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ABSTRACT

Thunderstorms in theUnited States cause over 100 deaths and $10 billion (U.S. dollars) in damage per year,

much of which is attributable to straight-line (nontornadic) wind. This paper describes a machine-learning

system that forecasts the probability of damaging straight-line wind ($50 kt or 25.7m s21) for each storm cell

in the continental United States, at distances up to 10 km outside the storm cell and lead times up to 90min.

Predictors are based on radar scans of the storm cell, storm motion, storm shape, and soundings of the near-

storm environment. Verification data come from weather stations and quality-controlled storm reports. The

system performs very well on independent testing data. The area under the receiver operating characteristic

(ROC) curve ranges from 0.88 to 0.95, the critical success index (CSI) ranges from 0.27 to 0.91, and the Brier

skill score (BSS) ranges from 0.19 to 0.65 (.0 is better than climatology). For all three scores, the best value

occurs for the smallest distance (inside storm cell) and/or lead time (0–15min), while the worst value occurs

for the greatest distance (5–10 km outside storm cell) and/or lead time (60–90min). The system was deployed

during the 2017 Hazardous Weather Testbed.

1. Introduction

a. Damaging straight-line wind

The three types of damaging straight-line wind are

downbursts, gust fronts, and bow echoes1 (National

Severe Storms Laboratory 2016b). A downburst is an

area of strong wind caused by a downdraft hitting the

surface and diverging horizontally. The primary mecha-

nisms behind downbursts are evaporative cooling and

precipitation drag. Downbursts are generally categorized

in twoways: macroburst versusmicroburst andwet versus

dry. A macroburst covers a horizontal area . 4km2; a

microburst,,4km2. A wet downburst is accompanied by

heavy precipitation, whereas a dry downburst occurs with

no precipitation, because the cloud base is high enough,

and the subcloud environment is dry enough, that all

hydrometeors evaporate or sublimate before reaching

the ground. There are intermediate cases between wet

and dry. (Fujita 1990) The typical duration and highest

known horizontal winds are 5–20min and;60ms21 for a

macroburst and 2–5min and ;75ms21 for a microburst

(National Weather Service 2016b).

Environmental conditions that favor downbursts (Rose

1996) are high static instability, leading to a strong updraft

and heavy precipitation; dry (highly subsaturated) air
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1 The page cited lists five types of damaging straight-line wind, in-

cluding microbursts, derechoes, and haboobs. However, a microburst

is a special type of downburst, a derecho is a special type of bow echo,

and a haboob is a special type of gust front (one carrying a large

amount of dust).
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below the cloud base, leading to strong evaporative

cooling; moist air between the surface and dry subcloud

air, which exacerbates the density difference between the

near-surface air and the descending evaporatively cooled

air, thus accelerating the downdraft; and frozen hydro-

meteors in the dry subcloud layer. The ice-to-vapor phase

change (either sublimation or melting followed by evap-

oration) requires more latent heat than evaporation

alone, which cools the surrounding air more effectively,

thus accelerating the downdraft.

A gust front occurs when strong horizontal winds as-

sociated with a downburst propagate away from the

storm, creating a sharp boundary between evaporatively

cooled air and warmer ambient air. Convergence along

the gust front causes turbulence and wind shear, which

are extremely hazardous to aircraft. (Delanoy and

Troxel 1993)

A bow echo is a bow-shaped line of storm cells with

strong wind at its leading edge. The formation of a bow

echo proceeds as follows. 1) A downburst generated by a

single storm cell propagates away as a gust front. The

strongest wind occurs near the midpoint of the gust

front, forcing it into a bow shape. 2) Convergence along

the gust front leads to new convective initiation and, on a

larger scale, ascending rearward flow (perpendicular to

the bow echo and opposite its motion). 3) Ascending

rearward flow is balanced by descending frontward flow

(the ‘‘rear-inflow jet’’), which reaches the surface just

behind the gust front, causing more downbursts and

strengthening the gust front.

Finally, a derecho is a particularly strong bow echo or

series thereof. For the precise definition of a derecho

(both traditional and proposed new versions), see

Corfidi et al. (2016). Derechoes have a typical duration

of ;10h, and horizontal winds can reach ;60m s21

(Storm Prediction Center 2016a). Favorable conditions

for derechoes are difficult to summarize because they

occur in a wide variety of environments (Coniglio et al.

2004). In general, conditions that favor downbursts also

favor derechoes.

b. Current forecasting methods

Current forecasting methods focus on properties of

the near-storm environment (NSE), radar signatures,

and explicit wind forecasts from numerical weather

prediction (NWP).

NSE properties are mainly sounding indices (single-

number summaries of the vertical profile), such as the

derecho composite parameter (DCP), microburst com-

posite parameter (MCP), and wind-damage parameter

(WDP). In situ soundings are very rare [less than 100 sites

in the continental United States (CONUS), launching

every 12 h], so these indices are usually calculated from

NWP forecasts. The DCP (Storm Prediction Center

2017a; Evans andDoswell 2001) is a linear combination of

downdraft convective available potential energy (CAPE),

related to the potential for cold-pool development; most-

unstable CAPE, related to the ability to sustain strong

storms at the leading edge of a gust front; 0–6-km wind

shear, related to the potential for ensuing convection to

become organized; and 0–6-km wind speed, related to the

potential for convective initiation downstream along the

gust front. When DCP . 2, an existing mesoscale con-

vective system (MCS) is quite likely to produce a derecho.

The MCP and WDP are based on similar indices, related

to the static instability and ambient wind speed of the

environment. When MCP $ 9, microbursts are deemed

‘‘likely’’; when WDP$ 1, there is an ‘‘enhanced’’ risk for

damaging gust fronts from multicell clusters. (Storm

Prediction Center 2017b; Blumberg et al. 2017b)

Radar-based forecasting almost always uses the cur-

rent radar scan, since operational NWP models do not

have the required resolution (,1 km) to depict signa-

tures associated with damaging straight-line wind. In

general, forecasters look for signatures of divergence

(may indicate a downdraft hitting the surface) or large

radial velocities near the surface (may indicate strong

wind just below). Within the context of an MCS, fore-

casters often look for a strong rear-inflow jet and

mesovortices. Sometimes explicit NWP forecasts (i.e.,

the raw wind speed output) are used as well.

The main disadvantage of sounding indices is that they

are not explicit probabilities (between 0 and 1). Themain

disadvantage of radar is that it offers little to no lead time,

because it depicts only the current situation. Also, the

radar beam is usually well above the surface, where the

measured radial velocity may not be strongly related to

the surface wind speed. Finally, the main disadvantage of

NWP models is that, even if they accurately predict the

hazards associated with a given thunderstorm, they have

significant errors in storm timing and location (Weisman

et al. 2008; Sun et al. 2014; Gagne et al. 2015). Sometimes

an existing storm cell can be matched to one in the NWP

forecast, which allows NWP guidance to be used, but this

is not always possible (Gagne et al. 2015). Also, errors in

storm timing and location may lead to errors in the as-

sociated hazards, as a result of temporal and spatial dif-

ferences in the NSE.

c. Machine learning

Machine learning (ML) allows computers to discover

knowledge that has not been explicitly programmed.

The goal is usually to predict one target variable y, given

many predictor variables xj. ML has many advantages

over both human reasoning and NWP. For one, ML

predictions are deterministic: given the same inputs xj, an
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ML model will always predict the same outcome y.

Second, prediction time is usually very fast (�1 s to

predict a new example). Third, an ML model can easily

incorporate many diverse data sources (e.g., single- and

dual-polarization radar, satellite, NWP output, in situ ob-

servations), which ismuchmore difficult for anNWPmodel

(Marriott 2012). Fourth, ML can predict the outcome of a

physical process without fully understanding it. Finally, re-

lationships learned by the model, as well as variable selec-

tion and transformation (Webb 2003, chapter 9), can be

used to gain an understanding of the physical process.

Despite many applications of ML in convective mete-

orology [some of which are reviewed by McGovern et al.

(2017)], to our knowledge only four other groups have

used ML to forecast damaging straight-line convective

wind. Kitzmiller et al. (1995) used radar-derived vertically

integrated liquid to forecast the probability of ‘‘any severe

weather’’ (damaging straight-line wind, tornado, or hail)

on a grid within the next 20min. Marzban and Stumpf

(1998) used 23 radar-derived predictors to forecast the

probability of damaging wind (straight line or tornadic)

for a single storm cell. Alexiuk et al. (1999) used 22 radar-

derived features to classify severe storms by their primary

hazard type (straight-line wind, tornado, hail, or heavy

rain). Finally, Cintineo et al. (2014) used five features

(derived from radar, satellite, and NWP) to forecast the

probability of ‘‘any severeweather’’ for a single storm cell.

We use ML to predict the probability that a storm cell

will produce damaging straight-line wind, using only data

available in real time. We adopt the National Weather

Service (2010) definition of ‘‘damaging wind’’ as a gust$

50kt (25.7ms21). Forecasts are made for three disjoint

distance buffers (Fig. 1a) and five time windows (Fig. 1b).

Our hypothesis was that, for each distance buffer and

time window, we could produce unbiased forecasts that

outperform climatology. OurML system was used in real

time by human forecasters during the 2017 Hazardous

Weather Testbed (Clark et al. 2012).

Section 2 describes our input data and processing

thereof. Section 3 describes our ML methods. Section 4

describes an experiment to optimize ML parameters,

the results of which are discussed in section 5. Section 6

summarizes our findings and suggests future work.

2. Input data

a. Data sources

We use three types of input data (Table 1). Radar

images from the Multiyear Reanalysis of Remotely

Sensed Storms (MYRORSS; Ortega et al. 2012), as well

as soundings from the Rapid Update Cycle (RUC;

Benjamin et al. 2004) and the North American Regional

Reanalysis (NARR; Mesinger et al. 2006), are used to

create predictors for the ‘‘event’’ (storm-maximum

wind$ 50 kt). Near-surface wind observations from the

Meteorological Assimilation Data Ingest System

(MADIS; McNitt et al. 2008), the Oklahoma Mesonet

(McPherson et al. 2007), 1-min METARs (National

ClimaticData Center 2006), and StormEvents (National

Weather Service 2016a) are used to determine when and

where the event occurred.

MYRORSS contains merged, quality-controlled data

from all 143 Next-Generation Weather Radar (NEX-

RAD) sites in the CONUS. Merging and quality control

are done by the Warning Decision Support System–

Integrated Information (WDSS-II; Lakshmanan et al.

2007), which is a software package for the analysis

and visualization of thunderstorm-related data. Using

methods described in Lakshmanan et al. (2006), WDSS-II

generates 47 variables on a 0.018 grid. These variables

include reflectivity at 35 height levels (from 0 to 20km

above ground level), reflectivity at three temperature

levels (2208, 2108, and 08C), and nine composite vari-

ables (integrating data from different heights). Com-

posite variables are listed in Table 2.

We do not use the 35 height-level variables, because

we assume that they would bemostly redundant with the

temperature-level and composite variables. Also, this

would nearly triple the number of predictors forML (see

discussion of radar statistics in section 2e), which would

make computing requirements prohibitive.

Soundings are used to characterize the NSE, which

partly dictates how a storm will evolve. We use modeled

soundings because, as mentioned in section 1b, observed

soundings are very sparse. The Rapid Refresh (RAP)

model is widely used to create NSE datasets, such as the

Storm Prediction Center (2016b) mesoanalysis. How-

ever, the RAP model did not exist during the develop-

ment period (2004–11, as discussed in section 2b), so we

use its predecessor, RUC. We use only 0-h analyses,

because forecasts with longer lead times are usually not

archived. For time steps with no RUC data, we use the

NARR as a substitute.

We use wind observations from all surface-based

weather stations in MADIS, which to our knowledge is

the world’s largest collection of station data, for model

training and evaluation. We also use wind observations

from the Oklahoma Mesonet and 1-min METARs,

which both are of high quality and temporal resolution

and are not included in MADIS. However, even with

these three datasets, we achieved poor model perfor-

mance because there were not enough events (storm-

maximumwinds$ 50kt). Thus, we also use straight-line

wind reports from Storm Events, all of which are mea-

sured or estimated at$50kt. Figure 2 shows an example

of the wind from all four datasets.
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Storm Events is a database of severe weather events,

many of which are based on human reports. There are

several problems with the database, one of which is that

humans tend to overestimate wind speed. It is the sole

responsibility of the NWS office taking the report to

determine if the wind speed was actually$50kt, and they

cannot always correct for this overestimation. Second,

report density increases with population density, which

varies in both space and time. Third, the NWS’s archiving

and quality-control practices have changed over time. All

TABLE 1. Data sources. Spatial coverage of the Oklahoma Mesonet is the state of Oklahoma; all other datasets cover the CONUS.

Data type Source Resolution Time period

Radar images MYRORSS 0.018 (;1 km), 5min 2000–11 (excluding 2009)

Model soundings RUC 13 or 20 km, 1 h April 1994–April 2012

NARR 32 km, 3 h 1979–present

Near-surface wind observations MADIS Variable July 2001–present

OK Mesonet Spatially variable, 5min 1994–present

1-min METARS Spatially variable, 1min 2000–present

Storm Events Variable 1955–present

FIG. 1. Forecasts are made for (a) three disjoint distance buffers and (b) five time windows. (c) Spatial distri-

bution of storm objects used. Counts are in 5 km3 5 km grid cells. A ‘‘storm object’’ is one storm cell at one 5-min

time step. This should not be interpreted as a climatology, because it includes only 804 selected days.
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these issues are discussed in detail inDoswell et al. (2005).

Nonetheless, Storm Events is the most consistent and

complete severe weather event database available

(Ashley and Black 2008), and we needed these reports to

supplement the station data.

We assume that all wind observations are straight line

(nontornadic), first because Storm Events distinguishes

between the two, so presumably no tornadoes are reported

as straight-line wind. Second, tornadoes are much less

common (National Severe Storms Laboratory 2016a), and

usually much more intense, than damaging straight-line

wind. Thus, very few tornadoes hit weather stations, and

those that do often destroy the anemometer.

b. Training and testing period

The datasets used (Table 1) have a common period of

July 2001–December 2011, excluding 2009. However,

processing all ;3500 days would have been computa-

tionally prohibitive. Thus, we filter the dataset by re-

moving years 2001–03, for which there are many fewer

wind observations; days with ,30 straight-line wind re-

ports in Storm Events; and days with more than five time

steps of missing radar data. This leaves 804 days for

training and testing, with a total of 19 951 072 storm

objects (Fig. 1c). Most of the 804 days are in May–

August, with a minimum of 9 in December (see Fig. A1

in the online supplement to this paper).

By using only days with $30 straight-line wind re-

ports, we ensure a large number of events (storm-max-

imum winds $ 50kt). However, there are also many

nonevents, because severe-wind-producing storms are

usually confined to a small area and time period.

c. Storm detection and tracking

Storm detection (the outlining of storm objects in the

radar image) is performed by segmotion (Lakshmanan

and Smith 2010), an algorithm in the WDSS-II package.

The segmotion routine uses extended-watershed image

segmentation (Lakshmanan et al. 2009) to separate the

image into locally maximum areas of a certain variable.

In addition, segmotion has three main input arguments:

the tracking variable, threshold for the tracking variable,

and minimum storm area. We use 2108C reflectivity

with a 30-dBZ threshold, following Saxen (2002) and

TABLE 2. Radar statistics. Each statistic is computed for each

variable, based only on values inside the storm object.

Variable Spatial statistics

Low-level (0–2 km) azimuthal shear 0th percentile (min)

Midlevel (3–6 km) azimuthal shear 5th percentile

18-dBZ echo top 25th percentile

(first quartile)

50-dBZ echo top 50th percentile

(median)

Max estimated hail size (MESH) 75th percentile

(third quartile)

2208C reflectivity 95th percentile

2108C reflectivity 100th percentile (max)

08C reflectivity Mean (first moment)

Composite (column max) reflectivity Std dev (related to

second moment)

Lowest-altitude reflectivity Skewness (related to

third moment)

Severe hail index (SHI) Kurtosis (related to

fourth moment)

Vertically integrated

liquid (VIL)

FIG. 2. Wind observations and radar mosaic. The color fill is column-maximum reflectivity at

2300:11 UTC 4 Apr 2011, and wind barbs show the maximum gust at each location over the next

90min. Reports in StormEvents contain no direction, so this is depicted as due north when plotting.
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colleagues at the Cooperative Institute for Mesoscale

Meteorological Studies, and a minimum area of 50 km2.

We found that smaller thresholds led to many false de-

tections (nonthunderstorms being outlined as thunder-

storms), while larger thresholds often led to many

thunderstorms being merged into one object.

Tracking is done in two stages: real time and post-

event. Real-time tracking is done by segmotion, which

usesK-means clustering and assigns storm objects in the

same cluster to the same track. Postevent tracking is

done by the besttrack algorithm (also part of WDSS-II)

(Lakshmanan et al. 2015), which assigns each storm

object to its best-fitting Theil–Sen trajectory. The main

difference is that to determine the track membership

of a storm object at time t0, segmotion can use only past

information (data valid before t0), whereas besttrack can

use both past and future information. (See Fig. 3a.)

Tracks created by segmotion are corrected by besttrack.

The main effect is that broken (incorrectly truncated)

tracks are joined. This results in longer tracks (Fig. 3b),

which allows storms and wind observations to be linked

(section 2d) at greater lead times, which allows the ML

models to forecast severe wind at greater lead times.

d. Linking storms and wind observations

For each wind observation W and distance buffer D

(inside storm, 0–5km outside, and 5–10km outside), the

procedure is as follows. 1) If W is not contemporaneous

with a radar scan, interpolate storm objects along their

respective tracks to the time of W. 2) Find the storm

object S with the nearest edge. Let the corresponding

track be S*. 3) If W is in buffer D around storm object

S, link W to storm track S*. Otherwise, do not link W

to any storm.

Sample output is shown in Fig. 3c. Linkages created by

this procedure are used in section 2f to label storm ob-

jects (1, if responsible for severe wind; 0, otherwise.)

e. Calculation of predictors

There are four types of predictors, calculated for each

storm object: radar statistics, storm motion, shape pa-

rameters, and sounding indices.

First, 11 statistics are calculated for each of the 12

radar variables (Table 2). These are spatial statistics,

based on values inside the storm object (Fig. 3d). The

same statistics are calculated for both raw values and

FIG. 3. (a) Difference between tracking methods. (b) Difference between tracking results. Thick gray lines un-

derneath (thin multicolor lines on top) are segmotion (besttrack) results for a 24-h period. (c) Sample linkage

output for 5–10-km distance buffer. (d) Sample storm object.
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gradient magnitudes [

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(›w/›x)2 1 (›w/›y)2

q
, where w is

the radar variable].

Second, storm motion (speed and direction) is cal-

culated by backward differencing [(rn 2 rn21Þ/ðtn 2 tn21Þ,
where rn and rn21 are the locations of the storm center

at times tn and tn21].

Third, the following shape parameters are calculated

from the storm outline: (i) area; (ii) orientation of the

best-fitting ellipse, which is an angle from 08 to 1808; (iii)
eccentricity of the best-fitting ellipse; (iv) solidity

(fraction of pixels in bounding polygon that are also in

convex hull); (v) extent (fraction of pixels in bounding

polygon that are also in smallest bounding rectangle);

(vi) curvature (mean absolute curvature over all verti-

ces); (vii) bending energy (sum of squared curvatures/

perimeter); and (viii) compactness (perimeter2/4p3
area). Curvature, bending energy, and compactness are

based on the smoothed polygon (Fig. 3d), because 908
angles in the raw polygon lead to unrealistically large

curvature and perimeter values. All other shape pa-

rameters are based on the raw polygon.

Fourth, the RUC sounding is interpolated to the time

and center of the storm object. Spatial interpolation is

done by the nearest-neighbor method, and temporal

interpolation is done by the previous-neighbor method

(most recent RUC time step). This ensures that the

whole sounding comes from the same grid cell and time

step, which preserves physical consistency among the

sounding variables (listed in Table 3). If the most recent

model time step is from the NARR (which occurs when

RUC data are missing), the NARR sounding is used

instead. Only 103 of 20 019 RUC hours are missing, so

this happens very infrequently.2 After interpolating

model data, the Sounding and Hodograph Analysis and

Research Program in Python (SHARPpy; Blumberg

et al. 2017a) is used to calculate the 97 sounding indices

listed in appendix A in the online supplement.

All vectors (e.g., wind velocities, wind shears, storm

motion) are decomposed into the magnitude, sine of di-

rection, and cosine of direction. This results in 431 pre-

dictors: 264 radar statistics, three components of storm

motion, nine shape parameters (orientation consists of sine

and cosine only, no magnitude), and 155 sounding indices.

f. Calculation of labels

The following procedure (Fig. 4) is repeated for each

storm cell, distance buffer, and time window [tmin, tmax].

(i) Find all wind observations linked to storm S with

distance bufferD, occurring between tmin and tmax. (ii) If

the maximum wind observation is $50kt, the label is 1;

otherwise, the label is 0. This label, which indicates

whether or not the storm is responsible for severe wind,

is the target variable y for ML models.

g. 2017 Hazardous Weather Testbed

The HazardousWeather Testbed (HWT) is an annual

experiment managed by the SPC, the NSSL, and the

NWS Forecast Office in Norman, Oklahoma. Human

forecasters from theUnited States and abroad gather for

several weeks to test new forecasting methods and

technologies for convective hazards. The goal of the

HWT is to accelerate the transition of research to op-

erations. Forecasts produced by our ML system were

updated every;2min (pursuant to new radar data) and

made available;4min later. The combined latency time

(of our forecast updates and the radar data triggering

the updates) was ;6min. Output was displayed as a

probability–time graph for each storm cell (e.g., Fig. 1b).

These graphs were accessed by clicking on the relevant

storm cell in the probabilistic pazard information (PHI;

Karstens et al. 2014) tool.

TABLE 3. NWP models used for sounding data. Heights listed are 2 and 10m above ground level; 1mb 5 1 hPa.

Model Pressure level Variable at each pressure level Near-surface variable

RUC [100, 1000] mb at 25-mb intervals Temp 2-m temp

Relative humidity 2-m relative humidity

Geopotential height Surface pressure

u wind 10-m u wind

y wind 10-m y wind

NARR [100, 300] mb at 25-mb intervals Temp 2-m temp

[350, 700] mb at 50-mb intervals Specific humidity 2-m specific humidity

[725, 1000] mb at 25-mb intervals Geopotential height Surface pressure

u wind 10-m u wind

y wind 10-m y wind

2 In the futurewewill discontinue theuse ofNARRdata. In general,

using different data sources to create the same predictor variable

worsens the ML performance. Since NARR data were used very

infrequently in our dataset, the effect appears to have been minimal.
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Radar statistics (section 2e) were computed from

Multi-Radar Multi-Sensor (MRMS) (Smith et al. 2016)

data, rather thanMYRORSS.MRMS contains the same

variables on a 0.018 or 0.0058 grid, but with less quality

control since it must be available in real time. Sounding

indices (section 2e) were computed from the latest RAP

data, instead of RUC or NARR. Ideally, we would have

trained models with the same data sources, but the

MRMS archive was too short (about 1 yr, with consid-

erable missing data). As in section 2c, real-time tracking

was done by segmotion, and postevent tracking (only

to verify forecasts after HWT) was done by besttrack.

3. Machine learning

a. Base models

1) LOGISTIC REGRESSION

Logistic regression (LR; Walker and Duncan 1967)

fits a logit curve to the training data:

f
i
5

exp

 
2b

0
2 �

N

j51

b
j
x
ij

!

11 exp

 
2b

0
2 �

N

j51

b
j
x
ij

! , (1)

where fi is the forecast probability of severe wind for the

ith storm object, xij is the value of the jth predictor for

the ith storm object, b0 is the bias term, and bj is the

coefficient (weight) for the jth predictor. In addition, N

is the number of predictors (431). Note as well that

fi 2 [0, 1], which is one reason that LR is often used to

forecast probabilities.

The training algorithm [usually gradient descent; see

section 4.4.3 of Mitchell (1997)] looks for weights bj that

minimize deviance:

D52
1

M
�
M

i51

[y
i
log

2
(f

i
)1 (12 y

i
) log

2
(12 f

i
)] , (2)

where yi is the true label (section 2f) and fi is the forecast

probability of severe wind, for the ith storm object.

In addition, M is the number of storm objects in the

training set. Deviance is zero for a perfect forecast

(fi 5 yi"i) and increases with the summed differences

between fi and yi.

2) LOGISTIC REGRESSION WITH AN ELASTIC NET

Logistic regression with an elastic net (LREN;

Zou and Hastie 2005) is equivalent to basic LR,

except that it has a different cost function, called the

penalty:

FIG. 4. Labeling procedure. The dark green polygon is the storm object S to be labeled, occurring at time t0. The light green ‘‘blob’’ is the

area covered by the relevant distance buffer D around S, over the relevant time window (from tmin to tmax). Diamonds are wind obser-

vations linked to S with distance buffer D, occurring between tmin and tmax.
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P5D1 l�
N

j50

�
1

2
(12a)b2

j 1ajb
j
j
�
, (3)

where D, M, and bj are as in Eqs. (1) and (2). Here, l 2
[0, ‘) is the regularization parameter, and a 2 [0, 1] is

the elastic-net parameter, both of which are user de-

termined. As l increases, the coefficient magnitudes are

penalized more, which encourages the model to produce

smaller coefficients. Note that a determines the balance

between the L1 penalty
�
�N

j50jbjj
�
and the L2 penalty�

�N

j50b
2
j

�
. Fora5 0, LREN simplifies to ridge regression

(Hoerl andKennard 1988). Fora5 1, LRENsimplifies to

lasso optimization (Tibshirani 1996). Themain difference

is that lasso optimization allows coefficients to be zeroed

out, which explicitly removes variables from the model.

3) FEED-FORWARD NEURAL NETS

A feed-forward neural net (FFNN; Haykin 2001)

contains several layers of neurons, with connections

between neurons in adjacent layers (Fig. 5a). Specifi-

cally, each neuron in the kth layer is connected to all

those in the (k 2 1)st and (k 1 1)st layers. Each neuron

in the kth layer computes a weighted sum of its inputs

from the (k 2 1)st layer, called the activation a
(k)
j :

a
(k)
j 5w

(k21)
0j 1 �

N(k21)

i51

w
(k21)
ij z

(k21)
i , (4)

where w
(k21)
ij is the weight from the ith neuron in the

(k 2 1)st layer to the jth neuron in the kth layer, z
(k21)
i

is the output [see Eq. (5)] from the ith neuron in the

(k 2 1)st layer, and N(k21) is the number of neurons in

the (k 2 1)st layer.

The ‘‘output’’ z
(k)
j of each neuron in the kth layer is

passed to neurons in the (k 1 1)st layer:

z
(k)
j 5 g(k)(a

(k)
j ) , (5)

where g(k) is the activation function for the kth

layer, usually a generalized version of the step function

(Fig. 6a). In our case, g(k) is always ‘‘tansig’’ for the hidden

layers and ‘‘softmax’’ for the output layer (Fig. 6a).

We allow all predictor values to simply ‘‘pass

through’’ the input layer. In other words, if the input

layer is layer 1, z
(1)
j 5 xj. This configuration, as well as the

use of tansig and softmax functions, is the default in

MATLAB’s patternnet [MathWorks (2016); used for

the experiment described in section 4].

4) DECISION TREES

A decision tree (Mitchell 1997, chapter 3) contains

several layers of nodes (Fig. 5b), each classified as

either a branch node or a leaf node.A branch node sends

each example (storm object) down one of two branches,

based on its answer to a yes-or-no question. Each

question involves a predictor xj and threshold xjk, known

collectively as the split point. A leaf node n* predicts the

target variable (probability of severe wind) for a new

example, based on training examples that reached n*.

During training, at each branch node, the algorithm

loops throughmany possible split points and chooses the

one leading to the greatest reduction in deviance.

5) RANDOM FORESTS

Single decision trees are often unstable, because each

split point is a hard threshold involving only one vari-

able. For example, suppose that two storm objects (S1

and S2) havemaximum reflectivity of 70 dBZ, downdraft

CAPE of 1200 J kg21, and storm motion of 20ms21.

However, S1 has CAPE of 1499 J kg21, and S2 has a

value of 1501 J kg21. The decision tree shown in Fig. 5b

would produce very different forecasts for S1 and S2 (5%

and 60%, respectively), even though they are essentially

the same. This instability causes decision trees to overfit

the training data, thus generalizing poorly to new

examples.

Random forests (Breiman 2001) alleviate this prob-

lem by ensembling decision trees. If the trees are diverse

enough, they should overfit in different ways, so that

their biases are offsetting. A random forest maintains

this diversity by tree bagging, where only a subset of

examples (storm objects) is used to train each tree, and

feature bagging, where a subset of predictor variables is

tried at each split point.

6) GRADIENT-BOOSTED TREE ENSEMBLES

Gradient boosting (Friedman 2001) is another way to

ensemble decision trees. The main difference is that

gradient boosting creates an additive ensemble, where

the kth tree is fit to the residual from the first (k 2 1)

trees. Conversely, each tree in a random forest is fit to

the same target variable (label from section 2f), and

forecasts from individual trees are ensembled after

training. Thus, a random forest may be trained in par-

allel, whereas a gradient-boosted ensemble (GBE) must

be trained in series.

b. Calibration of base models

Calibration is necessary because most ML models

produce unreliable forecasts (Niculescu-Mizil and

Caruana 2005, hereafter NMC05). Reliability (REL) is

defined below [cf. Eq. (2) in Hsu and Murphy (1986)],

where forecast probabilities are discretized into K

(usually 10) bins:
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whereM is the total number of storm objects, andMk is

the number in the kth bin. For the kth bin, fk is the mean

forecast and yk is the mean label (‘‘conditional event

frequency’’). REL 2 [0, 1], and REL 5 0 for a perfect

model (fk 5 yk"k).

We considered two calibrationmethods, which appear

to be the most common: Platt scaling (Platt 2000) and

isotonic regression (NMC05). Platt scaling is a sigmoid

transformation of the base-model probabilities, so it

works best when the base model has a sigmoid-shaped

reliability curve (Fig. 6b). Isotonic regression is more

general and can correct other types of poor reliability.

According to NMC05, only one of the six models in

FIG. 5. (a) FFNN schematic. In the left column, each blue ellipse is a predictor variable. In all

other columns, each blue ellipse is a neuron. Each red line is associated with a weight w
(k21)
ij in

Eq. (4). (b)Decision-tree schematic.At each branch node (ellipse), an if–else condition is applied to

stormobject S. If true, S is sent down the right branch; if false, down the left branch.When S reaches

a leaf node n* (rectangle), it is given a forecast, based on training examples that reached n*.
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section 3a (GBE) typically produces a sigmoid-shaped

reliability curve. However, isotonic regression appears

to outperform Platt scaling even in this case (their Figs. 2

and 3). Thus, we decided to use only isotonic regression.

Isotonic regression produces amapping fromeach range

of base-model probabilities [ f̂ k, f̂ k11) to the calibrated

probability fk. The training algorithm minimizes the Brier

score (BS), subject to the constraint that fA $ fB if f̂ A $ f̂ B
for any two stormobjectsA andB. In otherwords, isotonic

regression preserves the forecast ranking, as shown in

Fig. 6c. The variables related to BS are as in Eq. (2):

BS5
1

M
�
M

i51

(y
i
2 f

i
)2 . (7)

c. Subsampling

Before machine learning, we subsample the dataset.

This is done for three reasons. First, the full dataset

contains;20million storm objects (examples). Training

with all 20 million examples would have taken too much

memory (�64GB) and computing time (days for a

single model). Second, the fraction of storms linked

to severe wind is very small (Figs. 7a,b). In general,

ML models do not learn effectively when the event of

interest is so rare (Batista et al. 2004). Third, this dis-

tribution is not a good representation of the true distri-

bution, because many storm objects are linked to

only a few wind observations, which makes it plausible

that they produced severe winds that were simply

unobserved.

Subsampling methods are described below. Each

method is run independently for each distance buffer

and lead-time window [tmin, tmax].

1) TRAINING THE BASE MODEL

We sample uniformly from the distribution of storm-

maximum wind Umax, which allows the model to learn

from storms with all wind intensities. Specifically, we

draw an equal number of storm objects from seven

categories: 0–10, 10–20, 20–30, 30–40, 40–50, and$50kt

(where 1 kt 5 0.51ms21), as well as Umax, which repre-

sents undefined results (because the storm no longer

exists after tmin). The resulting distribution is shown in

Fig. 7c. Without the last category, the model would

suffer from ‘‘survivor bias’’; that is, it would be trained

only with longer-lived storms, which tend to be stronger

and more likely to produce severe wind. This would

cause the model to overpredict severe wind for all time

windows other than 0–15min.

FIG. 6. (a) Typical activation functions for an FFNN.

(b) Sigmoid-shaped reliability curve. (c) Sample output

for isotonic regression. The x axis is used only to order

storm objects (base-model and calibrated forecasts at

the same x coordinate are for the same storm object).
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2) CALIBRATING THE BASE MODEL

The calibration set should have a Umax distribution

similar to the true distribution. Thus, we use the ‘‘best-

observed distribution,’’ which contains all storm objects

meeting one of two criteria: either 1) Umax $ 50 kt, in

which case we can be confident that the storm produced

severe wind, or 2) the storm is linked to enough wind

observations Nobs,min that we can be confident in either

label (severe wind or no severe wind). We setNobs,min to

25.3 In addition to criteria 1 and 2, the fraction of dead

storms (those that do not live past tmin) in the sub-

sampled data must equal the fraction in the full dataset.

Again, this prevents survivor bias. The resulting distri-

bution is shown in Fig. 7d.

3) TESTING THE MODEL

Like the calibration set, the testing set should have a

Umax distribution similar to the true distribution. This

way, testing performance is a good indicator of future

performance (e.g., in real-time forecasting). Thus, we use

the best-observed distribution for the testing set as well.

Also, there must be a 24-h separation between each

pair of subdatasets. In other words, if storm object S is in

one set, the other two sets may contain no storm object

within 24h of S.

Specifically, 50% of available storm objects (those

drawn from the uniform distribution) are added to the

base-model training set, 75% of the remaining storm

objects (those from the best-observed distribution with a

24-h separation from the base-model training set) are

FIG. 7. Cumulative density functions (CDFs) of maximumwind linked to a storm object. (a) Full dataset at 0-km

buffer distance (inside storm) and 60–90-min lead time. (b) Full dataset at 5–10-km buffer distance and 0–15-min

lead time. (c)Uniform distribution and (d) best-observed distribution at 0–5-kmbuffer distance and 30–45-min lead

time. In all cases, if a storm object has no wind observations in the relevant distance buffer and time window, its

maximum wind is considered zero.

3 In a separate experiment we found that 25 is the smallest

Nobs,min value that allows the ML models to produce well-

calibrated high-probability forecasts (near 1.0) at lead times up

to 60min (see Fig. 10 and Figs. C4–C6 in the online supplement).

To producewell-calibrated high-probability forecasts at 60–90min,

the required Nobs,min value was ;100, but this reduced the size of

the dataset too much. Admittedly, the choice of 25 is still arbitrary,

and we do not know exactly whatNobs,min should be to call a storm

well observed with respect to near-surface winds.
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added to the calibration set, and 100% of remaining

storm objects (those from the best-observed distribution

with a 24-h separation from the other two sets) are

added to the testing set. Table 4 shows the number of

examples in each set.

4. Experimental design

Procedures described in this section are repeated for

each distance buffer and time window. Figure 8 shows

how these procedures fit together.

a. Models used

We use five types of base models: logistic regression

[section 3a(1)], LREN [section 3a(2)], FFNN [section 3a(3)],

random forests [section 3a(5)], and GBEs [section 3a(6)].

For each basemodel, isotonic regression (section 3b) is used

to calibrate forecast probabilities. We vary the param-

eters for each base-model type as described in appendix

B in the online supplement.

b. Model selection

For each set of model parameters, we useK-fold cross

validation, as described below.

1) Split the base-model training data (section 3c) intoK

mutually independent sets, called folds. Indepen-

dence is defined by the 24-h criterion, as in section 3c.

2) TrainK versions of the base model. Themth version

is trained with all folds other than the mth, leaving

the mth fold as validation.

3) Find the version with the highest area under the

curve (AUC; defined in section 5) on its validation

fold. Let this version of the base model be Fb. We use

AUC because it is insensitive to the distribution of

labels, which may vary among the validation folds.

4) Split the calibration data (section 3c) into K folds.

5) Train K versions of the isotonic-regression model.

Themth version is trained with forecast probabilities

generated by Fb on all folds other than the mth,

leaving the mth fold as validation.

6) Find the version with the lowest BS [Eq. (7)] on its

validation fold. Let this version of the isotonic-

regression model be Fi. We use BS here rather than

AUC, because it is the cost function for isotonic

regression and a better indicator of probability

calibration.

7) Together, Fb and Fi make up a ‘‘calibrated model.’’

Find the AUC of the calibrated model on the

validation fold for Fi (which is independent of the

training data for both Fb and Fi). Call this AUCy.

This procedure generates 1786 calibrated models (one

logistic-regression model, 25 LRENmodels, 800 FFNNs,

210 random forests, and 750 GBEs). We select the one

with the highest AUCy. Again, we use the AUC because

it is insensitive to the distribution of labels, which may

vary among validation sets for the different models.

5. Results and discussion

Table 5 shows the testing AUC for each selected

model. For each distance buffer and time window, Tables

C1–C15 in the online supplement show parameters for

the top models (the selected model and those for which

AUCy is not significantly different at the 95% level).

Most of the top models are decision-tree based (either a

GBE or random forest), which is not surprising, given the

ability of decision trees to handle a large number of

predictors [section 3a(4)] and the recent success of GBEs

inmeteorology [as highlighted inMcGovern et al. (2015),

the top three finishers in a recent contest to predict sur-

face insolation were all GBEs]. No single model has

prohibitive computing requirements, as each one can be

trained in ,2h and applied to all active storm cells

in ,1 s, so there are no nonperformance-related reasons

to prefer one model over another.

For each distance buffer at 0–15min (the shortest lead

times) and 60–90min (the longest lead times), Figs. 9 and

10 show the selectedmodel’s performance on testing data.

Figures C1–C6 in the online supplement show the same

graphics for 15–60-min lead times. Specifically, these fig-

ures show the receiver operating characteristic (ROC)

curve (Metz 1978), performance diagram (Roebber 2009),

and attributes diagram (Hsu andMurphy 1986). TheROC

TABLE 4. Number of training and testing examples (storm

objects) for each distance–lead-time pair. Each cell contains

(in order) the number of base-model training, isotonic-regression

training, and testing examples.

Distance buffer

Lead time (min) Inside storm 0–5 km outside 5–10 km outside

0–15 185 286 241 800 148 686

18 959 40 495 27 632

5183 10 189 6919

15–30 156 256 198 752 113 529

19 099 29 670 34 643

5596 7297 11 970

30–45 106 728 138 231 74 789

20 421 38 805 32 658

8058 15 166 11 227

45–60 69 485 92 231 49 676

22 088 42 409 31 111

7562 10 872 8123

60–90 69 072 94 070 52 641

46 044 104 149 103 155

16 158 34 201 30 696
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curve shows the probability of detection (POD) versus the

probability of false detection (POFD) [see Eq. (8)]. A

frequently used single-number summary is AUC. When

assessing the accuracy of amedical diagnosis, regardless of

its frequency in the population, AUC. 0.9 is considered

‘‘excellent’’ and AUC. 0.8 is considered ‘‘good’’ (Luna-

Herrera et al. 2003; Muller et al. 2005; Mehdi et al. 2011).

The performance diagram shows POD versus the

success ratio (SR), overlain with contours of the critical

success index (CSI) and frequency bias (FB) [Eq. (8)].

There is no standard way to judge a performance dia-

gram, because SR and CSI change significantly with the

distribution of labels (cf. Figs. 9b and 9d). However, the

maximumCSI should occur withminimal bias (FB| 1):

POD5
a

a1 c
; POFD5

b

b1d
;  SR5

a

a1 b
;

CSI5
a

a1 b1 c
; FB5

a1 b

a1 c
, (8)

where a is the number of hits (event was forecast and oc-

curred), b is the number of false alarms (event was forecast

but did not occur), c is the number ofmisses (event was not

forecast but occurred), and d is the number of correct nulls

(event was not forecast and did not occur). The ‘‘event’’ is

storm-maximum wind$ 50kt. POD, POFD, SR, and CSI

FIG. 8. Flowchart for anML experiment. Each red box is an action, and each green ellipse is an

object or set thereof. The procedure depicted in the flowchart is repeated for all three distance

buffers, five time windows, and 1786 sets of model parameters. Testing data are used only to

report the performance of the selected model for each distance buffer and time window.

TABLE 5. Results of theML experiment. The top row in each cell

shows the AUC on testing data for the selected model; the bottom

row is the number of top models (those for which validation AUC

is not significantly worse than the selectedmodel) that are decision-

tree based (either a GBE or a random forest).

Distance buffer

Lead time

(min)

Inside

storm

0–5 km

outside

5–10 km

outside

0–15 AUC 5 0.9315 AUC 5 0.9025 AUC 5 0.9202

2 of 2 1 of 1 4 of 5

15–30 AUC 5 0.9466 AUC 5 0.9193 AUC 5 0.9042

26 of 52 21 of 32 11 of 13

30–45 AUC 5 0.9036 AUC 5 0.8989 AUC 5 0.9021

1 of 2 2 of 3 30 of 42

45–60 AUC 5 0.8946 AUC 5 0.8879 AUC 5 0.8771

1 of 1 1 of 2 0 of 1

60–90 AUC 5 0.8883 AUC 5 0.8867 AUC 5 0.9007

1 of 2 4 of 6 12 of 15

2188 WEATHER AND FORECAST ING VOLUME 32



have a range of [0, 1]; FB has a range of [0, ‘). Higher

values of POD, SR, and CSI; lower values of POFD; and

FB values near 1 are considered better.

Finally, the attributes diagram plots forecast proba-

bility f versus conditional event frequency p(y5 1jf ).
The BS [Eq. (7)] can be written in the following form

(Hsu and Murphy 1986), which is more convenient for

interpreting an attributes diagram:

BS5UNC1REL2RES; UNC5 y(12 y);

RES5
1

M
�
K

k51

M
k
(y

k
2 y

k
)2 , (9)

where REL, M, Mk, fk, and yk are as in Eq. (6). In

addition, y 2 [0, 1] is the overall event frequency

(‘‘climatology’’), BS2 [0, 1], UNC 2 [0, 0:25] is the un-

certainty, REL2 [0, 1] is the reliability, and RES2 [0, 1]

is the resolution. Lower values of BS and REL, and

higher values of RES, are desired. UNC cannot be

judged this way, because it depends only on climatology,

which is outside of human control. The Brier skill score

(BSS), which compares the model BS to a climatology

forecast, is as follows:

BSS5
BS

climo
2BS

BS
climo

5
RES2REL

UNC
. (10)

BSS 2(2‘, 1], and higher values are desired. BSS. 0

(RES . REL) means that the model is better than

climatology.

Observations from Figs. 9 and 10 and Figs. C1–C6 in

the online supplement are as follows.

1) AUC, maximum CSI, and BSS decrease (worsen)

with buffer distance and lead time. This makes sense,

because storms impact their immediate environment

more strongly, and forecast skill generally decreases

with lead time.

2) In each attributes diagram, most of the reliability

curve lies in the positive-skill area, where BSS. 0

(the model is better than climatology).

3) Climatology (the dashed vertical line in the attri-

butes diagram) decreases with buffer distance and

FIG. 9. ROC curves and performance diagrams for selected models at (a),(b) 0–15- and (c),(d) 60–90-min lead

times. Each solid line (shaded area) is themean (95% confidence interval), determined by bootstrapping the testing

set. Dashed lines in (a) and (c) show the ROC curve for a random predictor, and dashed lines in (b) and (d) are for

the frequency bias, while blue fill is CSI. Selected models (from nearest to farthest distance buffer) are a GBE,

random forest, and GBE for 0–15min; FFNN, GBE, and GBE for 60–90min.
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lead time. This makes sense, because thunderstorms

are short-lived and small-scale phenomena, so as

distance and lead time increase, they become less

likely to produce severe wind.

4) As climatology decreases, the forecast histogram

becomes more left peaked. In other words, as the

event becomes rarer, high forecast probabilities f

become rarer and low f become more common, as

desired.

5) AUC . 0.88 for all distance–lead-time pairs.

6) For each distance–lead-time pair, the maximum CSI

occurs with little bias (FB | 1).

In general, the most important predictors are storm

motion and sounding indices, rather than radar statistics

and shape parameters (Lagerquist et al. 2017). However,

our predictor-ranking methods are complicated, so this

will be left for a subsequent paper.

FIG. 10. Attributes diagrams for selected models at (a)–(c) 0–15- and (d)–(f) 60–90-min lead times. Each solid line

(shaded area) is themean (95% confidence interval), determined by bootstrapping the testing set. Blue shading indicates

whereBSS. 0, the diagonal gray line is perfect reliability, the vertical gray line is climatology y, the horizontal gray line is

the no-resolution line (produced by always forecasting y), and the inset (red bar graph) is the forecast histogram.
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Themain caveat of this work is that we subsample cases

for calibration and testing, using the best-observed distri-

bution (section 3c).We use the best-observed distribution,

first because it undersamples dubious null cases (storm

objects with,25 wind observations, all nonsevere), where

it is more likely that the storm produced severe wind that

was simply unobserved. Second, without the best-observed

distribution—or just criterion 1 (see section 3c)—our

models learned to never forecast probabilities. 20% and

usually forecast ,1%. Third, calibration and testing data

should be processed in the same way (models should be

calibrated to increase their performance when using

evaluation data). However, when human forecasters are

evaluated, they do not have the benefit of undersampling

poorly observed storms, so our models would cause them

to issue more unverified warnings. This would cause per-

formance metrics other than AUC to drop significantly.

6. Summary and future work

We used machine learning (ML) to forecast the

probability of damaging straight-line wind ($50 kt or

25.7m s21) for a single storm cell. Three datasets—radar

images, modeled soundings, and near-surface wind ob-

servations—were incorporated into the ML models.

Forecasts were made for three distance buffers

(inside storm cell, 0–5 km outside, 5–10 km outside)

and five time windows (0–15, 15–30, 30–45, 45–60,

and 60–90min ahead).

For each distance buffer and time window, a two-step

model was trained, consisting of a base model (to gen-

erate initial probabilities) and an isotonic-regression

model (to calibrate said probabilities). After exper-

imenting with five types of base models, we determined

that the best model for most distance–lead-time pairs is

an ensemble of decision trees (either random forest or

gradient boosted).

We hypothesized that our models would outperform

climatology for each combination of the distance buffer,

time window, and forecast probability (discretized into

10 bins). According to the Brier skill score, this was

achieved for all but a few of the 150 combinations. Also,

the area under the ROC curve was .0.88 for all

distance–lead-time pairs.

We cannot compare the performance to non-ML

methods (sounding based, radar based, and explicit

NWP), because they do not produce explicit probabili-

ties (between 0 and 1). We also cannot compare directly

to previous ML studies, because they either forecast

straight-line wind only for severe storms (Alexiuk et al.

1999) or did not separate straight-line wind from other

storm hazards (Kitzmiller et al. 1995; Marzban and

Stumpf 1998; Cintineo et al. 2014). Nonetheless, we

extended previous studies by forecasting straight-line

wind, distinct from other hazards, for both severe and

nonsevere storms; using measured wind observations in

addition to human reports; using multiple data types

(radar and NWP) to create predictors, which was done

only by Cintineo et al. (2014); using merged (rather than

single radar) data, which was done only by Cintineo

et al. (2014); calibrating probabilities, which was done

only by Marzban and Stumpf (1998); and using a large

number of predictors (we used 431, whereas previous

studies used no more than 23). Many of these advances

were made possible by more computing resources, or

more and better data, than were available earlier.

We are currently improving this work in several ways,

which will be the subject of a future article. First, we are

applying variable-selection and variable-transformation

methods (e.g., forward and backward selection, principal-

component analysis) to selected models to understand

the physical relationships being exploited. Second, we are

interpolating forecast probabilities onto a grid, account-

ing for stormmotion. The output will be one grid per time

window, rather than one forecast per storm cell, distance

buffer, and timewindow, which will drastically reduce the

cognitive load for the user. Third, we are using more

advanced ML techniques. Weather data are four-

dimensional and have high-level spatiotemporal re-

lationships, which is ideal for deep learning (LeCun et al.

2015) and spatiotemporal relational probability trees

(McGovern et al. 2008), respectively.
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