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Use AI/ML to Improve Societal 
Resilience to Climate Change and 

Extreme Weather

• Wicked problems:
• How can humans adapt to a changing climate?  

Where do we need to build and grow our 
communities?  How do they need to change from 
current practices?  

• How can we improve the prediction of new 
weather extremes?  

• How can we improve the adaptation of other 
species?  Migration patterns, land use changes, etc.

• Proposal: create a joint university, industry, and 
government alpha-institute to bring together 
researchers in AI/ML and climate and weather
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ML for Weather Outline

• Using ML for severe weather prediction
• Improving hail forecasting 24-48 hours in advance (traditional ML)
• Improving nowcasting for tornadoes (deep learning/convolutional neural 

networks)

• Using ML to track biological species over time
• Identifying bird roosts in non-QC radars (deep learning)



Storm-Based Hail Forecasting

• Overall steps:
• Create training data from NWP 

models
• Train ML models (random forests)
• Prediction and evaluation 

• Implemented and tested in 
NOAA’s Hazardous Weather 
Testbed
• Details:

• Gagne et al 2017, WAF
• Burke et al, in preparation
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Decision Trees
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• Human-readable ML model
• Can predict:

• Class labels (hail/no hail)
• Real-values (hail size, shape 

parameters)
• Probabilities

• Demonstrated success in 
meteorology
• Selective model



Ensembles of Trees

• Random Forests
• Individual trees trained on 

bootstrap resampled subsets of 
data

• Trees use subsets of attributes at 
each level

• Each tree votes or averages its 
prediction

http://ncbi-hackathons.github.io/Pharmacogenomics_Prediction_Pipeline_P3/



NWP Convection Allowing Models (CAMs)

• CAMs have high spatial and temporal resolution across CONUS
• Resolution too low to resolve hazards such as hail
• ML can predict missing hazards and correct spatial or temporal forecast errors

• Gagne et al 2017
• CAPS Spring Experiment ensemble
• NCAR ensemble

• Current work (Burke et al, in preparation)
• High Resolution Ensemble Forecast version 2 (HREFv2)

• Operational in Storm Prediction Center (SPC)
• High Resolution Rapid Refresh Ensemble (HRRRE, summer 2019)



ML Input

• Extract data for each storm 
object/track
• Storm data: updraft/downdraft, 

reflectivity, precipitation, etc
• Environment: temperature, CAPE, 

wind, sounding data, etc
• Morphological: Area, shape, etc
• Location: Forecast hour, duration, 

motion
• Each CAM has slightly different 

data
• ML model trained for that CAM



Identifying and Tracking 
Hail Objects
• Enhanced watershed algorithm

• Turning pixels into objects 

• HREFv2 
• Max Hourly Updraft (ms-1) > 8!

"
• Capture more than just supercells

• Observations
• Maximum Estimated Size of Hail 

(MESH) > 19mm (3/4 in)



ML Hail prediction

• Two step prediction
• Hail or no hail?

• If hail:
• Predict shape and scale 

parameters of gamma distribution

• Estimate ensemble 
neighborhood probabilities
• Bootstrapping



Case Study: High-End Hail Day





Reliability Diagram



Regions

Rapid City, SD

Denver, CO

Dallas, TX

Atlanta, GA

• Train regional 
models by 
weighting 
CONUS storms 



Case Study: Central  Plains Sector



ML for Weather Outline

• Using ML for severe weather prediction
• Improving hail forecasting 24-48 hours in advance (traditional ML)
• Improving nowcasting for tornadoes (deep learning/convolutional neural 

networks)

• Using ML to track biological species over time
• Identifying bird roosts in non-QC radars (deep learning)



Tornado Prediction with Deep 
Learning



CNN 
architecture



Tornado Experimental Data

• 1 storm object = 1 storm cell at 
one time step
• Training set: 2011-14 

• Tornadic objects: 8385
• Non-tornadic (no tornado in the 

next hour): 447,922
• Downsample non-tornadic to 

50/50
• Testing set: 2015-16

• Tornadic: 1420
• Non-tornadic: 39,639



Tornado Labels



Convolutional Net Architecture 



ROC and Performance



What the model is 
learning: Saliency

Strong reflectivity core 
with hints of a hook

Region of 
vorticity near 

”hook”

No strong 
vorticity

Disorganized storm 
with weak reflectivity



ML for Weather Outline

• Using ML for severe weather prediction
• Improving hail forecasting 24-48 hours in advance (traditional ML)
• Improving nowcasting for tornadoes (deep learning/convolutional neural 

networks)

• Using ML to track biological species over time
• Identifying bird roosts in non-QC radars (deep learning)



Why Study Bird Roosts?

● Purple Martins and Swallows roost in large colonies visible on the radar
● Important for ecological conservation (Shipley et al. 2017)
● Reasons to study birds roosts and migration (Bauer et al. 2017)

○ Wind turbine collision
○ Habitat deterioration
○ Pest control
○ Crop damage
○ Dispersal of pathogens

https://sheywicklundphotographs.com/2014/07/20/hundreds-of-purple-martins/
Purple Martin by Greg Homel, Natural 

Elements Productions
Tree Swallow by Prem Balson



NEXRAD RADAR DATA

• Data:
• Level 2 NEXRAD data
• 0.5° scan

• Roosts most visible at sunrise
• Products used (when available):

• Reflectivity
• Velocity
• Correlation Coefficient (dual-pol)
• Differential Reflectivity (dual-pol)

Roost at sunrise



Dataset

● Labels: Roost and No Roost
● Two sets of radar data: legacy 

and dual-pol
● 10 different radars: KAMX, KBRO, 

KDOX, KGRK, KJAX, KHGX, KLCH, 
KLIX, KMLB, and KMOB

● Hand-labeled data from OU and 
UMass Amherst

Roost No Roost

Legacy 11,112 19,939
Dual-pol 1,346 10,806



Results



Current and Future work on Roosts

• Identify locations of bird roosts
• Track changes in behavior over time
• Mitigate risk



Acknowledgments 

• Some of the computing for this project was performed at the OU 
Supercomputing Center for Education & Research (OSCER) at the 
University of Oklahoma (OU).
• This material is based upon work supported by the National Science 

Foundation under Grant Numbers EF-1340921, DGE-1545261, AGS-
1802627 and NOAA JTTI Grant No. NA16OAR4590239 and 
NA18OAR4590371.
• Funding was provided by NOAA/Office of Oceanic and Atmospheric 

Research under NOAA-University of Oklahoma Cooperative 
Agreement #NA16OAR4320115, U.S. Department of Commerce.
• I’ve got an open PhD position right now!



Use AI/ML to Improve Societal 
Resilience to Climate Change 

and Extreme Weather
• Proposal: create a joint university, industry, 

and government alpha-institute to bring 
together researchers in AI/ML and climate 
and weather
• Contact me: Amy McGovern 

amcgovern@ou.edu

mailto:amcgovern@ou.edu

