Importance-ranking of Climate Variables for Damaging Straight-line Winds
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» Straight-line winds (microbursts, gust fronts, bow echoes, derechoes, . Four processing steps: * Table 2 shows the top 20 variables selected by both methods.
etc.) are one of the most damaging and least understood thunderstorm- 1. Storm ID and tracking. Storms are identified from -10 °C reflectivity and tracked 1049 098 11y O o 5 o Aot L T Xl LA AT .
related hazards. with two algorithms, w2segmotionll (Lakshmanan and Smith 2010) and a MATLAB Ralnk 70{)’2‘:3;“;1"'::2";63 Sequzri'gl:;rl":sz: rsaetlscuon
* Machine learning (ML) has been used successfully in operational adaptation OfIZVZbeSWaCk (LakShmT‘I”a” et al. 2015). w2besttrack processes and 2 3—6-km lapse rate Cosine of 0—1-km mean wind
: : : Improves tracks from w2segmotionll (Figure 1). _£00- ]
environments to predict thunderstorm-related hazards such as hail, P _ <6 (Figure 1) , L 2 =0l [Fpse ot Sl 2
d d ai £ turbul 2. Linkage of wind observations to storm cells. Each wind observation is linked to 4 5t percentile of 18-dBZ echo top Magnitude of 0—3-km mean storm-
tornadoes, and aircratt turbulence. . . the nearest storm track within 10 km (Figure 2). relative wind
* We have developed ML models to predict the occurrence of damaging 3. Creation of proxy soundings. NARR data are interpolated in space and time to 5 >'" percentile of 0°C reflectivity 0—3-km lapse rate
. . . . . : 6 25th tile of 0°C reflectivit Precipitabl t
(50 kt or greater) straight-line winds at lead times of 15-60 minutes. each storm cell (Figure 4). ; - perc‘;i;?lznof‘zsmposirtz rZi]e"c'ﬁ‘\'/ity e percgﬁ;'l‘;' jf _;O"fé‘ rz;]ecﬁvity
* We have used several methods to rank the importance of input variables 4. Feature calculation. Four types of features for each storm cell: g Mean 0°C reflectivity 0 (e i Taeer)
to the best_performing ML mOdels, some of which can be related to a) SI\IO:I:ISIHg pzramet.etr;.sﬁzllgslated from 100 ‘ % \ — 9 Minimum 18-dBZ echo top . Mean -20°C reflectivity
, ] soundings wi PY \ ‘ Q;\ N\ N 10 Minimum composite reflectivity 5t percentile of -20°C reflectivity
future Cllmate. scengrlos. . o . software (Halbert et al. 2015). “\\Q\\s“l' | $ 11 Mean lowest-altitude reflectivity Mean column mixing ratio
* Our models will be incorporated into the Probabilistic Hazard Information b) Radar features. Statistics (e.g., mean, ) 200 XA 12 75 mameenile of lemest el relossi Semda devainan of srachent of
(PHI) tool for the National Oceanic and Atmospheric Administration’s median, skewness) for each radar = 300 ! 5 5% percentile of lowest-altitude reflectivity |v|e(;?\rzzfns:;irteeﬂre:f?e\/c?vity
(NOAA) Spring 2016 Hazardous Weather Testbed (HWT), which allows variable (e.g., comp reflectivity, MESH, g 400 \%%6 Q .ﬁ;:. ] i Time change (over 5 minutes) of minimum MESH T TSR Epp—— R
£ h d VIL) inside storm cell (pixelated outline 500 - é N\ YL DA (akin to shear of v-wind)
orecasters to test new research products. ViH ool S Vel
in Figure 3). 700 \ DL 15 Median 0°C reflectivity Surface relative humidity
® . . . . 800 ............. NN NI N KT \ \7.: » . . ° . . .
E g area, etc. —40 20 0 20 40 17 Median lowest-altitude reflectivity Standard deviation of gradient of 50-
d) Shape characteristics (e.g., eccentricit It dBZ echo top
Table 1: Input data for ML models. P e G-s Y FIG. 4. Proxy sounding from TARR’ 'ntel'lrpO'ated 0 18 Max gradient of 50-dBZ echo top Maximum gradient of composite
curvature, SO|IdIty). time and centroid of storm cell. reﬂectivity
Data Type Sources Characteristics . 19 Skewness of 50-dBZ echo top Mean -10°C reflectivity
Radar grids Multi-year Reanalysis for Remotely 1-km and 5-minute resolution, I m EO rta nce-ran kl N g P rOCEd ure 20 Time change (over 5 minutes) of 5*-percentile MESH MCS (me§Osca|e Convecﬁvt?_svstem)
Sensed Storms (MYRORSS) available for 2004-11 (excl. 2009) over . maintenance probability
CONUS J-measure Ran k| ng * We focus on sounding parameters, since these are the easiest to relate to climate.
Near-storm North American Regional Reanalysis 32-km and 3-hour resolution, . St ! assified by the 90th file wind d (U.) duced at 15-60 * The top three variables for J-measure ranking, and two of the top five for SFS, are low-
environment (NARR) available for 1979-pres over CONUS f)rm cel > \(/jve.re ¢ asi' e.f y the ’ -percentiie wing spee g0/ Produced at 1o- and mid-level lapse rates.
, , R , , , minutes lead time (¥ =1 if Ugy > 50 kt). * Precipitable water, mixing ratio, and other moisture variables frequently appear.
Surface wind | Meteorological Assimilation Data Ingest Variable resolution, available for * Ranks each variable by the divergence between its probability density functions (PDFs)
observations = System (MADIS), Oklahoma Mesonet, 2001-pres over CONUS for positive (Y = 1) and negative events (Y = 0). , ,
1-minute METAR reports e th f bl X is o< foll * PDFs used to calculate J-measures (below) show that lapse rates (moisture variables)
Thus, the J-measure of a variable X; Is as follows. are positively (negatively) correlated with damaging straight-line winds.
P(X,=x1Y =0) o . . . .
» Datasets overlap for 2004-11 (excl. 2009) over the CONUS. Jl.=x§i[P(Xi=xIY=O)—P(XZ.=xIY=1)]log2{P(Xi=x|Y=1)} !n gener.al, chrnate models sugg(.est that lapse rates (moisture) will decreasc? (|ncre§se)
. Cr e : : in the mid-latitudes, both of which would decrease the threat from damaging straight-
* We used 306 days for training, validation, and testing (all days in the * Also, we generalized J-measure ranking to do explicit variable selection: line winds
o _ o . . . . . . _ * * " ) . . . . .
seven years with at least 100 severe-wind reports from the Storm 1. Find the remaining variable with the highest J-measure (X;*). | +  Our method can “red flag” such relationships for further investigation by modelers
Prediction Center). 2. Eliminate remaining variables for which the 95% Cl J-measure does not overlap with (data science feeding physical science).
a0 that of X;* and 5t™"-percentile absolute Pearson correlation (also based on e e
| bootstrapping) with X,* is > 0.3. (In other words, eliminate variables that are - —eoriaxiva) —PoFrorx(¥oe| WORKS CITED
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FIG. 1. Difference between w2segmotionll (thick grey FIG. 2. Wind observations (purple) linked (blue) outlines of a storm cell. Pixelated above). | > \
lines) and w2bes’Ftrack (thin multi—coloured-lines). With a.single storm track (black) from ou-tline cc?mes from the 1-k.m MYRORSS ° At each Step k’ SFS adds the best remalnlng vVa rlable to the model’ untll model 0.05//,/ |05t g FIG. 5. Empirical probability density functions of different
w2besttrack results in longer storm tracks, which allows beginning (green polygon) to end (red grid and is used as a “cookie-cutter” to ] : redictor variables under Y = 1 (90th-percentile storm wind >
predictions to be made at longer lead times. polygon). extract data from grid points (grey) inside. perfOl’ma nce no |Onger Improves. 6 8 10 12 14 16 18 15 20 25 30 35 40 45 50 55 P P

50 kt) and Y = 0. The y-axis is probability.
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