms are often slow since a large number of random design perturbations are
required to achieve an acceptable result. They have no built-in intelligence and no ability to adapt their
performance in a particular problem domain. The goal of this research was to determine whether statistical
learning techniques can improve the run-time performance of stochastic optimization for a particular solution
quality, and in [1, 14] we demonstrated that for the problems we considered, the adaptive approach o�ers a
signi�cant improvement.

In our previous work presented in [1], we used a one-time, regression-based approach to train the stochastic
algorithm. We presented results for simulated annealing as representative stochastic optimization approach.
The standard-cell-based layout placement problem was selected to evaluate the utility of such a learning-
based approach, since it is a very well explored problem using both deterministic [6, 7, 8, 9, 10] as well as
\manually trained" stochastic approaches [11, 12, 13]. In our current work, we extended our approach to
incremental learning and we reported detailed results for a regression-based empirical, incremental approach
to learning in [14].

Stochastic placement algorithms have evolved signi�cantly since their initial application in the EDA
area over �fteen years ago [2]. Over that period, the qualities of results they can produce have improved
signi�cantly. For example, in the development of TimberWolf system [11, 12, 13], which is a general-purpose
placement and routing package based on simulated annealing, many techniques have been tried to speed
up the algorithm. They include reducing the computation time of each move, early rejection of bad moves,
the use of eÆcient and adaptive cooling schedules combined with windowed sampling, and hierarchical or
clustered annealing. In many ways, these variations and improvements can be viewed as \manually learned"
approaches, based on the application of considerable experimental as well as theoretical work taking place
over a long period of time. Commercial developments and other university-based work have also shown
signi�cant improvements over the early work in this area. In our work, we explore another opportunity
for improving the utility of a stochastic algorithm through automatic learning of the relative importance of
various criteria in the optimization strategy. We learn from previous annealing runs to distinguish potentially
good moves from bad ones. The good ones will be selected with a higher probability to expand the search.
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Technical Background and Approaches

We assume that the readers are already familiar with the simulated annealing algorithm. In the algorithm,
any perturbation of the current solution is called a move. A move can be either accepted or rejected depending
on the Boltzmann test. In Conventional Simulated Annealing (CSA), proposing of a move is totally random.

The primary goal of standard cell placement problem is to �nd positions on the chip for all the cells in a
net-list so that the estimated total wire length is minimized. A net-list is the result of logic synthesis in the
ASIC design 
ow. In the case of standard cell design, it represents a set of standard cells and their logical
connections (nets). As a constraint, the cells cannot overlap with each other in the �nal placement. For the
sake of simplicity, we also assume all the cells are of the same size in our experiments.

In most placement algorithms, the cost function, which is the estimate of the �nal total wire length, is
either linear or quadratic. As a common practice with simulated annealing, we de�ne the cost function as
the sum of half perimeters of bounding boxes of all the nets. The move set is de�ned as the pair-wise swaps.

We de�ned a feature vector of a swap as a real vector of seven components. Our learning machine is
a linear function of the feature vector. The parameters in the linear function were determined by linear
regression, either in a batch-mode [1] or incrementally [14].

The learned regression model was then used as an evaluation function judging the \goodness" of a swap.
More speci�cally, a randomly chosen set, which was a sub-set of the move set was formed �rst, and then
the \best" move selected from the chosen set using the evaluation function was given to the Boltzmann
test. The simulated annealing with this modi�cation is called Trained Simulated Annealing (TSA). If the
evaluation function is updated from run to run, it is called Incrementally Trained Simulated Annealing
(ITSA); otherwise if the evaluation function is trained in a batch-mode, it is called Batch-Mode Simulated
Annealing (BTSA).

Experimental Results

We did our placement experiments on a set of circuits taken from MCNC91 combinational benchmark set
[15], NCSU benchmark set [16] and ISCA89 sequential benchmarks [15]. The net-lists were synthesized using
SIS. For convenience, the MSU standard-cell library was used for generating the cell layouts.

Batch-Mode Learning

The test set was divided into two groups, Group 1 was used for the construction of regression models; while
Group 2 was used for the blind test.

As an initial test of the approach and to provide a control for later comparisons, we constructed individual
models for each of the circuits. The learning data were obtained by running CSA 5,000 times for each of
the circuits. Each individual model was applied to the circuit on which it was developed by running TSA to
see if the individual model is robust for the entire (much larger than the part each model was learned from)
solution space.

In the second phase of the experiments, we used simple averaging of the parameters across the test circuits
to build the overall general model. While there are more e�ective statistical approaches to the combination
of the individual models, simple averaging can be seen as a simple and sub-optimal approach. The general
(averaged) model was then applied to all the circuits in Group 1 by running TSA in order to see if the
general model works as well as the circuit's own individual model. Our experiment showed that TSA with
both the individual and the general model works equally well. For the same number of moves proposed to
the Boltzmann test, the annealing quality returned by TSA is at least 15-43% better than that returned by
CSA.

Next we tested the generality of the general model in a more signi�cant way. The general model was
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applied to circuits in Group 2, none of which were used in the training of the model. For the same number
of tested moves, TSA with the general trained model improved the annealing quality by 7- 41% compared to
CSA. Notice that quite a few circuits in Group 2 are 1-3 times larger than the largest circuit in the Group
1 training set.

To see the CPU time versus annealing quality trade o�, we changed the number of swaps proposed per
temperature to control the run time. Despite the overhead introduced in TSA, for the same amount of CPU
time, the annealing quality was improved from 12 to 22% for all the Group 2 circuits using TSA in contrast
to using CSA. For Group 1 circuits, the best percentage improvement of �nal quality ranged from 14% to
28%.

Over the years, researchers have found that a windowing approach, where the maximum distance between
cells in the candidate move is decreased as temperature decreases, tends to improve the overall run-time
performance of the annealing at little or no cost in the quality of the �nal result. Our experiment also
discovered that in the case of TSA, the average cell distance of the proposed swap automatically decreased
with the temperature; in contrast, in the case of CSA the average cell distance did not show any change.
Hence the general trained model, derived purely from the training runs on the test examples and without
any a priori hints, determined that a windowing approach would actually lead to an optimal utility result
and even predicted the optimal window size. Our approach indeed has automatically learned something
nontrivial!

Incremental Learning

First, we experimented with learning from run to run for a particular circuit. Since incremental learning
must start with an initial model, three di�erent initial evaluation functions were investigated: non-informative
(NI), batch learned (BL), and weighted non-informative (WNI).

In the case of using the NI initial model, ITSA is very e�ective in the sense that it achieved 10-27%
reduction (compared to CSA) in the average �nal cost function after a single new data point was used to
update the initial evaluation function. Information added to the evaluation function in the later runs did
not improve the annealing quality. But if we put less weight on the initial model, namely in the case of
using WNI initial model, the percentage improvement at the end of the 3rd incremental annealing run was
increased by up to 9.3% compared to that achieved in the former case. Similarly, after the 3rd incremental
learning run, the annealing quality converged to an almost maximum improvement. With the BL initial
model, the reduction compared to CSA in average �nal cost function at the end of the second run was
also signi�cant i.e. 2.69-33.45%, and even more, as the incremental learning went on, the reduction almost
approached the value achieved by BTSA.

Next, we experimented with learning from circuit to circuit. It was shown that the model learned from one
circuit can be safely applied to another circuit, and the improvement in annealing quality at the end of the
second incremental learning run was even 1-5% better than its best counterpart when a model incrementally
learned from the same circuit was used. It was also observed that initial evaluation functions learned from
many other circuits outperformed the ones learned from only one other circuit by up to 8%. Hence the more
hybridized the model, the better the annealing quality will be for new circuits. However, learning order did
make small di�erence too.

Conclusions and Future Work

We demonstrated that a stochastic algorithm, in this case simulated annealing can signi�cantly improve the
quality-of-results on a mainstream EDA application through e�ective incremental learning.

In the case of batch-mode learning, the annealing quality improvement was 15-43% for the set of ex-
amples used in training and 7-21% when the trained algorithm was applied to new examples. With the
same amount of CPU time, the trained algorithm improved the annealing quality by up to 28% for some
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benchmark circuits we tested. In addition, the use of the response model successfully predicted the e�ect
of the windowed sampling technique and derived the informally accepted advantages of windowing from the
test set automatically.

In the case of incremental learning, for a particular circuit, even at the end of the 2nd learning run, the
annealing quality was improved by 10%-27% compared to conventional simulated annealing in the examples
presented. This result was further increased by up to 10% by putting less emphasis on the initial value
of the evaluation function. In contrast to batch-mode learning, where a large data set must be obtained
for the training of a regression model from expensive learning runs, the non-informative initial model did
not cost any e�ort and resulted in almost identical improvement. In the case of learning from circuit to
circuit, our experiments showed that information learned from one circuit could be applied safely to another,
yielding a slightly (up to 5%) better result compared to the best case of using a model learned from the same
circuit. Moreover, learning from more circuits yielded even better results. However, the learning order did
make a di�erence in terms of annealing quality. Overall, we believe that this work has demonstrated that
a stochastic optimization algorithm, applied to at least some EDA problems, can signi�cantly improve its
performance by learning from its optimization history automatically. We believe the application of general-
purpose stochastic algorithms, with built-in general-purpose approaches to learning, could eventually form
the basis of a general and adaptive approach to the solution of a variety of VLSI CAD problems.

References

[1] L. Su, W. Buntine, A. R. Newton, and B. S. Peters. Learning as Applied to Stochastic Optimization
for Standard Cell Placement. In Proceedings of the IEEE International Conference on Computer Design:
VLSI in Computers & Processors, pages 622{627. 1998.

[2] S. Kirkpatrick, C. D. Gelatt, and Jr., M. P. Vecchi. Optimization by simulated annealing. Science,
220:671{880, 1983. 1993.

[3] David Edward Goldberg. Genetic algorithms in search. Addison-Wesley, 1989.

[4] D. F. Wong, H. W. Leong and C. L. Liu. Simulated annealing for VLSI design. Kluwer Academic
Publishers, 1988.

[5] Pinaki Mazumder, Elizabeth M. Rudnick. Genetic algorithms for VLSI design, layout & test automation.
Prentice Hall, 1999.

[6] M. Hannan, P. K. Wol� and B. Agule. Some experimental results on placement technique. In Proc. 12th
Design Automation Conference, pages 214{244. 1976.

[7] N. Quinn and M. Breuer. A force directed component placement procedure for printed circuit boards.
IEEE Trans. CAS, CAS-26:377{388, 1979.

[8] R-S. Tsay, E. S. Kuh, and C.-P. Hsu. PROUD: A fast sea-of-gates placement algorithm. In ACM/IEEE
Design Automation Conference, 1988.

[9] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. GORDIAN: VLSI placement by quadratic
programming and slicing optimization. IEEE Trans. CAD, CAD-10:356{365, 1991.

[10] Hans Eisenmann and Frank M. Johannes. Generic global placement and 
oorplanning. In IEEE/ACM
International Conference on Computer Aided Design, 1998.

[11] Carl Sechen and Alberto Sangiovanni-Vincentelli. The TimberWolf placement and routing package.
IEEE Journal of Solid-State Circuits, SC-20(2), 1985.

[12] Wern-Jieh Sun and Carl Sechen. EÆcient and e�ective placement for very large circuits. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 14(3), 1995.



Neural Computing Surveys 3, 1{58, 2000, http://www.icsi.berkeley.edu/~jagota/NCS 47

[13] William Swartz, et al. Timing driven placement for large standard cell circuits. In Proceedings of the
32nd Design Automation Conference, 211{215, 1995.

[14] Lixin Su, Wray Buntine, and A. Richard Newton. Stochastic Optimization with Incremental Learning
for Standard Cell Placement. Submitted to Design Automation Conference, 2000.

[15] Benchmark circuits released with SIS-1.2. Department of EECS, University of California at Berkeley.

[16] http://www.cbl.ncsu.edu/benchmarks.



Neural Computing Surveys 3, 1{58, 2000, http://www.icsi.berkeley.edu/~jagota/NCS 48

Collective Intelligence for Optimization
(Summary)

David H. Wolpert and Kagan Tumer

NASA Ames Research Center,

A \COllective INtelligence" (COIN) is a distributed set of interacting reinforcement learning (RL) algo-
rithms designed so that their collective behavior optimizes a global utility function. One can cast a COIN
as a multi agent system (MAS) where:

i) there is little to no centralized communication or control;

ii) each agent runs a `greedy' Reinforcement Learning (RL) algorithm, in an attempt to increase its own
utility;

iii) there is a well-speci�ed global objective function that rates the full system.

Rather than use a conventional modeling approach (e.g., model the system dynamics, and hand-tune
agents to cooperate), we aim to solve the COIN design problem implicitly, via the \adaptive" character of th
e RL algorithms of each of the agents. This approach introduces an entirely new, profound design problem:
Assuming the RL algorithms are able to achieve high rewards, what reward functions for the individual
agents will, when pursued by those agents, result in high world utility? In other words, what reward functi
ons will best ensure that we do not have phenomena like the tragedy of the commons , Braess's paradox, or
the liquidity trap?

An example of a naturally occurring COIN is a capitalist economy. One can declare `world utility' to be
a time average of the Gross Domestic Product (GDP) of the country in question. The reward functions for
the human agents can then be the achievements of their personal goals (usually involving personal wealth to
some degree). To achieve high world utility in any COIN it is necessary to avoid phenomena like the Tragedy
of the Commons (TOC), in which individual avarice works to lower global utility. One way to avoid such
phenomena is by modifying the agents' utility functions. In the context of capitalist economies, this can be
done via punitive legislation. A real world example of an attempt to make just such a modi�cation was the
creation of anti-trust regulations designed to prevent monopolistic practices.

In designing a COIN we have more freedom than anti-trust regulators though, in that there is no base-line
\organic" local utility function over which we must superimpose legislation-like incentives. Rather, the entire
\psychology" of the individual agents is at our disposal, when designing a COIN. This obviates the need
in designed COINs for honesty-elicitation (`incentive compatible') mechanisms, like auctions, which form a
central component of computational economics.

We have explored a mathematical framework for COIN design, and investigated the (successful) applica-
tion of that framework in several domains, e.g., optimizing the packet throughput of a telecommunications
network [10]. Here we present a summary of a di�erent investigation of our COIN methodology involving a
variant of Arthur's \El Farol" bar problem [1, 2, 4, 7, 8, 3], a problem which �rst arose in economics (see
[11, 9] for details). In the bar problem, at each time step each agent independently predicts, based on its
previous experience, whether a bar will be too crowded to be \enjoyable" at that time step. The agent then
uses this prediction to decide whether attending the bar or not will maximize its local utility. The global
objective in this problem is to keep the bar as close to capacity as possible. In this problem the \greedy"
nature of the agents can readily thwart the optimization of the world utility.

In the problem we investigated, there are N agents, each picking one of seven nights to attend a bar
the following week, a process that is then repeated. In each week, each agent's pick is determined by its
predictions of the associated rewards it would receive. Each such prediction in turn is based solely upon the
rewards received by the agent in those preceding weeks in which it made that pick.

The world utility is G(�) =
P

tRG(� ;t), where RG(� ;t) �
P7

k=1 �k(xk(�; t)), xk(�; t) is the total at-

tendance on night k at week t, �k(y) � �ky exp (�y=c); and c and the f�kg are real-valued parameters.
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Intuitively, this G is the sum of the \world rewards" for each night in each week. Our choice of �k(:) means
that when too few agents attend some night in some week, the bar su�ers from lack of activity and therefore
the world reward is low. Conversely, when there are too many agents the bar is overcrowded and the reward
is again low.

Each agent � has a 7-dimensional vector representing its estimate of the reward it would receive for
attending each night of the week. At the end of each week, the component of this vector corresponding to
the night just attended is proportionally adjusted towards the actual reward just received. At the beginning
of the succeeding week, to trade o� exploration and exploitation, � picks the night to attend randomly using
a Boltzmann distribution with 7 energies �i(�) given by the components of �'s estimated rewards vector, and
with a temperature decaying in time. This learning algorithm is similar to Claus and Boutilier's independent
learner algorithm [5].

We considered three agent reward functions, using the same learning parameters (learning rate, Boltz-
mann temperature, decay rates, etc.) for each. The �rst reward function was 
� = G 8�, i.e., agent �'s
reward function equals RG. The other two reward functions are: RUD;� � �d�(xd� (�; t))=xd� , RWL;�(� ;t) �

RG �RG(CL�), where d� is the night picked by �, and CL� is a function derived from COIN theory.

The RUD reward is a \natural" reward function to use; each night's total reward is uniformly divided
among the agents attending that night. RG is the \team game" reward function that has been investigated
in the MAS community [6]; every agent gets the world reward as its reward signal. RWL is the reward
function recommended by COIN theory.
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Figure 9: Average world reward convergence and scaling properties. In both plots the top curve is RWL,
middle is RG, and bottom is RUD .

The left-hand �gure in Figure 9 graphs world reward value as a function of time, averaged over 50 runs,
for all three reward functions. The naive choice of RUD actually leads to deterioration of performance
with time. Performance with RG eventually converges to the global optimum. Systems using RWL also
converged to optimal performance, but far faster (30 times as quickly). This slow convergence of systems
using RG is a result of the reward signal being \diluted" by the large number of agents in the system. The
right-hand �gure in Figure 9 shows how performance at t = 2000 scales with N . Systems using RUD perform
poorly regardless of N . Systems using RG perform well when N is low. As N increases however, it becomes
increasingly diÆcult for the agents to extract the information they need from RG.

In conclusion, the COIN framework summarized in this article addresses large distributed computa-
tional optimization tasks from a novel perspective, one that works much better than the other systems we
investigated.
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EÆcient Value Function Approximation Using Regression Trees

Xin Wang and Thomas G. Dietterich

Oregon State University,

Value function approximation is critical for the application of reinforcement learning in large state spaces,
such as those that arise in combinatorial optimization problems. The majority of successful applications of
reinforcement learning have employed neural network function approximators [5, 3], but these are slow and
often require substantial parameter tuning and special training methods to obtain good performance. For
example, to obtain successful results in resource-constrained scheduling problems, Zhang and Dietterich
[7] had to carefully adjust learning rates, output representations, experience replay, and reverse-trajectory
TD(�) training.

Table 6: Comparison of Value Function Approximation Methods

Irrelevant &
Function Approximator Bias Speed Scaling Discontinuities? Correlated Features?
Neural Networks Low Slow Good Ok Yes
Linear Functions High Fast Good No No
Local Linear Low Slow Poor Ok No
CMAC Medium Fast Poor Ok No
Regression Trees Low Fast Good Good Yes

Our goal is to develop a new family of function approximators that have low bias, high speed, good
scaling to high-dimensional input spaces, and the ability to represent discontinuous value functions and to
handle irrelevant and correlated input features. Table 6 summarizes the advantages and disadvantages of
various existing function approximator families according to these criteria. As the table shows, we have
chosen to focus on regression trees, because they show promise of doing well on all of these criteria.

Our regression trees are binary trees. Each internal node contains a splitting plane that divides the
feature space into two half-spaces corresponding the node's left and right child nodes. Each leaf node in the
tree contains a linear function de�ned over the feature space. Given feature vector x, its value is predicted
by \dropping" it through the tree, obeying the splitting plane at each internal node, and evaluating the
linear function at the leaf node.

There are three key steps in any regression tree algorithm: (a) choosing the splitting planes at the internal
nodes, (b) �tting the planes at the leaf nodes, and (c) halting tree growth.

Choosing Splitting Planes. We try to put splitting planes where there are discontinuities in the value
function. To avoid searching the in�nite space of splitting planes, we borrowed an idea from Hinton and
Revow's [4] decision-tree algorithm in which splitting planes are de�ned by taking the plane that lies mid-way
between two training examples. They considered all pairs of training examples belonging to di�erent classes,
and evaluated each of these candidate planes (by one-step lookahead) to choose the best one.

In reinforcement learning in deterministic (or nearly deterministic) state spaces, discontinuities in the
value function are found primarily between pairs of states (s1; s2) where s2 can be reached in one step from
s1. Our algorithm proceeds by randomly drawing a sample of 50 such pairs and constructing the plane that
is the perpendicular bisector of each pair. Each splitting plane is evaluated by one-step lookahead. The
training examples at the current node are partitioned according to the splitting plane, and the two resulting
sets of points are �tted with linear surfaces as described below. The split that gives the best overall �t is
chosen.

Fitting Linear Functions to the Leaf Nodes. In supervised learning, the usual practice is to �nd
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the function V̂ that minimizes the squared error between the predicted and the actual values. We will call
this the supervised error:

E1 =
X
s

h
V (s)� V̂ (s)

i2
: (1)

This method has been applied in reinforcement learning (e.g., [2]), but even if V̂ is a good approximation to
V , the action recommended by V̂ can still be much worse than the action recommended by V . The problem
is that unless the learning algorithm can reduce the supervised error to zero, V̂ will not be a solution to the
Bellman equation, and this is a requirement for producing an optimal policy.

To solve the Bellman equation, we can try to minimize the Bellman error:

E2 =
X
s

 
V̂ (s)�max

a

X
s0

P (s0js; a)[R(s0js; a) + V̂ (s0)]

!2

: (2)

This is the basis of TD(�) and related algorithms. However, if V̂ cannot represent this solution exactly, the
action recommended by V̂ may not be optimal.

Baird [1] suggested minimizing the Advantage Error, which we can write as follows. Let Q(s; a) be the
return of performing action a in state s:

Q(s; a) =
X
s0

P (s0js; a)[R(s0js; a) + V (s0)]: (3)

Let abest be the action that has the highest Q value. Then the advantage of performing action a in state s
is de�ned as

A(s; a) = Q(s; a)�Q(s; abest): (4)

The advantages of all actions except abest are negative. We can then de�ne the squared advantage error to
be

E3 =
X
s

X
a

�h
Q̂(s; a)� Q̂(s; abest)

i
+

�2

(5)

where the notation [x]+ is 0 if x is negative, and x if x is positive. Hence, if the predicted advantage of a is
positive, then we have an error (since all advantages should be negative or zero), and we square that error.

To train the leaves of the regression tree, we combine all three error terms to give a weighted composite
error

E = !1E1 + !2E2 + !3E3: (6)

Here, the !i � 0 control the relative importance of the supervised, Bellman, and Advantage error terms.

Stopping Rule. If the improvement in the composite error between a parent node and its children is
less than 5%, then tree growth is halted.

We tested our regression tree algorithm on the ART-1 set of resource-constrained scheduling problems
developed by Wei Zhang [8]. For each of the 25 training problems, we applied a simple greedy heuristic
developed by Zhang to guide a beam search (beam width 20) to �nd a single \best" path from the starting
state to a feasible solution. We then grew a regression tree from these \best paths" (and all one-step
departures from the best path) using the algorithm outlined above. The values of the !'s were chosen to
optimize performance on 25 validation problems. Finally, the learned regression tree was applied to solve 50
test problems and compared to the solutions found by Wei Zhang's neural network value function. Figure 10
summarizes the results.

The regression tree gives better results for 23 problems, gives the same result for 3, and gives worse
results for 24. A 2-sided t test cannot reject the null hypothesis that the two function approximators are
giving the same performance (p = :84).
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Figure 10: Regression tree (1 best path and using RDF) vs. Neural net on test set; points below the line are
problems where the regression tree gave a better solution than the neural network.

Table 7: Importance of Individual Terms in the Composite Objective Function

Regression tree vs. Neural net
Supervised Bellman Advantage win tie lose

yes yes yes 23 3 24
no yes yes 1 0 49
yes no yes 14 3 34
yes yes no 11 1 38
yes no no 4 0 46
no yes no 3 0 47
no no yes 6 0 44

Table 7 shows that each of the three terms is essential in order for the regression tree to match the
performance of the neural network.

The �nal question we address is training time. According to our most recent measurements, the training
time for the regression trees on the ART-1 problem set is about a factor of 10 faster than for the neural
network. On more diÆcult problem sets, we expect the di�erences to be more dramatic.

The results of this initial study are promising. However, before we can apply regression trees to large
combinatorial optimization problems, we need to address three major problems. First, our algorithm re-
quires supervised values for the states in the training data. For ART-1, we have a good heuristic, but for
other problems, a better method is needed for �nding supervised values. Second, our algorithm is a batch
algorithm. We need some way to interleave exploration with function �tting (e.g., by making the method
more incremental). Finally, our current splitting rule assumes that all features are equally relevant (and
uncorrelated). We need to improve the rule to perform some kind of feature selection during splitting so
that irrelevant and correlated features can be detected and ignored.
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Numerical Methods for Very High-Dimension Vector Spaces

T. Dean, K.E. Kim, and S. Hazlehurst

Brown University,

There is a large class of numerical optimization problems that can be described in terms of equations
involving vectors and matrices. One example that we use throughout this short overview is the problem of
�nding an optimal or near-optimal policy for a Markov decision problem (MDP). MDPs constitute a stochas-
tic generalization of the deterministic propositional planning problems studied in arti�cial intelligence [3].
The objective functions and solution methods for MDPs are often characterized in terms of matrix-vector
equations [5].

Consider calculating v de�ned as v = Au, in which A is an n � n matrix and u and v are vectors of
dimension n. The matrix A might be the adjacency matrix for a graph representing a database relation or the
state-transition matrix for a planning problem and u might be the speci�cation of vertices corresponding to
a query or the initial-state distribution. Often enough, we are interested in solving problems where n = km

for some m and k � 2. Of course, if m is large, we probably can't represent v = Au explicitly by allocating
space for each entry of A, u, and v. But what if A, u, and v are \symmetrical" or \regular" in some sense?
For example, sparse matrix representations exploit certain types of symmetries for problems in which O(n)
is acceptable (and hence m is relatively small) but O(n2) is not. In this work, we are interested in a di�erent
class of regularities for problems in which m is large and O(n) time or space is out of the question.

In many of the optimization problems encountered in arti�cial intelligence, including the problem of
�nding optimal policies for MDPs, the matrices and vectors can be quite large. In particular, it is often
the case that the number of indices (and hence the size of a matrix, say, if represented as simple table) is
exponential in the size of the problem description.

For example, in the case of factored MDPs [1], if we were to allocate space for each entry, the sizes of the
state-transition matrix and the reward vector would be exponential in the number of state variables used to
describe the domain. In many cases, however, there are representations for these large matrices and vectors
that allow us to encode these objects in a compact and tractable form. In the following, we describe one
such representation based on trees that works well for MDPs.
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Figure 11: Compact representation for a robot action

Figure 11 depicts a compact representation for the state-transition probability distribution for an action
in a simple robot domain modeled as an MDP [2]. We de�ne R;U;W;HC;WC as (boolean) index (or state)
variables representing, respectively, the weather outside being rainy, the robot having an umbrella, the robot
being wet, the robot holding co�ee, and the robot's boss wanting co�ee. The network shown on the left in
Figure 11 indicates the functional dependencies involving these variables. The tree structures on the right
indicate the transition probability distributions for each index variable given its parents as determined by
the network on the left.
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Figure 13: Computing an entry in a state-transition matrix

Let Z = [R;U;W;HC;WC] denote a vector z 2 f0;1g5. z determines the index into the vectors
and matrices of the original problem. Two indices are said to be equivalent with respect to value if their
corresponding entries are the same. This equivalence relation induces a partition on the set of all indices.
Ideally, we would only want to allocate an amount of space polynomial in the number of index variables
for each block in this partition | this amount of space would have to suÆce for both the value of the
entry (common to all of the entries) and for the representation of the block. Fortunately, in some cases,
we can represent large blocks of indices quite compactly, e.g., we might interpret the formula WC ^HC as
representing the set of all indices in which WC is assigned 1 and HC is assigned 0. Note that in Figure 12
which depicts the reward vector (function) for the robot problem as a tree, we have achieved economy of
representation by exploiting independence involving the index variables, e.g., if WC is 1, then the entry of
the vector is independent of the value of W .

We can represent large matrices in a similar manner. The probability of ending up in one state having
started from another is determined as the product of the values found in the transition probability trees.
Figure 13 shows the formula for a particular entry in the state-transition probability matrix. Note that
although the dimension of the vectors and matrices is exponential in the number of index variables, retrieving
a particular entry can be done in time polynomial in the size of the representation.

Once we can actually write down the equations for the underlying optimization problem in terms of
matrices and vectors, there remains the problem of carrying out the basic operations, e.g., transposing
matrices, computing vector-vector and matrix-vector products, and raising a matrix to a power, that are
required to implement various numerical methods. In [4], we describe procedures for carrying out the basic
operations on vectors and matrices represented in terms of trees; in the following, we provide an example to
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illustrate the basic idea.

Generalizing on the work of Boutilier et al. [2], we de�ne vector addition, inner product, and matrix-
vector multiplication operators in terms of a basic tree grafting operator. In Figure 14, we show how vector
addition is carried out. Note that the operation is carried out without explicitly enumerating all the entries
in the vector. Hence, we use the term structured for linear algebra operators and numerical algorithms built
on these operators. By implementing linear algebra operators using these structured operations, we can, for
example, apply Richardson's method, various extrapolation methods, conjugate gradient descent, and a host
of other numerical algorithms to problems involving very large matrices and vectors.

In some cases, the vectors or matrices that result from carrying out basic operations can be larger than any
of the matrix or vector terms involved in the operations. In the worst case, the most compact representation
for the result of a computation involving k terms can be of size exponential in k. To deal with this potential
for combinatorial explosion, we apply techniques from machine learning and data compression to control the
size of the intermediate and �nal results of performing operations on matrices and vectors. In the case of
trees, these methods work by pruning the leaves of trees, thereby merging blocks in the partitions that are
implicit in the tree data structures.

By keeping track of bounds on the values of the entries for indices in each block of the partitions, we
can report bounds on the error in the �nal results. Standard pruning techniques such as those presented
in [6] can be applied to elementary structured operations to produce approximate structured operations. In
much the same way as �nite-precision arithmetic introduces errors in computer implementations of numerical
methods, approximate operations on matrices and vectors introduce errors and thus require careful analysis
with respect to convergence and precision [7]. Under reasonable assumptions, we can guarantee that the
resulting approximations converge and the error (the di�erence between result from the algorithm using the
approximate structured operators and the true answer) is bounded.

The contributions of this work include data structures for representing very large matrices and vectors,
a set of procedures that operate on these data structures, and a set of analytical methods that enable us to
apply a wide range of numerical methods based on linear algebra directly to the solution of combinatorial
optimization problems involving very large matrices and vectors.
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