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ABSTRACT

We analyze publication patterns in theoretical high-energy
physics using a relational learning approach. We focus on
four related areas: understanding and identifying patterns
of citations, examining publication patterns at the author
level, predicting whether a paper will be accepted by spe-
cific journals, and identifying research communities from the
citation patterns and paper text. Each of these analyses
contributes to an overall understanding of theoretical high-
energy physics.

1. INTRODUCTION

We identify interesting patterns and relationships in the the-
oretical high-energy physics publishing community (hep-th).
We focus on several high-level questions:

e Can we predict why some papers receive more citations
than others? What are the trends?

e What factors contribute to an author’s influence? Can
we predict potential award winners?

e What factors are important for predicting whether a
paper will appear in a journal?

e Can we identify schools of thought or communities in
theoretical high-energy physics? Who are the most
authoritative authors for each community?

These questions and others are answered in Sections 3 through
6. Findings include:

e Approximately 26% of the people in hep-th wrote the
papers that received 80% of the citations.

e Edward Witten is the most influential author in theo-
retical high-energy physics.

e Papers with a single author are less likely to be pub-
lished in journals than papers with more authors.

e Authors tend to prefer particular journals, that is, a
journal is autocorrelated through authors.

e Authors tend to publish within topics (i.e., topics are
also autocorrelated though authors).

2. DATA REPRESENTATION

We use a relational representation where the data is rep-
resented by an attributed graph, G = (V, E, A(V), A(E)).
Objects, such as authors, journals, and papers, are repre-
sented as vertices in the graph. Relations between these ob-
jects, such as published-in(paper, journal), are represented
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Figure 1: Schema extracted from abstracts and citations.
Objects are represented by vertices and relations by edges;
numbers in parentheses are object and relation counts.
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by edges between the objects. For a given relation (o1, 02),
01,02 € V and r € E. Attributes are associated with ob-
jects, A(V'), such as author.last-name, or edges, A(E), such
as authored.rank.

Figure 1 shows the objects and relations, along with their
counts in the database. Details on the attributes and how we
extracted them from the hep-th data are given in Appendix
A. The process of author consolidation (i.e., determining if
the John Smith who wrote paper 1 is the same person as
the J. Smith who wrote paper 2) was greatly facilitated by
the relational structure [1] (details in Appendix B).

3. CITATION ANALYSIS

Our first analysis considers the papers and citation relations
between them. We identify patterns and correlations in the
data and use them to understand why some papers are more
popular than others. We also build a relational model to
predict popular papers.

3.1 Citation Graph Analysis

The citation graph comprises 1,928 separate connected com-
ponents. The largest contains 27,400 papers, while the oth-
ers contain 10 or fewer papers. The growth in popularity of
arXiv and hep-th (1397 papers submitted in 1992 and 3312
in 2002) and the limited time frame of the data set cause
edge effects on the early and late years (Figure 2a). We often
concentrate on the more stable middle years. We break both
bibliographic references and citations into self and non-self
categories. A self citation or reference means that the two
papers share at least one author. Eighteen percent of the
citations in hep-th are self citations. An average of 28% of
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Figure 2: Temporal citation and reference patterns for papers submitted to arXiv. (a) Total number of non-self and self
citations and references by year. (b) Citations patterns since papers were submitted to arXiv. (c) Citation patterns for

published versus unpublished papers.

Author of Num. in Num. in Non-self
authority papers top 10 top 50 citations
Edward Witten 4 14 18716
Juan M. Maldacena 2 6 8076
Steven S. Gubser 2 4 5067
Igor R. Klebanov 1 4 5843
Leonard Susskind 1 4 5526
Joseph Polchinski 1 4 5535
Paul K. Townsend 1 3 4991
Stephen H. Shenker 1 2 2300
Michael R. Douglas 0 5 5787
Nathan Seiberg 0 3 9911
Cumrun Vafa 0 3 8594
Andrew Strominger 0 3 6480
Petr Horava 0 2 1936
Daniel Z. Freedman 0 2 1874

Table 1: Authors of the top 10 and top 50 most authoritative
papers and the total number of non-self citations that these
authors have received in hep-th.

a paper’s references cite its authors’ past work and 34% of
a paper’s citations are from its authors.

Because papers are often submitted to hep-th before they are
published in a journal, we hypothesized that papers might
receive citations in two peaks. A paper could be cited by
other papers in hep-th as soon as it was submitted to arXiv
and again after being published in a journal. Figure 2b
shows the number of citations that each paper received fol-
lowing its submission to arXiv. Looking at the overall mean,
papers generally receive the most citations in the year fol-
lowing submission to arXiv. This peak likely coincides with
journal publication as the average time from a paper ap-
pearing on arXiv to journal publication is one year. Papers
also receive an average of two citations in the year prior to
journal publication, demonstrating arXiv’s effectiveness at
disseminating results quickly. The pattern of citations for
papers submitted to arXiv in 1992 peaks two years after
submission. This delay can be explained by arXiv’s grow-
ing popularity as use of the Internet grew. The number of
citations increases more quickly in later years due to the
larger number of authors with Internet access.

Figure 2c shows the average number of non-self citations for
papers that have been published in a journal versus unpub-
lished papers. Published papers have a significantly higher

Author of Num. in Num. in Non-self
hub papers top 1% top 5% references
Igor R. Klebanov 15 31 5843
Arkady A. Tseytlin 10 29 5352
Steven S. Gubser 9 28 5067
Ofer Aharony 8 19 2307
Clifford V. Johnson 6 21 1615
Alberto Zaffaroni 6 13 1369
Washington Taylor IV 6 7 2115

Table 2: Authors of the top 1 and top 5 percent hub pa-
pers and the total number of non-self references that these
authors have made.

average non-self citation rate than papers that appear only
on arXiv. This indicates that either journal publication is
still important in increasing a paper’s visibility or authors
writing highly cited papers still seek journal publication.
The hubs and authorities algorithm [5] was used on the ci-
tation graph to identify authoritative papers and potential
review papers. A hub points to many authorities. This is
likely to be a review paper. An authority is pointed to by
many hubs. Once we identified the most authoritative pa-
pers, we examined the authorship for these papers. Table 1
shows the authors who have written at least two of the top
10 and top 50 most authoritative papers. As many of these
names appear again when we study influential authors, we
discuss their specifics in section 4. The authors of these
highly authoritative papers include a number of award win-
ners and they hail from prestigious institutions.

We were interested in the question of whether some authors
write mostly review papers. Table 2 shows authors who have
written top hub papers. No author has written more than
one of the top 10 or top 50 hub papers but several authors
appear as frequent authors in the top 1% and top 5% of
hub papers. Table 2 contains no major award winners and
represents a slightly different list of institutions than Table
1. The top three authors on this list are frequent co-authors.

3.2 Citation Data Dependencies

To better understand what makes papers popular, we ex-
amined correlations in the citation data. For discrete at-
tributes, we used corrected contingency coefficients; for con-
tinuous attributes we used correlation coefficient[11]. Ta-



Attribute 1 Attribute 2 Score
For paper

Paper authority score # of citations 0.85

arXiv area References (binned) 0.68

Hub score # of references 0.62

# downloads first 60 days # of citations 0.57

Is paper published Citations (binned) 0.46

For author
# of distinct coauthors 0.85
# of non-self citations 0.59

# of publications
# of distinct coauthors

Table 3: Selected correlation scores between attributes.

Attribute Through Score
arXiw area of paper Author 0.72
Journal name Author 0.69
# downloads first 60 days Author 0.55
Clustered topic of paper Author 0.54
Coauthor authority score =~ Paper 0.74
arXiv area of cited paper  Paper 0.70
# of coauthors Paper 0.45
# downloads first 60 days Journal 0.42

Table 4: Selected autocorrelation scores.

bles 3 and 4 list significant correlations in the data. Results
from these tables are discussed throughout the paper. All
reported correlations are significant (p < 0.0001).

For example, the number of times that a paper is down-
loaded is correlated with the number of non-self citations
of that paper. This is not surprising as one expects more
frequently downloaded papers to be cited more frequently.
In addition to correlations among variables of a single object,
we also measured autocorrelation throughout the data graph
[2]. Autocorrelation is a statistical dependency between the
values of the same variable on related objects, also known
as homophily [6]. For example, the number of downloads of
a paper is autocorrelated through authors. This means that
if one of an author’s papers is frequently downloaded, other
papers by the same author are likely to be downloaded.

3.3 Predicting Popular Papers

We used relational probability trees (RPTs) [9] for several
classification tasks. The resulting relational models enhance
our understanding of the publication patterns in hep-th. For
each task, we sampled papers temporally, training the model
on papers from one year and testing on the following year’s
papers. To avoid edge effects, we considered only papers
from 1995 to 2000. The model considered features of papers,
their referenced papers, authors, and other past papers writ-
ten by the authors. Example attributes include the number
of pages and the author’s number of past co-authors and
number of past publications. Attributes were calculated for
each temporal sample. To predict the class label on a pa-
per submitted in 1997, the model considered the history of
related objects through 1996.

The first modeling task involved predicting the number of
non-self citations a paper will receive. We categorized the
number of non-self citations into quartiles: {0-1, 2-5, 6-14,
>14}. Default classification accuracy is approximately 25%.
Over 5 training/test splits, RPT models achieved an average
accuracy of 44%. Although 44% is not a high accuracy, it is
notable that we could achieve this based solely on the infor-
mation in hep-th, which does not account for such important
factors as paper quality.

One reason we chose to use RPT models is their selectivity.
We can examine the features chosen by the trees and identify
the most relevant features for the classification task. The
RPT models estimated that a paper has a 0.85 probability
of receiving more than 14 non-self citations if 1) the paper
has more than 8 references, 2) the authors have at least
2 past papers with more than 8 non-self citations, 3) the
authors have at least 25 past papers (each at least 15 pages
long), and 4) at least 30% of the cited work is unpublished.

4. AUTHOR ANALYSIS

The second part of our analysis focuses on authors. We
examine the overall structure of the author subgraph and
extend this understanding to identifying influential authors.
We define several measures of influence and build a rela-
tional model to identify and predict award-winning authors.
Finally, we identify potential award winners.

4.1 Co-Author Graph Analysis
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Figure 3: (a) Percent of the author graph that is one, two,
and three links away from several sets of the top 1% of au-
thors as well as from a random sampling of 1% of authors.
(b) Percent of the author graph that is 1, 2, and 3 links away
from Edward Witten versus the average author.

We found that the high-energy physics community is tightly
knit. In the graph of authors linked by co-authored rela-
tions, 7304 of the total 9200 authors belong to a single con-
nected component. As with the paper graph, other com-
ponents are all small (15 or fewer authors). When we nar-
rowed this set of authors to authors who wrote the top 1%,
5% and 10% of the authoritative papers, we found that the
vast majority of the authors remained connected. This pro-
vides evidence for the idea that influential scientists train
the up-and-coming influential scientists in their labs, either
as students or post-doctoral fellows [4].

We also found that authors whose papers are highly cited or
have many distinct co-authors are more central to the author
graph than randomly selected authors. Figure 3 shows the
percentage of authors who are 1, 2, and 3 links away from
authors who wrote the top 1% of authority papers, authors
who have received the top 1% of non-self citations and the
top 1% of authors who have co-authored with different peo-
ple. These numbers are compared to 10 random samplings
of 1% of the authors. Each of these sets of influential au-
thors is linked to a higher percentage of authors through co-
authored relations than the random baseline. We also show
that the average degree of separation from Edward Witten,
who consistently shows up as the most influential author in
hep-th, is significantly lower than the average author.
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Figure 4: Cumulative percent of non-self citations received
(a) per author and (b) per paper.

Before building a quantitative measure of an author’s in-
fluence, we examined the data for general trends. From
1995 through 2000, 6405 authors submitted papers to hep-
th. These authors each wrote 5 papers on average with a
median of 2. Sergei Odintsov (with 92 papers) and H. Lu
and C.N. Pope (each with 84) topped the distribution. Of
the papers submitted to arXiv in this period, each author
published an average of 4 papers in journals. Authors re-
cieved an average of 76 non-self citations, with a much lower
median of 7. The top 10% of authors averaged 140 non-self
citations. As seen in Table 5, the top authors produce high
numbers of papers by co-authoring widely and frequently.
The average number of distinct co-authors is 5.5.

The 80/20 rule or Pareto’s Principle states that, in power
law distributions, 80% of the mass is generally due to only
20% of the values (whether in science or other domains)[10;
7]. We investigated this rule in theoretical high-energy physics
by examining the number of non-self citations per paper and
per author. In the hep-th data, 80% of the non-self-citations
go to 17.8% of the papers and 26.3% of the authors wrote
these papers. Counting by author, 10.3% of the authors
received 80% of the non-self citations. Both of these distri-
butions are shown in Figure 4.

4.2 Author Data Dependencies

Tables 3 and 4 summarize the trends and dependencies for
authors. The number of an author’s publications is cor-
related with the number of citations that the author re-
ceives. Authors who have more citations may publish more
frequently or people who publish more papers may receive
more citations. Perhaps more surprising is that an author’s
number of publications is correlated with the number of dis-
tinct co-authors of that the author. This indicates that fre-
quently published authors do not tend to work repeatedly
with the same set of co-authors but with new people.
Contrary to our expectation, authors who write authori-
tative papers do not write other authoritative papers. A
paper’s authority score is not autocorrelated through au-
thor which means that most authors will write only a few
authoritative papers.

Information about the research styles of authors can be
gained from autocorrelation scores. For instance, the num-
ber of distinct coauthors is autocorrelated through papers,
which means that if you publish with other authors who pub-
lish with many distinct people you are also likely to publish
with many distinct people. Also, an author who publishes a

(a) Overall co-authorships

(b) Distinct co-authorships

Author Count Author Count
C.N. Pope 337 Cumrun Vafa 63
H. Lu 325 Gary W. Gibbons 60
S.D. Odintsov 296 Jan de Boer 56
Sergio Ferrara 233 Sergio Ferrara 55
Mirjam Cvetic 231 Antoine Van Proeyen 55

Table 5: (a) Authors who most frequently co-author. (b)
Authors who frequently co-author with different people.

. Number of non-self citations received

Total number of citations received

Number of papers written

Number of papers published in journals
Number of papers with over 12 citations
Number of co-authorships

Number of distinct co-authors

. Average non-self citations per paper

9. Maximum non-self citations received on any paper
10. Percentage of papers published

11. Percentage of papers with over 12 citations

L

Table 6: Measures of author influence

paper in a particular journal is likely to publish other papers
in that journal.

4.3 Analyzing Author Influence

We hypothesized that author influence (overall reputation
and impact) could be estimated using the measures shown
in Table 6.

We evaluated the measures by using each to rank the authors
who submitted papers from 1995 to 2000 and counting the
number of award winners listed in the top 100 authors. We
hand-identified 55 winners of prestigious awards, including
Nobel prize winners, MacArthur Foundation fellows, Dirac
fellows, Guggenheim fellows, Fields medal winners, and Al-
fred P. Sloan Foundation winners. Most of the measures
performed about equally well, finding around 10 award win-
ners. Measures 1 and 2 did best, with 14 winners. We chose
measure 1 to be our canonical influence measure!. Table 7
shows the top authors under measure 1 and their citation
counts. Heading the list, Edward Witten is a MacArthur
Foundation fellow, a Fields medalist, and a Dirac fellow.
Juan Maldacena, also a MacArthur Foundation fellow, is a
younger researcher and looks quite likely to become the most
cited author as he continues his research.

Surprisingly, measures 10 and 11, which indicate an author’s
consistency of success, performed poorly in our validation,
identifying 2 or fewer winners. Closer inspection shows that
perfectionism is not the key to success. The percentage of
papers published in journals varied widely among award-
winners, from 100% to 0%, although the top 50% of in-
fluential authors did have a higher rate (88%) of journal
publication than the bottom half (67%). Figure 5a shows
a scatter-plot of measure 10 versus influential authors. The
high variance at 100% explains the poor performance of this
measure. This also occurs with measure 11. In both cases,
the problem is that one out of one paper satisfying the mea-

IThis is also used by the popular research tools Citeseer:
http://citeseer.nj.nec.com/mostcited.html and ISI Essential Sci-
ence Indicators: http://www.in-cites.com.



Author Non-self # papers ‘Won

citations award?
Edward Witten 13806 59 Y
Juan M. Maldacena 7334 39 Y
Cumrun Vafa 6578 55 Y
Nathan Seiberg 6258 45 Y
Andrew Strominger 5371 44 N
Michael R. Douglas 5089 24 Y
Igor R. Klebanov 5063 51 N
Joseph Polchinski 4815 25 Y
Steven S. Gubser 4812 31 Y
Ashoke Sen 4201 51 N

Table 7: Top-cited authors, based on papers 1995-2000
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Figure 5: (a) Author influence vs. percent of papers pub-
lished. (b) Author influence vs. distinct co-authors

sure yields a higher rank than 19 out of 20 papers satisfying
it.

Figure 5b examines the correlation between measures 1 and
7. Authors with high citation counts write both frequently
and widely. Collaborating with 10-15 other people is typical.
Anyone with over 30 co-authors is almost certain to be in
the top 10% of influential authors; presumably one must
be extremely well-regarded to attract that kind of demand
by collaborators. In the top 10% of influential authors, no
one writes alone, and of the top 100 authors, only Donam
Youm has fewer than 10 distinct coauthors. Table 5 displays
authors with high co-author counts.

We wondered if a different combination of features could
better separate award-winners from other authors. To in-
vestigate this, we built an RPT using the set of 55 award
winners and a random sample of 55 non-award winners. We
performed 10-fold cross validation and achieved an average
accuracy of 78% with an area under the ROC curve (AUC)
of 0.75. The tree chosen most frequently is shown in Figure
6. The first split in the tree, the author’s authority score, is
based on the score assigned by the hubs and authorities algo-

(Author authority score > 5.3E-7)
)/ N

Author has 0 non-self citations

between 1995 - 2000 P(+)=0.28
Y N
P(+) = 0.27 P(+) = 0.81

Figure 6: RPT built to predict award-winning authors.

rithm over the undirected co-author graph.? This roughly
indicates authors who co-author frequently and whose co-
authors also co-authored frequently.

Informed by the features in the tree as well as by our other
analyses, we conjecture that some of the following highly
cited authors may soon receive recognition: Andrew Stro-
minger, Igor R. Klebanov, Ashoke Sen, Arkady A. Tseytlin,
Paul K. Townsend, Gregory Moore, and Hirosi Ooguri.

S. PUBLICATION ANALYSIS

Influential authors are more likely to have their papers ac-
cepted by a journal, as discussed above. It is also clear from
Figure 2 that published papers receive more citations. The
third part of our analysis studied other factors that affected
journal acceptance.

Number of Papers Per Year Publication Delay

3000

2000

Number of Papers

1000

* Total
Published

0

Frequency
00 01 02 03 04 05

T T T T T T P
1992 1996 2000 Years Between Submission
Year and Publication

(a) (b)

Figure 7: (a) Number of published and unpublished papers
submitted to arXiv each year. (b) Number of years between
a paper’s submission to arXiv publication in a journal.

Approximately 70% of the papers in arXiv have been pub-
lished in a journal. Figure 7a shows the total number of
papers submitted to arXiv each year for both published and
unpublished papers. Although the total number of papers
increases each year, the proportion of published and unpub-
lished papers remains relatively constant. Figure 7b shows
the number of years between a paper’s submission to arXiv
and its publication in a journal. Most papers, if published
at all, are published within one year of submission to arXiv.
A small number are published up to 3 years later.

We analyzed the differences between the published and un-
published papers and discovered significant effects. Several
of these effects are shown in Figure 8. The most surprising
difference is that published papers usually have more than
one author while unpublished papers are more frequently
written by a single author. This is an example of degree dis-
parity[3], where the number of relations differs significantly
between objects with different class labels. Unpublished pa-
pers have fewer references than published papers and pub-
lished papers have more pages than unpublished ones. This
correlates with the finding that published papers are revised
more frequently. As a paper is revised, additional text is
added and the number of pages grows. Journals may induce
degree disparity with page limits as seen in Figure 8d. Most
papers published in Physics Letters B are between 5 and 15
pages in length while the unpublished papers have varying
lengths.

2Hub and authority scores are equivalent on undirected graphs.
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Figure 8: Characteristics that differentiate published and
unpublished papers. Panels a, b, and c are from all pub-
lished and unpublished papers from 1995 to 2000 inclusive
while d is from a sample of 1500 papers from Physics Letters
B and 1500 unpublished papers.

5.1 Predicting Publication

For this task, we trained two types of relational models,
RPTs and relational multiple-instance learning [8] (RMIL),
to predict whether papers submitted to hep-th from 1995 to
2000 will be published in a journal.

We trained an RPT to differentiate between unpublished
papers and papers published in Physics Letters B, the most
common publication venue for hep-th papers. We sampled a
set of 500 papers per year (3000 total), with equal proportion
of published and unpublished papers. Given the difficulty of
this task, the RPT performed well, with an average of 68%
accuracy and 0.75 AUC.

The model selected four attributes that discriminate be-
tween unpublished and published papers: the number of
authors, the number of references, the paper’s length and
the paper’s filesize. Figure 9a shows an example RPT. The
model used the degree disparity examples discussed above.
For example, the RPT predicts that papers over 16 pages in
length and at least 13K in size were unlikely to be published
(P(+)=0.03). Browsing a subset of these papers on arXiv
shows that the unpublished papers are either workshop pa-
pers (short papers, few references) or theses (long papers, a
single author).

We also trained an RPT on the entire set of published and
unpublished papers, and had moderately successful results
(0.70 AUC). The sample for each year had between 2300
and 3100 papers, and approximately 75% of the papers each
year are published. The algorithm learned similar trees to
the previous task. Asshown in Figure 8c, paper length is not
as discriminative in this larger sample, which may explain
the lower performance on this larger set.

For RMIL, we created random samples of 200 papers (100

published and 100 unpublished papers) per year. RMIL
achieved an accuracy of 61% with an average AUC of 0.61.
RMIL identified that papers with at least 2 authors, papers
that cited papers published in Nuclear Physics B, or papers
that were cross-posted to areas other than hep-th were all
more likely to be published.

5.2 Predicting Publication Venue

Paper
num pages > 16,

Y, N

Past papers
prop(Phys D) > 0.5

Cited paper
prop(Phys B) > 0.5

Y, Y,
P(+)=.03 P(+) = 0.44 Y P:
Y Y, N

Count(cited paper) > 0 Count(past paper) > 4
with non-emply area field|  |__ with num refs >3

Y, N
P(+)=.63 P(#)=.1

Cited paper
prop(Phys B) > 0.6

N Y, N
P+)=.14  P(+)=.59 P(+)=1 P(+) = .81

(a) (b)

P(+)=.73 P(+)=.00

Figure 9: (a) RPT to predict whether a paper will be pub-
lished in Physics Letters B. (b) RPT to differentiate between
two popular journals.

We also applied RPTs to a related task, differentiating be-
tween papers published in one of two popular journals. We
expected this task to be challenging because approximately
55% of the papers were written by authors who have pub-
lished in both journals.

For each year, we sampled a set of 480 published papers, half
of which were published in Nuclear Physics B and half in
Physical Review D. For this task, RPTs achieved an average
accuracy of 73% and an average AUC of 0.81. An example
tree is shown in Figure 9b. The authors’ publication history,
the publication venue of cited papers, and paper length are
useful features to differentiate between papers published in
these two journals. If over 50% of an author’s past pa-
pers were published in Physics Letters D, and less than 60%
of cited papers were published in Nuclear Physics B, then
the paper is unlikely to be published in Nuclear Physics B
(P(+)=0.14).

6. COMMUNITY ANALYSIS

Our final analysis focused on identifying schools of thought,
or research communities, and the influential authors and
journals associated with these communities.

6.1 Topic detection

We conjectured that journals tend to represent distinct top-
ics and treated journals as topic markers. Clustering based
only on the paper text did not yield useful clusters. Instead,
we made use of the rich information available in the cita-
tions by using a spectral clustering method. This method
was based on previous work by [13] on spectral partitioning
algorithms. We used the citation graph to cluster papers but
weighted the strength of citation relationships by the cosine
similarity between paper abstracts. For this approach, we
clustered a sample of 833 papers from 1995-2000 that each
had more than 50 non-self citations. This choice of sample
set was made to identify a small set of authoritative papers
that are likely to define topics. This approach identified 14
topics with 2 to 285 papers each.



6.2 Topic cluster evaluation

If the approaches identified useful topics, we hypothesized
that authors would cite papers within their preferred topic
more than papers outside of the topic. To measure the cita-
tion rate, we calculated the actual and expected proportion
of intra-cluster citations for each cluster. We define the ac-
tual proportion of intra-cluster citations for a cluster, C, as:

the total # of citations from papers in C to papers in C
the total # of citations from cluster C ’

We define the expected proportion under uniform clustering
of intra-cluster citations for a cluster, C, as:

the total # of papers in cluster C

the total # of papers in the collection

We also expected that authors would publish within a rel-
atively small set of research communities. This was mea-
sured by examining the autocorrelation of the topic clusters
through authors and journals.
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Figure 10: Expected and actual intra-clustering citation ra-
tios for (a) spectral clustering (b) journal clusters.

Figure 10 shows the expected and actual intra-cluster ci-
tation proportions for spectral clustering (a) and journal-
based topics (b). In both cases, the actual intra-citation
values deviate significantly from the expected values. Both
sets of topics were autocorrelated through authors (see Ta-
ble 4). In addition, spectral topics are both correlated with
journal name (corr=0.58) and autocorrelated through jour-
nals (corr=0.56). For identifying the communities, we focus
on the spectral topic clusters as they can identify topics for
unpublished papers.

6.3 Research communities

Because topics are autocorrelated through authors, we used
the clusters to partition authors into communities. Each
author was assigned to their most prevalent cluster based
on authorship. Table 8 includes randomly selected paper
titles from four example clusters for subjective evaluation.
Each cluster was provided with a topic title from a high-
energy physics graduate student. The most authoritative
author and journal for each cluster is also included.

We expected that most scientists have a focused area of
research and will publish within only a small number of re-
search communities. Figure 11a shows the number of topic
clusters that each author is associated with and supports
this hypothesis. We further hypothesized that authors are
more likely to collaborate with other authors within their re-
search community. To evaluate this, we examined whether

Cluster 2 : Sumit R.Das (251), Physical Review D
Topic: Black hole approach to string theory

Absorption of Fixed scalars and the D-brane Approach to
Black Holes; Universal Low-Energy Dynamics for Rotating
Black Holes; Interactions involving D-branes; Black Hole
Greybody Factors and D-Brane Spectroscopy

Cluster 7 : Gary T.Horowitz (588), Physics Letters B
Topic: Black hole approach to string theory

On D-Branes and Black Holes in Four Dimensions; The
Black Branes of M-theory; Counting States of Near-
Extremal Black Holes; Internal Structure of Black Holes
Cluster 10 : Juan M. Maldacena (1924), Journal of High
Energy Physics, Topic: Tachyon condensation

Field theory models for tachyon and gauge field string dy-
namics; Super-Poincare Invariant Superstring Field The-
ory; Level Four Approximation to the Tachyon Potential
in Superstring Field Theory; SO(32) Spinors of Type I and
Other Solitons on Brane-Antibrane Pair

Cluster 13 : Ashoke Sen (4683), Nuclear Physics B
Topic: AdS/CFT offshoots

Dynamics of Anti-de Sitter Domain Walls; Gravitational
Stability and Renormalization-Group Flow; String Theory
on AdS3; The Holographic Bound in Anti-de Sitter Space

Table 8: Example research communities found by spectral
clustering.
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Figure 11: (a) Association of authors to topic clusters (b)
Intra-cluster coauthor frequency.

the proportion of coauthor relations within topic clusters
was higher than expected. Figure 11b shows the actual pro-
portion of intra-cluster coauthor relations. The expected
proportions are too small to be visible. Collaboration is sig-
nificantly higher with these clusters than would be expected
by chance. Both results further validate the spectral clusters
as research communities.

7. CONCLUSIONS

Based on our analysis, theoretical high-energy physics ap-
pears to be a healthy scientific community. Both the cita-
tion and authorship graphs reflect a pattern of tightly knit
communication via the formal and informal scholarly litera-
ture. The community publishes a large numbers of papers,
and the temporal pattern of citations indicates the rapid
uptake and use of relevant new work. Despite the existence
of “super-stars,” the papers of individual authors can vary
greatly in their authority scores, indicating that papers are
cited more for their innovative content than the pre-existing
prominence of their author.

This analysis raises the possibility, already explored by the
field of scientiometrics [12], of assessing and comparing the



health of different scientific communities and subcommuni-
ties. The statistical techniques under development within
relational learning offer an improved toolbox for the study
of scientific networks, particularly as reflected in patterns
of publication, citation, and downloading. Central to our
analyses in this paper were: 1) measures that use a com-
bination of attributes and structure of relational data; and
2) algorithms for learning statistical models that search a
vast space of possible structures and parameter values to
select those features most predictive of an attribute of in-
terest. Both of these allowed simultaneous consideration of
multiple object and relation types, rather than only a single
object and relation type, as is common in much prior work in
citation analysis. Finally, consolidation of authors was im-
portant to the analysis above, and the relational structure
was a strong contributor to how authors were consolidated.
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Figure 12: Relational evidence of duplicate authors. (a)
Authors with a similar name who have co-authored with
the same third-party. (b) Authors who have cited a paper
written by an author with a similar name. (¢) Authors with
similar email domains and the same username.

APPENDIX
A. CREATING THE SCHEMA

The data available for 2003 KDD Cup task 4 was in the form
of IATEX files, text abstracts, and paper citations. From the ab-
stract files, we extracted paper properties such as title, file size,
journal reference, and submission dates. We used the earliest of
the revision dates and the SLAC date as the best estimate of
authorship date. Author names and institutions were parsed out
of the Authors field, and the email address of the submitter was
associated with the best-matching author name. We used the
domain name of the submitter email address as a surrogate for
institution. Journals were consolidated by hand. The email do-
mains were given similarity links based on matching suffixes to
facilitate identifying distinct institutions, and for use during au-
thor consolidation. We performed a nominal amount of hand data
cleaning to correct for spelling errors or formatting problems.

B. AUTHOR CONSOLIDATION

Many hep-th authors publish under variants of the same name
where the number of distinct identities was unclear (e.g. “J.
Adams” and “J.A. Adams”). We began with the assumption
that no two people had submitted papers under the exact same
name, although we did find rare instances of such doubles when
hand-checking. We labeled pairs as similar if the last names and
the first initial of the first names matched. Of the initial 13,185
distinct author names, over 7500 had candidate matches.
Possible evidence for duplicate authors came from several sources.
First, authors had to have similar names, and co-authors could
never be consolidated. Another piece of evidence arose from au-
thor email addresses: using the same email address for multiple
papers meant the authors were likely to be the same person. This
was not conclusive evidence, because we found instances of people
sharing email addresses. If a candidate pair’s last name was rare
in hep-th, this boosted the evidence.

We also identified evidence for duplicate authors based on the
relational neighborhood of the authors, as depicted in Figure 12.
If two authors with similar names had each coauthored with the
same third person, the two were likely to be the same person.
Similarly, since people frequently cite their own work, we reasoned
that if an author cites someone with a similar name, the two
may well be the same person. Last, if two authors had the same
username at similar email domains, this was comparable to using
the same email address.

Using these guidelines, we iteratively identified and consolidated
duplicate authors until quiescence. Because evidence involving
third-party authors was often not available until the third parties
had themselves been merged correctly, this took five rounds of
consolidation. At completion, we had 9200 distinct authors. Due
to the noisy nature of the data, the final author set is not perfect
but, it correctly merged all eight variations of the name “Ian
Kogan,” and consolidated the top ten authors from Table 7 from
28 authors to 11 (e.g., one mistake).



