Using Machine Learning Techniques to Investigate Tornadogenesis
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Motivation

Tornado warning lead times and POD have stalled in recent years
Computational capabilities have increased, providing finer resolution
simulations, but data cannot be analyzed using traditional techniques
Machine learning & data mining can find patterns in large data sets
Goal: identify precursors of tornadoes in high-resolution simulations
of supercells and tornadoes using machine learning/data mining
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Method

Generate high-resolution simulations of
supercell thunderstorms by varying initial
environmental conditions from known
tornadic environments (Cintineo and
Stensrud 2013, Dahl 2014)

Identify and extract high-level objects
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Apply machine learning/data mining to the high-level data
Analyze and verify results
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Identifying High-level objects

Most objects extracted using thresholds
Rotating objects use VDAC (Potvin, 2013)

Mesocylone requires: 1 detection in 2-4 km and at Updraft -1

least 4 total in 0-8 km, all greater than 750 m in P wz15ms
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Tornado object requires: 1 VDAC detection at 100 m — —

and at least one more detection between 500 m and Radar reflectivity dBZ = 40
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_ . VDAC (10 ms™)
Tornadic storm: low-level mesocyclone object (lowest

height <= 2 km) co-located with a tornado object, both
of which last at least 60 seconds

Tornado-failure storm: low-level mesocylone object
without a tornado object

Training data taken from 30 minutes prior to start of
tornado or low-level mesocyclone

VDAC (10 ms'?)

Preliminary Results

* Data: 34 tornadic storms, 21 tornado-failures

* Results averaged over 30 runs (different training/test sets)

* Measured performance using Area Under Receiver Operator
Curve (AUC)

Example tree from a SRRF

Overall performance

Most frequently chosen question types and objects

Vector Field Vorticity Positive Mesocyclone 24.2%
Vector Field Vorticity Negative Mesocyclone 12.7%
Vector Field Positive Mesocyclone 10.4%
Deformation

Vector Field Divergence Positive Mesocyclone 6.5%
Vector Field Negative Mesocyclone 5.1%
Deformation

Array Temporal Updraft 5.1%
Duration

Array Shapelet Updraft 4.8%
Vector Field Vorticity Updraft 3.4%

High-resolution simulations

CM1 (Bryan and Fritsch 2002)

100 m horizontal resolution in
center (125 km)

Nested grid to 400 m at edges
Stretched vertical grid (40 m to 500
m)

1536 x 1536 x 99 = 234 million
model grid points

Data saved every grid point every
30 seconds of simulated time

Composite reflectivity at time 7320
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Spatiotemporal Relational Random Forests

SRRF is a Random Forest style algorithm composed of Spatiotemporal
Relational Probability Trees (SRPT) (McGovern et al 2014 & to appear)
SRPT: Decision tree type algorithm, probability estimation tree
Each tree can make spatial, temporal, and spatiotemporal splits
* Scalar Attribute: Is there an updraft with maximum speeds >= 25 m/s? Y N
¢ Temporal Exists: Is there a storm object that lasted at least 20 minutes?
* Array Attribute: Did the updraft ever get larger than 20km3?
* Array Attribute Temporal Duration: Did the updraft maintain a volume of
at least 20 km? for 5 minutes?

* Array Partial Derivative: Did the strength of the updraft double within 5
minutes?
Scalar Field Attribute: Is the temperature in the near storm environment
always greater than 80?
¢ Shapes:

* Can split on the shape of 2 and 3 dimensional objects

* Can split on how 2 and 3D shapes change over time

* Can split on the spatial relationships between 2 and 3D shapes
¢ Time:

* Can split on the temporal relationship between pairs of objects

* Did a downdraft with a strength of at least -10 ms™ appear before

the updraft reached a strength of 20 ms??

Adapted from Brandes (1984)

Current work

* Refining object definitions (tornadoes, gust fronts, etc)

* Generating additional simulations of both strong and weak
storms

* Refining our post-processing and data mining pipeline to handle
the volume of big data
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