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Abstract

Asymmetric multiprocessor systems provide opportunities for exploiting dif-

ferences between differernt programs to achieve power efficiency and perfor-

mance. Unfortunately, heterogeneity in multicore processor systems creates

significant challenges in effectively mapping these programs to diverse type of

cores. To avoid requiring a static assignment of an application to a particular

core type by the programmer, various approaches have been proposed to dynam-

ically schedule applications across cores with heterogeneous sets of capabilities.

Typical scheduling approaches require either sampling through a permutation

of thread schedules to find the optimal mapping or use rough heuristics for

predicting the performance of an application on a particular core type. We

instead introduce a new, systematic approach to automate thread assignment.

We construct a reinforcement-learning-based scheduler to assign threads to the

best performing core given the state of the program and the processor cores.

We use tile coding and artificial neural networks(ANNs) to represent system

features as states and explore linear and nonlinear relationships between states

and performance estimation. We present results demonstrating the promise

of this approach for single-ISA heterogeneous multicore processors using mul-

tiprogram workloads from SPEC CPU2006 benchmarks. Our initial tile cod-

ing based function approximation learning experiments are encouraging, and

our reinforcement-learning-based scheduler with ANNs function approximator

delivers 1.77%(ignoring the overhead of switching) and 4.1%(considering the

overhead of switching) better performance and 41.4% (ignoring the overhead of

x



switching) and 41.7%(considering the overhead of switching) improvement to-

wards an ideal performance estimation over heuristic-sampling-based scheduler

and 6% better performance than the average of all possible static schedules

for a four-core heterogeneous system. We also show the great potential of this

approach using either online or offline learning. Finally, we discuss the imple-

mentation of our model, its impact on results and propose future directions for

improving the reinforcement-learning-based scheduling approach.
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Chapter 1

Introduction

Heterogeneous multicore processors (HMPs) have performance and power ad-

vantages over homogeneous ones—for example, a large number of energy effi-

cient cores can be combined with a smaller number of high performance cores to

create a multicore system that offers a balance between the conflicting demands

of power efficiency and performance, and between thread-level parallelism and

single-thread performance. Single-instruction-set architecture (ISA) HMPs (or

asymmetric multicore processors) offer an additional benefit that they enable

the same application code to execute on cores of different types without any

recompilation (Kumar et al. 2003a). The performance characteristics of the

individual types of asymmetric cores result in different performance and power

consumption for a particular application. Since the behavior of a typical applica-

tion changes over time, a different type of core may result in better performance

during each phase of an application’s execution (Sawalha et al. 2011). Asym-

metric multicore processors make increasing sense in the “dark silicon era” when

the vast numbers of (mostly powered-off) transistors on a die can be used to

implement cores that are specialized for specific phases of execution (Patsilaras

et al. 2012). Unfortunately, asymmetry between cores significantly complicates

scheduling threads among the available cores.

In this study, we present a novel approach for transparently scheduling

threads to cores using reinforcement learning (RL). Reinforcement learning is an
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effective solution for complex resource allocation problems, especially in com-

puter systems (Nie and Haykin 1999; Tesauro 2005). Results from previous

work show that RL has great potential as a powerful scheduling method for

computer architecture optimization tasks. For example, McGovern et al. (2002)

built a basic block instruction scheduler that generates higher performance code

than a commercial scheduler. Ipek et al. (2008) presented an RL-based memory

scheduler in their self-optimizing memory controller. Their results showed that

the controller significantly improves the performance of parallel applications on

chip multiprocessors through optimized DRAM bandwidth utilization. Coons

et al. (2008) used RL to optimize distributed instruction placement policy in a

compiler and achieved positive results similar to the finest hand-tuned heuris-

tics.

An RL agent approximates the optimal policy through interaction with its

environment. More precisely, the agent learns to choose the action in the cur-

rent state that will lead to the best cumulative rewards over the long-term. The

basic RL algorithm was designed for finite Markov decision problems that have a

fully observable discrete, finite environment. However, most real world problems

are in large, continuous environments. Function approximation is a well-known

approach for RL to solve more complex problems in such environments. Using

easily obtained system features and appropriate reward (performance), the re-

inforcement learning agent can effectively and dynamically map threads to the

dissimilar cores in a chip multiprocessor.

Typical function approximations represent continuous states using simple

discretization, radial basis functions, neural networks, tile coding, decision tree,

or instance- and case-based approximations (Sutton et al. 2000). Tiling coding

and Artificial Neural Networks (ANNs) are tested as function approximation

2



method to represent the continuous state of the system in this research. Tile

coding uses linear functions to approximate nonlinear relationship. ANNs have

a network structure which itself represents a nonlinear function. The advantages

and disadvantages of tile coding and ANNs are discussed in the later chapters.

The rest of the thesis is organized as follows: Chapter 2 describes the basic

algorithms including reinforcement learning, tile coding, and ANNs and spec-

ifies the implementations in heterogeneous multicore system. Chapter 3 and

Chapter 4 represent empirical results for tile coding and ANNs implementa-

tions separately. Comparisons and implementation details are discussed in each

chapter. Finally, Chapter 5 concludes the thesis and highlights future work.

3



Chapter 2

Reinforcement Learning and Function

Approximation

2.1 Reinforcement Learning

2.1.1 Overview and Simple Example

Reinforcement learning(RL) is one of the important machine learning algo-

rithms. RL origins from the combination of optimal control (Bellman 1957a,b),

psychology of animal learning (Thorndike and Bruce 1911), and temporal dif-

ference methods (Sutton 1988). The RL agent learns the right thing to do in

each situations that it could met in a dynamic environment. By exploring differ-

ent action spaces and getting feedback from the environment, the agent learns

which policy can lead to a good result in the long run. In the other word, the

RL agent can learn from its own experience with the system. Although RL is a

learning algorithm, it is different from the general supervised learning such as

decision tree, linear regression, and neural networks. In the supervised learning

algorithm, the right answers are provided. The training data are input/output

pairs. And the supervised learning model adjusts its parameters or structures to

generate similar outputs from the same inputs. Unlike the supervised learning,

the RL agent learns from the feedback by interacting with the environment, and
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RL aims to find an optimal policy for the big picture. Therefore, RL is designed

for certain type of tasks that require searching for possible optimal results in a

dynamic system.

A RL system should have at least four elements (Sutton and Barto 1998):

a policy, a reward function, a value function, and a model of environment.

During the learning, the RL agent has to choose which action to be taken in

every state. In a dynamic system, available actions may change when the RL

agent reach different states. The policy represents the rules that define the

different action sets for every possible states. The reward function is a function

that can transform the target performance to a quantity number, so that the

performance can be evaluated in a mathematical equation. The value function

is used by the RL agent for remembering the consequence of taking an action

in the state mathematically. And the next time when the RL agent reaches the

visited state , it will make a decision based on the evaluation of the output of the

value functions of that state. In this way, the RL agent can learn to approximate

the optimal solution from its own experience with the system. The last element

is the model of environment. In the RL tasks, all other elements are designed

and implemented upon the system model. So, the learned results from the RL

agent are specific to the system. The model could be a real dynamic system or

a system simulation model.

To better understand the RL systems/tasks, a simple example is presented.

Travel in a grid world is a classical RL task. As shown in Figure 2.1, the agent

want to travel from the start position to the goal position using minimum steps.

Each intersection point of two lines is a discrete state in the system. Depends

on the current state in the grid world, the agent may move up, down, left, and

right to reach the goal. The policy in this task could be the choices of actions
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Figure 2.1: System set up for grid world.

Figure 2.2: The learning curve for the grid world task.

to be taken in different states. For example, the agent can not move left if the

goal position is on its right. The reward function could be negative one for each

step. The more steps the agent takes to reach the goal, the more negative ones
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it receives. The value functions for each state maintain and update the expected

total received reward for each available action in that state. The grid world is

a simple system that can be simulated in program easily. A RL agent aims at

getting more accumulated reward which means less negative ones in this task.

Figure 2.2 is a learning curve of grid world task which is used to show learning

progress and learning results. The x axis is the episode number. The agent take

one episode to finish the task which, to be specific, is reaching the goal position

from the start position. The y axis is how many steps the agent take to finish

the task for each episode. We can see that the number of steps decrease during

the learning process and reach the minimum steps that are required to finish

the task. Since the travel in the grid world task is really simple, the optimal

result can be easily learned. For large and complex systems and tasks, the best

optimized result may not be guaranteed, but the RL is aiming at approaching

it.

2.1.2 Basic RL Equation

Basically, RL takes the trail and error process with memorizing the consequences

in a dynamic environment. The algorithm expression of RL uses the terms of the

dynamic state and value function which comes from the optimal control. The

Monte Carlo method and the temporal difference methods finalize the equa-

tion. Figure 2.3 shows the evolution process of the RL value return and update

equation.
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Figure 2.3: Brief history of RL algorithm development.

As described above, the RL agent is designed to get the highest accumulated

reward. The accumulated reward can simply expressed as the addition of the

acquired reward from every step in the policy, like (2.1).

Rt = rt+1 + rt+2 + rt+3 + · · · (2.1)

In case, the RL task is continuous which means there are infinite steps in one

episode, discount rate(γ) is introduced to the (2.1) and the equation becomes

(2.2).

Rt = rt+1 + γrt+2 + γ2rt+3 + · · · =
∞∑
k=0

γkrt+k+1 (2.2)

When γ=0, the RL agent only consider the reward from the next step like other

greedy agents do. As γ approaches 1, the RL agent will consider more about

future rewards and becomes more farsighted. In general, due to the discount

rate, the near future rewards, like the next several steps rewards, has more

impact on the decision than the rewards from the further future rewards.

In order to further develop the value function equation, we have to introduce

the Markov decision process(MDP). The MDP is a simple class of RL tasks that

have the Markov property. The Markov property defines that the distribution

of the probabilities of the next state and reward are only depend on the current

state and action. The MDPs with finite states and actions are called finite
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MDPs. In finite MDPs, the probability of each possible next state is expressed

as (2.3)

Pa
ss′

= Pr
{

st+1 = s
′|st = s, at = a

}
(2.3)

and the expected next reward is expressed as (2.4).

Ra
ss′

= E
{

rt+1

∣∣∣st = s, at = a, st+1 = s
′
}

(2.4)

The s, a, and t represents the state, the action, and the step. The s
′

is the next

possible state. Then, combined with (2.2), the value function in finite MDPs

became (2.5).

Vπ (s) =
∑
a

π (s, a)
∑
s′

Pa
ss′

[
Ra
ss′

+ γVπ(s
′
)
]

(2.5)

The π is the policy and the π (s, a) is the available actions in state s defined by

the policy π. By comparing all the value functions of all the available policies,

the optimal policy V∗ (s) is the one with the largest Vπ (s).

Dynamic programming(DP) helps RL to move forward a further step. By

using the (2.5), the value function of a policy can be calculated recursively in

MDPs. This characteristic of the policy value function makes DP method ap-

plicable in this field. Rather than calculating and comparing value functions of

all possible policies, DP method can find the optimal policy by policy iteration.

Policy iteration consists of two components: policy evaluation and policy im-

provement. Policy evaluation is actually the same process of calculating current

policy value function by using (2.5). Policy improvement uses (2.6)

Qπ
(
s, π

′
(s)
)
≥ Vπ (s) (2.6)

as a reference to update current policy. Qπ (s, a) is a action value function

which represents expected reward of taking action a in state s under policy

9



π. π
′
(s) in (2.6) means taking an action a that is not defined by policy π

in state s. If (2.6) is true, the current policy will be updated to π
′
. By

repeatedly executing the two steps, the original policy can be improved and

converged to the optimal policy in MDPs. Although, DP method guarantee

policy convergence in MDPs, it requires complete probability distributions and

expected rewards of all possible states. The number of state grows exponentially

with the number of state variable. Both requirements limit the application of

DP method in real world tasks.

Another type of methods that also contribute to the development of RL

value function is Monte Carlo methods. Unlike DP, Monte Carlo methods do

not require the complete prior knowledge of all states in the system. It only

needs the information of every state the agent experienced in every episode.

In the other word, Monte Carlo methods try to find the optimal policy by

learning from its own experience in the system. This means the agent has to

go through the whole task (episode) repeatedly. Hence, Monte Carlo methods

require that the RL task is restrictively episodic. Usually, the return used

to update the value function is the average of all the instant rewards from

experienced states. Monte Carlo methods also use policy and value iteration

to improve current policy to the optimal one. One popular off-policy action

selection strategy that is used in policy improvement and is worthwhile to be

mentioned is the ε-greedy policy. The ε-greedy policy is the agent chooses the

action with the maximal estimated action value (or the action leads to the state

with the maximal estimated state value) with the probability of 1-ε, but choose

a random action with the probability of ε. This ε-greedy policy will also be

used in later developed RL algorithm.
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It is not efficient or even not possible to use dynamic programming and

Monte Carlo methods for complex tasks. Temporal Difference (TD) (Sutton

1988) learning combines the ideas of DP and Monte Carlo methods and makes

a breakthrough on the RL application limitations. TD learning takes the Monte

Carlo methods idea of learning from experience and the DP idea of learning

from the other learned estimations. In this way, the learning agent neither has

to know the prior knowledge of the whole dynamic system nor waits until the

task finishes to get reward returns. TD learning uses bootstrap method to get

update that is based on immediate reward and an existing estimation. The

basic equation of TD learning is (2.7),

V (st)←− V (st) + α [rt+1 + γV (st+1)−V (st)] (2.7)

where α is the learning rate, rt+1 is the immediate reward, and V (st+1) is the

value estimation of the next state. rt+1 + γV (st+1)−V (st) is called TD error

σ. When σ approaches 0, it means the value function converges and the policy

has been updated to an optimal one.

There are two TD based methods that are mostly used in RL tasks: Sarsa

and Q-learning. Sarsa substitutes the state value function in the basic TD

learning equation with action value function and has the form of (2.8).

Q (st, at)←− Q (st, at) + α [rt+1 + γQ (st+1, at+1)−Q (st, at)] (2.8)

A value(Q-value) is associated with the action value function Q (s, a) and is

used and updated to represent the expected reward return in the long run. The

Q (s, a) means an action is paired with the state, and there could be as many

available actions as Q (s, a)s in a state. Sarsa is a on-policy TD control method.

This means st+1 in the Q (st+1, at+1) in (2.8) is the next state of s in Q (st, at)

by taking action at. The at+1 is determined by ε-greedy policy. Then, in the
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next step, st+1 in the last step becomes current st and at+1 become at. The

method evaluates one policy and updates the action value function following

the same policy. Q-learning is very similar to Sarsa expect it is off-policy TD

control method. The equation of Q-learning is (2.9).

Q (st, at)←− Q (st, at) + α
[
rt+1 + γmax

a
Q (st+1, a)−Q (st, at)

]
(2.9)

From the equation, we can see the action in Q (st+1, a) is not necessary the

action that the agent will take. The next state Q-value used to update the

current Q-value is the one with largest value rather than the Q-value of actual

taken state action pair. This method evaluates one policy while following an-

other policy. Both Sarsa and Q-learning can converge to the optimal policy,

but at different rates. Q-learning tends to be a little slower than Sarsa, but is

capable of learning while changing the policy. Sarsa is a better online learning

algorithm than Q-learning.

2.1.3 RL in HMPs

Single-ISA HMPs are increasingly being examined for their potential to achieve

better throughput and energy efficiency (Kumar et al. 2003b). There are sev-

eral scheduling techniques for assigning jobs to different types of cores in an

ACMP. Typically these fall into the categories of either sampling or prediction

scheduling techniques. Sampling approaches (Becchi and Crowly 2008; Kumar

et al. 2004) permute the set of running programs amongst each type of core

to find the best overall schedule. While sampling approaches tend to find an

efficient schedule, they waste significant power and performance while sampling

through many non-optimal assignments and migrating threads from one core

to the other. The cost of sampling grows exponentially with the number of

12



types of cores as thus does not scale beyond relatively simple HMPs. Predic-

tion approaches (Koufaty et al. 2010; Saez et al. 2010; Van Craeynest et al.

2012) seek instead to estimate the performance of each running program on

each type of core without necessarily executing the program on that type of

core. These approaches avoid the overhead of sampling but are heavily depen-

dent on their heuristic to estimate the performance of an application, based on

its characteristics. These heuristics must be finely tuned for each type of core to

achieve highly efficient schedules. Other approaches seek to combine sampling

with prediction (Sawalha et al. 2011). These approaches reduce the overhead

of sampling but do not eliminate it and do not necessarily find as optimal an

application mapping as could be found through more aggressive sampling. In

this work, we demonstrate a more systematic mapping approach using features

already commonly available via processor performance monitoring.

In our proposed approach, the scheduler is assisted by a learning agent, and

the assignments of running programs to cores are the actions available to that

agent. The HMP system is the environment that interacts with the scheduler,

the behaviors of programs and cores represent states, and the overall system per-

formance is the “reward.” As shown in Figure 2.4, for each interval (step), the

scheduler chooses one mapping assignment from all available ones, and running

programs are mapped to cores in the HMP system based on this assignment.

At the next interval, the system reports the performance and the behaviors of

programs and cores back to the scheduler. The scheduler updates the estimated

accumulated reward for the assignment for the last system state. After a fixed

number of iterations, the scheduler learns to choose the appropriate mapping

assignment under each circumstance to maximize the accumulated reward over

13



Figure 2.4: Reinforcement learning process in HMPs.

the long run. Because characteristics of an HMP system are basically contin-

uous, there are virtually infinite different behaviors of programs and cores and

thus they cannot all be recorded. Instead, function approximations are used to

represent the relationship between these characteristics and the rewards. These

functions take system features as inputs and the estimated accumulated rewards

are outputs. Each available assignment is represented as a function. In this way,

the scheduler can make same scheduling assignments under the same situations.
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2.2 Function Approximation

2.2.1 Tile Coding and Randomization

RL algorithm works based on estimations of value or action value functions of

each state or action state pair. For large multi-dimensional continuous dynamic

systems, it is simply not possible to find a state without specific divisions or

definitions. A generalization or abstraction method is needed for RL to solve

tasks in such a system. Hence, function approximation is introduced to the

RL task solving procedures. The most straightforward method is dividing the

continuous state space into discrete states. It is easy to implement this method

but hard to decide how to divide the state space without prior knowledge of

the system. This method is adequate for the tasks in small continuous system

with limited state variables but may generate contradictory information for the

learning agent. Another simple way to do function approximation is linear

function method. Linear function method takes the variables of state space as

input and uses a linear function to represent the value function or action value

function. Updating the state value or Q-value is accomplished by updating

the parameters that associate with each state variable in the linear function.

The problem of this method is the linear function can only represent linear

relationship between the linear set of state variables and the state value or Q-

value. Therefore, the linear function method is not capable of handling large

complex system.

Tile coding is a function approximation method that uses both discretiza-

tion and linear function representation techniques. Tile coding is also named

cerebellar model articulation controllers(CMACs) and is originally proposed for

memory management (Albus 1975). In general, tile coding transforms the state

15



Figure 2.5: Simple tiling partition in 2D space.

space into binary features and inputs these features to a linear function which

represents the value or action value function. In details, tile coding turn the

state space into many distinctive partitions and the partitions are shifted from

each other. Each partition of the state space is called a ”tiling” and each el-

ement or cell on the tiling is called a ”tile.” When the learning agent reach a

state, the state variables are used to identify which tile that the state is falling

into in each tiling. Then, the tile will be set to one and all other tiles in the

same tiling will be set to zero. Every tiling has exactly one tile to be set to one.

All tiles in every tiling are inputs to the linear function where each entry has

an associated weight. Figure 2.5 shows a simple example of tile coding. In a

simple 2-D state space, tiling one and tiling two are the same state space with
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different partitions. The point in the figure represents the current state. The

highlighted tiles with the point in them are set to one and other tiles are set to

zero. Then, these transformed binary features are inputs for the linear function

like (2.10).

f (φ (s) ,w) =

NL∑
i=1

Ni∑
j=1

φij (s) wij (2.10)

φ (s) are binary features, w are weights, NL is number of tilings, and Ni is

number of tiles in the tiling j. The learning takes place by updating weights

using gradient descent method like (2.11).

w←− w + α
(
r + γf

(
φ
(
s
′
)
,w
)
− f (φ (s) ,w)

)
φ (s) (2.11)

Tile coding generates finer state representation than simple discretization and

can handle a little more complex system than simple linear function method do.

In our HMPs system, the large number of state features inhibits the use

of a full tile coding. Instead, we create the tile coding using randomization

theory (Witten et al. 2011). Rather than using all features on each tiling, we

randomly choose two features for three tilings. Since this is an initial experi-

ment, we did not examine more possible random tiling formation methods. We

call these three tilings a ”tiling set.” We approximate the high dimensional state

space by forming a large number of tiling sets. Figure 2.6(c) shows the process

of transformation from state to Q-value function input.

2.2.2 Artificial Neural Networks

Tile coding may not sufficient for tasks in large complex system. Tile coding

does not overcome the limitations of discretization and linear function, and it

still has the problem of curse of dimension and can not represent complex non-

linear relationship between state variables and value or action value functions.
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Figure 2.6: (a) Individual tiling with 9 tiles. (b) Tiling set with three tilings.

(c) State (represented by features) transformed by tile coding to Q-value function

input.

Artificial neural network is better a choice over tile coding in real complex en-

vironment.

Artificial Neural Networks (ANNs) are highly interconnected networks that

are inspired by biology neural networks. ANNs can be trained to a mathematical

models that can represent the complex nonlinear relationship between input

and output data or data pattern. The mostly used ANN is the multilayer feed

forward network which is proposed by Werbos (1974). ANNs can be used as
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Figure 2.7: Basic neuron structure in ANNs.

the function approximation method in RL task (Crites and Barto 1998; Tesauro

1994). It has been proven that ANNs can be a universal function mapping

method and approximate multi-variable function with a finite number of nodes

in the hidden layer (Hecht-Nielsen 1987). ANNs can have various structures.

The basic element in the ANNs is called neuron. Figure 2.7 shows the simple

mathematical model for a neuron. There are two steps in the basic neuron

model: linear function and activation function. The activation function, such

as sigmoid function, takes the output of the linear function as input and forward

the results to the next layer neurons. ANNs get updated by back propagation

which traces back to every layer and updates the weights using gradient descent

method. For the output layer, wjk ←− wjk + α× aj ×∆k is used. The hidden

layer j is directly connected to the output layer k. aj is the output from the
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layer j and also the input to output layer k. wjk is weights that are used for

output neuron linear function. ∆k is expressed as (2.12).

∆k = Errk × g
′
(ink) (2.12)

The Errk is the difference between the target value and the ANN output. In

RL tasks, it is TD error σ. g (x) is the activation function and ink is the output

of linear function in layer k. For the hidden layers, (2.13) is used.

wij ←− wij + α× ai ×∆j (2.13)

∆j is expressed as (2.14).

∆j = g
′
(inj)

∑
k

wjk∆k (2.14)

ANN with multilayers is a good function approximation method for sophisti-

cated RL tasks.

The number of ANNs that are used in a environment depends on the number

of actions that are available in that system (two for two-core system and four

for four-core system). There are one big core and one small core in the two

core system. The two available actions are putting application one on the big

core and application two on the small core, and the opposite application core

mapping. In the four core system, there are one big core and three identical

small cores. Since the three small cores are the same, different application core

mappings on the small cores will not cause difference in performance. So there

are actually four effective actions in the four core system: putting one of the four

different applications on the big core with other applications on the small cores.

Each ANN represents one state-action pair. In each system, all ANNs have the

same structure. Generally, there are three layers in each ANN including one

input layer, one hidden layer and one output layer. As Figure 2.8 shows, the
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Figure 2.8: Nerual network structure.

input layer has the same number of neurons as the number of system features.

The hidden layer has half the number of neurons as the input layer. There is

only one output that represents the Q-value for each ANN. Since Q-value is

calculated from system features via an ANN, updating Q-value during learning

is actually done by back-propagation of ANN. In this way, ANNs are nonlinear

functions used by reinforcement learning method.
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Chapter 3

RL Scheduler Using Tile Coding

In this Chapter, we present the RL learning results using tile coding as the

function approximation method. We show the learning curves of individual

experiments and the average learning curve of all experiments in the two core

system. The schedule results of trained learning agent are used to compare with

heuristic schedule results and static schedule results. We also show individual

test case learning curves in four core system. At the end, we discuss the re-

sults shown in this chapter and the effectiveness of tile coding as a function

approximation method.

3.1 Learning System Setup

We simulated two-core and four-core ACMP systems using two different types of

cores: an out-of-order core (a high-performance core) and an in-order processor

(a power-efficient core). The two-core system is composed of one of each of these

core types. Table 3.1 shows the configurations of these two processing cores.

Since core 0 is in-order core, there is no reorder buffer, and reservation stations

(shown as “-” in the table). For our initial study, the quad-core processor

consists of one high-performance core and three power-efficient cores. There is

a two-level data cach in each system. Each core possesses a private L1 data

cache and all cores in a system share an L2 cache. For the simulated systems,
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Table 3.1: Processor configurations

Parameter Core 0 Core1

Execution In-order Out-of-order

Issue width 2 4

L1 cache 64KB 64KB

L2 cache 256KB 256KB

ROB – 128

RS – 32

the in-order processor’s L1 cache is smaller than the out-of-order processor’s L1

cache. The state of these caches will comprise some of the features utilized by

our scheduling agent as will be later detailed.

In the experiments presented here, the number of executed applications is the

same as the number of cores in the system; there is always one application run-

ning on each core. However, our learning-based approach could be augmented

to handle time-multiplexing of application processes simply by increasing the

number of actions available to the scheduler agent to include swapping a run-

ning process for a currently switched-out process. Since typical applications

consist of various distinct execution phases (Merten et al. 2001; Sherwood et al.

2003), dynamically scheduling the applications to run on their respectively best

fitting cores each period can result in the best overall system performance.

In our ACMP systems, the states are represented by the system features that

are gathered during execution, and the actions represent the possible thread-to-

core assignments. There are 32 features for the two-core system and 64 features

for the four-core system. Fifteen different architectural and performance eval-

uation features are associated with each core and one feature is related to L2
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cache hit rate and is associated with each benchmark since all benchmarks share

one L2 cache. The fifteen per-core features are: the percentage breakdown of

executed instruction type (between load, store, branch, multimedia, basic float-

ing point, floating point multiplication, floating point division, basic integer,

integer multiplication and integer division instructions), L1 cache hit rate, L2

cache hit rate, percentage of correct branch predictions, percent of available

space in reservation stations, reorder buffer and load/store queues (for out-of-

order cores). These features are chosen because they are directly related to the

performance of the multicore system. All of these features range from 0 to 1.

The scheduler agent is trained using tile coding in these simulated experi-

ments. 200 and 400 tiling sets are used for the two-core system and four-core

system, respectively, in our experiments. The available actions are the same for

every state: schedule one of the benchmarks to run on the high-performance

core and others to run on the power-efficient cores. So there will be two possi-

ble actions (application core mappings) to be taken in two core system: putting

application one on the big core and putting application two on the big core.

Since the three small cores are identical, there are four possible distinct ac-

tions(possible application core mappings) to be taken in four core system. Every

10,000 cycles, the system reports the state features for the agent and continu-

ous features are transformed via randomized tile coding into binary inputs to

the linear functions. The action with the largest Q-value is taken and negative

one(-1) is given to the agent as reward. The linear functions (weights of the

functions) are updated according to the reward. Note that since negative re-

ward is given for each 10,000 execution cycles when the learning agent updates

the action value function, maximizing the total reward received will maximize

system performance by minimizing total execution time. If applications run
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for a long time due to inefficient scheduling, more cycles will elapse and more

negative rewards will be given to the agent. To maximize the reward, the agent

must learn to schedule the benchmarks on cores in a way that they can finish

faster.

Simulated evaluation of our scheduling technique was performed using Soon-

ergy (Freeman 2011), a cycle-accurate architectural simulator. Thirteen differ-

ent benchmarks from SPEC CPU 2006 benchmark suite are used in our sim-

ulations. These benchmarks are astar, bzip2, dealII, gcc, gobmk, hmmer, lbm,

mcf, namd, omnetpp, povray, soplex, and xalan. For the running time concern,

we execute a small, fixed sample of instructions (50,000) and then skip a larger

amount of instructions (29,950,000) until the application completes. This run-

ning scheme may skips some instruction phases but it makes the running time

reasonably short. The application is restarted from beginning again with same

skipping approach. This process is repeated around 50 times to make sure that

the agent has sufficient learning experience. The total run of each benchmark

was limited to 215 million instructions chosen for their statistical relevancy using

the approach in Sherwood et al. (2002).

Overall, we control what kind of features are used to represent the states,

what is the reward(-1), how long the action value function get updated and re-

ward is given (10,000 cycles), how many instructions are actually executed, and

how many times the benchmarks are repeatedly executed for training period(50

times).
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3.2 Learning Results

Typically, our agent’s performance starts near random and improves rapidly

during learning. To examine the improvement in system performance as the

agent learns, we plot the number of execution cycles (10,000 per unit) that it

takes for the agent to complete a full set of execution samples for the pair (or

4-tuple) of benchmarks. Since the performance measurement is execution time,

the best learning agent will have the lowest point on the graph representing the

fastest performing schedule.

Figure 3.1 shows the learning curve of several learning-agent scheduled bench-

marks compared to the two static thread-to-core assignments. Each point on

the learning curve indicates the total number of cycles executed during that

episode. If there is a declining trend of the learning curve means that Q-learning

is quickly learning a good schedule for the benchmarks pairs. From these re-

sults, we can see that the RL-based dynamic mapping finds a better schedule

than any static schedule or an equally good schedule. Since, in this two-core

example, there are only two actions—either swap threads between cores or not,

learning typically happens rapidly. However, the learning curve is not mono-

tonically declining; in some experiments the execution time per episode can be

observed to increase and then decrease again. This is due to exploration by

the learning agent. To obtain global optimization, exploration helps to find the

best long run reward. However, exploration can also take a suboptimal action

which can result in a worse schedule in the on-policy learning process, which is

reflected by increasing the learning curve. Since the exploration rate decreases

during learning, the Q-values will eventually become stable at what is hopefully

the optimal scheduling approach. There are variations in the static schedule
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(a) bzip2, gobmk

(b) lbm, dealII

(c) namd, povray

Figure 3.1: The learning results compared with the static assignments on a two

dual processor.
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curves. The reason could be we did not clear caches for every episode in the

learning process and this could leads to different starting states.

Figure 3.2 shows two selected learning results from four-core, four-benchmark

systems. Comparing with Figure 3.1, we see that the learning curves of the four-

core system oscillate more than the learning curves in two-core system and there

is no clear decrease trend. We have done experiments using various learning

rates (not shown here) in two core system, and selected the one that generates

the best performance results. We use the same learning rate for experiments in

four core system and the learning rate is not high. Thus, the primary reason

for the wild oscillations is the non-Markovian state representation. Since the

number of features that are used to represent the system state increases as the

number of cores and benchmarks increases, the tile coding with randomization

can not approximate the whole state space effectively.

Figure 3.3 shows the average learning result from 68 benchmark pairs in

the two-core system. Since there are two possible static schedules in the two

core system and these two static schedules are usually different, one of them

can lead to better performance than the other. The “best schedule” result is

generated by averaging results of all static schedules that can generate better

performance than the other one in their running sample. The “worst schedule”

is the result generated by averaging the results of the other static schedule in

each running sample. The best, worst and learning results are normalized to the

worst schedule result at each episode. In this way, the average learning curve

will not be dominated by the results from benchmarks that have long execution

times. This yields a curve with the worst schedule at a constant value of one.

The learning results and the best static schedule results are thus shown as a

percentage of worst static schedule result. Ideally the learning result would tie
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(a) astar, lbm, namd, omnetpp

(b) astar, dealII, lbm, soplex

Figure 3.2: The learning results compared with the static assignments on a quad-

core processor.
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Figure 3.3: The average execution time of RL-based scheduling on the two-core

system compared to the best and worst assignments.

the best schedule for each point. Figure 3.3 shows that the RL scheduler, on

average, achieves a schedule very near to the ideal (best schedule).

In addition to on-line learning during the training of our learning agent, we

evaluated the resulting agent for executions of the 215 million instruction se-

quence for dual-core HMP systems. Figure 3.4 shows weighted speedup results

for a selected set of pairs of benchmarks from SPEC CPU 2006 suite, of our

learning-based scheduling algorithm using tile coding compared with that of the

heuristic algorithm in Kumar et al. (2004) and the two possible static assign-

ments. The weighted speedup represents the summation of the ratio between

the performance (in instructions per second) for each process to the single ap-

plication performance on the best-performing core for each pair of applications.

Note that no learning occurs during these evaluations, instead the Q-values

learned during the initial experiments for the corresponding pair of benchmarks

was used for the full evaluation. For some experiments, our learning-based

scheduling algorithm shows significantly higher weighted speedup, for example,
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Figure 3.4: The weighted speedup of the learning-based algorithm compared with

different methods for different pairs of benchmarks.

dealII soplex. That is because the learning algorithm allows the scheduler to

investigate fine-grain changes in program behavior and switch between the dif-

ferent types of cores to maximize system throughput. For some other inputs,

the learning algorithm performs slightly better or similar to the other scheduling

methods. However, some pairs of applications show that the learning algorithm

is penalized by the larger number of reschedules that it performs and results

in a worse weighted speedup than the heuristic algorithm and the best static

assignment.

3.3 Discussion

3.3.1 Tile Coding and Randomization

Tile coding is an effective way that simulates non-linear function using linear

functions. However, tile coding can not avoid the curse of dimensionality, then,

we define tile set and use randomization to approximate the whole tiling system.

The randomization introduces stochastic information to the learning process
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of the agent and, sometimes, causes inconsistent learning results. During the

experiments, it was found that in some experiments the Q-learning approach

does not effectively schedule the pair or 4-tuple of application benchmarks.

These negative results occur much more frequently in the four-core system than

in the two-core system. The largest reason for these unsuccessful experiments

is the method that was used to approximate the states. If the state space

cannot be differentiated finely enough, the Q-value function will not get updated

correctly. In this study, features are randomly chosen for each tiling set; some

randomly chosen tiling sets may better represent the state space than others do.

It is possible that different sets of features will be more effective for different

application benchmarks. From Figure 3.5, we observed that performing multiple

runs, with the same system and set of applications but with different random

seeds, can leads to very different results.

3.3.2 Reward and Training Scheme

In all above experiments, the reward is defined as negative one(-1) for every

10,000 execution cycles. The goal of the learning agent is to get more accumu-

lated reward which is get less negative ones. This setup can be easily confused

and causes unnecessary complexity. And this setup leads to a confusing results

representation that is using execution time as metric for the learning curve

which is the lower the better. Furthermore, this reward definition is a coarse

definition. For most learning processes, this reward is good enough to help

learning agent to differentiate good and bad decisions. But it is not fine enough

to show the differences between schedules for similar programs running together

in the system.
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(a) astar,bzip2

(b) astar,dealii

(c) astar,namd

Figure 3.5: Comparison of learning curves with different random seeds in two-

core system.
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Due to the running time consideration, we skip certain amount of instruc-

tions to make our agent training part reasonably short. We did not test more

skip running schemes to choose the best one. And the learning agent may not

meet all the states of the system due to large amount of skipped instructions.

The learning agent will take actions according to the existing action value func-

tions for the states that it has never met before. This could be a reason for

mediocre performance of learned scheduler.

3.3.3 Features Selection

It is well known that features selection is important for RL. Large feature num-

bers may lead to large state space that traditional tile coding cannot handle.

Ipek et al. use only six features to represent their continuous system states (Ipek

et al. 2008). Within their memory scheduler, these six features are straightfor-

ward to select without requiring a specialized selection method. Coons et al.

proposed a feature selection method for their RL scheduler based on measure-

ment of their system performance (Coons et al. 2008). One potential solution

for the discrepancy in the performance of our experiments would be careful

selection of features for each tiling set rather than random generation.

In our next experiment, we use artificial neural networks, instead of tile

coding, as function approximation method. In this way, we can eliminate the

randomization process and directly use nonlinear function rather than nonlinear

function approximation, which making less deviation included in the learning

process. We run the whole instruction set of each benchmark and use weighted

speedup as reward. We also improve the features representation of state. Details

are in Chapter 4.
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Chapter 4

RL Scheduler Using Artificial Neural Networks

4.1 Learning System Setup

We used basically the same ACMP system as tile coding experiments with

slightly different core configurations, feature representation, running scheme,

and reward definition. Table 4.1 shows the configurations of these two process-

ing cores. Since core 0 is in-order core, there is no reorder buffer, and reservation

stations (shown as “-” in the table). Similar to tile coding experiment setup,

states are represented by system features that are gathered during execution,

and the actions represent the possible thread-to-core assignments. 38 features

are used for the two-core system and 76 features for the four-core system. Fif-

teen different architectural and performance evaluation features are associated

with each core and four features are related to L2 cache hits/misses that are

associated with each benchmark. The nineteen different features are the per-

centage breakdown of executed instruction types (between load, store, multime-

dia, basic floating point, floating point multiplication, floating point division,

basic integer, integer multiplication and integer division), percentage of cache

hits/misses over executed instructions (L1 cache store hits/misses and L2 cache

load hits/misses), and percentage of branch prediction correct/incorrect over

executed instructions. All of these features range from 0 to 1. All these features

are simulated features using Soonergy simulator with SPEC 2006 suite running
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on it. The executed instructions are 10,000 instructions that are executed in

last step of the learning process.

Table 4.1: Processor configurations

Parameter Core 0 Core1

Execution In-order Out-of-order

Issue width 4 4

L1 cache 32KB 32KB

L2 cache 1MB 1MB

ROB – 128

RS – 32

The scheduler agent was trained using ANNs in each of these simulated

experiments. For every 10,000 instructions (our chosen window size), the system

reports the state features for the agent and these continuous features are inputs

for all ANNs. Weighted speedup is used as the performance metric and reward.

The weighted speedup is calculated as equation (4.1) with x represents the

application and n represents the number of applications running in the multicore

system.

Weighted Speedup =
n∑

x=1

IPC of x on current core

IPC of x on best core
(n ≥ 2) (4.1)

Weighted speedup represents the summation of the ratios between the perfor-

mance (represented as instructions per cycle (IPC) since each core is assumed to

have the same frequency) for each process to the single application performance

on the best-performing core for each combination of applications. The higher

the weighted speedup, the better the overall performance can be. To show the

full potential of reinforcement learning, we attempted to give the learning agent
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ample time to learn a scheduling policy. Each set of benchmarks was run re-

peatedly for 10 000 times to make sure a converged learning curve is generated.

Soonergy simulator and SPEC CPU2006 are used. The fifteen benchmarks

are astar, bzip2, dealII, gcc, gobmk, hmmer, lbm, mcf, namd, omnetpp, povray,

soplex, h264, perl and xalan.

Three types of simulation results are presented to evaluate our approach:

the accumulated weighted speedup for each interval as the agent is iteratively

trained (full learning curve), the accumulated weighted speedup while learning

online (online learning curve), and an evaluation of offline scheduling. These re-

sults are compared to both/either static results and/or heuristic results. Static

results are generated by averaging all results of possible static mapping assign-

ments. Heuristic results are generated using the scheduling method in Kumar

et al. (2004). Basically, this heuristic method uses sampling results to deter-

mine the mapping assignment of programs on cores. For each instruction win-

dow(10,000 instructions), the heuristic agent checks the change of IPC on each

core. If the agent observes a dramatic change of IPC (more than 50% IPC dif-

ference between last window and current window over IPC of current window)

on any core of the total cores in the system, it will evaluate all possible mapping

assignments and chose the assignment with the highest weighted speedup for

next period of run.

4.2 Learning Results

4.2.1 Iterative learning

To demonstrate how the scheduling agent’s policy improves during the iterative

learning process, we ran (a minimum of) 250 million instruction regions of each
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benchmark in each set 10,000 times and recorded the average weighted speedup

of each window while all of the benchmarks executed. Note that since each

benchmark has a unique IPC, each run lasted until the lowest-IPC benchmark

reached 250 million instructions (higher-IPC benchmarks continue to run to

provide a load against which the remaining benchmarks are run). The starting

point of each 250 million instructions region was chosen to be statistically rele-

vant using the approach in Sherwood et al. (2002). Each period of time that all

benchmarks need to complete is called an episode. Results from this iterative

learning are reflected in full learning curves.

Figure 4.1(a) and Figure 4.1(b) show two full learning curves for two bench-

marks run on the two-core system. Each point on the learning curve is the

average weighted speedup over each window for each episode. The static line

represents the average weighted speedup of all possible fixed mappings of bench-

marks to cores. Thus, these static mappings do not change during execution.

In our experiments, the learning curve, on average, achieves better performance

than the static line. The learning agent can generate a schedule that leads

to higher weighted speedup than the average static schedule does at the end

of training. The figures show that the learning curves initially increase as the

agent learns over each episode and then levels off. During the increasing part of

the curve, the learning agent is still trying to learn a better scheduling policy;

once this improvement levels off, an efficient scheduling policy has been learned

and no better one is found by using this algorithm. The trained schedule policy

is specific for the training benchmarks. The schedule policy are defined by the

action value functions. Looking at the learning curve from one point to another,

the learning curve does not always increase. This is because of the random ac-

tion, i.e. exploration step, of the agent. With a small probability, the agent
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(a) lbm, xalan

(b) dealII, namd

(c) average

Figure 4.1: Full learning curves for a two-core system compared with the average

static assignments.
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chooses a random scheduling action for next window. The exploration step

helps the agent find the global optimized scheduling policy. This exploration

step could temporarily result in a bad schedule for that episode; thus a reduc-

tion in performance may be reflected in the learning curve. We decreases the

probability of exploration during the learning process to damp the oscillation

of learning curve. Figure 4.1(c) represents the average learning curve from 105

benchmark pairs (all possible two-program combinations for 15 benchmarks) on

a two-core system. Note that in each of the curves in Figure 4.1, the perfor-

mance of the learning agent for the first episode is already better than that of

the average static schedule. This is because one episode represents an entire run

of (a minimum) of 250 million instructions for each application and the agent

has quickly learned a scheduling policy during the first episode to achieve an

average performance better than that of the static schedule. The progress of

learning within the first episode is examined more closely in Section 4.2.2.

Figure 4.2(a) and Figure 4.2(b) show two full learning curves for four bench-

marks on four-core HMP. The learning results are better than both heuristic

sampling (Kumar et al. 2003b) and the average of all static assignments. To iso-

late the quality of the scheduling, all overhead from the sampling approach has

been eliminated giving sampling an unfair advantage, yet the learning approach

still outperforms it due to its superior scheduling policy. Figure 4.2(c) shows

the average learning curve from 12 randomly picked benchmark combinations.

These results were limited to 12 due to the significantly longer simulation time

for the four core system.

Figure 4.3 shows a comparison between trained learning results, heuristic

results and static results. Trained learning results are taken from the level-

off portion of learning curve. For all 12 benchmark combinations, the trained
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(a) poveray, soplex, xalan, astar

(b) perl, astar, gobmk, mcf

(c) average

Figure 4.2: Full learning curves for four-core system compared with static and

heuristic assignments.
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Figure 4.3: Comparison between ideal, learning, heuristic, and static results in

the four-core system.

learning results are significantly better than the average static results evaluated

by student’s t-test (p < 0.05). On average, trained learning result is 1.77%

better than heuristic sampling result (ignoring the cost of context switching)

but the difference is not significant evaluated by student’s t-test (p > 0.05),

and 6% better than the average static result. From the aspect of the distance

to estimated ideal schedule, RL schedule, on average, achieves 41.4% signifi-

cant improvement towards the ideal weighted speedup over the heuristic results

evaluated by student’s t-test (p < 0.05). The results above demonstrate the

potential of our reinforcement learning method. However, the iterative train-

ing process for the scheduler may be infeasible but represents the training that

would occur over a relatively long run of the sets of applications. We next

demonstrate that reinforcement-learning-based scheduler is effective even while

learning online during the (relatively) shorter period of an individual episode of

250 million instructions.
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4.2.2 Online Learning

For online learning results, benchmarks were run only once and the cumulative

mean for every window was recorded. Figure 4.4(a) and Figure 4.4(b) represent

online learning results from two different benchmark combinations running on

the four-core system. For each window, the accumulated mean of the weighted

speedup is recorded and is shown compared to the average accumulated weighted

speedup using heuristic sampling method. From the results, we can see that

the reinforcement learning agent learns quickly to find a better schedule than

heuristic method even at an early stage. Figure 4.4(c) shows the average learning

process in one complete run of each of the 12 sets of benchmarks on the four-core

system. From the figure, we can see that the learning agent again learns quickly

to outperform the heuristic-sampling-based scheduler in early stage of program

execution and eventually generates significantly better schedules. The drop of

performace during the learning process is caused by exploration step of the RL

agent. With the same ANNs initialization, all experiments are repeatable and

will generate the same results. Figure 4.5 represents the comparison between

online learning results and heuristic sampling results. Online learning results

are taken from the last point of online learning curve since this point represent

the average weighted speedup over each window of the whole running process.

The weighted speedups for online learning are significantly better than those

for heuristic sampling for most benchmark combinations evaluated by student’s

t-test (p < 0.05). On average, the online learning result is 2.4% better than

heuristic results (ignoring sampling cost). Real world applications are usually

longer than the portions of benchmarks simulated, so our reinforcement learning

based scheduler should be capable of optimizing such applications efficiently and

transparently.
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(a) poveray, soplex, xalan, astar

(b) mcf, namd, omnetpp, perl

(c) average

Figure 4.4: Online learning curve for four-core system compared to heuristic

assignments.
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Figure 4.5: Comparison between online learning and heuristic results in the

four-core system.

4.2.3 Offline learning

Additionally, a preliminary evaluation of an offline training approach was also

performed. Instead of training the scheduler on individual benchmark combina-

tions, we trained the scheduler by running all twelve benchmark combinations

sequentially. In theory, the scheduler encounters more states than it does by

training on individual ones. Thus, the scheduler will learn a general scheduling

policy that can be used for all sets of programs. In this way, we could train

a scheduler offline and use the fully trained scheduler on applications directly.

In the case of this offline-trained system, the relationships between states are

more complicated. In our experiments, this approach to offline training of the

scheduler only works well for one third of the tested benchmark combinations.

During the training period, all twelve benchmark combinations finish running

once represents one episode. And the trained RL agent is used to schedule all

the test cases. Figure 4.6 shows that the offline scheduler can generate results
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(a) perl, astar, gobmk, mcf

(b) poveray,soplex,xalan,astar

(c) average of the four test cases that the offline scheduler can

generate better results than the individual training results

Figure 4.6: Comparison between individual training, offline trained, and sam-

pling heuristic results in the four-core system.
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that are even better than the fully learned individual trained results in the best

case. The results indicate that a study on offline-trained scheduler is promising,

but that for such an offline-training approach, additional work on training the

scheduling agent is needed to train an agent that is capable of scheduling well

on a wide variety of applications. Some potential explanation for the inconsis-

tent results from offline-trained scheduling are discussed in Sections 4.3 and 5

along with an initial evaluation of approaches for improving this offline-trained

scheduling. However, we haven’t done any study related to feature set selection

and ANNs structure optimization for our RL offline scheduler. These are works

we have to do in the future.

4.2.4 Learning in the presence of switching costs

In addition to the experiments performed neglecting any overhead for switching

applications between cores, we also trained the RL agent to learn a scheduling

policy while taking account of cost of switching. In these results, we assumed

a direct cost of 15,000 cycles (in addition to the indirect cost) for switching

applications between cores for each methods. These additional cycles impact

the calculation of IPC and, as consequence, penalize our RL agent if it takes

unnecessary switch actions. Thus, the agent learns not to switch when the

cost of switching outweighs the benefits. We run all twelve benchmark combi-

nations using individual trained RL schedulers and heuristic scheduler in the

four core system. Figure 4.7 shows a comparison between RL scheduling re-

sults after iterative training and heuristic schedule results. On average, the RL

agent gets 4.1% more weighted speedup than the heuristic result and achieves

41.7% of the difference between the performance of the heuristic result and our

estimation of the maximum possible weighted speedup on the four core HMP.

47



2	  
2.1	  
2.2	  
2.3	  
2.4	  
2.5	  
2.6	  
2.7	  
2.8	  
2.9	  
3	  

ast
ar_
bz
ip2
_p
erl
_g
cc	  

bz
ip2
_d
ea
lii_
go
bm
k_
h2
64
	  

bz
ip2
_h
26
4_
na
md
_p
ov
ray
	  

de
ali
i_h
mm

er_
om
ne
tpp
_so

ple
x	  

gcc
_h
mm

er_
lbm

_o
mn
etp
p	  

gcc
_lb
m_
pe
rl_
so
ple
x	  

go
bm
k_
h2
64
_h
mm

er_
lbm

	  

mc
f_n
am
d_
om
ne
tpp
_p
erl
	  

mc
f_n
am
d_
po
vra
y_
so
ple
x	  

pe
rl_
ast
ar_
go
bm
k_
mc
f	  

po
vra
y_
so
ple
x_
xa
lan
_a
sta
r	  

xa
lan
_b
zip
2_
hm
me
r_o
mn
etp
p	  

av
era
ge
	  

W
ei
gh
te
d	  
Sp
ee
du

p	  

Ideal	   RL	   HeurisJc	   StaJc	  

Figure 4.7: Comparison between ideal, learning, heuristic, and static results in

the four-core system with costing switch.

Both improvements are significant evaluated by student’s t-test (p < 0.05). Ta-

ble 4.2 shows how many times the scheduler switch the applications on cores

to change the mapping. Figure 4.8 shows one example of detailed scheduling

using RL scheduler and heuristic scheduler in a short running period. For 100

windows (10,000 instructions as a window), RL scheduler does not take any

action, while heuristic scheduler keeps changing the application core mapping.

The RL scheduler learned the cost for switching is high and switch much less

times than the heuristic scheduler do. Our RL agent achieves better overall

system performance by intelligently avoiding unnecessary switches.
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Table 4.2: Core switch times using RL and heuristic scheduler

Scheduler RL Heuristic

astar,bzip2,perl,gcc 2 4400

bzip2,dealii,gobmk,h264 2 3600

bzip2,h264,namd,povray 2 3422

dealii,hmmer,omnetpp,soplex 1 1906

gcc,hmmer,lbm,omnetpp 2 2252

gcc,lbm,perl,soplex 2 576

gobmk,h264,hmmer,lbm 2 2030

mcf,namd,omnetpp,perl 2 7128

mcf,namd,povray,soplex 1 5700

perl,astar,gobmk,mcf 2 7802

povray,soplex,xalan,astar 1 2492

xalan,bzip2,hmmer,omnetpp 2 3698
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Figure 4.8: Comparison between RL schedule and heuristic schedule for astar,

bzip2, perl, gcc for 100 windows in the four core system.

4.3 Discussion

4.3.1 Ideal schedule

In order to get an idea about how far away we have to improve the schedule

from the optimal schedule, we estimated the ideally best weighted speedup for

these benchmark tuples in this four-core system. The ideal weighted speedup

for each four-tuple of benchmarks was approximated by running each applica-

tion on each core type and recording the performance over fixed windows of

10,000 instruction for each run. For each window of 10,000 instructions, map-

ping of application to core type resulting in the highest weighted speedup for

that window and the “ideal” weighted speedup was computed across all of the

windows of instructions comprising the full run of that set of applications. Of

course, due to varying instructions-per-cycle across the benchmarks, these fixed
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windows of instructions would not align dynamically in this way–thus this ap-

proach serves only to estimate the potential of an ideal mapping of applications

across the different core types. The ideal schedule generates results that are

4.29% better than heuristic results without switch cost and 9.87% better than

heuristic results with switch cost in four core system. This means there is not

a lot of space for RL agent to improve the schedule in the four core system.

4.3.2 Learning vs. empirical models

In this study, we compared a learning-based scheduler for heterogeneous mul-

ticore processors with a sampling-based heuristic method. In contrast to our

learning-based scheduler, the sampling method does not handle system diversity

very well: increasing number of core types leads to significantly higher cost of

sampling overhead. Van Craeynest et al. (2012) proposed an alternate model

that uses cycles per instruction, memory-level performance, and instruction-

level performance information to estimate the performance of alternate mapping

assignments and then dynamically update the schedule. They identify an obser-

vational relationship between this information and use this relation to build an

estimation model. Their approach has something in common with ours: they

use information about running applications as input to a model and generate

corresponding estimations to make a schedule. However, their model is some-

what specific to the particular details of the HMP system. For more complex

systems, new heuristic models would have to be tuned. Similarly, their empir-

ical model is only applicable to optimize workload performance. In order to

schedule for a different optimization goal, e.g. energy, a new traceable relation-

ship from either experimental observation or theoretical deduction would have

to be explored. In contrast, a learning-based scheduler can be easily re-targeted
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to other optimization goals by training using different rewards. This training

process is similar to the manual relationship exploration process but is more

efficient and can be performed automatically.

4.3.3 Semi-supervised vs. supervised learning

Machine learning approaches have occasionally been used in parallel program-

ming and execution. Wang and O’Boyle (2009) use ANNs and support vector

machines to build a model to predict the number of threads and scheduling

policy for parallelizable applications. During the training of their model, the

appropriate scheduling policy and optimal number of threads must be known.

They classify different types of programs and assign the right schedule with

certain number of threads. Ipek et al. (2005) use a similar approach to build a

parallel program performance prediction model. Both of these techniques use

supervised machine learning approaches. Supervised learning agents are trained

with knowledge of the optimal or “right” answer. Our learning approach, re-

inforcement learning, is semi-supervised learning; the optimal schedule is not

known beforehand. However, the learning agent still needs the reward function

to assist learning. The reward could be defined by transforming environment

feadback or other observations. In our technique, the learning agent needs to

find an optimal schedule without any initial knowledge of it. As overall through-

put is the scheduling goal, system performance characteristics are good feedback

for the agent. For this reason, semi-supervised learning seems the most appro-

priate learning algorithm for this scheduling task.
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4.3.4 Sarsa and Q-learning

The State-Action-Reward-State-Action (Sarsa) algorithm differs from Q-learning

in how much credit is given to the exploration step (Sutton and Barto 1998).Q-

learning evaluates one policy, but follows another policy. While Sarsa evaluates

and improves the same policy. Q-learning has more tolerance for policy change

during learning than Sarsa and can eventually converge to the optimal policy. In

out study, we use Sarsa for the learning tasks. We run RL agent training process

of all 105 benchmark pairs/12 benchmark combinations in two core system/four

core system using Q-leaning and Sarsa. Then we compare the learning curves of

these two RL algorithms. Figure 4.9 shows a comparison of learning curves from

scheduling using both Sarsa and Q-learning. In the two-core system, Q-learning

performs better than Sarsa because there are only two possible actions and it

takes less time for Q-learning to converge to the optimal policy in the simple

system. On the other hand, Sarsa may stuck in an sub-optimal policy and need

long time or never to get over it. In the four-core system, the Q-learning agent

learns slower than the Sarsa agent because there are more available actions and

it is hard to take every step right. Sarsa shows the advantage as an on-policy

learner. As the learning goes on, the Q-learning agent will eventually find the

optimal policy as Sarsa does.

4.3.5 Defining scheduler actions

In our studies, we found that the definition of action is an important factor

for learning. Clearly defined actions help learning agent find a good scheduling

policy while action aliasing may preclude the agent from learning. Figure 4.10

compares the result of learning-based scheduling for a two-core/two-benchmark
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(a) average learning curve in two-core system

(b) average learning curve in four-core system

Figure 4.9: Comparison of SARSA and Q-learning.
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system using two different action definitions. Results from learning with spe-

cific mapping actions are seen to be better than results from learning with

stay/switch actions (i.e. keep the current thread-to-core mapping or switch to

the alternate mapping). The average result is calculated over the RL training

results of all 105 benchmark pairs in the two core system. Actions of stay/switch

leads to inconsistent state representation. Thus, action definition is critical for

effective learning.

4.3.6 Choice of function approximation method

In our initial reinforcement-learning approach (Yan et al. 2012), tile-coding was

used as function approximation method for reinforcement learning. While tile

coding can handle nonlinear relationships to some extent, it is still based on

linear function approximation. ANNs with hidden layers can represent nonlinear

relationship much better than tile coding. Another advantage of ANNs over tile

coding is ANNs do not have the problem of the curse of dimensionality. We

used a randomization method to choose features to represent states, since tiles

increase with number of features exponentially. We identified this problem as

the source of their inconsistent results.

In our two-core system experiments, we found that in a minority of in-

stances, our learning results are not better than results of heuristic sampling.

We suspect that the reason might be that the ANNs are constrained to a local

optimal. The reinforcement learning agent attempts to find a more globally

optimal schedule through the exploration step, however, the agent takes greedy

steps most of time. If initial weights are near to a local optimal policy, weights

may be updated to that policy and be difficult to get over due to greedy steps.

In order to test this hypothesis, we selected 10 benchmark pairs from results
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(a) gcc, h264

(b) namd, xalan

(c) average

Figure 4.10: Comparison of full learning curves with different action definitions

in the two-core system.
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that were below average and reran them with different ANN weight initializa-

tions. Results from re-runing our iterative learning confirm this suspicion as

many benchmark pairs have improved performance. Figure 4.11(a) and Fig-

ure 4.11(b) shows two examples of performance improvement due to different

weight initialization. Hansen and Salamon (1990) use an ensemble to overcome

the problem of local minima. Al-Shareef and Abbod (2010) use particle swarm

optimization to do initial weights optimization. However, we did not further

study the issue of weight initialization in this paper and all of the learning re-

sults in the four-core system are better than results of heuristic method. Local

optimal constraint may also exist in our four-core system experiments, but, due

to limited capacity in large system, the learning agent can still get better results.

4.3.7 Offline learning

Our preliminary experiments of an offline-trained scheduler show significant po-

tential. However, the offline scheduler trained by sequential running benchmarks

can generate good schedule only for some of the tested benchmark combinations.

We further conducted experiments to study the reason by shifting the sequence

of training set of benchmark combinations. Figure 4.12 shows, after training on

different sequence, the scheduler works for new sets of benchmark combinations

that have no common member with the old working sets. Inspecting the training

curve shown in this figure, we found that last several benchmarks in training

sequence may overwrite the policy for some states. Thus the offline-trained

scheduler only works for benchmark combinations that have similar policy on

common states. Figure 4.13(a) shows the starting point of the offline-trained

learning curve is lower than the start point of individual training curve. This

means the trained scheduler at that point has some policies that are not optimal
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(a) bzip2,perl

(b) perl,h264

(c) namd,omnetpp

Figure 4.11: Comparison of full learning curves from different ANNs weights

initialization in the two-core system.
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Figure 4.12: Comparison between the results of an offline scheduler trained from

the same training set but in two different training sequences and individual learn-

ing results in the four-core system.

for this specific benchmark combination and this scheduler is retrained while

running this benchmark combination. Figure 4.13(b) is an example where poli-

cies for some states are already optimal for the running benchmark combination

and thus the scheduler needs only learn policies for other states during running

this benchmark combination. As mentioned previously, states are represented

by features from benchmarks and cores. Feature selection and generalization is

thus important for state differentiation and, furthermore, the offline scheduler

training.

In addition to the sequential offline training, we also performed experiments

using a simple ensemble method. Since RL is a semi-supervised algorithm,

traditional ensemble methods (Freund and Schapire 1995; Ho 1995) can not be

used here. We trained the twelve four-benchmark combinations iteratively and
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outputed the weights of their neural networks. We then run one benchmark

combination using trained schedulers from each of the other eleven benchmark

combinations. Each scheduler thus contributed equally to the final schedule.

This whole process is similar to cross validation (Kohavi et al. 1995) except that

the training is not supervised. This simple ensemble approach produced positive

results in only a minority of benchmark combinations, including those shown

in Figure 4.14. Allowing dissimilar programs to contribute to the scheduling

policy produced unsatisfactory results. Thus, some form of online learning may

be preferable. However, the several positive results indicate that an ensemble

approach could be a direction for further offline-trained scheduler study.
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(a) dealii,hmmer,omnetpp,soplex

(b) mcf,namd,poveray,soplex

Figure 4.13: Two examples in offline-training study.
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(a) bzip2,dealii,gobmk,h264

(b) mcf,namd,omnetpp,perl

Figure 4.14: Two working cases of offline-trained simple ensemble.
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Chapter 5

Conclusions and Future Work

In this thesis, we demonstrated a reinforcement-learning-based scheduling ap-

proach that is effective at thread-to-core assignment in HMPs. Data show that

the RL-based scheduling agent improves its scheduling policy, typically achiev-

ing schedules that outperform both static and heuristic sampling methods in our

experiments. Results of full learning curves show the potential improvements

of this approach over other scheduling methods. Online learning results show

that this approach quickly learns effective scheduling policies when directly ap-

plied as an online scheduler. Preliminary results of offline learning confirm that

offline-trained reinforcement learning schedulers can similarly achieve the ben-

efit of this approach. However, as we have demonstrated, there are challenges

to achieving a versatile offline-trained scheduler.

We conclude that semi-supervised reinforcement learning approach is an ap-

propriate method for the task of mapping applications to cores of different types

in an HMP since no optimal schedule is known in this system. In our initial

tile coding experiments, results of the offline performance comparison between

trained agents and previously published heuristics were somewhat mixed. The

randomized approach to forming tiling sets used in our preliminary experiments

was effective but has some drawbacks. Occasionally the performance of the re-

sulting scheduling policy will depend on the random seed used to select the
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features for tiling sets. This becomes even more evident as the number of fea-

tures grows with larger multicore systems. After switching to ANNs with appro-

priate defined reward (weighted speedup), we achieve significant performance

improvement over initial experiments. We further discussed parameter setup

and function approximation for learning. As we have demonstrated, the defini-

tion of actions is extremely important for learning approaches and experiments

show that action aliasing can lead to suboptimal and even bad schedules. The

function approximation approach using ANNs have an advantage of handling

nonlinear relationship and are not affected by the curse of dimension, but they

may have the problem of local optimal constraint (finding only a locally optimal

scheduling policy). By optimizing the ANN’s initial weights, this problem can

be avoided. However, overall our reinforcement-learning-based scheduler show

the potential to be effective and efficient for process assignment in HMPs.

In our study, states are represented by system features. Any undifferentiated

states could lead to contradictory optimal policies, especially in the offline-

trained scheduler process. In future work, we will examine the selection of

features more closely and choose the most related features to represent the

system. There is also the potential to improve the ANN structure to handle

more complicated state representation. While our results in this paper indicate

that the reinforcement-learning-based scheduler is an efficient online scheduler,

there is still potential to improve it by shortening or eliminating online training.

With more detailed knowledge of state representation, the scheduler could better

trained to recognize important phases and a trained offline scheduler that is

beneficial on general sets of applications could be achieved.
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