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Abstract

We introduce an ensembled classifier of Bayesian Networks, EBNs, that automatically

learns the structure of a set of Bayesian Networks. Our experiments demonstrate

that EBNs have many of the benefits of Random Forests when compared with the

classification performance of traditional Bayesian Networks. Specifically, we highlight

the success of EBNs as a model for classification when trained on small datasets.

Similar to Random Forests, and contrary to traditional Bayesian Networks, EBNs do

not overfit. Additionally, EBNs outperform or perform as well as traditional Bayesian

Networks when tasked with instance classification. EBNs also provide a measure of

variable importance and can be generated efficiently on a variety of datasets. Using

datasets from the standard Bayesian Network Repository we show that EBNs perform

equal to or better than traditional Bayesian Networks when used for classification. We

analyze a case study in engineering education to illustrate the performance benefits

of EBNs on small datasets and the ability of EBNs to identify important variables

within datasets. We focus on predicting retention outcomes of engineering students

and prioritizing factors related to their retention in engineering education.

x



Chapter 1

Introduction

Bayesian Networks are probabilistic graphical models that represent variables as the

nodes in a directed acyclic graph and the conditional independencies between the

variables as edges (Pearl 2000, 1988). Bayesian Networks have become a powerful

model for visually representing the relationships within datasets and for classifica-

tion. However, when trained on small datasets, Bayesian Network structures tend

to overfit the training data (Elidan and Gould 2008; Goldenberg and Moore 2004;

Grossman and Domingos 2004; McGovern et al. 2008b). Random Forests developed

by Breiman (2001) do not overfit. Recent work (Supinie et al. 2009; McGovern et al.

2010) has shown success when applying Random Forests techniques to classification

algorithms other than the C4.5 decision tree algorithm traditionally employed by

Random Forests. In this thesis, we apply the same concepts that make Random

Forests successful to the task of classification in the realm of Bayesian Networks.

We begin by presenting background information in the domain of Bayesian Net-

works. This discussion includes related work in inference, parameter estimation and

structure learning algorithms. Following the discussion of Bayesian Networks, the cre-

ation and classification algorithms for Random Forests are detailed. Subsequently, we

investigate the efficacy of another algorithm that relies on Random Forest techniques,

Spatiotemporal Relational Random Forests. Chapter 3 outlines our motivation for

developing EBNs, as well as methods for EBN construction, prediction, variable im-

portance identification, and visualization.

In Chapter 4, we provide an empirical evaluation of these new methods using

several well-known datasets from the Bayesian Network Repository. This section also

explores the algorithm parameters, and their implications on the EBNs classification

performance. We also investigate the effect of training set size on EBN’s ability to

classify data instances correctly. In Chapter 5, we supplement our empirical evalu-

ation with a case study in engineering education. This case study builds an EBN

that predicts factors contributing to retention of minority students in the College of

1



Engineering at the University of Oklahoma. In conclusion, Chapter 6 summarizes our

findings and suggests opportunities for future work.
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Chapter 2

Background

2.1 Bayesian Networks

Given a set of variables, V , a full joint probability table can be constructed to repre-

sent probabilities over all possible outcomes for the variables in V . Inference can be

performed on the table in order to ask questions of the dataset. In the case where

observed values for each variable in V exists, inference becomes a basic table lookup.

In the case where some variables may be unknown, inference can still be performed

by calculating the marginal probability for the variable in question. The marginal

probability for an event A given B is the probability of event A regardless of the value

B takes. Equation (2.1) shows the probability of event A when the value of B can be

true or false.

p(A) = p(A,B = true) + p(A,B = false) (2.1)

This calculation produces the p(A) when the value of B is unknown. Inference can

be performed on the table of multivariate distributions, but its size grows rapidly

as a function of the number of variables in V and the cardinality of those variables.

Equation 2.2 gives the number of rows required for a system composed of the variables

in V .

#ofrows =
∏
v∈V

cardinality(v) (2.2)

As seen in Table 2.1, which gives the full joint probability distributions for the

Slippery domain described below, even for trivial datasets the size grows rapidly.

This increase in growth becomes intractable for any dataset with more than a few

variables. The space required for representing the full joint probability distribution

for a set of variables is exponential with the number of variables and the variables’

cardinalities.

Bayesian Networks (Pearl 2000, 1988) use conditional independence and Bayes’

Rule to efficiently represent full joint probability distributions like those seen in

Table 2.1. The compact representation of Bayesian Networks allows for inference

3



P(Wet) Sprinkler Rain Season Slippery

1.00 On Yes Su Yes

0.99 On Yes Su No

1.00 On Yes Sp Yes

0.97 On Yes Sp No

1.00 On Yes Fa Yes

0.99 On Yes Fa No

1.00 On Yes W Yes

0.96 On Yes W No

0.99 On No Su Yes

0.58 On No Su No

0.99 On No Sp Yes

0.58 On No Sp No

0.99 On No Fa Yes

0.56 On No Fa No

1.00 On No W Yes

0.51 On No W No

0.94 Off Yes Su Yes

0.17 Off Yes Su No

0.93 Off Yes Sp Yes

0.13 Off Yes Sp No

0.93 Off Yes Fa Yes

0.13 Off Yes Fa No

0.94 Off Yes W Yes

0.13 Off Yes W No

0.25 Off No Su Yes

0.00 Off No Su No

0.26 Off No Sp Yes

0.00 Off No Sp No

0.27 Off No Fa Yes

0.00 Off No Fa No

0.25 Off No W Yes

0.00 Off No W No

Table 2.1: Probability distributions for p(Wet|Sprinkler, Rain, Season, Slippery)
4



to be performed on datasets with large numbers of variables. Bayesian Networks also

provide a graphical representation of the relationships between dataset variables. A

Bayesian Network is a directed acyclic graph where each node represents a variable

and edges represent relationships between variables. For each node, a conditional

probability table (CPT) describes the probability distribution for the node’s values

given its parents. Bayes’ Rule, seen in Equation (2.3), and the independence condi-

tion maintain that a variable is conditionally independent of other variables in the

network given the values of its parents, children, and children’s parents.

p(A|B) =
p(B|A)p(A)

p(B)
(2.3)

Each variable’s conditional independence ensures that the node’s CPT is of manage-

able size. Inference can then be performed on a variable (node) knowing only the

variables required to perform a lookup based on that node’s CPT. If an observed

variable is unknown, inference can still be performed by recursively calculating the

marginal probabilities for the missing variables.

An example Bayesian Network is given in Figure 2.1 (Pearl 2000). This network

represents a system containing five variables. Each variable is encoded as one of the

nodes in the graph. The variables Sprinkler On, Rain, Pavement Wet, and Slippery

can all take values of Y es or No, and have a cardinality of two. Conversely the

variable Season has a cardinality of four and can have a value of Summer, Spring,

Fall, or Winter. Edges in the network encode relationships between variables in

the dataset. The direct edges from Season to both Sprinkler On and Rain encode

our understanding that the value of Season has a direct impact on the outcome of

Sprinkler On and Rain. The absence of a link from Season to Slippery encodes our

understanding that the influence of season on slipperiness is mediated by other fac-

tors. This coincides with the independence condition which says, knowing Wet makes

Slippery independent of Sprinkler On, Season, and Rain. At each node in the net-

work, the probability distribution for the variable’s outcome is encoded as a function

of its parents. This encoding is represented as a Conditional Probability Table, CPT.

Each CPT is smaller than the table encoding the full joint probability distribution

for the same system would be. In our example, the compact representation using

Bayesian Networks, Figure 2.1, requires slightly more than half of the rows required

to represent the full joint probability distribution in Table 2.1.

5



Season

Pavement 
Wet

RainSprinkler

Slippery

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W
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2.1.1 Inference

Given the network in Figure 2.1, questions such as “Will the pavement be wet if it is

not raining but the sprinkler is on?” or “If it is raining will the pavement be wet?”,

can be asked. These questions are known as inference and can be a powerful tool

for prediction. To answer the first question we must compute the result of equation

(2.4).

P (Wet = Y es|Sprinkler = On,Rain = No) (2.4)

Because the two variables that Wet is dependent upon are observed, we can perform

a simple lookup in Wet’s CPT. Using Figure 2.1 the solution can be found in row two

of Wet’s CPT. This row indicates there is an 80% chance that the pavement is wet,

given the sprinkler is on but it is not raining.

In the second question, all of the necessary variables are not observed, but we can

answer the question using Bayes’ rule, the definition of conditional probability, and

our model. As shown in equation (2.5) we marginalize over the CPT for Pavement

Wet, given the probabilities for all possible values of the missing variables.

P (Wet = Y |Rain = Y ) =
P (Rain = Y,Wet = Y )

P (Rain = Y )
(2.5)

P (Rain = Y,Wet = Y ) =
∑

sp∈{On,Off}P (Rain = Y,Wet = Y, Sprinkler = sp)

=
∑

sp∈{On,Off}P (Wet = Y |Rain = Y, Sprinkler = sp) ∗

P (Rain = Y )P (Sprinkler = sp)

P (Rain = Y ) =
∑

s∈{Su,Sp,Fa,W}P (Rain = Y, Season = s)

=
∑

s∈{Su,Sp,Fa,W}P (Rain = Y |Season = s) ∗

P (Season = s)

Following the above equations, we must sum over the first and third rows in Wet’s

CPT multiplying by the probability an instance exists for the criteria in each row.

Using equation (2.5) and the CPTs in Figure 2.1, we can input the variables and find

that:

7



P (Wet = Y |Rain = Y ) =
P (Rain = Y,Wet = Y )

P (Rain = Y )

=
0.99 ∗ 0.24 ∗ 0.19 + 0.30 ∗ 0.24 ∗ 0.81

0.25 ∗ (0.04 + 0.37 + 0.21 + 0.35)
= 0.43

Provided any Bayesian Network and an inference query, the probability can be cal-

culated using the recursive algorithm in Table 2.2.

Given a Bayesian Network BN , a variable to predict V , and a set of evidence

E, the following procedure can be applied. If V has no parents in BN , return the

distribution from V ′s CPT. This case is the first of two base cases in the recursive

algorithm, and is encountered following an inference query such as “What is the

probability it is summer?” In our example, the result of this inference query is 0.25

and is found with a table lookup in Season’s CPT. The second base case occurs

when V has parents, and all variables represented by these parents are included in

the evidence set E. A sample inference query for this case would be “What is the

probability the pavement is wet if it is raining and the sprinkler is on?” Again, this

is a table lookup in V ’s CPT for the row that matches E. For our example query,

the result 0.99 is found in the first row of Pavement Wet’s CPT. The recursive case is

followed for a query such as “What is the probability the pavement is wet given the

sprinkler is on and it is winter?” In this case all necessary evidence is not provided.

We must marginalize over the possible rows from V ’s CPT, querying parents for the

probability we are in each row. In our query, the rows from Pavement Wet’s CPT

that match the data provided in E, are rows one and two. Because Rain is a parent of

Wet, for which we are not provided observed data, we must determine the probability

of Rain. We perform inference recursively on Rain, given the sprinkler is on and

it is winter. Using the recursive case from the algorithm in Table 2.2 we find that

P (Wet|Sprinkler = On, Season = W ) = 0.87.

8



Table 2.2: Algorithm for inference queries

inference(Bayesian Network BN , variable to predict V , evidence E)

Let N be the node in BN representing V

If N has no parents //Base case 1

Return lookupVarInCPT(N , V , ∅)
Let PV be the set of variables for all parents of V

If PV ⊂ E //Base case 2

Return lookupVarInCPT(N , V , PV )

Let PInf = [ ]

For each parent P of N

PInf [P ]=inference(BN , P , E)

Let result = 0

For each row R in N .CPT

Let PRow = 1

For each parent P of N

PRow = PRow * PInf [P ]

result = result + PRow * lookupVarInCPT(N , V , E)

Return result

lookupVarInCPT(node N , variable V , observed variables E)

Let table be N .CPT

Return table[E][V ]

2.1.2 Learning Bayesian Networks

As described in Section 2.1, a Bayesian Network consists of a Bayesian Network struc-

ture and a set of parameters that populate the CPT for each node in the structure.

Given a Bayesian Network structure with CPTs that have not been populated, it

is possible to learn the parameters for each CPT from a dataset. When provided

with only the structural component of a Bayesian Network, this parameter learning

is required before an inference query can be performed. It is possible to learn both

the CPTs parameters and the Bayesian Network structure for a provided dataset.

9



Learning a full Bayesian Network, which includes learning both the parameters and

structure, is multistep process. Thinking logically, the structure for the Bayesian Net-

work is learned first and the parameters for the CPTs are then populated. However,

in practice, algorithms for learning Bayesian Network structures include a compo-

nent that must simultaneously learn the values for the CPTs. Both parameter and

structure learning for Bayesian Networks are discussed below.

2.1.2.1 Parameter Learning

Given a directed acyclic graph (DAG) representing the structural component of a

Bayesian Network, the parameters for each node’s CPT must be learned prior to per-

forming inference. For each node in the structure, the CPT must be populated with

the distributions for the variable, given the variables represented by the node’s par-

ents. A generic algorithm for this process can be found in Table 2.3. This algorithm

requires all variables in the network to be present in the dataset. In certain situations

all variables required for the network structure may not be present in the dataset.

For an example of this situation, consider a Bayesian Network that has been

learned by a group of researchers in the domain of engineering education whose re-

search has been shown to successfully model the factors leading to retention in engi-

neering programs. Because of their success, researchers from other institutions wish

to model their datasets using the developed Bayesian Network. In order to perform

inference queries on the Bayesian Network using their institutions data they must first

learn the parameters for the CPTs from their data. Although they may have collected

some of the same data that the original researches used to develop the Bayesian Net-

work, they may not have data for all of the variables in the network structure. This

results in a dataset that is missing values required for learning the CPTs’ parameters.

Even with these missing values, inference can still be performed after estimating the

unknown variables.
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Table 2.3: Parameter learning algorithm

learnParameters(Bayesian Network BN , dataset D)

For each node N in BN

Let V be the variable represented by N

Let PS be the set of variables represented by N ’s parents

N .CPT = generateCPT(V , PS, D)

Return BN

generateCPT(variable V , variables PS, dataset D)

Let CPT = [ ]

For each permutation of parent values Row in PS

Let count be the number of instances in D that match Row

for each possible value v in V

Let portion = number of instances in D that match Row and V = v

CPT [Row][v]=portion/count

Return CPT

Unknown variables are referred to as latent or hidden nodes and their CPTs can be

estimated using the dataset. The expectation maximization (EM) algorithm (Demp-

ster et al. 1977) can be used for populating the CPTs of a network’s latent nodes.

Shown in Table 2.4, the EM algorithm involves alternating between two steps. The

first step calculates the expected value for the unobserved variables given the observed

data. In the second step, the network is updated to maximize likelihood, assuming

the values calculated in the first step are correct. The algorithm continues alternat-

ing these steps until the CPTs for the latent nodes converge. Dempster et al. (1977)

has proven convergence of the EM algorithm and has shown empirically that the EM

algorithm often converges quickly. We have empirically verified these properties to

be true in our experiments as well.

2.1.2.2 Structure Learning

Structure learning for Bayesian Networks is an unsolved problem. The large search

space and tendency for learned models to overfit make structure learning complicated.
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Table 2.4: Parameter learning for networks with latent nodes

learnParametersWithLatentNodes(Bayesian Network BN , dataset D)

Let HD be dataset containing the values for the latent nodes

For each latentNode in BN

HD[latentNode]=randomDistribution(latentNode)

While likelihood increases

Let FullData = D ∪ HD
learnParameters(BN , FullData)

For each latentNode in BN

HD = updateHiddenNode(BN , latentNode, HD)

learnParameters(BN , FullData)

Return BN

updateHiddenNode(Bayesian Network BN , node latentNode, dataset HD)

For instance I in HD

Let criteria C = markovBlanket(latentNode)

Let observed variables O = HD[I][C]

HD[I][C]=inference(BN , latentNode, C)

Return HD

However, several heuristic and statistical based algorithms have been developed for

structure learning. These methods fit into two main categories. The first group of

algorithms are search and score based. This approach involves searching over possible

Bayesian Network structures in an attempt to maximize a scoring function. Scoring

functions are generally a variation on likelihood penalized to discourage overly com-

plex network structures. Akaike Information Criterion (AIC) (Akaike 1978), Bayesian

Information Criterion (BIC) (Schwarz 1978), and Bayesian Dirichlet equivalence uni-

form (BDeu) (Buntine 1991) are three common penalized likelihood metrics used in

search and score based algorithms. Although model likelihood is maximized, the

search problem grows exponentially with the size of the dataset. Due to the large size

of the problem space, search algorithms are generally coupled with heuristics that

limit the size of the problem e.g.(Buntine 1996; Heckerman et al. 1995; Cooper and
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Dietterich 1992; McGovern et al. 2008b). The search and score approach is highly

flexible, but has a tendency to incorrectly reproduce the generating structure because

conditional independence relationships are not enforced.

The second group of algorithms are constraint based structure learning algorithms

(Pearl 2000; Cheng et al. 2002; Spirtes et al. 2000). Constraint based algorithms use

local statistical tests to identify a dependency model representing the conditional

independencies present in the dataset. The final structure selected must adhere to,

and is limited by, the conditional independencies contained in the learned dependency

model. Constraint based algorithms generally have smaller likelihood scores than

search and score algorithms; however, constraint based algorithms are more efficient

and create structures more accurately representing the conditional independencies of

the original dataset.

Recently, a hybrid approach for structure learning algorithms has been identified.

To generate Bayesian Network structures, hybrid algorithms rely on the strengths of

both search and score and constraint based algorithms. For our experiments we rely

on a variation of the canonical hybrid approach Min - Max Hill Climbing, MMHC,

(Tsamardinos et al. 2006). The first step of MMHC uses constraint identification to

create an undirected skeleton graph. Each pair of dependent variables is linked by an

edge in the skeleton. The second stage uses this skeleton to constrain a greedy hill

climbing search for the final structure. In this search, states are Bayesian Network

structures, and operators are the addition, removal, and redirection of edges. MMHC

uses BDeu as the scoring metric. The Bayesian Network output by the MMHC

algorithm meets the dependency constraints of the skeleton, and has been maximized

locally in terms of BDeu score. Fast et al. (2008) present a variation on MMHC that

uses the POWER correction (Fast 2009) to improve the skeleton generation step.

Provided as part of the PowerBayes1 package (Fast 2009), “mmhc-cv-power” is the

structure learning algorithm we use throughout this thesis.

With the success of ensemble approaches in other facets of Machine Learning, new

ensemble based algorithms for Bayesian Network structure learning are also being de-

veloped. Liu et al. (2007) present an ensemble technique for generating a Bayesian

Network structure from an ensemble of learned structures. Unlike the method we

present, which is more closely related to Random Forests, their research constructs

a single Bayesian Network structure from an ensemble of learned structures. This

1http://kdl.cs.umass.edu/powerbayes/
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difference in output is a key distinction between the methods introduced by Liu et al.

(2007) and the methods we introduce in this thesis. Their methods introduce a new

procedure for sampling the data used in the generation of each component network,

known as Root Node Sampling. Root Node Sampling is used to ensure that condi-

tional independencies within the sampled data match the conditional independencies

of the original dataset. Additionally, they present a method for aggregating com-

ponent Bayesian Networks into one ensembled network structure. The consistency

enforced by Root Node Sampling ensures the mathematical requirements of Bayesian

Networks are upheld when combined into a final network structure.

2.2 Random Forests

Random Forests are ensemble classifiers developed by Breiman (2001). Random

Forests are made up of a collection of individual decision trees learned independently

from a subset of the training data. Given an instance for classification, the Random

Forests allows each component tree to vote on a class. The class receiving the major-

ity of votes is output as the result of classification using Random Forests. For decision

tree construction of each tree T i, Random Forests use a modified C4.5 decision tree

algorithm without pruning.

The C4.5 algorithm (Quinlan 1993) generates decision trees which are used for

instance classification. Two key features of C4.5 trees are their ability to handle

continuous variables and missing values. The algorithm for generating C4.5 decision

trees handles continuous variables by first establishing a threshold. The continuous

variable is then categorized by the values above the threshold and the values less

than or equal to the threshold. Missing values are allowed by ignoring attributes

with missing values in the calculation of information gain.

The algorithm for generating C4.5 decision trees takes a set of training instances

and produces a classification model. For each attribute a, the normalized information

gain is calculated and the attribute with the highest information gain is selected as

the decision node n. For each split in n, the algorithm is applied recursively by

partitioning the training instances by their value n. The recursion is terminated

when all instances provided are in the same class. At this point a leaf node is created

specifying the classification value for the branch of the tree.
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Table 2.5: Algorithm for Random Forest generation

generateForest(dataset D, int features, int components)

Let forest=[ ]

While i < components

Di = sampleWithReplacement(D.instances, sizeof(D.instances))

forests[i] = learnTree(null,Di, features)

Return forest

learnTree(Tree T , dataset D, int features)

Let vars = sampleWithoutReplacement(D.variables, features)

Let attribute a = findAttributeWithHighestGain(vars)

Let datasets splits = split(D, a)

If splits.size = 1 //Base case

Return T.addLeaf(a)

T .addNode(a)

For each split in splits

T .addChildTree(learnTree(T , split, features)

Return T

Using the C4.5 algorithm, each tree in the forest is grown on a set of instances

selected randomly with replacement from the dataset. In addition, at each split the

tree construction algorithm considers only a subset of variables for node selection.

The algorithm outlining forest construction can be seen in Table 2.5. This approach

has been shown to provide numerous benefits over traditional decision trees. Random

Forests do not overfit. This property is particularly useful for classifiers built from

small training sets, because traditional methods require careful consideration for ter-

mination before overfitting. Random Forests also provide methods to balance error

in datasets with rare events, and offer insight into which variables are important for

classification. In addition, the algorithm for constructing Random Forests is forgiv-

ing with respect to parameter selection. These beneficial features have established

Random Forests as a successful ensemble classifier in machine learning (Bosch et al.

2007; Fislason et al. 2006; Segal 2004).
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With the success of Random Forests, researchers have incorporated principals of

Random Forests into other facets of machine learning. Supinie et al. (2009) extended

traditional Random Forests to work with spatiotemporal relational probability trees,

SRPTs, (McGovern et al. 2008a) for classification problems in which both space and

time are critical elements of classification. Supinie et al. (2009) illustrate that Ran-

dom Forest techniques can be successfully applied to classification algorithms other

than the traditional C4.5 decision trees to increase performance. Many principals

of traditional Random Forests hold true when used with other algorithms. An em-

pirical verification that performance is asymptotic as both the size of the forest and

the amount of training data increases (Supinie et al. 2009) suggests that Random

Forests techniques can improve performance of Bayesian Network classification on

small datasets.

The background presented in Chapter 2 identifies key features of two different

models commonly used in machine learning. The strengths and weaknesses of both

Random Forests, an ensemble tree based classifier, and Bayesian Networks, a prob-

abilistic graphical model, have been outlined. The next chapter presents Ensembled

Bayesian Networks, a hybrid machine learning technique that builds on the strengths

of the Random Forests and Bayesian Networks. We introduce algorithms for model

construction and methods for classifying instances. Additionally, we provide tech-

niques for visualizing relationships within datasets and for identifying variables most

important to the task of classification.
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Chapter 3

Ensembled Bayesian Networks

Our motivation for developing Ensembled Bayesian Networks, EBNs, stems from our

past work using Machine Learning techniques to analyze student data in engineering

education (McGovern et al. 2008b). Stricken by unbalanced class data, complex

interactions between variables, and a small number of instances from which to train

models, our past work left room for improvement. Our domain experts desired a

model that could accurately classify instances from unbalanced data, but also provide

visualization of factors that influence the outcome of the classification task. From

these factors and our past experiences, we developed the following criteria to be used

in the search for a new algorithm.

• The model produced should be able to classify instances from unbalanced data

successfully.

• The algorithm should construct a model with good classification performance

when trained on small datasets. A dataset’s size is a function of not only the

number of observed instances but also the number of variables that represent

each instance. As the number of variables, or features, used to represent in-

stances in a dataset increases, the number of instances required to accurately

model the dataset also increases. This fact makes modeling complex datasets,

those with large numbers of features, difficult to model. Training models on

complex datasets with too few instances leads to overfitting and a performance

degradation on testing sets. We desire a model that is not subject to this

phenomenon even when trained from small datasets.

• The generated model should provide an understanding of the interaction be-

tween variables in a dataset. The resulting model should identify not only

the relationships between variables but which variables are most important for

classification.
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Figure 3.1: Hypothetical EBN of size n

The desire for domain experts to visualize the relationships within the data was a key

factor in the decision to use Bayesian Networks in our first work (McGovern et al.

2008b). As discussed in Section 2.1, the ability for Bayesian Networks to represent the

relationships within complex datasets and provide methods for inference make them

a model satisfying some of the above criteria. Random Forests, discussed in Section

2.2, is another attractive algorithm that meets our criteria; specifically, its ability to

not overfit and provide a measure of variable importance. Given Bayesian Networks

and Random Forests, two models each having strengths and meeting portions of our

criteria, the next step is to combine the two algorithms to form a new method that

satisfies the requirements of our research. Our marriage of Bayesian Networks and

Random Forests has resulted in a new ensemble based Bayesian Network classifier.

Ensembled Bayesian Networks (EBNs) consist of several independently learned

Bayesian Network structures that are ensembled together to form one classifier. Un-

like traditional Bayesian Networks, component networks of an EBN are learned from

a subset of the available training data. Borrowing from component construction in

Random Forests (Breiman 2001), each component network is learned using a subset of

the training data and a subset of the available variables. The component construction

results in several unique models learned from different parts of the original dataset.

Since the construction of each component network is independent, construction can

be executed in parallel and then aggregated to form an EBN. An example EBN for

the task of classifying a variable C given other observed variables V 0 - V 9 is shown

in Figure 3.1. Continuing the example, an instance can then be provided as input

for the EBN, and a probability the instance is in a particular class of C is subse-

quently produced. The remainder of Chapter 3 will provide the necessary details for
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understanding EBN construction and instance classification. We will also present a

method for variable importance based largely on the algorithm for determining vari-

able importance in Random Forests. Lastly, we will introduce the idea of a composite

structure used to identify the relationships that exist across all component network

structures.

3.1 EBN Construction

The procedure for developing EBNs, given in Table 3.1, is based largely on the al-

gorithm for generating Random Forests. The EBN construction algorithm takes as

input: a training dataset D, a Bayesian Network structure learning algorithm A, the

EBN size n, the component size m, and a classification variable V . As a result of

this input, the algorithm returns an EBN that can be used to classify instances for

variable V . For each component of the EBN, a random subset of variables, whose

size is much smaller than the number of variables in D, is selected. A training set

whose size is equal to that of the original dataset size is selected at random by sam-

pling with replacement from D. The Bayesian Network structure learning algorithm,

A, is then used to create a Bayesian Network using the sampled subset of variables

and instances. This procedure is repeated until n component structures have been

generated. The result is an EBN consisting of n Bayesian Network structures.

Table 3.1: Algorithm for constructing EBNs

learnEBN(dataset D, algorithm A, int n, int m, variable V )

Components=[ ]

While numberOfComponents < n

Di = sampleWithReplacement(D.instances, sizeof(D.instances))

V i = sampleWithoutReplacement(D.variables, m− 1) + V

Components[i] = A(Di, V i)

return Components
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3.1.1 Variable Selection

As seen in Table 3.1, each component of an EBN is constructed on a subset of variables

that have been sampled randomly from the dataset’s available variables. Since infer-

ence is performed on all components of the EBN for prediction, each network must

contain the variable about which inference questions will be asked. This requirement

has the unfortunate side effect of necessitating that a new model be constructed for

each variable for which instances will be classified. In practice, we have found this

requirement is not a significant issue. The dataset for our case study, focusing on

retention prediction, along with several datasets from the Bayesian Network Repos-

itory have only a small subset of the variables for which classification is desired. In

addition, as the size of the component networks is limited, runtime of the underlying

Bayesian Network structure learning algorithm decreases. Quantifying this improve-

ment relies heavily on the underlying structure learning algorithm; however, due to

the exponential component of many structure learning algorithms, this improvement

can be significant.

3.1.2 Training Set Selection

Similar to Random Forests, each component of an Ensembled Bayesian Network is

learned on not only a subset of the dataset’s variables but also on a subset of the

dataset’s instances. The training set used for learning each component is sampled

with replacement from the original dataset. This new instance set, which is the same

size as the original training set, is referred to as the in-bag instances. This in-bag

set becomes the instances provided to the structure learning algorithm. It has been

shown this in-bag set contains approximately two-thirds of the instances found in the

original training set (Breiman 1996). The remaining one-third of the instances not

selected form the out-of-bag set. This set of instances may be used as a validation

set, for error analysis, or to calculate a measure for variable importance as shown in

Section 3.3.

3.2 Prediction

Once constructed, an EBN can be used to predict the probability that an instance

has a particular value of the classification variable. The algorithm for classification
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takes as input: an EBN, a Bayesian Network inference algorithm A, the value of

the classification variable to predict, c, and the set of observed evidence for the

instance to be classified, e. As a result, the algorithm produces a probability that

the instance’s classification is the value supplied to the inference algorithm. This

prediction, combined with a cutoff value, can then be used for classification of the test

instance. The algorithm for prediction can be seen in Table 3.2. For each component

Table 3.2: Algorithm for prediction using EBNs

predict(EBN E, algorithm A, evidence e, classification variable c)

sum =0

For each component in E.components

sum+ =A(component, e, c)

Return sum / E.size

network of EBN , perform inference by using the inference algorithm A given e and

c. To compute the value returned by the EBN prediction algorithm, average the

individual component predictions. This equal weighting of the components’ results,

is the method employed by Random Forests for ensembling each decision tree’s results.

We will use this method of combination throughout the remainder of our work. It

is feasible that individual component predictions could be aggregated in other ways;

however, this investigation is outside the scope of this thesis and will be left for future

investigation.

3.3 Variable Importance

As briefly mentioned in Section 3.1.2, out-of-bag instances can be used to measure

variable importance in EBNs. The procedure provides a confidence score which can

be used to rank the included attributes by their effect on the EBN’s classification

decision. The method for producing variable importance scores is straightforward.

For each component network in the EBN, classify the out-of-bag instances and then

count the number of instances classified correctly. To calculate the importance score

for variable v permute the value of v in the out-of-bag instances. Next, reclassify
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the out-of-bag instances and count the number of instances classified correctly. The

mean of the difference of these two counts across all component networks is variable

v’s raw importance score. Provided with a variable’s raw importance score, we can

calculate a standard score, z-score, for v. The z-score is calculated by dividing the

raw score by the standard error. Assuming normality, the z-score can be used to

compute a confidence value and determine which variables are most important in

terms of classification performance (Breiman 2001).

Variable importance scores, calculated using the method detailed above, may be

used to eliminate unnecessary variables from future runs. The removal of unnecessary

variables results in training data that contains less noise. In addition, with the extra

variables removed fewer training instances are required to produce a well performing

classification model. An EBN can first be generated from the full dataset and the

variable importance scores can be calculated for all the included variables. The vari-

ables identified as having low importance scores are filtered from the dataset. The

resulting data can then be used to construct a new model, EBN or other classifica-

tion model, that includes only the most important variables as related to the task of

classification.

3.4 Composite Structure

Since EBNs are built from Bayesian Networks, inspection of an individual component

yields information about the relationships among the component’s variables. Each of

the networks in Figure 3.1 is an example component network from an EBN. Looking

at the edges present in this component, we can identify several relationships that exist

between the variables. While an analysis provides some indication of the relationships

between variables, not all of the necessary data is gleaned. Recall that each component

of an EBN is generated on a random subset of instances and possible variables.

Therefore, in order to understand the relationships within a dataset, every component

of the Ensembled Bayesian Network must be investigated. A full investigation of the

EBN’s component networks is not feasible. In order to obtain an aggregate view of

the relationships between variables using our generated EBN, we utilize the concept

of composite structures introduced in our first work (McGovern et al. 2008b).
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Figure 3.2: Hypothetical composite for an EBN

A composite structure is an undirected graph whose edges are an aggregation of

edges in some number of generating structures. It is important to recognize that

because the composite structure is an undirected graph, edges in the structure rep-

resent correlation between variables rather than causation. For EBNs, the composite

structure contains an edge from variable A to variable B if there exists an edge in at

least one of the component Bayesian Networks from A to B or B to A. Edges are

then weighted to show the frequency with which they occur. Figure 3.2 shows an ex-

ample composite network generated from the hypothetical EBN given in Figure 3.1.

The existence of the edge in the composite structure from V 0 to V 8 with a weight

of 0.86 indicates that an edge from V 0 to V 8 or V 8 to V 0 was present in 86% of the

component networks containing both variables V 0 and V 8.

With methods for EBN construction, instance classification, variable importance

calculation, and variable relationship identification outlined, we shift our focus to

an empirical evaluation of our model. Chapter 4 concentrates on an analysis of

EBNs utilizing a variety of public datasets. We present a description of the datasets
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employed, methods for gauging performance and comparing EBNs with traditional

Bayesian Networks, an evaluation of the two main parameters for construction, and

an analysis of classification performance when trained on small datasets.
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Chapter 4

Empirical Evaluation

We now concentrate on an empirical evaluation of the EBN model we introduced in

Chapter 3. We analyze various experiments to improve our understanding of the two

main parameters driving EBN construction. The EBN size and component network

size parameters are the most important factors influencing the shape of the EBNs.

Another focus of this evaluation is to show that EBNs are a successful model for

classification when trained on small datasets. Additionally, we examine the EBNs’

ability to outperform, or perform as well as, classification using traditional Bayesian

Networks.

4.1 Scoring Metrics

Throughout our experiments, we utilize area under the receiver operator curve as a

performance measure of an EBN’s classification abilities. We could have used classifi-

cation accuracy to evaluate our model’s efficacy; however, accuracy can misrepresent

the classification performance under unknown classification costs and unequal class

distributions. For example, using accuracy to judge classification of models trained

from datasets in which there are far fewer instances with a negative class value than a

positive class value, models that always predict the positive class will have very high

accuracy. This high accuracy score is not a good measure of the model’s classifica-

tion performance because it is safer for the model to always predict the more likely

class label rather than try to predict the correct class label. Area Under the receiver

operator Curve (AUC) is a more precise measurement of an algorithm’s performance

under unknown misclassification costs and unequal class distributions (Provost and

Fawcett 2001). These restrictions were encountered in our data, and therefore AUC

was the logical choice.

The receiver operator curve (ROC) allows for visualization of the ratio of the true

positive rate to false positive rate for various classification cutoffs. A point on the
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Figure 4.1: Two receiver operator curves showing the performance of a random clas-

sifier and a succesful classifier.

receiver operator curve is the ratio of a classification model’s true positive rate to the

false positive rate for a specific probability threshold. For models producing a class

label, this ratio is the percentage of positive instances classified correctly divided

by the percentage of negative instances classified incorrectly. On the other hand,

some classification models, such as Bayesian Networks, produce a probability of class

membership rather than a class label. For these specific models to produce a class

label, a cutoff must be provided. Instances with probabilities above this cutoff are

classified as positive, and instances with probabilities below the cutoff are classified

as negative.

When given a model that outputs a probability for class membership, assigning

a class label requires a cutoff value. This cutoff varies drastically across different

datasets and it is often difficult to select accurate cutoff values. For datasets with

highly unbalanced class labels the cutoff value could be greater than 0.80 or 0.90.

In contrast, cutoffs for datasets with a more even distribution of class labels are

closer to 0.50. AUC provides a measure of the robustness of a model across varying
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classification cutoffs. This metric measures the probability that given one positive

and one negative instance, a classification model will assign a higher probability to

the positive instance than it does for the negative instance. Two example receiver

operator curves can be seen in Figure 4.1. The AUC is measured from zero to one,

with a perfect algorithm scoring 1.0 and a random algorithm earning a score of 0.50.

A ROC for a random model and a successful classification model can be seen in

Figure 4.1.

4.2 Datasets

For empirical evaluation, experiments were performed using six standard Bayesian

Networks obtained from the Bayesian Network Repository, BNR1. This repository was

formed to encourage the use of standard networks in empirical research, allowing for

comparison and replication of results across several different problems (Friedman et al.

1997). These well-known networks range in size from nineteen to fifty-six variables

with varying degrees of cardinality, and provide a method to benchmark EBNs before

moving on to our case study. These particular networks are an acceptable base for

our evaluation because they were also used in the evaluation of the constraint based

structure learning algorithm POWER (Fast et al. 2008). Recall we have selected

POWER as the internal Bayesian Network structure learning algorithm for EBNs.

We now present a set of metrics describing the six networks we have chosen for our

empirical evaluation: Alarm, Hailfinder, Insurance, Water, Diabetes0, and Child.

Table 4.1 shows various metrics for each of the six datasets used in our empirical

analysis. These metrics include the total number of nodes and edges in each network.

In addition, the mean degree and mean cardinality are reported. A node’s degree is

the total number of parents and children of that node. The mean degree provides

a measure of the density of the generating Bayesian Network structure. A node’s

cardinality is a measure of the number of values the node’s variable can take on. In

addition to reporting the mean cardinality in Table 4.1, the frequency of nodes with

particular cardinalities for the various datasets can be seen in Figure 4.2. Each of the

six datasets are described in more detail below.

1http://www.cs.huji.ac.il/~galel/Repository/
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Network # Nodes # Edges Mean Degree Mean Cardinality

Alarm 37 46 1.24 2.84

Hailfinder 56 66 1.18 3.98

Insurance 27 52 1.93 3.30

Water 32 66 2.06 3.63

Diabetes0 19 23 1.21 11.21

Child 20 25 1.25 2.90

Table 4.1: Metrics for the six datasets used in our empirical evaluation.

• Alarm: A network designed by medical professionals as part of ALARM (A

Logical Alarm Reduction Mechanism) for use in patient monitoring (Beinlich

et al. 1989). Our classification models were trained to predict the variable BP.

• Hailfinder: A Bayesian Network developed as a model for predicting severe

weather in Northeast Colorado (Edwards 1998). Instances were classified based

on the attribute PlainsFcst.

• Insurance: A Bayesian Network that models expected claim cost for car insur-

ance policy holders. The network has three outputs: medical coverage, liability

coverage, and property coverage costs (Binder et al. 1997). Models were used

to predict the value of PropCost.

• Water: A timeseries based model used to represent the complex biological

processes that take place in water purification (Jensen et al. 1989). Variables

were classified as positive if the value of CNON 12 45.

• Diabetes0: A model used as a guide for practitioners when determining insulin

dosage amounts for diabetes patients (Andreassen et al. 1991). Classification

models were trained to predict the variable basal bal 0.

• Child: A network used for diagnosing children with a particular ailment given

some known symptoms (Cowell et al. 2007). Instances were classified as positive

if the model predicted the variable GRUNTING.
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Figure 4.2: Frequency of nodes with various cardinalities for each of the six datasets

used in our empirical evaluation

4.3 Analysis of Component Size

The first of two necessary parameters required for EBN construction is component

size, m. Recall from Chapter 3 the value for m is the total number of variables, in-

cluding the variable required for classification, considered during component network

construction. The m variables will be considered by the Bayesian Network structure

learning algorithm during the creation of each component Bayesian Network. Natu-

rally, the range of possible values varies with each dataset D with 1 <= m <= vs;

where vs is the total number of variables in the dataset. Breiman (2001) suggests

values of m << vs, specifically m ≈ log2(vs) + 1.

In reality, the lower bound of the aforementioned range is too small to be practical.

Selecting m as 1 results in an EBN where each component is a probability distribution

for the classification variable. In our experiments, we found values of m < 4 to be

impractical. The structure learning algorithm utilized for the creation of component

structures was unable to terminate with such a small number of variables. On the

other end of the spectrum, it has been shown that selecting a value for m which
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Figure 4.3: Network Size: % of variables and AUC. The larger marker represents the

percent of variables used for each dataset for the remainder of this chapter.

is too large results in increased correlation between components. This increase in

correlation impacts performance of the ensemble in a negative way (Breiman 2001).

As part of our parameter exploration, we investigate the impact of m on classifi-

cation performance for various datasets. For each dataset we generate five EBNs of

size 500 for each of the possible values of 4 <= m <= vs in increments of three. An

AUC value is then produced for each of the five EBNs using a test set of size 100.

These AUCs are averaged to produce a score for the EBN with component size m.

Figure 4.3 reports the mean AUC for each dataset as a function of the percentage of

total variables used in component network construction. Like Random Forests, the

effect of varying m on the models’ performance is small.

Of the six standard datasets used for our experiments, we only observed a large

increase in performance, as a function of m, on Diabetes0. Smaller AUC increases

were detected in Insurance, Alarm, Water, and Hailfinder. Also notable is the slight

decrease in AUC as m approaches the upper limit of its range. This phenomena is

attributed to the increase in correlation between the individual network components
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Dataset Number of variables m

Alarm 37 7

Hailfinder 56 9

Insurance 27 7

Water 32 7

Diabetes0 19 6

Child 20 6

Table 4.2: Component size parameter: m

of the EBN. The impact of correlation is most prevalent on Insurance but can also

be seen on Child and Hailfinder.

Beyond the increased correlation among component structures, another factor

that discourages large values of m is the runtime needed to construct individual

component Bayesian Networks. Since the search space can increase exponentially

with each additional variable, large values of m can dramatically increase runtimes.

While our experiments suggest there is leeway in the selection of m, our remaining

analysis of EBNs will use values of m equivalent to dlog2(vs)e+ 2. This is one more

than the number suggested by Breiman (2001). We add an additional variable because

of the requirement that each component contain the classification variable. Table 4.2

shows the values of m we have selected for each dataset in our empirical evaluation.

4.4 Analysis of EBN Size

In conjunction with the parameter for component size, discussed in Section 4.3, EBN

construction requires an additional sizing parameter. This second parameter is EBN

size, or number of component networks, n as referenced in Table 3.1. The value of n

can range from one to positive infinity and has a direct impact on the running time

of both EBN construction and classification. At the smallest extreme, an EBN with

n = 1 is a standard Bayesian Network that has been trained on a subset of data

instances and variables. EBNs of larger size lead to more consistent classification

performance, but result in longer runtimes for both construction and classification.

The increase in EBN size is beneficial and the increased runtime is easy to overcome.

The independent construction of an EBNs’ component networks allows for highly
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Figure 4.4: EBN size and AUC.

parallelized generation that may be used to minimize the additional runtime needed

for construction.

Selecting an appropriate EBN size is a balance between performance and runtime.

The classification performance of Random Forests has been shown to converge rapidly

when varying the number of trees in the forest. Our empirical evaluation suggests

the same holds true for EBNs. A parameter search for EBN size was run on the

empirical datasets detailed in Section 4.2. Five training datasets of size 500 were

generated for each empirical dataset. Using these training datasets, we generated 500

component Bayesian Networks, and formed five EBNs of varying size ranging from

50 to 500 in increments of 50. A test set of size 100 was then generated for each of

the five training datasets and used to test the classification ability of each EBN. The

mean AUC across the five datasets for each EBN size were then compared to observe

the effect of model size on classification performance. The resulting AUC for each

classification can be seen Figure 4.4.

For the datasets used in our analysis, classification performance increases as the

number of Bayesian Networks considered by the EBN increases. However, the increase

in AUC becomes asymptotic as the size of the EBN reaches about 500 networks. This
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Figure 4.5: Hailfinder: Analysis of web size

quick convergence is consistent with traditional Random Forests (Breiman 2001) and

was also verified by Supinie et al. (2009).

The effect dataset size may have on the relationship between EBN size and classi-

fication performance is also significant to our work. Figure 4.5 and Figure 4.6 are an

analysis of two datasets showing the performance implications of EBN size on EBNs

generated from datasets of varying training set size. When trained on small datasets

an increase in the number of component networks constructed as part of the EBN

can increase performance. However, as the dataset size increases to approximately

500 training instances, the performance of EBNs of various sizes converge. The four

other datasets in our analysis show similar behavior with respect to the relationship

of training set size and EBN size on classification performance.

4.5 Analysis of Dataset Size

Large datasets are considered a luxury in machine learning, and many real world prob-

lems are backed by datasets traditional machine learning algorithms would consider
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Figure 4.6: Child: Analysis of web size

small. Large datasets may be too expensive or time consuming to collect. Similarly,

there may not be enough observations to produce large amounts of data. These fac-

tors can limit the amount of data collected, resulting in the need for analysis of small

sized datasets. Even though machine learning techniques excel in finding patterns in

large datasets, domain experts and computer scientists alike still desire the use of Ma-

chine Learning techniques in the analysis of small datasets. Analysts prefer Machine

Learning techniques because they are unbiased and can identify relationships within

data not easily discovered by humans. It is possible to generate data models from

small datasets using Machine Learning techniques, but the models typically suffer

from overfitting. The resulting models are tied so tightly to the original training data

that they often underperform when provided with new instances for classification.

This phenomenon has showed up in our past work (McGovern et al. 2008b) and our

desire to eliminate overfitting was a leading factor in the creation of EBNs.

To understand the effect of the training set size used for EBN construction on

classification performance, we set up a series of dataset size experiments. Considering

our research in educational data was constrained by small datasets, an upper bound
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on training set size was established at 500 instances. We generated synthetic training

datasets of sizes 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 from each of

the networks discussed in Section 4.2. It was possible that not all cases would be

represented and that two datasets generated from the same Bayesian Network could

be drastically different. Recognizing these restrictions we generated five datasets

of each training size. Performing each experiment five times allowed us to observe

performance variations on EBNs generated from training datasets of the same size. In

addition to the generated training sets, five test sets, of size 100, were constructed for

evaluating the models learned on each training dataset. These five sets were used to

test classification performance across the EBNs for each of the five synthetic datasets

generated.

Our dataset size experiments used the following procedure. First, five Bayesian

Networks were generated using the POWER (Fast et al. 2008) structure learning

algorithm for each training set size. The five networks (Full PBNs) generated from

each dataset were then used to classify the test instances from their corresponding

test set. The output of this test set classification was used to calculate an AUC score.

The mean AUC was calculated across the five Bayesian Networks generated for each

training set size. Each computed mean was used as the baseline score for its training

set size.

With a baseline performance metric established, we constructed EBNs for com-

parison. Following a procedure similar to determining the baseline, five EBNs were

learned for each training set size. In our experiments, we fixed the size of each EBN

to 200 components, and used the values in Table 4.2 as the component size for each

dataset. The constructed EBNs were scored in the same manner as the baseline

Full PBNs. This procedure produced an AUC for each EBN, in each training size.

For each training size the AUCs were averaged across the five training datasets and

compared with the baseline scores. Figure 4.7 through Figure 4.12 compare the per-

formance measured by AUC, as a function of the training set size for the generated

Full PBNs and EBNs on the six standard datasets from the BNR.

To determine if the difference between performance curves is significant, we use a

combination of randomized analysis of variance (Randomized ANOVA) (Piater and

Cohen 1998) and t-tests. Randomized ANOVA is a statistical method for comparing

sets of performance curves and can be used even if points on the curve are not inde-

pendent. Using randomized ANOVA, we produce a confidence value for rejecting the
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Figure 4.7: Hailfinder: Training set size analysis
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Figure 4.8: Child: Training set size analysis
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Figure 4.9: Water: Training set size analysis
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Figure 4.10: Diabetes0: Training set size analysis
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Figure 4.11: Alarm: Training set size analysis
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Figure 4.12: Insurance: Training set size analysis
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Hailfinder Child Water Diabetes0 Alarm Insurance

0.002 0.009 0.013 0.390 0.126 0.006

Table 4.3: Randomized ANOVA: p-value for rejecting the null hypothesis stating

“The mean performance of EBNs and Bayesian Networks are the same.” Values that

are statistically significant (α < 0.05) are shown in bold.

null hypothesis that the mean performance of EBNs and Bayesian Networks are the

same. Paired t-tests may be used to provide a p-value at various points, such as the

endpoints on the performance curves. Table 4.3 details the p-values for rejecting the

null hypothesis determined for our training set size experiments.

For the first three datasets, Hailfinder, Child, and Water respectively, EBNs out-

perform their corresponding Full PBNs in the task of classification. Given the p-

values in Table 4.3 we reject the null hypothesis using a cutoff of 0.050 for these three

datasets. We hypothesize the performance improvement of EBNs is present because

the traditional Bayesian Networks used as a baseline have been overfit to the small

size of our training sets. An analysis of the standard deviation across the five models

at each training set size for Hailfinder supports this theory. As seen in Figure 4.13

the standard deviation for the Full PBNs are larger than the standard deviation for

their corresponding EBNs. The high value of standard deviation indicates volatility

in the five Full PBNs generated at each training set size. The decrease in volatility

for the Full PBNs as the training set size increases implies the amount of overfitting

is also decreasing. This is confirmed by the closing of the AUC gap between the Full

PBNs and EBNs as the training set size increases. In contrast to the Full PBNs, the

standard deviation for the generated EBNs indicate less volatility between models; as

such, the performance of EBNs remain stable as the training set size increases. The

analysis of stability for both Alarm and Child show similar results to Hailfinder.
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Figure 4.13: Hailfinder: Standard deviation for Full PBNs and EBNs as a function

of training set size

These results are in line with our expectation that the Random Forests techniques

utilized in EBN construction dramatically decrease the amount of overfitting seen in

models trained on small datasets. Since EBNs do not overfit, they are an effective

model for classification when trained on datasets with many features but few training

instances. The capability to be trained from small datasets distinguishes EBNs from

other classification models prone to overfitting.

Results from the remaining three datasets, Diabetes0, Alarm, and Insurance can

be seen in Figure 4.10, Figure 4.11, and Figure 4.12 respectively. Although the per-

formance gap between traditional Bayesian Networks and EBNs is not present in

these datasets, important observations can be made.

1. Although EBNs do not outperform Bayesian Networks on datasets Diabetes0

and Alarm, our analysis shows them to be statistically the same (Table 4.3).

2. As with Full PBNs, EBNs benefit from increased quantities of training data.

Notably, both Diabetes0 and Insurance show upward trends in performance as

the training set size increases. Paired t-tests show these changes are significant

with a p-values of 0.014 and 0.000 respectively.
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Training Set Size p-value

50 0.202

100 0.085

150 0.238

Table 4.4: Paired t-test at smallest training sizes for Insurance: p-value for rejecting

the null hypothesis stating “The mean performance of EBNs and Bayesian Networks

are the same”

3. Although Figure 4.12 and Table 4.3 indicate Bayesian Networks outperform

EBNs on the Insurance dataset, a paired t-test shows the points on the perfor-

mance curve for the lowest training set sizes are statistically the same. Detailed

p-values for these test can be seen in Table 4.4.

Items 2 and 3 suggest that when trained on larger datasets, EBNs can perform at

least as well as their corresponding Full PBNs. To verify our hypothesis, additional

experiments should be run with more training data.

Our dataset size experiments have shown that EBNs are a robust model for clas-

sification, even when learned from small datasets. Our analysis has shown the per-

formance gap can be widely attributed to a lack of overfitting when using EBNs,

compared to traditional Bayesian Networks. Although large performance improve-

ments in all datasets would have been ideal, EBNs should not be judged solely on

classification performance. EBNs provide variable importance metrics and visual-

ization of data relationships, which add to their effectiveness. Understanding the

implication of training set size on model performance is important given the criteria

we set forth for EBNs. In addition the understanding of the parameters required for

algorithm construction is also imperative. Recognizing EBNs meet the criteria set for

our model we focus on the original dataset we desired to model. Chapter 5 presents

a case study in engineering education. We use EBNs to model educational data in

an effort to identify relationships within the dataset and also to build a classifier for

predicting retention.
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Chapter 5

Case Study: Analyzing Student Data to Predict

Retention

Following the empirical evaluation of EBNs discussed in Chapter 4, we apply EBNs to

the original data that we wished to analyze. This involves evaluating student data in

an effort to identify traits associated with retention. As institutions strive to increase

retention and graduation rates in their engineering programs, considerable effort has

been put into understanding the factors which contribute to student retention. An

evaluation of factors affecting retention and attrition in college engineering programs

is critical for identifying those students who may be at risk for leaving engineering

programs. Conceivably, this research will aid in developing resources to increase the

success rates of students in engineering programs. Identifying these factors is compli-

cated by the fact that no single factor is the primary cause for retention or attrition.

Rather, it is the interaction of multiple factors, some not easily measured, which in-

fluence retention rates of engineering and computer science students. Researchers in

the fields of engineering education and machine learning are drawn to this complex

issue.

5.1 Background

Machine Learning techniques have been previously utilized in the analysis of engi-

neering educational data. Mendez et al. (2008) present an analysis of the factors

influencing persistence in STEM and engineering majors. Data were collected on

freshmen students entering Arizona State University in the 1999-2000 school year.

Using Random Forests and classification trees, researchers were able to identify com-

plex relationships within the datasets that were not identified by statistical models

traditionally employed on educational data. The use of Random Forests’ variable

importance scores by Mendez et al. (2008) suggests analysts can identify impor-

tant variables without specifying a model. In a separate study performed at a large
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Midwestern university, researchers analyzed the effect of cognitive and non-cognitive

factors on retention of more than 4,900 first-year engineering students from three

freshman cohorts (Imbrie et al. 2008). Their results showed the prediction powers of

artificial neural networks trained from only cognitive or non-cognitive features were

nearly identical; however, the use of both cognitive and non-cognitive features im-

proves the prediction power of the learned artificial neural networks. In addition to

the analysis of retention, Machine Learning has also been applied to assessment of

student learning (Conati et al. 1997; Vanlehn and Martin 1998).

The data used in our case study is part of a larger project approved by the

Institutional Review Board (IRB 10563) describing the differential strategies used

by members of four minority groups (Native Americans, Hispanic Americans, Asian

Americans, and African Americans) to be academically successful engineering under-

graduates at the University of Oklahoma. The primary data sources include one-time

and longitudinal interviews with minority engineering students, academic transcripts,

and a survey instrument based on the work of Besterfield-Sacre et al. (1997, 1998).

Traditionally these data have been evaluated using a qualitative analysis of the in-

terview data with quantitative aspects used for triangulation (Do et al. 2006; Foor

et al. 2007; Walden and Foor 2008a,b; Shehab et al. 2007; Foor and Shehab 2009;

Wong Lowe et al. 2010; Trytten et al. 2009; Walden and Shehab 2009). This work

is unique because it addresses the disaggregation of minority groups, includes a mi-

nority group that is not underrepresented (Asian Americans), and focuses on those

students who succeed academically. Our recent work (McGovern et al. 2008b) used

Bayesian Networks to identify relationships within the quantitative data. The aim of

this thesis is to use EBNs as a tool for improving the models built with our previous

machine learning techniques.

5.2 Dataset

The data used for this thesis are derived from a modification of the Pittsburgh Junior

Engineering Learning and Curriculum Evaluation Instrument (PJEAS) (Besterfield-

Sacre et al. 1997, 1998). The modified instrument was administered as supplemental

data for a qualitative study of persistence in engineering and computer science. Our

data also include demographic statistics for the participants and information ex-

cerpted from the participants’ academic transcripts. Responses were collected from

43



150 students across 9 engineering disciplines and computer science. The questions

in the original PJEAS instrument were grouped into 13 constructs. Given the small

number of participants in this pilot study and the resulting need to limit the number

of variables, we grouped the survey questions into the following eight categories: (1)

Preparedness, (2) Attitudes about engineering professional career, (3) Attitudes about

engineering education and study, (4) Confidence in problem solving skills, (5) Confi-

dence in engineering skills, (6) Confidence in communication skills, (7) Confidence in

engineering’s impact on society, and (8) Engineering related work experience.

The questions contained in each grouping for both the Computer Science and En-

gineering surveys can be seen in Table 5.1 through Table 5.8. “Preparedness”, shown

in Table 5.1, contains questions designed to gauge students perceptions of how prior

courses and experiences have prepared them for the skills required in engineering and

computer science related roles. Table 5.2 lists the questions in Group 2, “Attitudes

about engineering as a professional career.” These questions are written to gauge

students’ perceptions of their future careers. “Attitudes about engineering education

and study,” Table 5.3, includes questions aimed at judging students’ feelings regard-

ing their current major, and the students’ perceived abilities to fit into their major.

Questions used to determine students’ perceptions of their problem solving skills,

Group 4, can be found in Table 5.4. Group 5, “Confidence in engineering skills”,

found in Table 5.5 identifies students’ levels of confidence concerning the skills re-

quired in an Engineering or Computer science profession. Questions written to gauge

students’ confidence in his or her oral and written communication skills, Group 6,

can be found in Table 5.6. The last of the confidence related groups, “Confidence

in engineering’s impact on society,” can be found in Group 7. These questions are

designed to measure students’ views of the professions’ future impact on society. Fi-

nally, “Engineering related work experience,” Group 8, was used to determine the

impact of past work experience in the engineering or computer science fields such as

internships and co-ops.

For the survey questions, students’ Likert responses for the questions assigned to

each category were averaged. This calculation resulted in an answer of NA if none of

the questions in the groups were answered or a numeric score indicating their average

response between 0 and 5. Demographic and academic transcript variables included

ethnicity, gender, major (divided by enrollment managed discipline or not), hours

of transfer credit, high school type (rural or urban), number of hours of advanced
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Computer Science Engineering

Ability to apply discrete math concepts

to solve problems.

Ability to apply math concepts to solve

engineering problems.

Ability to apply chemistry concepts to

solve engineering problems.

Ability to apply physics concepts to

help solve engineering problems.

Ability to solve unstructured problems. Ability to solve unstructured engineer-

ing problems.

Ability to analyze data. Ability to analyze engineering data.

Ability to design a process. Ability to design a device or process.

Ability to use proper software engineer-

ing processes.

Ability to use proper laboratory proce-

dures.

Computer programming skills. Computer programming skills.

Ability to use software packages to solve

problems.

Ability to use software packages to solve

engineering problems.

Technical writing ability; i.e., prepare

reports and papers.

Technical writing ability; i.e., prepare

engineering reports and papers.

Oral communication skills. Oral communication skills.

Ability to function effectively in differ-

ent team roles.

Ability to function effectively in differ-

ent team roles.

Ability to set goals and achieve them on

time.

Ability to set goals and achieve them on

time.

Ability to learn new things on my own. Ability to learn new things on my own.

Table 5.1: Preparedness
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Computer Science Engineering

I expect computer science will be a re-

warding career.

I expect engineering will be a rewarding

career.

I don’t care for this career. I don’t care for this career.

From what I know, computer science is

boring.

From what I know, engineering is bor-

ing.

Computer Science is an exact science. Engineering is an exact science.

Computer scientists are in occupations

that are respected by other people.

Engineering is an occupation that is re-

spected by other people.

I like the professionalism that goes with

being a computer scientist.

I like the professionalism that goes with

being an engineer.

Computer Scientists have contributed

greatly to solving society’s problems.

Engineers have contributed greatly to

solving society’s problems.

I feel I know what a computer scientist

does.

I feel I know what an engineer does.

Table 5.2: Attitudes about engineering professional career

Computer Science Engineering

I have no desire to change to another

major (ex. Biology, English, Chemistry,

Art, History, etc.).

I have no desire to change to another

major (ex. Biology, English, Chemistry,

Art, History, etc.).

I enjoy mathematics the most of all my

subjects.

I enjoy the subjects of science and math-

ematics the most of all my subjects.

Creative thinking is one of my

strengths.

Creative thinking is one of my

strengths.

I feel confident in my ability to succeed

in computer science.

I feel confident in my ability to succeed

in engineering.

I prefer studying/working alone. I prefer studying/working alone.

I am good at designing things. I am good at designing things.

I consider myself technically inclined. I consider myself technically inclined.

I enjoy solving open-ended problems. I enjoy solving open-ended problems.

Table 5.3: Attitudes about engineering education and study
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Computer Science Engineering

Using discrete mathematical concepts

to solve problems.

Using mathematical concepts to solve

engineering problems.

Using computer science concepts to

solve relevant problems.

Using chemistry concepts to solve engi-

neering problems.

Using physics concepts to solve relevant

engineering problems.

Designing an experiment to obtain mea-

surements or gain additional knowledge

about a process.

Analyzing a set of data to find underly-

ing meaning(s).

Table 5.4: Confidence in problem solving skills

Computer Science Engineering

Designing a process or program when

given a set of specifications.

Designing a device or process when

given a set of specifications.

Functioning as an accountable member

of a computer science team.

Functioning as an accountable member

of an engineering team.

Solving unstructured problems. Formulating unstructured engineering

problems.

Using appropriate programming tech-

niques and tools for problem solving.

Using appropriate engineering tech-

niques and tools including software

and/or lab equipment for problem solv-

ing.

Recognizing the limitations of my com-

puter science knowledge and abilities

and knowing when to seek additional in-

formation.

Recognizing the limitations of my en-

gineering knowledge and abilities and

knowing when to seek additional infor-

mation.

Table 5.5: Confidence in engineering skills
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Computer Science Engineering

Writing effectively. Writing effectively.

Making professional presentations. Making professional presentations.

Effectively communicating computer

science-related ideas to others.

Effectively communicating engineering-

related ideas to others.

Listening to and impartially interpret-

ing different viewpoints.

Table 5.6: Confidence in communication skills

Computer Science Engineering

Understanding the professional and eth-

ical responsibilities of a computer scien-

tist.

Understanding the professional and eth-

ical responsibilities of an engineer.

Understanding the potential risks (to

the public) and impacts that a com-

puter science solution or design may

have.

Understanding the potential risks (to

the public) and impacts that an engi-

neering solution or design may have.

Applying knowledge about current is-

sues (economic, environmental, politi-

cal, societal, etc.) to computer science

related problems.

Applying knowledge about current is-

sues (economic, environmental, politi-

cal, societal, etc.) to engineering related

problems.

Table 5.7: Confidence in engineering’s impact on society
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Computer Science Engineering

Increased my ability to succeed in my

computer science classes.

Increased my ability to succeed in my

engineering classes.

Were related to computer science. Were related to my specific field of en-

gineering.

Provided me with the opportunity to

pursue learning on my own.

Provided me with the opportunity to

pursue learning on my own.

Allowed me to improve on my computer

skills.

Allowed me to improve on my computer

skills.

Provided me with the opportunity to

work in a team environment.

Provided me with the opportunity to

work in a team environment.

Allowed me to work on ”real-world”

problems.

Allowed me to work on ”real-world” en-

gineering problems.

Allowed me to be a more creative prob-

lem solver.

Allowed me to be a more creative prob-

lem solver.

Allowed me to work in a laboratory en-

vironment.

Helped me to better understand what

computer scientists do.

Helped me to better understand what

engineers do.

Helped me to develop my written com-

munication skills.

Helped me to develop my written com-

munication skills.

Helped me to develop my oral commu-

nication skills.

Helped me to develop my oral commu-

nication skills.

Table 5.8: Engineering related work experience
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Variable Score Ranges

Gender Male, Female

Enrollment Management Yes, No

Ethnicity p, q, r, s

High School Type Urban, Rural

Advanced Standing Hours <= 12, > 12

Transfer Credit Hours <= 24, > 24

Engineering Related Work Experience NA, < 3.59, 3.58− 4.17, > 4.17

Preparedness NA, < 3.65, 3.65− 4.13, > 4.13

Confidence in problem solving skills NA, < 3.57, 3.57− 4.09, > 4.09

Confidence in engineering skills NA, < 3.72, 3.72− 4.21, > 4.21

Confidence in communication skills NA, < 3.57, 3.57− 4.27, > 4.27

Confidence in engineering’s impact on so-

ciety

NA, < 3.84, 3.84− 4.37, > 4.37

Attitudes about engineering as a profes-

sional career

NA, < 3.6, 3.6− 3.94, > 3.94

Attitudes about engineering education and

study

NA, < 3.5, 3.5− 3.96, > 3.96

GPA NA, < 2.65, 2.65− 3.25, > 3.25

Retained Yes, No

Table 5.9: Discrete variables

standing credit, and grade point average up to date of the interview in Science,

Technology, Engineering, and Math (STEM) classes. The final variable, Retained,

was defined as positive if a student had graduated with an engineering or computer

science degree, or was continuing in good standing towards graduation and negative

otherwise. Ultimately, each student was represented by 16 variables. Many of these

variables are continuous and with so few students to train on, we discretized the

variables by examining the mean of each variable. Breakpoints were identified at the

mean plus and minus one half of the standard deviation for each continuous variable.

These breakpoints can be seen in Table 5.9. Of our 150 students, 22 were not

retained. This lack of balance in class labels supports our use of AUC, as discussed

in Section 4.1, for measuring classification performance rather than accuracy.
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Figure 5.1: Distribution of class labels across the folds used for 10-fold cross valida-

tion.

5.3 Experiments

For our experiments we used k-fold cross validation as a method for analyzing how well

our model would generalize to an independent dataset. For k-fold cross validation, a

dataset is partitioned into k folds, buckets, and a model is trained and tested for each

of the k folds. For fold i’s model, the instances in fold i are removed and used as a

test set and the remainder of the folds are combined into a training set. The results

for each of the folds can then be aggregated to provide an analysis of the model in

which every instance has been used as both a training and test instance.

In our experiments we used 10-fold cross validation. Instances from our data

were assigned to folds pseudo randomly with an equal class label distribution. This

assignment resulted in 10 random pairs of training and test sets that were used to

ensure consistent results even though the original dataset is highly unbalanced. The

distribution of class labels across our 10 folds can be seen in Figure 5.1. For each

fold a model is trained on 135 observed instances and tested on the remaining 15

instances.
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Figure 5.2: Comparison of classification performance, using AUC, for full Bayesian

Networks and EBNs

To establish a baseline for comparison we first generated a full Bayesian Network

on each of the 10 folds’ training sets using the POWER (Fast et al. 2008) struc-

ture learning algorithm utilized in our empirical evaluation. With baseline models

constructed, we then classified each instance of the folds’ corresponding test set to

produce baseline AUC scores. These scores can be seen in the Figure 5.2. With an

average AUC of only 0.65 and a standard deviation of 0.13, our baseline is an example

of the struggles with classification models learned from small, unbalanced datasets.

Not only is the average AUC for these baseline models a cause for concern, the high

variability across the folds is also unacceptable to domain experts. In an attempt to

address both of these issues and provide a measure of variable importance, we explore

the use of EBNs.

Ten EBNs were generated and scored using the same folds generated for our base-

line tests. Each EBN was composed of 1,000 component Bayesian Networks gener-

ated from six total variables including the classification variable, Retained (n = 1000,

m = 6). Using the corresponding test set for evaluation, EBNs outperformed their
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Table 5.10: Algorithm for producing aggregate importance scores from multiple EBNs

generateAggregateScores(EBNs ebns, Variables vs)

rawScores = [ ]

For ebn in ebns

rawScores[ebn] =getImportanceScores(vs)

aggregateScores = [ ]

For variable in vs

For ebn in ebns

aggregateScores[variable]+= 1-rawScores[ebn][variable]

Return aggregateScores

corresponding baseline traditional Bayesian Network on average. Our EBNs had an

average AUC of 0.79 with a standard deviation of 0.14. The AUC for our EBN clas-

sifier for each fold can be seen alongside its baseline Bayesian Network in Figure 5.2.

A paired t-test states the null hypothesis, the performance of Bayesian Networks and

EBNs are equal, can be safely rejected with a p-value of 0.050. These results are in

line with our empirical analysis of EBNs. Although a notable improvement in clas-

sification was documented, domain experts are also interested in identifying which

factors influence retention. For this we look at the variable importance measures for

those attributes in our EBNs.

Although providing importance measures for an individual fold in our experiment

clarifies those variables which are important within that fold, we are most concerned

with variables important to classification across all ten folds. Because it is not ap-

propriate to average a variables’ z-score or p-value across the different folds, we used

the procedure in Table 5.10 to produce a hierarchy of the most important variables

across the models generated for each fold. The procedure outlined in Section 3.3

was used to analyze each fold and produce a z-score and a p-value for each variable.

The aggregate importance score for a variable was then calculated as the sum over

all folds of 1 - the variable’s p-value. This procedure produces a score in the range

of 0, least important variable, to the theoretical maximum of the number of folds
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used to calculate the aggregate importance score. The variable importance rankings

determined in our experiments using EBNs can be found in Table 5.11.

Variable Aggregate Importance

Score

Confidence in engineering skills 9.98

STEM GPA 9.8

Confidence in communication skills 9.68

Gender 9.52

Enrollment Management 9.48

Preparedness 9.42

Confidence in engineering’s impact on society 9.33

Advanced Standing 9.18

Attitude about engineering as a professional career 8.76

HighSchool Type 8.59

Confidence in problem solving skills 8.44

Ethnicity 8.43

Attitude about engineering education a study 8.17

Engineering related work experience 7.34

Transfer Credit 4.82

Table 5.11: Variable importance for STEM Experiment.

Interpreting these results we find students’ confidence in engineering skills and

their STEM GPA are highly influential when classifying students as Retained. This

suggests a correlation between each of the aforementioned factors and retention. It is

logical that students who are confident with their engineering skills are more likely to

continue on the path towards graduation, whereas those who are struggling with the

skills required for a profession in engineering or computer science may pursue other

opportunities. STEM GPA also has a direct impact on the models’ ability to predict

a student as being retained. It makes sense that students who cannot maintain the

required GPA for graduation in engineering programs may be forced out of their

program. Our previous analysis of this data (McGovern et al. 2008b) also indicated

that students who were reluctant to provide access to their STEM grades or had a

GPA of < 2.65 were more likely to resettle into different university programs or leave

university all together. A high GPA is not always a determining factor in students’
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Figure 5.3: Example component network showing relationships between variables

abilities to perform well in engineering programs; however, it can be viewed as proxy

for many other variables such as a students’ confidence, preparedness, and abilities.

Understanding which variables are important in the task of classifying students

as retained is important; however, the factors contributing to successful outcomes

are highly complex. Domain experts are not only interested in variables deemed

important, but also the relationships between those variables. Figure 5.3 shows the

Bayesian Network for an example EBN component network. Although this component

structure provides one example of some of the relationships in our dataset, as discussed

in Section 3.4, component networks provide only a small piece of the necessary picture.

To obtain a more complete view of the relationships in our data, we generate

composite structures for each fold.We then aggregate the 10 folds’ composite struc-

tures to produce an aggregate composite showing the relationships across all EBNs

generated for our data. An edge from A to B exists in the aggregate composite if

there exists an undirected edge in one of the folds’ composite structures from A to

B. The edge label for this structure is the mean weight and standard deviation for a

particular edge across the folds’ composite structures. As a final step, in an effort to

increase readability and highlight those relationships with high frequency, edges with
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gender

ethnicity

Attitude about engineering
education and study

STEM
 GPA

Retained

Preparedness values

Confidence in
engineering skills

Advanced Standing

Engr Related Work Exp

Confidence in engineering's
impact on society

Confidence in problem
solving skills

Confidence in 
communication skills

Attitude about engineering
as a professional career

HighSchool Type 0.98 (0.01)

0.71 (0.08)

0.72 (0.08)

0.79 (0.07)

0.82 (0.08)

0.84 (0.05)

0.87 (0.06)

0.97 (0.02)

0.89 (0.03)

0.79 (0.05)

0.88 (0.04)

0.72 (0.07)

0.94 (0.04)

0.96 (0.02)

0.73 (0.10)

0.76 (0.10)

0.71 (0.11)

Figure 5.4: Example aggregate composite structure generated from 10 EBN composite

structures

an average of less than 0.70 are pruned from the aggregate composite structure. The

aggregate composite from our experiments can be seen in Figure 5.4.

As seen in our previous work (McGovern et al. 2008b), the relationship occurring

with the most frequency is between STEM GPA and Retained. Recall that students’

GPA was also identified as one of the most important variables related to the task of

classification. Another relationship of interest is the correlation between Confidence

in solving engineering problems and Preparedness. This link seems logical, since

students who feel prepared in the aspects required for a career in engineering education

are likely to have confidence in their ability to solve engineering problems. Similarly,

students who feel ill-prepared are found to have less confidence in their problem

solving skills. Also noteworthy are the relationships seen among all of the confidence

related question groupings. It stands to reason that a student’s level of confidence in

one area could affect their perception of confidence in other areas. Missing from the

aggregate composite structure is the variable for encoding Transfer Credit. Given its
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Model Full Mean

AUC

Trimmed

Mean AUC

Change p-value

Bayesian Network 0.65 0.63 -0.02 0.561

EBN 0.79 0.79 0 0.731

Table 5.12: Change in performance between full and trimmed STEM data

low ranking in our variable importance results we are not concerned with Transfer

Credit’s absence.

With an analysis of our full dataset complete, we were interested in the effect on

our results of removing variables identified as least important. We hypothesized that

upon removing the noise-creating, least important variables, our classification results

would improve and the relationships within our aggregate composite structure would

remain largely unchanged. To test this hypothesis, we removed those variables whose

importance scores were less than the average importance score minus one standard

deviation. This cutoff eliminated both Engineering Related Work Experience and

Transfer Credit from our dataset. Using the same procedure as above we reran our

experiments on the trimmed dataset. The resulting AUCs across all ten folds can be

seen in Figure 5.5 for the full Bayesian Networks and EBNs. Table 5.12 details the

change in the performance of EBNs and Bayesian Networks on the trimmed data.

Although the performance for full Bayesian Networks decreased to 0.63, the standard

deviation across folds increased to 0.14. Conversely, the average AUC for our EBNs

remained the same but the standard deviation across folds decreased to 0.11. A paired

t-test shows the performance difference between Bayesian Networks and EBNs on the

trimmed data is statistically significant with a p-value of 0.003.
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Figure 5.5: Comparison of classification performance, using AUC, for full Bayesian

Networks and EBNs on trimmed data

These results support our hypothesis that removing variables with the lowest

importance scores would have little to no impact on the performance of EBNs. The

aggregate variable importance scores from our experiments on the trimmed data can

be seen in Table 5.13. While the ordering of the variables remained largely unchanged

from the previous rankings, a few local changes between pairs of variables were noted.

The aggregate composite structure for our experiments using the trimmed data

can be seen in Figure 5.6. As expected, the relationships between the variables shown

in the composite remain similar. The relationships between the confidence related

variables, STEM GPA, and Retained all remain intact. Our results on trimmed data

confirm the findings of Breiman (2001), that variable importance scores may be used

as a method of trimming data.

Our analysis of this case study,“Analyzing Student Data to Predict Retention”,

illustrates the efficacy of EBNs as a machine learning technique for small datasets.

In conjunction with our empirical evaluation, our research demonstrates EBNs can

be a successful model for instance classification when learned from small datasets. In
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Variable Aggregate Importance

Score

Confidence in engineering skills 10

Confidence in problem solving skills 9.96

STEM GPA 9.95

Confidence in communication skills 9.93

Gender 9.89

Preparedness 9.83

Enrollment Management 9.67

Advanced Standing 9.51

Attitude about engineering as a professional career 9.24

HighSchool Type 9.2

Confidence in engineering’s impact on society 9.15

Attitude about engineering education and study 8.86

Ethnicity 7.89

Table 5.13: Variable importance on trimmed dataset.

Preparedness values

Retained

Attitude about engineering
education and study

Confidence in engineering's 
impact on society

Attitude about engineering
as a professional career

Confidence in communication
skills

Confidence in problem
solving skills

GPA

HighSchool Type

ethnicity
Confidence in engineering

skills

gender

Advanced Standing

0.96 (0.03)

0.88 (0.05)

0.99 (0.01)

0.94 (0.05)

0.84 (0.06)

0.96 (0.02)

0.74 (0.08)

0.87 (0.04)

0.80 (0.07)

0.79 (0.09)
0.82 (0.06)

0.77 (0.09)

Figure 5.6: Example aggregate composite structure generated from the trimmed

dataset
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addition, this case study highlights the ability for EBNs to show relationships within

datasets and to identify variables important to the task of classification. Identifying

factors related to retention in college engineering programs is a complex task. Specif-

ically, retention is influenced by the interaction of many factors, some of which are

difficult to measure. The difficulties modeling this data are compounded by the fact

that human beings often make decisions independent of the measurable data. Based

on EBN’s ability to be a useful classifier for retention and identify the complex rela-

tionships contributing to retention, we believe that EBNs can be successful in other

domains when provided with limited amounts of training data.
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Chapter 6

Conclusions and Future Work

Our research has shown Ensembled Bayesian Networks, EBNs, can be used as a model

for instance classification that outperforms classification using traditional Bayesian

Networks. Specifically, EBNs trained from small datasets produced statistically better

results when compared with traditional Bayesian Networks learned using the POWER

structure learning algorithm. EBNs’ ability to not overfit on small datasets supports

their use in real world problems. Because EBNs are constructed using Bayesian Net-

works, they can graphically represent the relationships between variables. EBNs also

posses the capacity to identify variables most important to the task of classification.

The ability of EBNs to identify important variables and graphically represent relation-

ships in datasets make EBNs as a more attractive option than black box approaches

like Neural Networks. With the success of our case study, which evaluated the role

of various factors on retention rates in engineering education at the University of

Oklahoma, we plan to pursue further research in the domain of engineering education

using EBNs. We have several datasets from different institutions which we plan to

analyze and compare with our findings in this paper and other literature in the field.

Our work is an example of the successful application of Random Forests principles

to different underlying models. As such, we believe there exist other techniques in

Machine Learning that could benefit from the same concepts that made EBNs suc-

cessful. The ability to model and analyze small datasets using many of the leading

algorithms in Machine Learning is often limited; however, EBNs have improved per-

formance on small datasets. Our work, along with other similar works that build on

the successes of Random Forests, will hopefully encourage similar research in other

areas of Machine Learning in which the analysis of small datasets is needed.

In an effort to encourage future work and the reproduction of results, the code

developed for this thesis is released under the GNU General Public License1 and can

be found on the University of Oklahoma School of Computer Science IDEA lab’s

1http://www.gnu.org/licenses/gpl.html
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website2. While outside the scope of this thesis, more analysis is required on the

effect of the Bayesian Network structure learning and inference algorithms used by

EBNs. Our algorithm for classification using EBNs relied on an evenly weighted

combination of component scores to produce the ensembled prediction. While this

approach has been shown to work well for EBNs and traditional Random Forests,

other techniques for aggregation should be explored. Our experiments have also shown

EBNs perform well when coupled with the POWER structure learning algorithm and

standard inference. However, other algorithms for structure learning and inference

could be substituted for comparison. Specifically, in this research we left out latent

nodes because the algorithm used for Bayesian Network structure learning did not

support them. For the addition of hidden nodes to EBNs, another structure learning

algorithm that handles latent nodes could be used. We hypothesize that EBNs are

a successful framework for classification using Bayesian Networks given any inference

or structure learning algorithms. As advances are made in the area of Bayesian

Networks, the performance of EBNs should continue to improve.

2http://idea.cs.ou.edu/theses/cutz/
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