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Abstract—Heterogeneity in multicore processor systems creates
challenges in effectively mapping processes to diverse cores.
While most approaches require programmer partitioning be-
tween core types or permutation of thread schedules to find the
optimal mapping, we introduce a new machine learning approach
to automated thread assignment. We train a reinforcement
learning agent to assign threads to the best performing core given
the state of the program and the processor cores. We present
preliminary results demonstrating the promise of this approach
for two and four heterogeneous cores using multiprogram work-
loads from SPEC CPU2006 benchmarks. We further discuss the
limitations of this initial approach and propose future directions
for improving our technique.

I. INTRODUCTION

Heterogeneous multicore processors (HMPs) have perfor-
mance and power advantages over homogeneous ones—a
large number of energy efficient cores can be combined with
a smaller number of high performance cores to create a
multicore system that offers a balance between the conflicting
demands of power efficiency and performance, and between
thread-level parallelism and single-thread performance. Single-
instruction-set architecture (ISA) HMPs offer an additional
benefit that they enable the same application code to execute
on cores of different types. Characteristics of asymmetric cores
result in different performance and power consumption for a
particular application. Since the behavior of typical application
changes over time, a different type of core may result in better
performance during each phase of an application’s execution.
Unfortunately, asymmetry between cores significantly compli-
cates scheduling threads among the available cores.

In this paper, we present a novel approach for transparently
scheduling threads to cores using a reinforcement learning
(RL) technique. Reinforcement learning is a machine learning
technique that is known as an effective solution for com-
plex resource allocation problems, especially in computer
systems [1], [2], [3], [4]. Results from previous work show that
RL has great potential as a powerful scheduling method for
computer architecture optimization tasks [5], [6]. For example,
McGovern et al. [7] built a basic block instruction scheduler

that generates higher performance code than a commercial
scheduler. Ipek et al. [8] presented an RL-based scheduler in
their self-optimizing memory controller. Their results showed
that the controller significantly improves the performance of
parallel applications on chip multiprocessors through opti-
mized DRAM bandwidth utilization. Coons et al. [9] used
RL to optimize distributed instruction placement policy in a
compiler and achieved positive results similar to the finest
hand-tuned heuristics.

An RL agent attempts to learns the optimal policy through
interaction with its environment. More precisely, the agent
learns to choose the action in the current state that will lead
to the best cumulative rewards over the long-term. An RL
algorithm is not a simple greedy algorithm, but an algorithm
that can find the policy that guides the agent to get maximum
reward over the entire process. The basic RL algorithm was
designed for finite Markov decision problems that have a
fully observable discrete, finite environment. However, most
real world problems are in large, continuous environments.
Function approximation is a well-known method for RL to
solve more complex problem in such environments. Typical
function approximations represent continuous states using
simple discretization, radial basis functions, neural networks,
decision tree, or instance- and case- based approximations.

In order to adapt to dynamic changes in program behavior,
we use an online RL-based scheduling system. Tile cod-
ing [10] is used for representing the continuous state of the
system. Tile coding is a linear function approximation method
that is well suited for efficient on-line learning. Tile coding
partitions and groups input space into a new receptive field
with binary features. Using easily obtained system features and
appropriate reward (performance), the reinforcement learning
agent can effectively and dynamically map threads to the
dissimilar cores in a chip multiprocessor.

The rest of the paper is organized as follows: Section II
describes our RL-based scheduling technique. Section III
discusses our learning results and compares the weighted
speedup of the RL-based scheduling technique with other



scheduling methods. Finally, Section IV concludes the paper
and highlights future work.

II. SUPPORTING TRANSPARENT RL-BASED SCHEDULING

Single ISA HMPs, also known as Asymmetric Chip Mul-
tiprocessors (ACMPs), are being increasingly examined for
their potential to achieve better throughput and energy ef-
ficiency [11]. There are several scheduling techniques for
assigning jobs to the different types of cores in an ACMP [12],
[13], [14]. In each of these techniques, heuristics are used to
attempt to find the optimal mapping of application threads
to cores of different types. In this work, we demonstrate a
more-systematic mapping approach using features that are
commonly available via processor performance monitoring.

We simulated two-core and four-core ACMP systems using
two different types of core: an out-of-order core (a high-
performance core) and an in-order processor (a power-efficient
core). Intuitively, the two-core system is composed of one of
each of these core types. For our initial study, the quad-core
processor consists of one high-performance core and three
power-efficient cores. There are two level data caches in each
system. Each core possesses a private L1 data cache and
all cores in a system share an L2 cache. For the simulated
systems, the in-order processor’s L1 cache is smaller than the
out-of-order processor’s L1 cache. The state of these caches
will comprise some of the features utilized by our scheduling
agent as will be later detailed.

In the experiments presented here, the number of executed
applications is the same as the number of cores in the system;
there is always one application running on each core. However,
our learning-based approach could be augmented to handle
time-multiplexing of application processes simply by increas-
ing the number of actions available to the scheduler agent to
include swapping a running process for a currently switched-
out process. Since typical applications consist of various
distinct execution phases [15], [16], dynamically scheduling
the applications to run on their respectively best fitting cores
each period can result in the best overall system performance.

Reinforcement learning methods are machine learning
methods that find a global optimization policy by maximizing
the rewards over the long run [10]. We specifically choose
Q-learning to train the scheduler because Q-learning can find
the optional policy through interaction with the environment.
In Q-learning, each state is paired with the available actions
for that state, and each state-action pair has a value (Q-value)
that is compared to the value of other state-actions. An action
will be taken from the state-action pair that has the largest Q-
value, and the system will enter another state with its available
actions. Every time an action is taken, a reward will be given
based on the performance measurement, and then the Q-value
of the current state-action pair is updated. Since performance
is the inverse of execution time, the fewer the number of cycles
used for the same set of executed application instructions,
the higher the system performance. The Q-value is updated
proportionally according to the given reward. In this way, the
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Fig. 1. (a) Individual tiling with 9 tiles. (b) Tiling set with three tilings. (c)
State (represented by features) transformed by tile coding to Q-value function
input.

agent can learn which actions will lead to the maximum long-
term reward. At each decision point, there is also a small
chance that the agent will choose a stochastic action, which
can help the agent explore alternative schedules to find the
maximal reward.

In our ACMP systems, the states are represented by the sys-
tem features that are gathered during execution, and the actions
represent the possible thread-to-core assignments. There are 32
features for the two-core system and 64 features for the four-
core system. Fifteen different architectural and performance
evaluation features are associated with each core and one
feature is related to L2 cache hit rate and is associated with
each benchmark since all benchmarks share one L2 cache.
The fifteen per-core features are the percentage breakdown
of executed instruction type (between load, store, branch,
multimedia, basic floating point, floating point multiplication,
floating point division, basic integer, integer multiplication
and integer division instructions), L1 cache hit rate, L2 cache
hit rate, percentage of correct branch predictions, percent
of available space in reservation stations, reorder buffer and
load/store queues (for out-of-order cores). All of these features
range from O to 1.

The tile coding approach is used to represent the continuous
system environment. Traditional tile coding consists of many
tilings, and each tiling represents the whole feature input
space. Each tiling randomly divides the input space into grids
(tiles). Figure 1(a) shows the state space with a tiling divided
according to the feature values. The number of tiles depends
on the number of state features and the fineness of the state
representation. The number of tiles increases exponentially
with the number of features. Since a tile represents a range that
a feature can take on, each tile is a binary feature. This means
if state features are within certain ranges, the corresponding
tile is set to one and other tiles in the same tiling are set



to zero. Only one tile in a single tilling can be set to one
depending on how the tiles are divided and the values of
incoming state features. Tiles from different tilings can overlap
with each other. The finer each state feature is discretized, the
better tile coding represents the continuous system. In this
way, state features are transformed into binary tiles, each tile
has weights that are associated with the available actions, and
together they form the linear functions for each action. In
our system, the large number of state features inhibits the use
of a full tile coding. Instead, we create the tile coding using
randomization theory [17]. Rather than using all features on
each tiling, we randomly choose two features for three tilings.
We call these three tilings a tiling set. Tiling sets are shown in
Figure 1(b). 200 and 400 tiling sets are used for the two-core
system and four-core system respectively in our experiments.
In this way, it is feasible to use tile coding to represent the
large, continuous input space.

The available actions are the same for every state: schedule
one of the benchmarks to run on the high-performance core
and others to run on the power-efficient cores. Every 10000
cycles, the system reports the state features for the agent
and continuous features are transformed via randomized tile
coding into binary inputs to the linear functions. Figure 1(c)
shows the process of transformation from state to Q-value
function input. The action with the largest Q-value is taken
and a negative one is given to the agent as reward. The linear
functions (weights of the functions) are updated according
to the reward. Note that since negative reward is given for
each 10000 execution cycles, maximizing the total reward
received will maximize system performance by minimizing
total execution time. If applications run for a long time due
to inefficient scheduling, more cycles will elapse and more
negative rewards will be given to the agent. To maximize the
reward, the agent must learn to schedule the benchmarks on
cores in a way that they can finish faster. Since RL agents are
focused on the accumulated reward, the RL agent requires
sufficient experience to learn. However, running the entire
benchmark for training an agent is impractical for an online
scheduler. Fortunately, as long as the agent experiences the
important execution phases of an application, training on the
entire application is not necessary. The strategy we use is
to execute a small, fixed sample of instructions (50000) and
then to skip a larger amount of instructions (29 950 000) until
the application completes. The application is restarted from
beginning again with same skipping approach. This process
is repeated around 50 times to make sure that the agent has
sufficient learning experience.

III. RESULTS

Simulated evaluation of our scheduling technique was per-
formed using Soonergy [18], a cycle-accurate architectural
simulator. The scheduler agent is trained using tile coding
in these simulated experiments.Thirteen different benchmarks
from SPEC CPU 2006 benchmark suite are used in our
simulations. These benchmarks are astar, bzip2, dealll, gcc,
gobmk, hmmer, Ibm, mcf, namd, omnetpp, povray, soplex, and
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Fig. 2. The two-core system learning results compared with the static

assignments.

xalan. The total run of each benchmark was limited to 215
million instructions chosen for their statistical relevancy using
the approach in [19].

Typically, our agent’s performance starts near random and
improves rapidly during learning. To examine the improve-
ment in system performance as the agent learns, we plot the
number of execution cycles (10000 per unit) that it takes for
the agent to complete a full set of execution samples for the
pair (or 4-tuple) of benchmarks. Since the plotted measurement
is execution time, the best learning agent will have the lowest
plotted point on the graph representing the fastest performing
schedule.

Figure 2 shows the learning curve of several learning-agent
scheduled benchmarks compared to the two static thread-to-
core assignments. Each point on the learning curve indicates
the total number of cycles executed during that episode. The
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system compared to the best and worst assignments.

declining trend of the learning curve means that Q-learning
is quickly learning a good schedule for the benchmarks pairs.
From these results, we can see that the RL-based dynamic
mapping finds a better schedule than any static schedule.
Since, in this two-core example, there is only two actions—
either swap threads between cores or not, learning typically
happens rapidly. However, the learning curve is not monoton-
ically declining; in some experiments the execution time per
episode can be observed to increase and then decrease again.
This is due to exploration by the learning agent. To obtain
global optimization, exploration helps to find the best long
run reward. However, exploration can also take a suboptimal
action which can result in a worse schedule, which is reflected
by increasing the learning curve. Since the exploration rate
decreases during learning, the Q-values will eventually become
stable at what is hopefully the optimal scheduling approach.

Figure 3 shows two selected learning results from four-
core, four-benchmark systems. Comparing with Figure 2, we
see that the learning curves of the four-core system oscillate
more and decrease slower than the learning curves of the
two-core system. The primary reason for this is the complex
environment of the four-core system. Since the number of
features that are used to represent the system state increases
as the number of cores and benchmarks increases, the agent
will take more time to learn the optimal schedule.

Figure 4 shows the average learning result from 68 bench-
mark pairs in the two-core system. The “best” schedule result
is generated by comparing two static schedule results sample
by sample and the point with the smaller execution time value
is considered the best schedule result at that episode. The best,
worst and learning results are normalized to the worst schedule
result at each episode. In this way, the average learning curve
will not be dominated by the results from benchmarks that
have long execution times. This yields a curve with the worst
schedule at a constant value of one. The learning results and
the best static schedule results are thus shown as a percentage
of worst static schedule result. Ideally the learning result would
tie the best schedule for each point. Figure 4 shows that the
RL scheduler, on average, achieves a schedule very near to
the ideal (best schedule).

During the experiments, it was also found that in some

experiments the Q-learning approach does not effectively
schedule the pair or 4-tuple of application benchmarks. These
negative results occur much more frequently in the four-
core system than in the two-core system. The largest reason
for these unsuccessful experiments is the method that was
used to approximate the states. If the state space cannot be
differentiated finely enough, the Q-value function will not
get updated correctly. In this study, features are randomly
chosen for each tiling set; some randomly chosen tiling sets
represent the state space more than others. It is possible that
different sets of features will be more effective for different
application benchmarks. We observed that performing multiple
runs, with the same system and set of applications but with
different random seeds, sometimes achieves very different
results. Experiments with negative results can be rerun to
produce positive results with the selection of different random
seeds and thus different sets of randomly chosen features.

It is well known that features selection is important for RL.
Large feature numbers may lead to large state space that even
function approximation cannot handle. Ipek et al. use only six
features to represent their continuous system states [8]. Within
their memory scheduler, these six features are straightforward
to select without requiring a specialized selection method.
Coons et al. proposed a feature selection method for their
RL scheduler based on measurement of their system perfor-
mance [9]. One potential solution for the discrepancy in the
performance of our experiments would be careful selection
of features for each tiling set rather than random generation.
This indicates our future work direction: finding appropriate
feature selection method or changing function approximation
to a different approach, possibly a neural network.

In addition to on-line learning during the training of our
learning agent, we evaluated the resulting agent for executions
of the 215 million instruction sequence for dual-core HMP
systems. Figure 5 shows weighted speedup results for a
selected set of pairs of benchmark,s from SPEC CPU 2006
suite, of our learning-based scheduling algorithm using tile
coding compared with that of the heuristic algorithm in [20]
and the two possible static assignments. The weighted speedup
represents the summation of the ratio between the performance
(in instructions per second) for each process to the single
application performance on the best-performing core for each
pair of applications. Note that no learning occurs during
these evaluations, instead the Q-values learned during the
initial experiments for the corresponding pair of benchmarks
was used for the full evaluation. For some experiments,
our learning-based scheduling algorithm shows significantly
higher weighted speedup, for example, dealll soplex. That
is because the learning algorithm allows the scheduler to
investigate fine-grain changes in program behavior and switch
between the different types of cores to maximize system
throughput. For some other inputs, the learning algorithm
performs slightly better or similar to the other scheduling
methods. However, some pairs of applications show that
the learning algorithm is penalized by the larger number of
reschedules that it performs and results in a worse weighted
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Fig. 5. The weighted speedup of the learning-based algorithm compared with different methods for different pairs of benchmarks.

speedup than the heuristic algorithm and the best static assign-
ment.

While our algorithm attempts to learn the best application-
to-core mapping policy based on observed run-time features,
the heuristic algorithm in [20] checks for significant changes
in program performance, and then samples performance on the
different types of cores and chooses the schedule that results
in the best weighted speedup. One limitation of this method
is that it requires a priori knowledge of performance of each
application on the best performing core. However, the reward
for our RL approach could have been similarly based on the
weighted speedup. This likely would have resulted in trained
agents that achieved improved off-line evaluation compared to
our current approach. Note that while the weighted speedup
metric measures the relative performance of both running
applications, the execution time reward penalizes schedules
with the longest execution time for the slowest of each pair
of benchmarks (as each sample is run until both applications
have executed at least 10 000 instructions). Thus, the weighted
speedup evaluation is expected to be more favorable if the
same metric (weighted speedup) is used for the RL reward.

IV. CONCLUSION AND FUTURE WORK

In this paper, we demonstrated a reinforcement learning
based scheduling approach that is effective at thread-to-core
assignment in HMPs. Plots of reward (execution time per
episode) over time show that the RL-based scheduling agent
improves its scheduling policy over time, typically achieving
schedules that outperform any static schedule in our initial
experiments. Results of number of pairs of SPEC CPU2006
benchmarks show that, on average, the on-line learning agent
finds schedules that have performance close to the best dy-
namic assignment for each episode.

Comparing the offline performance of trained agents against
previously published heuristics shows results that were some-
what mixed. Often, the RL-produced scheduling agents yield
schedules with higher weighted speedups than the heuristics
or scheduler or any static schedule. However, in other cases
the performance of the learned scheduling policies falls short
of the comparison schedules. It should be noted, however, that
while our learning agents were trained to reduce the time for
all running applications to complete, the heuristic approaches
directly base their scheduling decisions on a weighted speedup
measured at runtime which requires a priori knowledge of the



performance of each application running alone.

The randomized approach to forming tiling sets used in
our preliminary experiments was effective but has some draw-
backs. Occasionally the performance of the resulting schedul-
ing policy will depend on the random seed used to select the
features for tiling sets. This becomes even more evident as the
number of features grows with larger multicore systems. We
are currently focusing on improving the learning speed and
stability of our RL-based approach. A better understanding
of the relationship between the features and their relative
importance will result in an improved, deterministic selection
of tiling sets. We are also investigating the use of an improved
function approximation using neural networks. In addition, we
are extending our experiments beyond quad-core systems to
demonstrating the efficacy of this approach for future, large
multicore architectures.
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