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Abstract

An automated, multi-parameter pattern recognition algorithm is devised to

locate drylines present in numerical weather prediction (NWP) model output.

As model resolution and NWP ensemble sizes increase, the amount of informa-

tion available increases as well. However, the identification of complex meteoro-

logical features is still performed primarily by hand. The time involved in these

analyses places a limit on the amount of data that can be examined manually.

Creating a system in which automated, objective analysis is possible allows the

scale of various studies to be greatly expanded by increasing the number of pa-

rameter modifications attempted, cases studied, or days examined, to name only

a few. The algorithm outlined in this research is designed to detect drylines, a

feature common to the US High Plains (Hoch and Markowski, 2005). Drylines

are a boundary between two air masses, one characterized by relatively moist

air, the other by relatively dry air. This boundary is often an important feature

in the initiation of storms, including those that develop into tornadic supercells

(e.g., Ziegler and Rasmussen, 1998; McCarthy and Koch, 1982). The identifi-

cation of drylines is achieved through the examination of multiple parameters,

some of which are, to an extent, shared with similar meteorological features

(e.g., wind shift along a cold front)(Bluestein, 1993; Schaefer, 1986), making

objective identification non-trivial. The fully automated algorithm outlined in

this thesis makes use of image processing and pattern recognition techniques

adapted for spatial grids to identify drylines present in a single timestep of

NWP model output.

xiii



Chapter 1

Introduction

Drylines are boundaries representing the intersection of two continental-scale

air masses, one dry, the other moist. Common to the US High Plains, these

meteorological features are capable of supporting the development of convection

both along and ahead of the boundary (Rhea, 1966). The resulting storms are

frequently strong, many with the capability of producing tornadoes, intense

straight line winds, severe hail, and torrential rain (e.g., Rhea, 1966; Hane et al.,

1993; Bluestein and Parker, 1993). With their potential for severe weather, a

strong diurnal dependence, and a relative ambiguity in their definition, drylines

are both a fascinating and important part of the atmosphere. A key example of

their significance in forecasting can be seen in their impact on the 3 May 1999

tornado outbreak (Roebber et al., 2002; NWS, 1999). On this day two drylines

located from northwest Texas through western Oklahoma into central Kansas

aided in the initiation of 10 supercell thunderstorms that resulted in a total of

66 tornadoes.

Weather forecasts are often performed with the assistance of numerical

weather prediction (NWP) models, which provide an estimate of the atmo-

spheric state at a given time. Advances in computer technology have made

possible great strides in NWP. Two developments that have resulted from these

improvements are the use of higher resolution models and larger ensembles

(Michalakes and Vachharajani, 2008), representing a tremendous increase in
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the amount of data output. However, the speed at which traditional hand anal-

yses can currently be performed places a limit on the amount of data that can

be processed by an individual in a set amount of time. Combined with increas-

ing data availability, this limitation suggests a need for automation. The goal

of this project is not to remove subjective analysis, but provide the means to

improve both the speed and accuracy of traditional analysis.

The algorithm outlined in this thesis is designed to contribute to multiple

aspects of meteorology. First, case and climatological studies can be expanded

in scope as the amount of time necessary to perform an initial evaluation of

the data becomes drastically reduced. Second, advanced automated analysis of

complex meteorological features would aid in model verification. It is relatively

simple to discern displacement errors for binary values, such as rainfall. How-

ever, more complex features such as drylines, cold fronts, and cold pools have

no single parameter that distinguishes them. Instead, many individual parame-

ters must be combined to discriminate between these features and discern their

locations. Finally, automation provides a significant benefit to forecasters, par-

ticularly when using longer range forecast guidance in which the presence and

location of drylines is likely to vary from run to run as well as across individual

ensemble members.

A wide variety of objective feature identification techniques exist, many

of which focus on observational data (e.g., tornado detection, hail detection;

Mitchell et al., 1998, Witt et al., 1998). Of those that are designed for use with

NWP output, a large number focus on storm identification and tracking. For

example, the Thunderstorm Identification, Tracking, Analysis, and Nowcasting

(TITAN) (Dixon and Wiener, 1993) methodology, the Storm Cell Identification

2



and Tracking (SCIT) algorithm (Johnson et al., 1998), and w2segmotion (Lak-

shmanan and Smith, 2009; Lakshmanan et al., 2009; Lakshmanan and Smith,

2010; Lakshmanan et al., 2003), utilized by the Warning Decision Support Sys-

tem - Integrated Information (WDSS-II) system all provide automated detection

and tracking of storms based on their respective criteria using object-based tech-

niques and have been applied in a variety of ways (see e.g., Goudenhoofdt and

Delobbe, 2012; Lakshmanan and Smith, 2009). However, at this point there are

no object-based algorithms designed to objectively identify drylines present in

NWP model output.

To complete this project there are two key difficulties that need to be over-

come. The first is distinguishing drylines from other types of boundaries with

similar characteristics. Drylines have some of the same properties as cold fronts,

warm fronts, gust fronts, etc. The second is the need for objective criteria. In or-

der to automate the analysis process, non-subjective measures that are effective

for a variety of different cases are required.

The following chapter provides an overview of drylines, including a discussion

of current subjective identification methods, in addition to a brief description of

the computational techniques applied during the course of this research. Chap-

ter 3 gives a brief discussion of the datasets used in the study and is followed

by an overview of the developed algorithm in chapter 4. Chapter 5 describes

the evaluation of the algorithm’s performance in addition to preliminary results

from the application of a random forest to the algorithm output. The thesis is

concluded in chapter 6 with closing remarks in addition to a brief discussion of

potential avenues of expansion.
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Chapter 2

Background

The following provides a general overview of both drylines and the computa-

tional techniques used by the final algorithm.

2.1 Meteorological Overview of Drylines

2.1.1 General Description

A dryline is an elongated meteorological boundary of O(100km) in length de-

noting the separation of two air masses, one moist, the other dry. Drylines

are common to the US Plains (Schaefer, 1986; Fujita, 1958), and occur most

frequently from late spring to early summer. During these months, the Gulf

of Mexico is dominated by a mean southerly flow, resulting in moist air being

brought inland. Meanwhile, westerly flow aloft brings dry air eastward from the

lee of the Rocky Mountains, or from further south in the arid regions of northern

Mexico or the southwestern US into the US Plains. The resulting distribution

of moisture is in part controlled by the gradual decrease in terrain elevation ex-

hibited from the Rockies to the Mississippi River Valley. The east-west sloping

inhibits east-west motion (Schaefer, 1974), enhancing the north-south extent of

the moist air mass. The distribution of moisture is in line with the mean monthly

dewpoint temperature field maps created by Dodd (1965), which demonstrate

4



a strengthened east-west moisture gradient in the Central US during the late

spring to early summer, and clearly show the influx of moisture from the Gulf.

The resulting intersection of the two air masses is the primary means of dry-

line formation, resulting in a 3D interface illustrated conceptually in Fig. 2.1.

Similar to the east-west gradient in terrain height, vegetation and soil moisture

increase further east in the US Plains. These features act to control the dryline,

with the latter assisting in the intensification of any surface moisture gradient

present, and contribute to dryline intensity, movement, and structure (Lanicci

et al., 1987; Shaw et al., 1997).

Drylines are typically associated with a confluent wind field, oriented such

that the mean flow is roughly 90 degrees counterclockwise of the gradient in

the moisture field; however, the wind shift is not necessarily continuous. Addi-

tionally, Matteson (1969) found that streamline convergence often occurs east

of an advancing dryline (or at least its region of high moisture gradient). This

is in line with findings from Ogura et al. (1982) during an investigation into the

role of low-level mesoscale convergence in the pre-storm environment. In certain

cases, the separation of the wind shift from the primary moisture boundary is

associated with a secondary moisture boundary similar to and near the dryline.

The reason for these additional boundaries is not well understood, however they

have been consistently observed (e.g., Ziegler et al., 1997; Buban et al., 2012).

Several studies have been performed that examine dryline frequency, most

finding that drylines occur on ∼40% of the days in May through July, despite

having different selection parameters or locations (Rhea, 1966; Schaefer, 1973;

Peterson, 1983). It should be noted that Rhea and Schaefer had fairly simi-

lar criteria, although Peterson focused only on Texas drylines. A more recent
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Figure 2.1: Idealized vertical cross-section of a dryline.
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climatology performed by Hoch and Markowski (2005) found similar values dur-

ing mid to late May; however, they also determined that dryline frequency had

dropped to ∼20% by late June. Coffer et al. (2013) found a similar drop off

with drylines occurring on ∼20% of days in June, although lower frequencies

were present in earlier months (∼30% for April and May).

2.1.2 Motion

Dryline motion can be broadly categorized into two cases, each with its own

driving mechanisms. An “active” dryline is controlled primarily by a synoptic-

scale process (e.g., a mid-latitude cyclone), and moves similar to a standard

frontal boundary, associated with a line of pressure minima. While the processes

that typically govern local dryline movement are presumably still in effect, the

stronger forcing provided by the large scale motions override them, resulting in

movement seemingly independent of these effects (described below). In contrast,

“quiescent” drylines occur in the relative absence of large-scale forcings. The

remaining processes have a strong diurnal dependence, resulting in different

types of motion throughout the diurnal cycle.

Quiescent daytime motion is attributed primarily to vertical mixing. Terrain

slope results in drylines having the 3D structure shown in Fig. 2.1. Note that at

the surface intersection of the two air masses, the depth of the moist region is

relatively shallow. The relative lack of depth means that less surface heating is

required before the interface becomes less defined and the two air masses begin

to mix along the boundary. Additionally, the dry air mass is typically fairly deep

during the day (i.e., when this heating would occur) and is well mixed. That is to

say that there is little difference between two air parcels outside of dissimilarities

occurring due to their vertical distribution. Most importantly, this allows for
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the quasi-moist region created during the degradation of the original boundary

to be thoroughly mixed with the larger dry air mass. The mixing results in

the old boundary region taking on the properties of the dry air, shifting the

interface between the two air masses. The well mixed state of the dry region

also allows for easy transport of upper-level momentum to the surface, which,

given the mean westerly flow aloft in the US mid-latitudes, may also assist in

the eastward propagation of the dryline during the day. It is important to note

that terrain slope is key to this transition. When encountering a region of flat

terrain, the dryline may appear to suddenly jump, as the process described

above takes place over the entire moist region at the same time. Similarly,

an extreme downward slope can drastically inhibit the dryline’s progression as

the “erosion” process is dramatically slowed. (Schaefer, 1986; Markowski and

Richardson, 2010; Bluestein, 1993).

Beginning around dusk, a combination of effects start to reverse the east-

ward progression of the dryline (Jones and Bannon, 2002). The relative lack of

surface vegetation on the dry side of the boundary results in large surface radia-

tion fluxes. Combined with the dry air’s lower specific heat, the two contribute

to rapid cooling of the dry air mass at the surface, forming a nocturnal tem-

perature inversion. The inversion decreases the upper-level westerly momentum

previously being transported to the surface in the day, inhibiting eastward pro-

gression. The differing conditions in the moist region impedes the development

of similar processes. Furthermore, clouds that may have formed later in the

day over the moist region may still be present, providing an additional mea-

sure of protection from nocturnal radiational cooling. All of these aspects come

together to create an ageostrophic easterly flow that begins to dominate local
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winds, moving the dryline westward. (Schaefer, 1986; Markowski and Richard-

son, 2010)

2.1.3 Role in Convective Initiation

Localized convergence along the dryline, combined with sufficient low-level mois-

ture, provides a region ideal for convective development. In addition to smaller

or less intense cloud formation, drylines are commonly associated with thun-

derstorm development. Rhea (1966) performed an analysis examining this as-

sociation over the months of April through June from 1959 to 1962. Utilizing

surface and upper air analysis charts in combination with sounding and hourly

radar summaries, he found that drylines were a preferred region for new storm

growth. In addition, Rhea determined that storms originating near the dry-

line became better organized more frequently than those forming further away.

Studies (e.g., Ziegler et al., 1997) have also indicated that a strengthening dry-

line is often associated with environmental conditions favorable for convective

initiation. However, Schultz et al. (2007) point out that this is not always the

case (e.g., 03 May 1999 – see Thompson and Edwards, 2000 for an in-depth

study of the event).

In their dryline modeling study, Ziegler et al. (1997) suggest that idealized

cloud models may be inadequate when describing convective development along

the dryline. In particular, they found that moisture, convective instability, and

shear all exhibited regions of strong horizontal inhomogeneity, in contrast to

the uniform environment commonly assumed in idealized models. Addition-

ally, their results suggest that deep convection (i.e., that typically related with

intense storms) is only possible with the presence of a mesoscale updraft result-

ing from dryline induced vertical circulations (as opposed to a thermal bubble
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formed through perturbations of the local thermal / moisture fields). Atkins

et al. (1998) investigate the hypothesis that the radar thin lines found along

drylines are manifestations of updrafts associated with horizontal convective

rolls (HCR). They found that the HCR interaction with drylines was similar

to those of HCRs with sea-breeze fronts formed during offshore flow conditions.

The relationship was believed to contribute to conditions favorable to cloud

initiation along the frontal (dryline) boundary. Xue and Martin (2006) found

corroborating evidence in their modeling study of the 24 May 2002 dryline

case, in addition to suggesting that the HCRs also contribute to misocyclone

intensifications. Other studies have also found examples of HCRs intersecting

dryline circulations (e.g., Wakimoto et al., 2006). Gravity-wave-like effects have

been shown to also be a potential cause for convective initiation in near-dryline

regions (Koch, 1979).

2.1.4 Dryline Identification

One major difficulty in the development of objective analysis techniques for

dryline identification is the disagreement on the subjective analysis criteria.

Despite intense examination, subjectively analyzed frontal boundary locations

vary greatly between individuals (Sanders and Doswell, 1995). Figure 2.2 from

Uccellini et al. (1992) contains an overlay of multiple subjective analyses of the

same event. The variability it demonstrates carries through to the analysis of

drylines. To provide a definitive location, a defining trait must be selected.

Schultz et al. (2007) maintain that the dryline should be located along the line

of maximum moisture gradient. In contrast, others such as Rhea (1966) and

Bluestein (1993) use the associated wind shift as the defining characteristic of

position. While the resulting discrepancies in location are typically minor, the
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aforementioned separation of wind shift and moisture gradient occasionally seen

in drylines can cause much larger differences. For the purposes of this study,

we will identify a dryline’s position based primarily on its moisture gradient.

The selection follows the criteria set by Coffer et al. (2013), who developed the

truth dataset used in this project. In addition, storms developing along the

dryline typically form in the moist sector. As wind shifts that do not follow the

moisture gradient usually occur in the moist region, the use of moisture gradient

as the defining feature places a bound that is likely to ensure storm interference

is limited to one side of the boundary.

The next issue involves determining the appropriate moisture gradient char-

acteristics. Schaefer (1973) defines the dryline as a persistent, sharp moisture

gradient with at least a 10°F difference in dewpoint temperatures between sur-

rounding surface stations. A minimum dewpoint of 50°F and maximum vir-

tual temperature change of 5°F are also required. However, Schaefer later sug-

gests examining the 9 g/kg isohume or 55°F isodrosotherm as the first guess

location of the dryline (Schaefer, 1986). Moreover, these values were chosen

for being approximate minimum moisture thresholds associated with tornadic

storm formation (Williams, 1976). Crawford and Bluestein (1997), using data

from the Cooperative Oklahoma Profiler Studies May 1991 (COPS-91) field ex-

periment, incorporate a temporal aspect for detecting dryline passage. They

subjectively determined that an eastward (westward) dryline passage was best

typified by a 3°C (2°C) decrease (increase) in dewpoint temperature at a rate

of at least 0.5°C per hour over a series of neighboring stations. More recently,

Hoch and Markowski (2005) present a spatial mixing ratio gradient threshold

of 3.0 g/kg/100km. This threshold was also used in Coffer et al. (2013).
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Figure 2.2: An overlay of analyzed boundaries by workshop participants from
Uccellini et al. (1992). Thick black lines indicate fronts while troughs and
other features are represented with dashed lines. The thin solid lines in the
background are objectively analyzed isobars in 4 mb intervals.
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The primary reason for dewpoint being commonly used in dryline identifica-

tion is convenience, as the majority of US moisture observations are provided in

terms of either relative humidity or dewpoint (e.g., the Automated Surface Ob-

serving System; NOAA, 1998). However, dewpoint is an inconsistent variable.

A change in dewpoint from 70°F to 75°F involves an increase in water vapor 12

times larger than a change from 0°F to 5°F (Dodd, 1965). In addition, dewpoint

is not conserved across pressure levels, resulting in a sensitivity to terrain ele-

vation. Bearing in mind that the change in moisture content is important, this

variability becomes a key factor in maintaining objective consistency. A more

accurate measurement is that of the mixing ratio (or specific humidity), which

is a direct measure of the amount of moisture present in the atmosphere and is

conserved with respect to pressure.

Visible and infrared satellite imagery can assist in dryline location by iden-

tifying the cloudy regions that commonly form on the moist side of the dryline

as well as identifying the clear regions on the dry side (e.g., Hane et al., 2002).

Radar can act in a similar fashion. Additionally, drylines commonly exhibit

what is known as a “fine-line” or “thin-line” clear air radar echo near the sur-

face boundary (e.g., Murphey et al., 2006). The thin-line is commonly thought

to be the result of insects being caught in confluent winds along the boundary

(e.g., Russell and Wilson, 1997; Martin and Shapiro, 2007). Recently, the In-

ternational H2O Project (IHOP) experiment has provided highly detailed radar

imagery that has since been used in many case studies (e.g., Buban et al., 2007;

Miao and Geerts, 2007; Sipprell and Geerts, 2007; Wakimoto and Murphey,

2010).
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2.2 Numerical Methods

While the majority of techniques used in this project are common in the field

of computer science, a brief overview has been provided for readers unfamiliar

with the content.

2.2.1 Smoothing

In addition to noise removal, smoothing controls the scale at which data are

examined by removing features of a certain spatial frequency, making careful

control of filter parameters key to later processing. The type of filter used is

dependent upon the type of noise present in the data and the features being

examined. The primary concerns of dryline identification are high frequency,

small scale variations interfering with gradient calculations and otherwise draw-

ing attention away from the desired boundaries. For this study, we have elected

to use a Gaussian filter.

Gaussian filters smooth an image by providing a weighted sum of the values

neighboring a given point. The weights are based on a Gaussian distribution

described by:

f(x,µ,Σ) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(x− µ)TΣ−1(x− µ)) (2.1)

where n is the dimensionality of the Gaussian, Σ is the covariance matrix of

the Gaussian, and µ is the center of the Gaussian. The 1

(2π)
n
2 |Σ|

1
2

term acts

to normalize the distribution such that all Gaussians of a dimensionality equal

one when integrated over their domain. The Σ parameter controls the extent

and orientation of the distribution, determining the scale at which features are
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removed. The scalability allows adjustment of the filter’s frequency response,

effectively modifying the frequency cutoff.

Application of the Gaussian distribution to gridded data requires a discrete

representation of the continuous function. The discretization is typically per-

formed by sampling values from the continuous function and placing them at

corresponding locations on a grid, or kernel (Fig. 2.3). The kernel is applied

to an unsmoothed grid via convolution. The continuous space Gaussian distri-

bution’s infinite extent results in truncation errors in discrete space due to the

kernel’s size; however, the errors can be reduced by increasing the size of the

kernel at the cost of increased computational time. Ninety nine percent of the

Gaussian distribution’s influence is contained within 3σ (standard deviations)

of the mean, so kernel widths set to at least twice the grid space representation

of 3σ are commonly used (Lakshmanan, 2012).

In most cases, the n dimensional (nD) Gaussian kernel is isotropic and can

be decomposed into n identical 1 dimensional (1-D) kernels, where n is the

dimensionality of the Gaussian. Each of the smaller 1-D kernels is applied

in a single direction, greatly decreasing the computational time required for

convolution. While anisotropic Gaussians can be decomposed, the process is

much more involved (Geusebroek et al., 2002).

Gaussian distributions are also self-similar in that the convolution of two

Gaussians results in another Gaussian. The self-similar property allows m Gaus-

sians to be convolved with each other and another function with only one con-

volution with the full non-Gaussian grid instead of m. This is of particular use

in filter banks (see appendix B.1), where more complex smoothing functions are

used.
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(a) Continuous 2D Gaussian.

0.09 0.21 0.29 0.21 0.09

0.21 0.54 0.74 0.54 0.21

0.29 0.74 1.00 0.74 0.29

0.21 0.54 0.74 0.54 0.21

0.09 0.21 0.29 0.21 0.09

(b) Discrete 2D Gaussian (kernel).

Figure 2.3: Continuous and discrete representations of a 2D Gaussian.
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2.2.2 Gradient Calculation

The detection of moisture change is critical to the identification of drylines,

making numerical differentiation a key aspect of this project. Ideally, the use of

finite difference methods (e.g., central differencing) combined with Richardson

extrapolation produce can produce excellent results. However, all finite differ-

ence methods are highly sensitive to noise (e.g., Chartrand, 2011). Smoothing

can ameliorate some of the issues that arise from noisy data; however, the effects

will still be present to some degree.

2.2.2.1 Sobel Operator

The Sobel operator is used in image processing for edge detection (Weeks, 1996).

It is somewhat insensitive to low frequency noise, while also retaining the gradi-

ent orientation during calculation. The method is implemented in vector format,

calculating the gradient in component directions and later combining them via

the square root of the sum of their squares. The process removes the sign of

the gradient; however, it can be inferred from the gradient’s orientation.

The Sobel operator is most commonly applied using a 3x3 matrix. While

larger kernels may be used, there is little guidance for their implementation

(Nixon and Aguado, 2012). Nixon and Aguado (2012) describe a method de-

signed to combine smoothing and differencing in the same operator. To smooth,

the method uses Pascal’s triangle due to the resulting coefficients’ similarity to a

Gaussian kernel, if given infinite extent. The differentiation is similarly provided

by Pascal’s triangle for subtraction. The resulting gradient operator is formed

by performing element-wise multiplication of the smoothing and differentiation

matrices.
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2.2.2.2 Wind Direction

It should be noted that taking the gradient of the wind direction requires ma-

nipulation of standard techniques. The Sobel operator is designed to work with

data on a linear scale. However, wind direction is an inherently cyclic variable

(e.g., a change 7° to 9° has the same magnitude and direction as 359° to 1°).

To apply the technique, we introduce the assumption that no change in wind

direction will exceed 180° in magnitude. While not necessarily true, it is both

likely and the greatest detectable change. The assumption is implemented by

setting the value of each gridpoint being examined during the gradient calcula-

tion to 180°. The surrounding values are then shifted such that their relative

positions remain the same. Finally, all values are adjusted so that they remain

within [0° - 360°) (e.g., a reading shifted from 345° to 375° is changed to 15°).

This results in all values being at most 180° from the central value on a linear

scale. From here, the gradient calculations continue as normal.

Alternatively, the sine(wind direction) would perform the same function;

however the sign of the gradient would not be retained.

2.2.3 Binary Erosion, Dilation

Binary erosion and dilation are morphological techniques used, in their base

forms, to shrink or enlarge objects in a binary set of pixels, respectively (e.g.,

Weeks (1996)). To describe these methods, we first examine dilation. Consider

two sets, A and B. A contains the pixels of the objects to be dilated while B

contains the pixels of the object that the objects in A are to be dilated by.

In most cases, B is a square centered at (0,0) (e.g., B={(-1,-1), (-1,0), (-1,1),

(0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)} as seen in Fig. 2.4b), although more
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complex shapes are permitted. The resulting set is determined by Minkowski

set addition of A and B,

C = A⊕B (2.2)

where C is the set of pixels belonging to the dilated objects. C contains all

possible vector additions of A and B. To demonstrate, consider the case where

A is a T shaped object and B is a 3x3 square, A = {(0,-1), (0,0), (-1,1), (0,1),

(1,1)}, B = {(-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1)}. The

resulting set of pixels contains {(-1, -2), (-1, -1), (-1, 0), (0, -2), (0, -1), (0, 0),

(1, -2), (1, -1), (1, 0), (-1, 1), (0, 1), (1, 1), (-2, 0), (-2, 1), (-2, 2), (-1, 2), (0,

2), (1, 2), (2, 0), (2, 1), (2, 2)}. This process is illustrated in Fig. 2.4.

Binary erosion is very similar to binary dilation. It can be thought of as the

compliment of the binary dilation of the compliment of A (i.e., all pixels not

part of the objects). This results in C being calculated as

C = (Ac ⊕−B)c (2.3)

where c denotes the compliment of a set and the negative sign indicates a rota-

tion of 180°. It should be noted that an implementation based on this description

may result in large computational time if the size of A is small relative to Ac.

Therefore, binary dilation and erosion techniques may be written differently in

practice.

By combining both erosion and dilation, or selecting particular types of B

masks, these techniques can have wide ranging effects. For example, if B consists

of a single non-origin pixel (i.e., not (0,0)), the resulting dilation will actually be

a translation. Similarly, alternating the methods generally results in the objects

retaining their approximate original size and location. Binary erosion followed
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by binary dilation, called binary opening, removes relatively small features (e.g.,

noise), smooths contours, and enlarges uneven holes. Binary opening necessarily

results in output objects of equal or lesser size than their input counterparts.

Binary closing is the reverse of binary opening, resulting in filled holes (e.g.,

Fig. 2.5). It will either enlarge objects or leave them the same.

(a) Pixel set A. (b) Pixel set B. (c) Pixel set C.

Figure 2.4: Binary dilation applied to a T shape using a 3x3 square.

2.2.4 Non-max suppression (NMS)

Non-max suppression (NMS) is a technique designed to find continuous lines

of maximum (or minimum) gradient (Sun and Vallotton, 2009). The method

requires that the magnitude and direction of the gradient be known, but oth-

erwise needs no additional input. NMS is applied by performing a local max

only on the examined gridpoint and its neighbors that are perpendicular to the

direction of the gradient. The result is (ideally) a continuous line of maxima in

the gradient field. While the algorithm also identifies regions of noise, these are

limited to thin lines, with more spurious regions being extremely fragmented.

The primary drawback of the method (of the implementation used here) is its

inability to branch, allowing only one path to be followed per line. The issue can
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(a) Pixel set A. (b) Pixel set B.
(c) Pixel set after dila-
tion.

(d) Pixel set after erosion
applied to C.

Figure 2.5: Binary closing applied to an empty box using a 3x3 square.
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be somewhat solved by means of binary dilation, although spurious connections

become more likely with increasing iterations.
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Chapter 3

Dataset Description

The dryline dataset used by Coffer et al. (2013) was developed using the 0000

UTC 4 km Weather Research and Forecasting (WRF) model initialization 24

hour forecasts for the months of April, May, and June from 2007–2011 (they also

developed similar datasets using the Rapid Update Cycle and North American

Mesoscale models). The described time frame was utilized due to the high

frequency of dryline events in the US High Plains during these months (see

chapter 2.1) and to maintain consistency with previous studies (e.g., Dodd,

1965; Hoch and Markowski, 2005). The WRF model is a Numerical Weather

Prediction (NWP) model designed through a collaborative effort of multiple

agencies. The WRF’s primary utility is in its modular design, enabling various

boundary, physics, and other schemes to be tested in differing combinations

with ease (Skamarock et al., 2008). The particular settings used in the dataset’s

origin study are summarized in Table 3.1. It should be noted that data occurring

after 9 June 2009 were taken from WRF 3.1.1 runs as opposed to WRF 2.2.

The transition resulted in a slight expansion of the domain; however, the other

model settings remained unchanged. As the majority identified drylines present

in the data occur near the center of the domain, it is believed that the version

change has little to no impact on our results.
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Coffer et al. (2013) used the Grid Analysis and Display System (GrADS1) for

gradient calculations and visualization during their research. Following Hoch

and Markowski (2005), the primary field they examined was that of the gra-

dient of specific humidity. Drylines were defined as elongated boundaries on

the order of 100 km containing some point with a minimum specific humidity

gradient magnitude of 3 g/kg/100km. A wind shift consistent with daytime

dryline kinematics was also required. Coffer et al. performed several other sub-

jective evaluations in addition to the objective criteria mentioned above (e.g.,

no strong thermal gradient, not primarily the result of storm outflow). The

resulting dataset comprises individual points that are the result of a series of

lines connecting subjectively drawn dryline segments. An example of this out-

put can be seen in Fig. 3.1. The data points are represented by black dots and

overlay a plot of the specific humidity gradient magnitude. This notation is

used throughout the rest of the thesis.

initialization time 00 UTC

grid resolution 4 km

domain ∼ CONUS (small expansion from WRF 2.2 to WRF 3.1.1)

microphysics WRF single-moment six-class (Hong and Lim, 2006)

boundary layer Mellor-Yamada-Janjić (Mellor and Yamada, 1982)

land surface model Noah (Chen and Dudhia, 2001)

shortwave radiation Dudhia (Dudhia, 1989)

longwave radiation Rapid Radiative Transfer Model (Mlawer et al., 1997)

Table 3.1: Coffer et al. (2013) WRF model settings.

1See http://www.iges.org/grads/
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The existence of “truth” points allows for the above dataset to be used during

algorithm development and distance evaluation as well as during the application

of machine learning (see chapter 4 and sections 5.1.1 and 5.2, respectively).

However, the statistical evaluation performed in section 5.1.2 requires the use

of an independent dataset. Therefore, 2012 WRF data using the same settings

as Coffer et al. (2013) was subjectively analyzed by the author and visually

compared to algorithm output.

NWP model output contains estimates of the atmospheric state at a given

time for each gridpoint present in the model. The variables it provides (and

the locations, numbers, etc. of the gridpoints) vary depending on the model

and the settings used. Of key importance in this research are: temperature,

dewpoint, specific humidity, vapor pressure, u (latitudinal) and v (longitudinal)

winds, and surface pressure. Additionally, a number of other variables were

derived from these base outputs. For more information, see appendix A.
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Figure 3.1: Specific humidity gradient magnitude (g/kg/64km) calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 11 May 2010. The
black dots indicate the subjectively analyzed dryline location found by Coffer
et al. (2013).
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Chapter 4

Algorithm Formulation

The following provides a step by step overview of the developed algorithm as

it is applied to a 24 hour forecast of 26 April 2012 in which a well defined

dryline with a secondary moisture boundary is present. This day has been

selected as it provides a clear demonstration of the impact of nearly each step

in the algorithm in addition to having several non-dryline boundaries present.

Additional information regarding several other implementations examined and

further discussion on the techniques mentioned in this section can be found in

appendix A and section 2.2, respectively. The overall structure of the algorithm

is diagrammed in Fig. 4.1.

The algorithm can be described by three basic steps. First, all regions ex-

hibiting dryline-like moisture values are identified. Next, lines of moisture gra-

dient magnitude maxima are found, providing positions along which objectively

analyzed drylines can be located. The dryline-like environment and moisture

gradient magnitude ridge masks are then combined and reexamined. The re-

maining regions form the algorithm’s final output. The following provides a

more in depth examination of each process.
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Figure 4.1: Algorithm flow chart.
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4.1 26 April 2012 synoptic environment: Key

features

The specific humidity field (Fig. 4.3) shows the presence of a strong moisture

boundary running from Mexico into southwest Texas, which turns northeast to

merge with another boundary near the southern Oklahoma-Texas border. The

second boundary runs from central Texas to the merger, and continues along the

Red River until turning northeast at the western Oklahoma-Texas border. The

structure of the moisture field becomes less organized in this region, although a

faint boundary can be seen following the line of pressure minima connecting the

low pressure systems in north-central Texas and northeast Illinois (Fig. 4.2).

None of the three features have any significant thermal gradient (Fig. 4.5),

ruling out cold and warm fronts, as well as storm outflow when considered in

conjunction with the wind field (Fig. 4.6). However, the source region of the

dry side of the northern boundary is atypical from a standard dryline, with

air coming from the northern US and Canada. Combined with the relative

weakness of the moisture gradient, we conclude that the northern boundary

is not a dryline. In contrast, all indications point to the southwest boundary

being a dryline, with a strong moisture gradient, confluent wind shift, weak

thermal gradient, and appropriate air mass source regions. The feature present

in central Texas is less certain as the dry side winds originate from the Gulf of

Mexico. However, given the strength of the moisture gradient, it appears that

the air has dried sufficiently while over land to satisfy our criteria. Therefore,

the algorithm should identify two dryline boundaries in Texas that merge at

the Red River, and continue towards the low pressure region in north-central

Oklahoma.
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4.2 Thresholding

The first section of the algorithm is designed to identify regions of dryline-like

environments. It begins by smoothing the raw specific humidity and dewpoint

fields with a Gaussian filter (section 2.2.1) using a σ of 2.5 grid points, which,

at the resolution of our data, is approximately 10 km. The process is designed

to retain those features roughly the size of the dryline, simplifying subsequent

identification in addition to reducing noise.

Next, the gradients of the smoothed moisture fields are calculated using a

3x3 Sobel operator (section 2.2.2.1). As with all finite difference methods, the

technique is particularly sensitive to high frequency noise, making the previous

smoothing key to obtaining reasonable values. The gradient process results

in Figs. 4.7 and 4.8, showing the two strong moisture boundaries present in

Texas and Oklahoma as well as the third, weaker boundary to the northeast.

Dewpoint’s dependence on elevation and non-linear relation with atmospheric

water content results in the latter boundary not being as clearly defined in

the dewpoint gradient magnitude field as opposed its greater visibility in the

specific humidity gradient magnitude data. In addition, a larger number of

spurious features are visible in the western portion of the image (e.g., along the

pressure minima connecting the lows in Texas and Colorado).

Once calculated, the magnitudes of the two moisture gradient fields are

thresholded to provide a preliminary estimate of dryline locations. The initial

thresholding is performed using optimistic (i.e., lower) thresholds designed re-

duce the risk of breaking apart desired features early on at the cost of including

spurious values. The dewpoint and specific humidity gradient fields generally

differ along changes in terrain elevation (discussed in section 2.1.4 and above).
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However, these differences are small enough that strong gradient regions are

captured in both thresholded fields (Figs. 4.9, 4.10). This feature can be ex-

ploited through the application of a binary AND to the two thresholded grids.

The process identifies those pixels containing values that meet both the specific

humidity and dewpoint gradient magnitude thresholds while ignoring all others.

This results in the retention of true dryline regions while using the variation of

the two fields to remove or break up undesired features that were incorrectly

identified by one or the other grids. In this case (Fig. 4.11), the weaker cap-

ture of the northeastern boundary (i.e., less of the structure is retained) by the

thresholded dewpoint gradient magnitude acts to break up the better capture

by the thresholded specific humidity gradient magnitude. Likewise, the better

defined features seen in the northwest portion of the thresholded dewpoint gra-

dient magnitude field are removed by the thresholded specific humidity gradient

magnitude.

The remaining regions are then required to contain at least one pixel above a

vapor pressure gradient threshold and extend beyond a 180km (height) x 220km

(width) bounding box. The former criterion removes a large number of non-

dryline features in addition to smaller disconnected regions (Fig. 4.12); however,

it is unable to remove those sections connected to a true dryline including a large

region in southwest KS/northwest OK and a number of smaller protrusions

further south. The latter prevents the inclusion of small, noise-like features
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Figure 4.2: 24 h forecast of surface pressure (Pa), contoured every 100 Pa (1
mb), from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.3: 24 h forecast of specific humidity (g/kg) from the NSSL-WRF valid
0000 UTC 26 April 2012.
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Figure 4.4: 24 h forecast of dewpoint (K) from the NSSL-WRF valid 0000 UTC
26 April 2012.
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Figure 4.5: Virtual potential temperature gradient magnitude (K/64km) cal-
culated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 26
April 2012.
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Figure 4.6: 24 h forecast of 10 m wind speed and direction from the NSSL-WRF
valid 0000 UTC 26 April 2012. Small flags indicate wind speeds of 5 kts, and
larger flags 10 kts. Circles indicate calm winds.
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Figure 4.7: Specific humidity gradient magnitude (g/kg/64km) calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012.

37



Figure 4.8: Dewpoint gradient magnitude (K/64km) calculated using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.9: Thresholded [>2.0 g/kg/64km] specific humidity gradient magni-
tude (g/kg/64km) calculated using 24 hour forecast data from the NSSL-WRF
valid 0000 UTC 26 April 2012.
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Figure 4.10: Thresholded [>3.5 K/64km] dewpoint gradient magnitude
(K/64km) calculated using 24 hour forecast data from the NSSL-WRF valid
0000 UTC 26 April 2012.
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regardless of their moisture gradient; however, it has no effect on this particular

case (Fig. 4.13). The output forms the final mask of this section of the algorithm.

4.3 Non-max suppression (NMS)

The next section of the algorithm begins independently of the previous step

and is designed to identify the lines of strongest moisture gradient along which

any potential drylines could occur. The process is based on the application

of non-max suppression (NMS, section 2.2.4) to the specific humidity gradient.

However, the method does not allow for branching (i.e., two lines of maxima

merging into or splitting from one). This creates the potential for identified

lines to follow smaller scale, spurious features instead of the true dryline. In

particular, more realistic branches may have a weaker specific humidity gradient

magnitude near the branch point that reintensifies further along the identified

region. Two steps are taken to prevent these deviations. First, the specific

humidity field used for this process is smoothed using a σ = 6 grid points

(approximately 24 km, for this study) Gaussian filter, resulting in the specific

humidity gradient magnitude field shown by Fig. 4.14. The increased smoothing

results in expanded regions of high gradient magnitude as well as the removal

of finer-scale variability (compare to Fig. 4.7). These changes improve the NMS

output by removing some of the smaller potential branches while also increasing

the spacing between identified lines. In addition, the smoothing greatly reduces

the number of artifacts caused by the smaller variations in gradient intensity.

Second, a number of binary dilations (i.e., dilation of the identified regions

through the addition of a one pixel border; section 2.2.3) equal to half the size
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Figure 4.11: Binary AND of thresholded specific humidity gradient magnitude
(g/kg/64km) and dewpoint gradient magnitude (g/kg/64km) calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.12: Vapor pressure gradient magnitude threshold [>1000 Pa/64km]
applied to binary AND of threshold masks using 24 h forecast data from the
NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.13: Size criteria [> 180km (height) x 220km (width) bounding box]
applied to binary AND of threshold masks (post-vapor pressure gradient magni-
tude threshold) using 24 h forecast data from the NSSL-WRF valid 0000 UTC
26 April 2012.
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of the mask used by NMS expand the identified lines, which helps to reconnect

any broken branches. The procedure has the added benefit of creating a buffered

mask that can be compared with the dryline-like region found in section 4.2.

The resulting mask (pre-binary dilation) can be seen in Fig. 4.15. The lines

on which the drylines lie are longer than the threshold mask (Fig. 4.13) would

suggest. These extensions, in addition to the large number of other lines, are

due to the lack of stopping criteria present in NMS. The lines are only required

to follow ridges in gradient magnitude, regardless of a location’s value.

4.4 Combination and final processing

The final portion of the algorithm begins by combining the binary masks created

in the previous two steps using a binary AND, resulting in Fig. 4.16. The

combination allows for identified lines of strong gradient to be given bounds,

shortening the southward extension of the two boundaries from NMS while also

diminishing the northernmost extension of the eastern boundary. In addition,

the threshold mask removes the majority of the noise present in the NMS output,

while NMS removes many of the spurious extensions seen in the threshold mask.

The process has the additional benefit of further breaking apart the undesired

features in northern Oklahoma/southern Kansas (see Fig. 4.18). In essence, the

thresholding mask removes the spurious lines found by NMS, restricting the

output to regions where a dryline-like environment is present. Similarly, the

NMS mask acts to limit the spurious deviations that are identified during the

initial thresholding process by removing all regions that do not fall along a line

of maximum moisture gradient. However, the output mask often has small gaps
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Figure 4.14: Specific humidity gradient magnitude (g/kg/64km) (σ = 6) cal-
culated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 26
April 2012.
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Figure 4.15: Application of NMS to specific humidity gradient magnitude (σ =
6) calculated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC
26 April 2012.
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present due to minor discrepancies in the two input grids. The holes are removed

using binary closing (section 2.2.3), which recursively expands and contracts the

identified regions to fill in the empty spaces, and results in Fig. 4.17.

The vapor pressure gradient magnitude check is reapplied to remove any

disconnected noisy regions resulting from the above process. In this case, the

algorithm is able to remove the non-dryline features in northern Oklahoma /

southern Kansas that were previously connected to the larger eastern feature

(Fig. 4.18). Next, the size threshold is reapplied in another attempt to remove

undesired features; however, it again has no effect on this case (Fig. 4.19).

Finally, a set of masks is applied to remove regions near large bodies of water

(e.g., Great Lakes, Gulf of Mexico) in addition to placing latitudinal bounds on

where a dryline can be identified. The latter mask excludes all values outside of

approximately 30° N to 42° N to maintain consistency with Coffer et al. (2013).

The resulting image forms the final output of the algorithm (Fig. 4.20).

4.5 Walkthrough assessment

In the 26 April 2012 case, the algorithm identified the two drylines and placed

them in the locations described in section 4.1. However, the eastern dryline was

allowed to extend too far north, merging with what amounts to noise around

the surface low pressure region. In this case, the cyclonic (counter-clockwise)

winds wrapped the moisture around the low pressure region, maintaining the

high gradient magnitude boundary (this is particularly visible in the wind field;

Fig. 4.6). When the true dryline was connected with the false region in the

initial thresholding, the algorithm treated the two bodies as a single feature.

This allowed the undesired portion to pass the vapor pressure gradient check
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when it would have otherwise failed. Likewise, the continuity of the high specific

humidity gradient resulted in NMS merging the two regions into a single object.

Once both the threshold and NMS portions of the algorithm captured the false

region as part of a true dryline, there is no method in place to remove it. In an

operational situation, it would be up to forecasters to subjectively identify and

correct the issue.
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Figure 4.16: Binary AND of NMS and thresholded masks using 24 hour forecast
data from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.17: Binary closing of combined NMS and thresholded masks using 24
hour forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.18: Reapplication of the vapor pressure gradient magnitude threshold
[>1000 Pa/64km] applied to a binary AND of NMS and threshold masks using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012.
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Figure 4.19: Reapplication of the size check (180km (height) x 220km (width)
bounding box) applied to a binary AND of NMS and threshold masks (post-
vapor pressure gradient magnitude threshold) using 24 hour forecast data from
the NSSL-WRF valid 0000 UTC 26 April 2012.

53



Figure 4.20: Final output of the dryline identification algorithm using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 26 April 2012. Black lines
indicate ∼30° N - ∼42° N latitudinal bounds.
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Chapter 5

Evaluation

This chapter provides an overview of the algorithm’s performance. Section 5.1

begins with a quantitative assessment of the algorithm, examining both general

statistical performance and specific situations in which the technique fails. It is

followed by section 5.2, which describes the results of a preliminary application

of machine learning to the algorithm output.

5.1 Quantitative assessment

5.1.1 Objective vs. subjective comparison

Traditional forecast (and analysis) verification methods such as False Alarm Ra-

tio (FAR), Probability of Detection (POD), and others (discussed below) pro-

vide a technical understanding of an algorithm’s performance. However, such

assessments provide little understanding of why a forecast succeeded or failed.

In contrast, object-based techniques provide information similar to a subjective

examination by treating meteorological features as entities independent of the

environmental field (Davis et al., 2006). The grouping of pixels into objects

allows attributes to be assigned to specific features (e.g., the location, speed,

and size of a storm) and directly compared to those of another object. For ex-

ample, the path of a forecasted storm may differ significantly from its observed
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counterpart’s. By treating the two storms as objects, various distance statis-

tics can be computed in addition to comparing other variables (e.g., maximum

reflectivity, updraft intensity).

The ideal output of the algorithm outlined in this thesis forms the basis

of an object-based identification system; however, cases in which the analyzed

drylines are merged with other boundaries (or entirely non-dryline boundaries

are identified) present a difficulty to its evaluation as such. The non-dryline

objects will heavily influence any calculations in which they are present. For

the purpose of the following evaluation, these features have been removed by

only retaining identified regions falling within 30 km of the subjective analyses

created by Coffer et al. (2013). The masking removes the majority of non-

dryline features from subsequent examination, mitigating the errors that would

otherwise be introduced. However, the process also limits the type of evaluations

that can be performed. The fields remaining deal with position, both in distance

between analyses and their relative locations.

Figure 5.1a shows a histogram of the distance between each objectively ana-

lyzed dryline pixel and the nearest dryline position from the subjective dataset

developed by Coffer et al. (2013). Seventy five percent of the points from the

objective dataset have a subjective data point within 10 km of their locations,

and 90% within 15 km. These values indicate a high degree of agreement be-

tween the developed algorithm and the subjective data set, with over 90% of

the identified dryline points (within the 30 km buffer) existing within four grid

points of the “truth” dataset (4 km grid resolution). Figure 5.1b shows the

same data, but with negative (positive) values indicating the objective analysis

is further in the dry (moist) region relative to the subjective locations. Exam-

ination shows that there is very little dry/moist side bias present between the
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two analyses. It should be noted that the subjective dataset only contains a

series of points that are linearly interpolated for comparison. It is possible that

the more minute variations are partially due to this simplification.

Some of the larger distances in Fig. 5.1a are due in part to situations where

the dryline algorithm follows a moisture boundary other than the subjective

analyses (an extreme case can be seen in Figs. 5.2a and 5.2b). These cases are

due to NMS necessarily following the strongest moisture boundary present (not

to be confused with the removal of smaller variations along the same boundary

discussed below) and ignoring the boundary identified by Coffer et al. (2013).

While some of these cases are situations in which the objective technique was in-

correct, the majority occur when the disagreement could otherwise be explained

by differences in subjective opinion.

Another cause of the larger distances seen in Fig. 5.1a may be the increased

smoothing factor used by NMS to prevent deviations from the true maximum

specific humidity gradient. While the process removes small-scale features, it

also smooths the overall curvature of the true moisture boundary. The more

minute variations of the path that are observable with less smoothing are lost.

For example, the combined specific humidity and dewpoint gradient threshold

mask seen in Fig. 5.3a shows the presence of two slightly separated moisture

boundaries from the Texas panhandle to west Texas. The two features over-

lap (i.e., run parallel and next to one another) in west-central Texas and are

connected by a small region of high moisture gradient. While the separated

regions are likely a more accurate representation of the dryline (or drylines),

the smoothed field used by NMS does not maintain the separation (Fig. 5.3b).

When combined with the threshold mask, the NMS region passes through the
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connecting strand, resulting in the final output containing a single, continuous

boundary (Fig. 5.3c).

While not shown here, the dryline algorithm also has a tendency to extend

the analyzed regions further along the moisture boundary than the subjective

analyses do (i.e., the objective drylines are typically longer). Unfortunately,

these differences in length cannot not be calculated in their present form be-

yond 60 km due to the buffering process (although shorter objectively analyzed

drylines can be found). The lengthening is likely due to the combination of

the initial thresholds and NMS. The lines created by NMS rely on the thresh-

old mask to provide a stopping criteria. Without it, the lines extend as far

as possible while following the across-boundary gradient maximum regardless

of gradient intensity. However, the initial thresholds are optimistic (i.e., inten-

tionally low), ensuring that dryline regions are retained at the cost of keeping

additional features. While the subsequent vapor pressure gradient and size

thresholds aid in removing disconnected features, they cannot affect extensions

attached to the dryline regions. When the threshold mask is applied to the

NMS output, the lines are allowed to travel into the lower gradient regions, re-

sulting in overly long drylines. A second thresholding has been examined for use

in reducing this effect; however, we were unable to achieve consistent results.

A variety of iterative endpoint removal techniques were also investigated, with

similar effects.
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(a)

(b)

Figure 5.1: (a): Histogram of the distance between objective and subjectively
analyzed points after the application of a 30 km buffer mask. The left and right
black lines denote that 75% and 90% of the observed points fall within 10km
and 15km of a subjective point, respectively. (b): Histogram of the distance
between objective and subjectively analyzed points after the application of a
30 km buffer mask. Negative (positive) values indicate the objective analysis is
placed further in the dry (moist) region than the subjective analysis.
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(a)
(b)

Figure 5.2: Calculated using 24 hour forecast data from the NSSL-WRF
valid 0000 UTC 01 May 2008: (a): Specific humidity gradient magnitude
(g/kg/64km). (b): Final output.

5.1.2 Statistical assessment

Statistical evaluation of binary forecasts (or analyses) are commonly performed

using a contingency table (Wilks, 1995). The table provides a set of values

that describe a forecast’s ability to predict a given variable or feature. Tradi-

tional contingency tables are created by directly comparing each location on the

forecast grid to the corresponding truth data. However, these implementations

result in extremely high penalties for errors in location in addition to often

over-penalizing fine scale structures (e.g., drylines). An object-based adapta-

tion of the traditional implementation can be formulated by treating groups of

pixels as entities separate from the environment, allowing for improved assess-

ment (e.g., Ebert and McBride, 2000). The modification removes the above

sensitivities in addition to allowing more complex evaluations of contingency

table values. For the purpose of this study, objects are defined as contiguous

(or appropriately broken groups of) regions identified by the dryline algorithm.
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(a)
(b)

(c)

Figure 5.3: Calculated using 24 hour forecast data from the NSSL-WRF valid
0000 UTC 20 May 2012: (a): Size check (final output of the initial thresholding).
(b): Specific humidity gradient magnitude (g/kg/64km) (pre-processed using
σ = 6 Gaussian filter). (c): Final output.
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These regions are then compared to the 2011 Coffer et al. (2013) analysis as

well as the independent dataset described in chapter 3.

The contingency table is comprised of four values (see Fig. 5.4). True posi-

tives (TP) occur when a dryline is present in both the objective and subjective

analyses. False positives (FP) denote an incorrect identification by the objec-

tive output. A dryline that is not identified by the algorithm is categorized as

a false negative (FN), while the lack of identification of any non-dryline bound-

ary is a true negative (TN). The object-based implementation of the evaluation

allows for TP, FP, TN, and FN values all to be present on the same day. In the

case that multiple objectively identified drylines identify the same subjective

dryline, they are treated as a single object. The associated TP, FP, and FN

values are assessed as the associated fractional area of the combined objective

and subjective analyses (e.g., if two or more objective drylines capture half of a

subjective dryline but also capture half of an equally long cold front, the result-

ing values would be TP: 1/3, FP: 1/3, FN: 1/3). Any FPs not associated with

a subjectively analyzed dryline are counted as separate events. It should be

noted that this implementation results in double penalization of cases in which

the algorithm follows a different moisture gradient than that of Coffer et al.

(2013), as both a FP and FN must be assessed (see Fig. 5.2b). In addition, the

entity based analysis creates difficulties in the assessment of TNs. Ideally, TNs

would be determined by identifying all fronts, storm outflow boundaries, etc.

present in the test data and counting each that was not objectively identified

as a dryline. However, the lack of any specific measures to determine how non-

dryline features should be assessed allows for widely varying scores depending

on the the criteria selected. Therefore, the majority of scores using TNs have

62



been avoided here. The impacts of this limitation on the statistical assessment

are described where appropriate.

FAR =
FP

TP + FP
(5.1)

POD =
TP

TP + FN
(5.2)

The false alarm ratio (FAR, Eq. 5.1) describes how frequently the algorithm

misclassifies another boundary as a dryline. The score ranges from 0 to 1, with

higher values signifying a greater misclassification rate. FAR is sensitive to

event frequency in that rare events can provide good scores by always assuming

the negative case. For example, if an event only occurs one time out of a thou-

sand and is always assumed to not occur, the FAR is still .001. It is therefore

commonly used in conjunction with the probability of detection (POD, Eq. 5.2)

score. POD indicates the likelihood that a dryline is detected by the algorithm.

It is defined as the fraction of correct objectively identified drylines to all sub-

jectively identified drylines. The score has a range of 0 to 1, with higher values

indicating greater detection probability. The key drawback of POD is that it

can be likewise manipulated by consistently identifying regions as drylines. The

lack of penalty from FPs means that a perfect score can be obtained despite

an overall inaccuracy of the analysis. However, this is compensated for by FAR

(and vise versa) such that an overly optimistic (pessimistic) algorithm may have

good POD (FAR), but will also have a poor FAR (POD).

CSI =
TP

TP + FN + FP
, (5.3)
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Figure 5.4: Contingency table. Forecast values correspond to the objective
algorithm output while observations represent the subjective analysis performed
by the author.

FBIAS =
TP + FP

TP + FN
, (5.4)

GSS =
TP −RAND

TP + FP + FN −RAND
, (5.5)

where

RAND =
(TP + FN)× (TP + FP )

TP + FP + TN + FN
. (5.6)

The critical success index (CSI, Eq. 5.3) provides a measure of the algo-

rithm’s accuracy while ignoring TNs and ranges from 0 to 1, where 0 indicates

no skill (Schaefer, 1990). CSI only considers situations in which something was,

or should have been analyzed as a dryline. The score has a slight dependence

on the climatology of the event being examined. This can be accounted for

by using the Gilbert Skill Score (GSS, Eq. 5.5) (also known as the Equitable

Threat Score). GSS acts in much the same fashion as CSI, but attempts to

remove those selections that would occur due to random chance (although this

is only an approximation) (Hogan et al., 2010). The output of GSS ranges from
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-.33 to 1, where 0 indicates no skill compared to random chance and 1 is the

ideal output. The score does require TNs for its calculation (see Eqs. 5.5 and

5.6) but is not strongly influenced by it in this case (see below). Frequency

bias (Eq. 5.4) provides the ratio of analyzed dryline events to observed dryline

events. The score ranges from 0 to infinity, where scores less (greater) than 1

indicate too few (many) analyses relative to the number of observed drylines.

The scores shown in Table 5.1 are calculated from contingency table values

assessed through a visual comparison of the independent 2012 dataset and the

resulting dryline algorithm output by the author using the criteria outlined

above. The values suggest that the technique is overly optimistic. The high

POD of 0.864 indicates that very few drylines are not found, which is essential

for any form of operational use. However, the other scores suggest that a large

number of dryline regions are being incorrectly identified (i.e., other features are

being included). CSI indicates the algorithm is only slightly skilled; however,

the score may underestimate the algorithm’s performance due to the relative

infrequency of drylines in the dataset. The GSS value of 0.209 shows that the

technique performs better than random chance, but not extremely well. While

the lack of a defined value for TNs in this analysis results in some uncertainty

POD 0.864

FAR 0.717

FBIAS 3.05

CSI 0.271

GSS 0.209

Table 5.1: Skill score values for the 2012 independent dataset (see in-text de-
scription for a note on GSS calculation).
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in the GSS, testing showed that the score only varied by ∼.03 when using TNs

ranging from 30 to 100. Regardless, the CSI and GSS values are far from

perfect. The frequency bias score of 3.05 suggests that too many presumed

drylines are being identified by the algorithm, which is confirmed by FAR. The

high FAR of 0.717 is due to non-dryline features being independently identified

or merged with drylines by the algorithm and incorporated into the output.

It should be noted that the independent 2012 dataset has a slightly poorer

POD, but improved FAR and other scores when compared to the evaluation

of the 2011 Coffer et al. (2013) data shown in Table 5.2a (see section 5.2.2).

The former difference is small enough that it can be explained by year to year

variations in the datasets; however, the latter improvements are likely caused

by a decrease in FPs in the 2012 dataset. This drop is due to a combination of

the lack of “subjective” differences in the analyses (mentioned in section 5.1.1)

and the absence of penalization due to the identification of secondary moisture

boundaries.

Subsequent investigation found that there are three key situations with

which the algorithm consistently has difficulty. These cases are discussed in

the following sections.

5.1.2.1 Intersecting boundaries

There are very few cases in the test set in which a cold or warm front is mis-

taken for a dryline in its entirety. More frequently, the intersection of frontal

and dryline boundaries results in their partial merger. Such a situation is shown

in Fig. 5.5 on 03 April 2012. The identified region stretching from eastern New

Mexico to the eastern portion of the Oklahoma panhandle is part of a cold

front, while the remainder of the line is a dryline. Fig. 5.6 shows the strong
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moisture gradient merging with that of the cold front in the eastern portion of

the Oklahoma panhandle, overlaying the thermal gradient seen in Fig. 5.7. The

cold front boundary continues northeast along the correctly unidentified weaker

moisture gradient through Kansas, South Dakota, and into Iowa. This is sup-

ported by Fig. 5.8 which shows the front to be associated with a line of pressure

minima, as would be expected by frontal theory (Bluestein, 1993). The strong

difference in moisture gradient magnitude along the frontal boundary is caused

by the differing characteristics of the two air masses that form the dryline. The

wind field (Fig. 5.9) shows the air behind the front all flows from a single source

region. The moisture content of this air is high enough that its intersection

with the dry air to the southwest results in a large moisture gradient magni-

tude. However, the specific humidity gradient magnitude along the eastern half

of the front is much smaller due to the relatively high moisture content of the

opposing air mass to the southeast. When evaluated by NMS (Fig. 5.10), the al-

gorithm follows the stronger moisture gradient region, merging the dryline with

the western portion of the front. Combined with the original threshold masks,

the NMS output results in the vapor gradient magnitude threshold check re-

moving the disconnected eastern half of the front, while retaining that of the

dryline / cold front merger. In essence, the difference in moisture content of

the two air masses forming the dryline can result in differing moisture gradient

magnitudes along the boundary separating a tertiary air mass. The stronger

gradient magnitude portion of the non-dryline boundary may then be merged

with that of the dryline instead of following along its weaker section. The high
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Figure 5.5: Final output calculated using 24 hour forecast data from the NSSL-
WRF valid 0000 UTC 03 April 2012.
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Figure 5.6: Specific humidity gradient magnitude (g/kg/64km) calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 03 April 2012.
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Figure 5.7: Virtual potential temperature gradient magnitude (K/64km) cal-
culated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 03
April 2012.
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Figure 5.8: 24 hour forecast of surface pressure (Pa), contoured every 100 Pa
(1 mb), from the NSSL-WRF valid 0000 UTC 03 April 2012.
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moisture gradient magnitude and increased smoothing allows its inclusion by

the thresholding and NMS processes, respectively.

5.1.2.2 Storm outflow

The algorithm also has difficulty dealing with convection occurring ahead of a

dryline. The precipitation resulting from these storms increases the amount of

moisture present at the surface. Larger or longer lived storms create significant

regions of relatively high moisture that expand outward and meet with the

environmental air. The intersections of the two air masses sometimes results in

regions of strong moisture contrast similar to those exhibited by drylines. This is

similarly true of air from a storm’s rear flank downdraft (RFD), in which dry air

from aloft has been transported to the surface. In these situations the algorithm

will sometimes capture the resulting boundaries, especially those near a dryline

as the intersecting ridges of moisture gradient magnitude may cause NMS to

follow the outflow boundary instead of continuing along the true dryline. Such

a situation occurred on 12 April 2012 several hours after the initiation of a

large amount of convection along the dryline. Examination of the output shows

a small, curled boundary protruding from the true dryline (Fig. 5.11). This

extension is formed by a small pocket of dry air present beyond the well defined

dryline (Fig. 5.12) interacting with the outflow of the nearby storms (Fig. 5.13).

Whether the dry region is due to a jump in the dryline or dry air being mixed

down by the storms is unclear. The area is larger than would be expected of

a RFD and the pressure and thermal fields (Figs. 5.14 and 5.15) do not show

indications of cold pool development at that location. Given the intertwining

nature of the dry and moist air seen in southeastern New Mexico (Fig. 5.12), it
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Figure 5.9: 24 hour forecast of 10 m wind speed and direction from the NSSL-
WRF valid 0000 UTC 03 April 2012. Barb orientation indicates wind direction.
Small flags indicate wind speeds of 5 kts, and larger flags 10 kts. Circles indicate
calm winds.
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Figure 5.10: Application of NMS to specific humidity gradient magnitude (σ =
6) calculated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC
03 April 2012.
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may be a secondary moisture boundary that is in the process of being eroded

by the surrounding storms.

5.1.2.3 Quasi-drylines

Drylines are typically considered to be the intersection of a continental tropical

(cT) air mass and a maritime tropical (mT) air mass. That is, relatively dry

(continental - over land) and warm (tropical) air meeting relatively moist (mar-

itime - over water) and warm (tropical) air. These distinctions have come about

due to the east-west terrain slope and air mass source regions present in the U.S

(see chapter 2.1). However, similar features can form elsewhere in the presence

of a sufficiently strong moisture gradient. Dodd (1965) shows that while the

strongest April - June climatological moisture gradient is oriented east-west, a

weaker gradient is also present in the north-south direction. The weaker gradi-

ent is formed by the intersection of continental polar (cP) and mT air masses,

with cP being relatively dry (continental) and cool (polar). In certain cases, the

resulting moisture gradient becomes strong enough for the algorithm to capture.

These weaker formations rarely retain enough strength to be detected on more

than a single day, although the boundary itself may persist. These features

exhibit a wind shift similar to those seen by other meteorological boundaries.

An example of these structures is shown in Fig. 5.16 in which the left bound-

ary is a true dryline and the right is the described region of strong moisture

gradient. The eastern boundary lies along a pressure trough (Fig. 5.19), ex-

hibiting a weak thermal gradient (Fig. 5.17) (the strong thermal gradient along

the true dryline is due to storm outflow impinging upon the boundary) and
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Figure 5.11: Final output calculated using 24 hour forecast data from the NSSL-
WRF valid 0000 UTC 12 April 2012.
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Figure 5.12: 24 hour forecast of specific humidity (g/kg) from the NSSL-WRF
valid 0000 UTC 12 April 2012.
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Figure 5.13: Virtual potential temperature gradient magnitude (K/64km) cal-
culated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 12
April 2012.
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Figure 5.14: 24 hour forecast of surface pressure (Pa), contoured every 100 Pa
(1 mb), from the NSSL-WRF valid 0000 UTC 12 April 2012.
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Figure 5.15: 24 hour forecast of virtual potential temperature (K) from the
NSSL-WRF valid 0000 UTC 12 April 2012.
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cyclonic (counterclockwise in the Northern Hemisphere) wind shift (Fig. 5.18)

across the boundary. The structure of the feature is akin to a baroclinic trough

as described by Sanders (1999); however, its strong moisture gradient suggests

it is more closely related to an active dryline than a typical front. It should be

noted that Sanders did not address moisture in his discussion.

5.2 Preliminary machine learning results

The key issue plaguing the current algorithm output is the excessive capture

of non-dryline features. Subsequent examination of the algorithm output found

that many of the FPs could be removed through simple thresholds (e.g., on the

thermal gradient). Unfortunately, these methods were often only applicable in

certain situations and would typically result in poorer outcomes when not valid

(see appendices A.2 and A.3). However, these types of conditions are often

ideal for use by machine learning techniques. In addition, the object-based

nature of the algorithm’s output allows for easy creation of datasets for use by

said techniques. We therefore applied the random forest (RF; Breiman, 2001)

algorithm (100 trees, maximum depth 5) to the objectively analyzed drylines

using the Waikato Environment for Knowledge Analysis (WEKA, Hall et al.,

2009) toolkit.

RFs are a machine learning technique that uses an ensemble of decision trees

(another machine learning structure) to output a predictand for a given sample.

Decision trees are generally formed by recursively splitting their training dataset

along an attribute threshold chosen to maximize the reduction of information

remaining in the dataset. The process is repeated until a predictand is selected
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Figure 5.16: Final output calculated using 24 hour forecast data from the NSSL-
WRF valid 0000 UTC 27 April 2012.
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Figure 5.17: Virtual potential temperature gradient magnitude (K/64km) cal-
culated using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 27
April 2012.
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Figure 5.18: 24 hour forecast of 10 m wind speed and direction from the NSSL-
WRF valid 0000 UTC 27 April 2012. Barb orientation indicates wind direction.
Small flags indicate wind speeds of 5 kts, and larger flags 10 kts. Circles indicate
calm winds.
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Figure 5.19: 24 hour forecast of surface pressure (Pa), contoured every 100 Pa
(1 mb), from the NSSL-WRF valid 0000 UTC 27 April 2012.
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or too few samples remain (in this case the probabilities of the possible outcomes

are typically returned). Each decision tree in the RF is “perturbed” by denying

it access to certain attributes during its creation.

The RF technique was chosen for three reasons. First, the structure of

RFs is well suited for classification (although they can be applied to regression

problems). Second, the importance of the attributes being provided to the RF

are unknown. There has been no assessment of how useful each may be to

classification; however, the “perturbations” of the forest’s component decision

trees, combined with the algorithm’s ensemble approach to prediction, enables

the technique to handle unimportant attributes without significant impact. Fi-

nally, RFs are human readable (or at least their decision trees are). This allows

for easier understanding of the selection process formed by the learning algo-

rithm and subsequent examination the underlying causes of its selections (i.e.,

why certain attribute/threshold combinations were/were not important).

5.2.1 Training and testing datasets

The performance of RFs is commonly assessed using cross-validation. The full

dataset is broken into n subsets under the assumption that the contained sam-

ples are independent. The RF is then trained (i.e., created) on n-1 of the subsets

and tested (i.e., its performance is assessed) on the remainder. However, this

method cannot be used here as any two sampled points may be drawn from

neighboring locations on the same dryline, which breaks the independence as-

sumption. Therefore, a single training dataset and a single testing dataset are

used, with data sampled from the 2007-2010 and 2011 outputs, respectively.

Each dataset was formed by selecting a random point from a randomly selected
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objectively analyzed dryline from the appropriate time frame. A total of 219 at-

tributes were then assessed, including pressure, moisture, and thermal variables,

variable variances along the boundary using a number of distance thresholds,

and dry and moist side values (using the specific humidity gradient orientation

as a proxy for dryline orientation). The process was repeated until 10000 TP

and 10000 FP data points (per the evaluation performed above) were accumu-

lated to ensure that each dataset was balanced (i.e., it has the same number of

samples of each output label).

5.2.2 Results

An initial estimate of the RF’s performance is assessed by performing an object-

based statistical evaluation using the same settings described in section 5.1.2.

Tables 5.2a and 5.2b show the 2011 object-based skill scores of the dryline

algorithm before and after the application of the RF, respectively. The learning

technique decreases the FAR by nearly 20% while not greatly impacting the

POD. In addition, the frequency bias, CSI, and GSS have all improved. These

show some promise for future examination of the RF application; however,

these statistics are unable to demonstrate the full impact of the algorithm. In

many situations, the RF removes the large majority, but not all, of a false

feature (e.g., Fig. 5.20). When reevaluated using object-based techniques, the

small regions are treated as individual objects and contribute a full FP to the

contingency table (this is due to this section’s preliminary nature and related

lack of additional processing). Examination of the test dataset contingency

table (Table 5.3b; sample by sample comparison - not object-based) shows that

the RF is able to correctly remove ∼68% of the non-dryline pixels while only

incorrectly removing ∼10% of the dryline pixels. This is particularly useful
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as it may allow for easier removal of non-dryline features during subsequent

processing despite their partial retention. The training set contingency table

(Table 5.3a) has superior values; however, this is likely a sign of overfitting by

the RF as opposed to a desirable trait.

Future considerations involve the incorporation of improved attributes, re-

moval of noisy attributes, and reduction of overfitting (e.g., through increasing

the minimum number of samples required to continue branching). Subsequent

processing of the output (e.g., considering the percent of neighboring pixels that

are retained, reapplication of the vapor pressure gradient magnitude threshold,

application of a secondary machine learning technique) may also provide signif-

icant benefits.
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POD 0.905

FAR 0.868

FBIAS 6.87

CSI 0.130

GSS 0.116

(a) Skill score values for pre-RF 2011 Coffer et al. (2013) dataset (see in-text descrip-
tion for a note on GSS calculation).

POD 0.890

FAR 0.713

FBIAS 3.06

CSI 0.276

GSS 0.228

(b) Skill score values for post-RF 2011 Coffer et al. (2013) dataset (see in-text de-
scription for a note on GSS calculation).

Table 5.2: 2011 Coffer et al. (2013) dataset skill scores before and after RF
application.

Dryline (RF) Not Dryline (RF)

Dryline (truth) 9410 590

Not Dryline (truth) 1703 8297

(a) Training set (2007-2010) contingency table.

Dryline (RF) Not Dryline (RF)

Dryline (truth) 8941 1059

Not Dryline (truth) 3150 6850

(b) Test set (2011) contingency table

Table 5.3: RF training and test set contingency tables
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Figure 5.20: Output of random forest applied to the dryline algorithm assess-
ment of 24 hour forecast data from the NSSL-WRF valid 0000 UTC 04 April
2011. Yellow areas are regions that the random forest has removed from con-
sideration, while red indicates that the area has been retained.
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Chapter 6

Conclusions and Future Expansion

This thesis describes an automated, multi-parameter dryline identification algo-

rithm designed to aid in the analysis of the large quantities of gridded numerical

model data available to the meteorological community. The technique utilizes

a number of image processing and morphological transformations to identify

drylines present in a single timestep of NWP output. Initial evaluation of the

algorithm was performed via comparison with subjectively analyzed drylines

from Coffer et al. (2013) and showed consistent agreement between objective

and subjective analyses (in the case of true drylines) with little bias. The

generally small differences of the two analyses are likely due to a combination

of small scale deviations being lost through increased smoothing and the al-

gorithm’s strict adherence to following only the strongest moisture gradients.

In addition, it was found that the algorithm tends to extend drylines beyond

the regions identified by the subjective analysis. This is likely caused by the

optimistic threshold not properly bounding the lines found by NMS.

Statistical evaluation of the method showed the algorithm to be overly op-

timistic. The high POD indicated that the majority of drylines were found by

the method; however, its other scores (particularly FAR) suggest that a large

number of non-dryline features are being retained. Several techniques have

been attempted to reduce these occurrences; however, the inconsistency of val-

ues along the dryline makes blanket removal extremely difficult. Fortunately,
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the object-oriented structure of the algorithm is ideally suited for application of

learning techniques to specify and remove undesirable regions. Preliminary use

of a random forest was shown to provide a significant decrease in the number of

FPs while minimally impacting TPs. In addition, the capability to identify the

cause of individual false alarms (e.g., frontal boundary vs. gust front) allows for

the development of a dataset that can be used in other identification algorithms

(e.g., cold front identification).

The algorithm devised in this thesis lays the groundwork for a final product

with the potential to provide significant contributions to a variety of meteoro-

logical applications ranging from model evaluation to operational forecasting.

The main issue facing the method is the inclusion of non-dryline features. In ad-

dition to expansions of the machine learning application, several other avenues

may aid the future development of the algorithm. First, the current imple-

mentation only examines the surface characteristics of the dryline. However,

these boundaries typically have a well defined vertical structure that can be ex-

ploited. For example, the moisture boundary at the surface extends well above

the ground and then further into the horizontal. Provided sufficient resolution,

the gradient region should be identifiable and provide another structure for ex-

amination. Similarly, the algorithm could be modified to search for the large

air masses that form the dryline boundary. This would allow for examination of

the data at a much larger scale and may result in easier subsequent identifica-

tion. For example, one air mass forming a suspected dryline could be required

to interact with the Gulf of Mexico while maintaining a vertical moisture gra-

dient that connects with a corresponding surface boundary. Another avenue is

the development and use of techniques designed to identify other meteorological

features. The output of these methods could be combined with current data
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to form the basis for a more robust algorithm that can make selections based

on input from multiple techniques (similar to potential implementations of the

learning methods described above, but incorporating all non-dryline features,

not just those incorrectly identified as drylines). In particular, a method to iden-

tify surface low pressure systems would help in preventing the overextension of

dryline boundaries as described in section 5.1.1.
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Appendix A

Development Process and Notable

Formulations

This appendix discusses the initial examination of the data as well as a number

of intermediate algorithms leading to the development of the final technique.

Unless otherwise specified, an isotropic Gaussian filter with a standard deviation

of 2.5 grid points (approximately 10 km at 4 km resolution) has been applied

to each field prior to use. The process helps remove smaller features while

highlighting dryline sized regions.

A.1 Initial Examination

Initial examination of the data was performed using a combination of smooth-

ing parameters and edge/gradient detection techniques. The effects of each are

shown using the 22 April 2008 case due to the presence of a variety of meteoro-

logical boundaries, including a strong dryline from western Texas into southwest

Oklahoma. The dryline impinges upon a stationary front exhibiting a strong

moisture gradient along part of its length, with a cold front also present further

northeast (Fig. A.1). Figs. A.2 - A.13 show the effect of various standard devi-

ations on the Sobel and LoG (see appendix B.2) specific humidity calculations.

As expected, fewer spurious features are visible in the outputs using higher σ
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values; however, finer variations in the true boundary location are lost (this is

of greater importance in less well defined drylines). One benefit of the Sobel

operator is the retention of a first order gradient magnitude value that can be

easily related to the strength of the dryline, which the LoG does not have. LoG

can be implemented instead by examining the difference of the output provided

by the application of maximum and minimum filters to the second order deriva-

tive field. This provides a sense of magnitude along the zero crossing region (see

appendix B.2); however, it also introduces lobe-like structures that outline the

desired regions despite also acting as a filter for smaller features (Fig. A.12).

Figure A.1: Valid 22 April 2008, 0000 UTC: Hydrometeorological Prediction
Center (HPC) surface analysis corresponding to the analysis date. The light
brown, bumped line denotes the dryline position. Cold fronts are represented
by the blue line with triangles. Warm fronts are denoted with a red, bumped
line. The line that alternates blue triangles and red humps indicates the presence
of a stationary front.
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Figure A.2: Sobel of specific humidity, sigma = 1.0, calculated using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.3: Sobel of specific humidity, sigma = 2.5, calculated using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.4: Sobel of specific humidity, sigma = 6.0, calculated using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.5: Raw LoG of specific humidity, sigma = 1.0, calculated using 24
hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.6: Raw LoG of specific humidity, sigma = 2.5, calculated using 24
hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.7: Raw LoG of specific humidity, sigma = 6.0, calculated using 24
hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.8: LoG of specific humidity zero crossings, sigma = 1.0, calculated
using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April
2008.
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Figure A.9: LoG of specific humidity zero crossings, sigma = 2.5, calculated
using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April
2008.
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Figure A.10: LoG of specific humidity zero crossings, sigma = 6.0, calculated
using 24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.11: LoG of specific humidity max - min, sigma = 1.0, calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.12: LoG of specific humidity max - min, sigma = 2.5, calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.
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Figure A.13: LoG of specific humidity max - min, sigma = 6.0, calculated using
24 hour forecast data from the NSSL-WRF valid 0000 UTC 22 April 2008.

Sobel and LoG perform similarly when applied to wind direction (not shown).

There are two key differences that should be noted, however. First, both So-

bel and LoG have a significant increase in the amount noise present in their
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output. This is expected, especially in the presence of low wind speeds. The

slower winds enable local, smaller scale forcings to more easily override the

larger scale flow, resulting in greater variation of local directional values. This

is particularly clear in observational data, although it is merely an artifact of

instrumentation in some cases. Second, the stationary front seen in the data

has a much stronger wind shift profile than that of the dryline, while the cold

front has values similar to those of the dryline. These types of values are seen

consistently throughout the dataset, suggesting that a simple threshold on the

wind shift is insufficient for ruling out boundaries similar to drylines.

Virtual potential temperature generally remains relatively constant across

the dryline regions, while showing larger variations along regions of the cold

front. To investigate the consistency of the virtual temperature gradient across

the boundary, slices were sampled every 50 km along the length of each feature

identified in the truth dataset. The process also allowed for examination of along

dryline variation of other variables. The slices were extracted by repeatedly

traveling 50 km along a great circle arc between dryline segments as denoted

by the truth dataset. A 140 km line perpendicular to and centered on the

dryline was placed at each stop. Data was interpolated to 100 evenly spaced

points along each line, with basic statistics such as mean and standard deviation

calculated and combined with individual slices to create composite plots (e.g.,

Fig. A.14). Examination of the slices generally showed the structure expected

of drylines; however, it confirmed that assuming drylines to always have an

approximately constant virtual temperature structure is not realistic.
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Figure A.14: Slices of across dryline virtual potential temperature (K) (y coor-
dinates), created using 24 hour forecast data from the NSSL-WRF valid 0000
UTC 26 April 2009. Negative (positive) x coordinates indicate depth into the
dry (moist) region (km). Light solid lines indicate sampled slices across the dry-
line. The dark, wavy line represents the mean of the slices, and the dashed lines
show plus and minus two standard deviations. The dark, vertical line denotes
the position of the dryline.
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A.2 Dry to moist wind shift

As described in chapter 2.1, drylines are typically associated with confluent

wind fields. The source regions of the air masses that form drylines in the

US result in the mean flow along the boundary being oriented approximately

90° counterclockwise of the gradient vector of the moisture field. The dry side

wind typically has a stronger east-west component than the moist, although

this may change based on the dryline’s overall orientation. The across dryline

wind direction gradient magnitudes (i.e., the wind shift) were examined by using

the specific humidity gradient orientation as a proxy for the boundary. Wind

directions were then evaluated using a variety of methods (e.g., comparing a

mean wind direction to dryline orientation, dx vs dy gradient components);

however, the results lacked in consistency, regardless of implementation. While

most spurious features were removed, the true drylines were occasionally broken

apart such that they no longer formed a continuous feature. These situations are

likely caused by outflow from nearby storms eroding the original wind structure

of the dryline; however, synoptic scale features (e.g., a passing short wave)

could manipulate the surface wind field such that it was no longer recognizable

as being associated with a dryline.

A.3 Dry Warm, Moist Cool

Temporal information was generally ignored in this study due to a combination

of data limitations and a desire to keep the final algorithm as generalizable as

possible. However, several diurnal assumptions were examined in the hopes of

using them to create a set of criteria ideal for the near peak solar heating en-

vironment that could then be relaxed for application to other times. One of
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the more promising assumptions examined is that the dry region of the dryline

will be warmer than the moist from mid-afternoon to late evening. During the

course of the day, solar radiation heats the area surrounding the dryline. How-

ever, the high specific heat of water vapor results in the moist region warming

less than the dry. In addition, the moist side heating is inhibited by the greater

amount of vegetation typically present. Finally, the low level moisture increases

the likelihood of stratiform cloud formation, which would reduce the amount of

solar radiation reaching the surface. This general structure has been consistently

seen in multiple observational studies (e.g., Ziegler and Hane, 1993; Crawford

and Bluestein, 1997). It may also play a role in the apparent variation of virtual

potential temperature gradients seen in various studies (e.g., McGuire (1962)

vs. Parsons et al. (1991)) (Crawford and Bluestein, 1997). Unfortunately, the

diurnal assumption was occasionally overridden by strong synoptic scale effects

(especially when the dryline had a strong east-west orientation) as well as local

events. As with the dry to moist wind shift discussed above, the output lacked

consistency. The algorithm was able to identify dryline regions, but often only

after breaking the continuity of the features.

A.4 Skeletonization and filter banks

In appendix A.2, we examined the use of the across boundary wind shift in

dryline identification. Similar to the wind shift, confluence is also a decent

indicator of dryline presence, although it doesn’t have any particular use in

removing other boundaries from consideration. Unfortunately, when combined

with the specific humidity gradient threshold, a confluence threshold results in
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breaks in the defined boundary (although not to the extent the two implemen-

tations above). To counteract this issue, a new technique was devised. The

process involved slowly extending the ends of the identified regions until they

reconnected. A filter bank of oriented Gaussian filters (appendix B.1) was used

to accomplish this, resulting in preferential expansion along the direction of the

“lines”. However, the process needed to be repeated multiple times in order

to be effective, with the regions widening on each iteration. The smoothing

process was therefore paired with skeletonization (appendix B.3) after each it-

eration, reducing the lines to a single pixel in width. While skeletonization

risked removing some of the extension caused by the smoothing, a sufficiently

elongated Gaussian was able to overcome the loss (although this, in turn, risked

sampling less from the line during a region with high curvature, again risking

skeletonization overriding the lengthening process). While the output typically

correctly identified the drylines, it was overly optimistic, capturing stray strands

extending from the main region (e.g., Fig. A.15) as well as other boundaries.
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Figure A.15: Skeletonization and filter banks output, performed using 24 hour
forecast data from the NSSL-WRF valid 0000 UTC 04 April 2010.
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Appendix B

Data Processing Overview

The following provides an overview of various techniques that were not used in

the final algorithm, but were key to its development.

B.1 Filter Banks

When smoothing data, an anisotropic Gaussian filter may be desired if the gen-

eral shape of the feature to be identified is known (e.g., Lakshmanan, 2004).

Consider the identification of tightly packed vertical stripes. A Gaussian filter

with a large vertical extent would likely be of more benefit than an isotropic

Gaussian as it would reduce the influence of neighboring stripes during smooth-

ing. However, if the orientation of the lines were not known, a series of filters

can be applied in succession, each designed for a specific orientation. The ver-

sion that best reduced the local deviation of a pixel’s value would be retained

(the output of different filters may be kept for different parts of the image). The

individual filters combine to form a filter bank, or a set of filters designed to

capture different features at different scales, orientations, etc.
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B.2 Laplacian of Gaussian

The Laplacian of Gaussian (LoG) is an edge detection technique designed to

apply across multiple scales (Marr and Hildreth, 1980). The method utilizes

zero crossings of the second order derivative associated with changes in spatial

intensity to identify edges (i.e., where the value changes from positive to negative

or vise versa). The LoG is written as:

LoG = ~∇2(G ∗ I) (B.1)

where ~∇2 is the Laplacian operator, G is a Gaussian matrix, and I is the input

data matrix. However, the equation is more commonly rewritten as

LoG = ~∇2(G) ∗ I (B.2)

to increase computational efficiency.

The accuracy of LoG is dependent upon the condition of linear variation

which states that “the intensity variation near and parallel to the line of zero-

crossings should be locally linear” at the examined scale (Marr and Hildreth,

1980). When met, the condition ensures that linearly retrieved zero crossings

are true zero crossings. Otherwise, the calculated zero crossings are subject to

an offset defined by the true nature of the variation (e.g., Fig. B.1). In addition,

the discrete implementation of LoG is subject to both bias and zero crossing

errors due to truncation, as demonstrated by Gunn (1998). However, the errors

can be reduced by increasing the size of the convolution mask at the cost of

computational efficiency.
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In addition to identifying zero crossings, a maximum - minimum filter may

be applied to the smoothed second order derivative to identify edges. While

the precision of the operation is decreased, the size of the footprint will act to

provide supplementary filtering of small features.

Figure B.1: LoG Zero Crossing estimation. The vertical black line indicates
the estimated position of the zero crossing. The green line (linear) results in a
correct assessment of the zero crossing. Despite its nonlinearity, the blue line is
likewise correct. However, the red line will result in the incorrect identification
of the zero crossing location.

B.3 Skeletonization

Skeletonization is an image processing technique designed to reduce a binary

image to a series of lines representative of the original shape. Depending on
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the particular implementation, skeletonization may also be called a medial axis

transform. That is, the image is reduced to its medial axes (i.e., a connected

region of those points existing at the median of the nearest edges). The output

can be achieved through either a single pass through the image or an iterative

process (e.g., Zhang and Suen, 1984). An example of the process can be seen

in Fig. B.2. It should be noted that while skeletons can be fairly sensitive to

noise, they are not significantly impacted by it in the situations occurring in

this study. The objects being skeletonized in this project are thin and line-like.

As the structures are already only a few pixels wide, there is little opportunity

for noise to impact the results. However, it should be noted that this may not

hold true for lower resolution models as the deviation of a single pixel will have

different spatial impacts.

Another benefit of skeletonization occurs when the process is applied to line-

like structures (e.g., the trace of a tree branch). In this case, a secondary set of

algorithms can be used in conjunction with skeletonization to identify endpoints

and intersections within the resulting image. This allows for the removal of tiny,

nub-like branches, in addition to several other applications (not discussed here).
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(a) Unprocessed blob. (b) Skeletonized blob.

Figure B.2: Unprocessed and skeletonized blob. Note that the cross bar of
the A protrudes from the sides of the unprocessed image, but is lost during
skeletonization.
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