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Abstract

The prototype Probabilistic Hazards Information (PHI) system allows forecast-

ers to experimentally issue dynamically evolving severe weather warning and

advisory products in a testbed environment, providing hypothetical end users

with specific probabilities that a given location will experience severe weather

over a predicted time period. When issuing these products, forecasters are

provided with an automated, first-guess storm identification object which is

intended to support the probabilistic warning issuance process. However, em-

pirical results from experimentation suggest forecasters have a general distrust

of the automated guidance, leading to frequent adjustments to the automated

information. Additionally, feedback from several years of experimentation sug-

gest that forecasters have limited direct experience with how storm-scale severe

weather probabilities tend to evolve in different convective situations.

To help address some of these concerns, the first part of this thesis provides

a detailed analysis of the maximum attainable predictability of the automated

guidance during the spring season of 2015, and offers a comparison of the ver-

ification statistics from automation to those of the corresponding storm-based

warnings issued by the National Weather Service during the same time period.

The second part of this thesis addresses storm-scale severe weather probability

trends by developing a machine learning model to predict the evolution of a

storm’s likelihood of producing severe weather. This model uses the ensemble

average of six machine learning members trained on variables obtained from the

initial automated guidance, environmental parameters, and a storm’s history,

to predict future probabilities of severe weather occurrence over a predicted du-

ration of a storm. Finally, the model was implemented and tested during the

2017 PHI prototype experiment.

xii



Chapter 1

Introduction

Since the National Weather Service (NWS) first began issuing severe weather

warnings and advisories in the mid-20th century, there has been little change in

the way these warnings are communicated to the public. Arguably the great-

est exception to this statement occurred in October 2007, when county-based

warnings, which were primarily defined by county and state borders, were re-

placed operationally by storm-based warnings (SBWs; Ferree 2006, NOAA

2007). These SBWs gave NWS forecasters the ability to provide more geograph-

ically specific information about anticipated meteorological hazards through the

use of polygonal warnings that may be, but are not always, independent from

geopolitical boundaries (NWS 2009). The gradual introduction of impact-based

warnings beginning in 2014 further provided NWS forecasters with the ability

to provide specific details about the expected severity and impacts of a given

severe weather threat (Losego et al. 2013; Harrison et al. 2014; Casteel 2016).

However, these relatively new polygonal products still partially rely on simi-

lar methods used during the era of county-based warnings (e.g. county codes,

teletype-style text, etc.) for dissemination to news media, emergency managers,

and the general public (Coleman et al. 2011). Furthermore, much of the critical

information offered by both county- and storm-based warnings, such as storm

location and motion, is only updated every 15 to 20 minutes on average (Harri-

son and Karstens 2017) via severe weather statements (SVSs). This potentially
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leaves end users to assess their personal risk with limited or old information,

and may reduce the effectiveness of the current warning system (Drost et al.

2016).

In 2014, a vision for an alternative warning paradigm that partially addresses

the aforementioned limitations, called Forecasting a Continuum of Environ-

mental Threats (FACETs; Rothfusz et al. 2014), was introduced and tested

in the National Oceanic and Atmospheric Administration (NOAA) Hazardous

Weather Testbed (HWT; Karstens et al. 2015). Under this proposed new

paradigm, NWS forecasters issue dynamically evolving, Probabilistic Hazards

Information (PHI; Karstens et al. 2015, 2018, Hansen et al. 2017, Ling et al.

2017) warning plumes, which provide end users with specific probabilities that

a given location will experience severe weather over a predicted time period.

The underlying goal of PHI is to enable NWS forecasters to provide end

users with more detailed information more frequently than is currently avail-

able in the SBW paradigm. However, increasing the amount of information

being produced necessarily increases the amount of time required to manually

issue each product. This in turn reduces the frequency with which products

can be issued and updated. To address this limitation, a partially automated

system built around the the NOAA / Cooperative Institute for Meteorological

Satellite Studies (CIMSS) Probability of Severe model (ProbSevere; Cintineo

et al. 2014, 2018) was developed to handle some aspects of the warning issuance

process, such as storm identification and tracking. Ideally, by removing these

rudimentary but time consuming tasks from the warning issuance process, fore-

casters can cumulatively save time which can then be used to analyze data and

maintain better situational awareness of the severe weather threat. In addi-

tion, the automated ProbSevere guidance provides predicted probabilities that

2



a given storm will be severe over a predicted time period, which forecasters can

then use to produce the probabilistic warnings that make up the core of the

PHI paradigm.

Although the automated system was intended to aid forecasters with the

warning issuance process, several years of experimentation in the HWT have

revealed that forecasters have a general distrust of the storm identification and

tracking aspects of the automated guidance. This distrust has been shown

to create a competitive dynamic between the forecasters and the automated

system which is detrimental to the intended forecaster-guidance interdependence

(Hoffman et al. 2017). Furthermore, forecasters have expressed a lack of direct

experience with how storm-scale severe weather probabilities tend to evolve

in different convective situations, resulting in reduced forecast reliability when

issuing the probabilistic warnings (Karstens et al. 2015).

To address these issues and attempt to improve forecaster interdependence

with the automated guidance, this thesis provides a detailed analysis of the max-

imum attainable predictability of the automated ProbSevere guidance during

the spring season of 2015, and offers a comparison of the verification statistics

from automation to those of the corresponding SBWs issued by the NWS during

the same time period (Chapter 4). To facilitate this process, a new algorithm

is developed to correct improper track breakages that occur in the ProbSevere

model, which could negatively affect usability, verification, and predictability

metrics (Chapter 3). The second part of this thesis addresses storm-scale severe

weather probability trends by developing a machine learning model to predict

the evolution of a storm’s likelihood of producing severe weather (Chapter 5).

Finally, the verification results and probability trend model were presented and

tested during the 2017 PHI prototype experiment, and the results from that

3



experiment are provided (Chapter 6). A brief history and discussion of prob-

abilistic forecasting, the ProbSevere model, and the PHI prototype warning

system is provided in Chapter 2.
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Chapter 2

Background

2.1 Probabilistic Forecasting

The concept of using probabilities to provide end-users with a measure of con-

fidence in a weather forecast can be traced back as far as the late 18th century

when J. Dalton (Dalton 1793) reportedly began issuing weather forecasts in the

United Kingdom that included qualitative and occasionally quantitative expres-

sions of uncertainty, such as, “The probability of rain was much smaller than at

other times,” (Sheynin 1984; Murphy 1998). Similar language has been noted by

other pioneering meteorologists in the 1800s such as R. H. Scott (Scott 1869),

who applied observations from the then-newly-established weather-observing

networks in Europe and the United States to report explicit odds that a given

weather feature would occur under specific observed conditions. By 1871, the

United States Signal Service began issuing their first synoptic-scale weather fore-

casts, which occasionally included large-scale warnings for predicted storms. It

is interesting to note that these warnings were initially referred to as “probabil-

ities,” even though there was no numerical probabilistic information included

with the products (Murphy 1998).

Nichols (1890) is perhaps the first published example of using probabilistic

forecasts as a means of improving a forecast’s quality and value to the public

(Murphy 1998). In particular, Nichols (1890) argued for the use of probabilistic
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information to decide when to issue a forecast or warning for an event, stating,

“Where the event is unimportant the probability should be relatively strong to

justify predictions which may tend to discredit the reliability of the reports. But

the greater the importance the smaller need be the probability involved, while

to avoid the sacrifice of accuracy and confidence the problematic character of

such predictions should, as far as possible, be indicated,” (Nichols 1890; Murphy

1998). In other words, knowledge of how certain a forecast is increases the value

of that forecast.

Most documented attempts at probabilistic forecasts prior to the 20th cen-

tury were based on the subjective confidence of a forecaster (Murphy 1998).

However, by the early 1900s, attention began to turn toward more objective

probabilistic methods. For example, Besson (1904) attempted to develop a

probabilistic model that could produce short-range forecasts of precipitation

from observed atmospheric measurements through the use of contingency ta-

bles. This work was eventually furthered by Brier (1944, 1946), whose research

ultimately culminated in the initiation of a nationwide operational precipita-

tion probability forecast program in the United States in 1965 (Murphy 1998).

The reader is referred to Murphy (1998) for additional details on the history of

probabilistic forecasts prior to the 21st century.

Probabilities are now widely used in modern-day weather forecasts to char-

acterize the likelihood of rain on a given day or the chance that severe weather

will occur over a defined broad area. For example, the Storm Prediction Cen-

ter (SPC) issues probabilistic forecasts daily that represent the likelihood of a

severe storm report occurring within 25 miles of a given point location1, and

verification of these probabilistic forecasts has generally improved over recent

1http://www.spc.noaa.gov/misc/SPC probotlk info.html
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years (Hitchens and Brooks 2012; Herman et al. 2018). Other studies, such

as Gagne II et al. (2017) have focused on producing probabilistic models us-

ing machine learning techniques to forecast severe weather likelihood over large

domains. While these probabilistic forecasts are generally valid for large spa-

tial areas and long temporal periods, a number of studies have recently begun

exploring the possible application of probabilistic information to storm-scale

warning products. This concept of probabilistic severe convective storm warn-

ings is founded on much of the historic probabilistic work described previously

in this section. For example, Stumpf et al. (2015) noted that SBWs are di-

chotomous products which communicate that a location either will or will not

see severe weather depending on if that location falls within the forecaster-

generated warning polygon. Of course, severe weather rarely occurs at every

point within a SBW, and this anecdotally results in many instances where the

public might interpret the warning to be a false alarm, even if severe weather

did occur somewhere within the polygon. Karstens et al. (2015) argues that

this limitation of the current warning system may be partially overcome by

providing probabilistic information representing a forecaster’s confidence that

a given location within a warning will experience severe weather. This concept

particularly builds off of the work of Nichols (1890) by suggesting the inclu-

sion of forecaster confidence could add value to the warning product. Following

this line of study, Cintineo et al. (2014, 2018) have designed a statistical model

which is capable of predicting the probability that a storm will produce severe

weather over a given time period. Karstens et al. (2018) then utilize these diag-

nostic probabilities to generate experimental PHI warning products that include

gridded probabilities representing the likelihood that a given location will ex-

perience severe weather over a predicted time period. These systems, known
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as ProbSevere and the PHI prototype warning system respectively, provide the

basis for this thesis and are discussed in detail in the following sections.

2.2 ProbSevere

The empirical NOAA/CIMSS ProbSevere model is designed to automatically

extract information from a variety of live data sources and use that information

to produce timely statistical forecasts of the likelihood that a storm will produce

severe weather over the next 120 minutes (Cintineo et al. 2014, 2018). For the

purposes of this research, the ProbSevere model can be broken down into two

primary functions: storm identification and tracking, and probability prediction.

2.2.1 Storm Identification and Tracking

The storm identification and tracking aspect of the ProbSevere model primarily

utilizes live Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016) radar obser-

vations and derived products remapped onto a cylindrical equidistant projection

with 0.01° latitude × 0.01° longitude spatial resolution (Cintineo et al. 2014,

2018). When first identifying potential storms, the ProbSevere model applies

an enhanced watershed method (Lakshmanan et al. 2003) to a composite radar

reflectivity (REFcomp) field in order to produce a radar-based storm object. In

particular, the watershed method first searches for local maxima of REFcomp≥35

dBZ within a given domain. It then spatially grows an object outward from each

local maxima in increments of 10 dBZ until the object is at least 20 km2 in area.

Once this spatial threshold is reached, the algorithm will return the final storm

object and assign it an unique tracking identification number (Cintineo et al.

2014). Because this method utilizes centroid-based tracking techniques, large
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changes in a storm’s shape or size between radar scans may result in a signifi-

cant shift of the associated object’s centroid. When this occurs, the ProbSevere

model may identify the storm object as a new storm and assign it a different

tracking identification number, thus losing any information about that storm

retained from previous time steps. This limitation of the ProbSevere model’s

tracking algorithm and an attempt to correct such breakages is discussed further

in section 3.2.

The ProbSevere model also produces satellite-based storm objects by uti-

lizing the convective cloud object tracking system developed by Sieglaff et al.

(2013). Using this method, ProbSevere ingests satellite imager data from the

Geostationary Operational Environmental Satellite (GOES; Menzel and Pur-

dom 1994) network to calculate cloud-top phase (Pavolonis 2010a,b) and cloud

emissivity εtot (Pavolonis 2010a). These variables are remapped to a cylindrical

equidistant projection with 0.04° latitude × 0.04° longitude spatial resolu-

tion, which is then interpolated to the same 0.01° latitude × 0.01° longitude

resolution of the radar data as described previously (Cintineo et al. 2014). Prob-

Severe then produces satellite-based storm objects by identifying collections of

spatially connected pixels that contain a local maximum of εtot. As with the

radar-based objects, a unique tracking identification number is assigned to each

satellite-based object, and these objects are tracked spatially and temporally.

Finally, the model calculates the temporal rates of change in εtot (∆εtot) and

the ice cloud fraction as determined from the cloud top phase (∆ice, glaciation

rate).

9



2.2.2 Probability Predictions

ProbSevere uses a naive Bayesian classifier (Kuncheva 2006; Domingos and Paz-

zani 1997) to determine the probability that an identified storm is currently or

will be severe in the short term. As described in Cintineo et al. (2014), this

classifier can be modeled given a set of observed predictors F such that

P (Csev|F) =
P (Csev)P (F|Csev)

P (F)
, (2.1)

where P (Csev) is the probability that would be assigned if there were no pre-

dictors (i.e. the prior probability of severe).

Severe probability predictions are then made using variables derived from

the radar- and satellite-based storm objects described previously as input ob-

servations, including a storm’s maximum expected size of hail (MESH; Witt

et al. 1998a), ∆εtot, and ∆ice. In addition, ProbSevere also utilizes select data

fields from the Rapid Refresh numerical model (RAP; Benjamin et al. 2006),

such as effective bulk shear (EBS; Thompson et al. 2007) and the most unstable

CAPE (MUCAPE). These RAP data fields are first projected onto a cylindrical

equidistant projection, and MUCAPE and EBS are calculated on every point in

the remapped RAP grid for the current analysis (t0), the previous hour analysis

(t−1), and for the next three hourly forecasts (t1, t2, t3). The maximum value for

each field at each grid point over the five forecast times is then is smoothed us-

ing a Gaussian kernel and smoothing radius equal to three standard deviations.

Finally, the smoothed fields are converted onto a grid with 0.01° latitude ×

0.01° longitude spatial resolution before being input into the statistical model.

Therefore, all MRMS-, GOES-, and RAP-derived data are on the same cylin-

drical projection during evaluation of the Bayesian model (Cintineo et al. 2014).

A list of all input variables and their sources is provided in Table 2.1.
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Predictor name Source

MUCAPE, EBS RAP

Max expected size of hail (MESH) MRMS

Max rate of change in the εtot in 2.5-h window (∆εtot) GOES

Max rate of change in the cloud-top ice fraction in 2.5-h window (∆ice) GOES

Table 2.1: ProbSevere model predictors and sources for 2014 - 2015. Modified

from Cintineo et al. (2018), their Table 1.

Note that the probability of severe weather occurrence produced by the

statistical model described above is a diagnostic prediction of severe weather.

That is, the probability is a single value which identifies the total likelihood that

a storm will be severe sometime during the next 120 minutes. This value does

not indicate how the severe weather probabilities may change with time as the

storm evolves. This limitation of the ProbSevere model and a new prognostic

prediction method is the focus of Chapter 5.

2.3 Probabilistic Hazards Information

As mentioned in Chapter 1, PHI is an alternative warning paradigm intended

to partially addresses some limitations of the current SBW system. Under

this proposed new paradigm, NWS forecasters issue dynamically evolving, PHI

warning plumes, which provide end users with specific probabilities that a given

location will experience severe weather over a predicted time period.

When issuing the initial PHI products, forecasters are provided with a radar-

based ProbSevere storm object, as well as the storm’s diagnostic probability of

producing severe weather. The current PHI prototype tool (Karstens et al.
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Figure 2.1: Example of a typical ProbSevere storm object (a) and its derived

PHI warning plume (b).

2017, 2018) enables forecasters to then issue a warning plume representing the

spatial area that would be swept out by the storm object over a given period

of time (Fig. 2.1), allowing for some variance in storm motion. This is done

by using the partially automated, diagnostic storm object and associated track-

ing algorithms produced by the ProbSevere model, or forecasters can manually

draw their own diagnostic polygonal object around the storm or hazard. If an

object and associated warning plume are produced manually, the forecaster is

then responsible for frequently adjusting the geometric shape of the object as

the storm evolves, and for ensuring the object and plume track correctly with

the meteorological phenomenon. Conversely, if a forecaster uses the automated

guidance from the ProbSevere model, these aspects of the warning are largely

managed by the automated tracking algorithms, which the forecaster can over-

ride as necessary.
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Unlike the current warning system, ProbSevere storm objects and derived

PHI plumes propagate and evolve with the associated thunderstorms and are

updated approximately every two minutes by either automated guidance or the

forecaster. Additional products can then be derived from the PHI in order to

provide information catered to individual end users, such as emergency man-

agers and hospitals. The ultimate goal of the PHI paradigm is to provide end

users with a continuous flow of specific information, ideally empowering them

to more effectively assess their unique risk and take actions appropriate to their

particular situation in the event of severe weather (Mileti and Sorensen 1990;

Lindell and Perry 2012; NOAA 2011).

To help NWS forecasters transition more easily to the experimental PHI

paradigm, the PHI warning issuance process in the current prototype tool was

designed to be similar to that of SBWs, and many design elements of the user in-

terface were drawn from the operational SBW generation software (WarnGEN).

In order to issue a PHI warning plume using the automated ProbSevere guid-

ance, forecasters first select a ProbSevere storm object to bring up the warning

properties interface (Fig. 2.2). From this panel, forecasters can:

• Set the PHI product parameters by specifying if the product is a warning

or advisory, identifying the maximum hail size and wind speed expected,

and selecting a source for why those severe threats are expected (e.g. radar

indicated, observed, etc.; Fig 2.2a).

• Adjust the geometry and motion vector of the initial ProbSevere object.

Changes made to the ProbSevere object are also applied to the warning

plume downstream (Fig. 2.2b). Changing any of the parameters in this
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panel will automatically give the forecaster partial control over the result-

ing warning geometry, such that the forecaster is responsible for adjusting

the changed variables in future warning updates.

• Specify how the forecaster’s confidence of severe weather will change with

time (Fig. 2.2c). The probability trend set in this panel is mapped to a grid

underlying the warning plume polygon via a two-dimensional Gaussian

distribution as described in Karstens et al. (2015, Fig. 2.2d). This process

is discussed further in Chapters 5 and 6.

Once the warning properties are set, forecasters can then write a brief dis-

cussion of the warning and any information they believe to be relevant about

the severe weather threat. After the warning is issued, this discussion is sent

out to end-users along with the ProbSevere storm object and the PHI warning

plume (Fig. 2.3). Forecasters are then able to update the warning as frequently

as necessary simply by reselecting the associated ProbSevere storm object and

modifying their previously issued warning properties as was done during the

initial issuance process.
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Figure 2.2: Example of the warning properties interface of the PHI prototype

tool. Panel (a) contains the basic warning properties, (b) has information re-

lated to the warning’s geometry and motion vector, and (c) is the forecast

confidence trend which directly populates (d) the gridded probabilities of the

PHI warning plume.
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Figure 2.3: Example of the end-user display tool which displays any forecaster-

warned ProbSevere storm objects, PHI warning plumes, and forecaster-issued

discussions. From Karstens et al. (2018), their Fig. 8.
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Chapter 3

Dataset

3.1 Data Selection

This thesis primarily focuses on identifying and augmenting the predictability

and functionality of automated ProbSevere storm objects and their derived

PHI warning plumes between 9 April 2015 and 30 June 2015. Due to the

large size and density of the ProbSevere dataset, the spring and early summer

months (April - June) of 2015 were selected as a quasi-representative subset

of a typical severe weather season in the continental United States (CONUS).

During this time period, 1,894,762 individual ProbSevere storm objects were

archived internally by the National Severe Storms Laboratory, 13,135 unfiltered

local storm reports (LSRs) were obtained from the Storm Prediction Center

(SPC 2015), and 10,831 severe thunderstorm and tornado SBWs were collected

from the NWS Performance Management database (NWS 2016).

3.2 Best Track: Real Time Data Corrections

During the 2015 and 2016 PHI prototype experiments, participating NWS fore-

casters noted that the automated guidance provided by the ProbSevere model

would frequently lose tracking on certain storm objects, which would then cause
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the forecaster-issued warnings and advisories to temporarily disappear and in-

terrupt the flow of information to potential end users. In many of these in-

stances, a storm object would undergo an apparent meteorological evolution,

such as a merge or split with another storm, which would significantly alter the

shape and/or size of the cell. When this occurred, the ProbSevere tracking usu-

ally continued to identify the storm as a tracked object, but would change the

objects tracking identification number used to programmatically link the auto-

mated guidance to the forecaster-issued PHI products. Such tracking breakages

that occur as a result of apparent meteorological processes are herein referred

to as justified breakages. However, there were also many other instances dur-

ing the experiments where the tracking identification number of a storm object

would change in the absence of notable changes in the associated storm. These

types of breakages are herein referred to as unjustified breakages, or breakages

that occur unexpectedly. Regardless of the cause, forecasters often cited un-

reliable storm tracking as a factor in their decision to not use the automated

guidance when issuing PHI warnings (Ling et al. 2017). Furthermore, from a

research standpoint, storms that undergo unjustified tracking breakages may

have reduced or incomplete lead-time statistics. Therefore, a correctional algo-

rithm, named Best Track: Real Time (BTRT), was developed and implemented

as part of this investigation.

3.2.1 Primary Comparison Algorithm

BTRT was written as a Python package designed to read in the output of a third-

party storm identification and tracking algorithm and improve upon that algo-

rithms tracking by correcting unjustified and some justified breaks in an objects
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track. BTRT is loosely modeled after the Warning Decision Support Services-

Integrated Information (WDSS-II; Lakshmanan et al. 2007) w2besttrack algo-

rithm (Lakshmanan et al. 2015), but modified to support real-time processing of

an operational models output. In particular, BTRT is what Lakshmanan et al.

(2015) would describe as a causal implementation of the WDSS-II w2besttrack

algorithm, as BTRT does not require knowledge about a storms complete (past

and future) lifespan. Furthermore, the WDSS-II w2besttrack algorithm utilizes

multiple iterations to systematically remove anomalous objects from first-guess

storm tracks until the optimal track is obtained. BTRT accomplishes similar

results in a single iteration by storing the history of each tracked object be-

tween runs and using it as context when comparing new objects to existing

tracks as described below. This optimizes BTRT in terms of speed and real-

time performance and makes it possible to perform the track corrections live in

an operational environment.

Initially, the BTRT algorithm loads information about all tracked objects

that were present prior to the current time step, including information about

each objects centroid location, valid time, and tracking identification number

(Fig. 3.1a). Once the history is known, the algorithm then evaluates any new

objects that were produced by the ProbSevere model for the current time step.

The identification number of each new storm object is compared to that of all

objects from the previous time step, and any storm objects that have an equiv-

alent identification number are automatically paired (Fig. 3.1b). The matched

identification numbers are then retired such that no other new objects can be

matched to those previously existing objects for the current time step. In doing

so, BTRT assumes that the ProbSevere model has already correctly tracked

those particular storms such that no corrections are needed. By the end of
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Figure 3.1: Flow chart of the BTRT algorithm.

this step, only new objects that are not already associated with an existing

identification number should remain.

The main step of the BTRT algorithm (Fig. 3.1c) then employs an approach

similar to that of the Storm Cell Identification and Tracking (SCIT) algorithm

described in Johnson et al. (1998) in which it compares each remaining storm

object at the current time step with every previously existing object an optimal

match is found. First, BTRT generates a track, or collection of storm objects

with the same identification number at different time steps, for each object in

the previous time step. Then, the valid time of the last object in each track

is compared with the time of each new object. If the last object of the track

is older than a user-specified buffer time (3 minutes for this study), then the

track is skipped. Otherwise, the new storm object and all previously existing

objects within the track being compared are plotted using each objects centroid
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as a point location as shown in Fig. 3.2a. BTRT then calculates the Theil-Sen

fit (Theil 1950; Sen 1968; Lakshmanan et al. 2015) of the previously existing

objects’ centroid locations in order to derive a mean motion and speed for the

physical phenomenon represented by the track (Fig. 3.2b). Next, the algorithm

extrapolates the most recent storm object in the track forward in time along

the Theil-Sen trajectory until the object is temporally co-located with the new

object. If the centroid of the extrapolated object falls within a user-specified

buffer distance (10 km) to the centroid of the new object (Fig. 3.2c), then the

track is designated as a potential match and the algorithm moves on to the next

track. If a new object is matched with multiple tracks, then the track with the

smallest extrapolated distance to the new object is considered the best match,

and the object’s identification number is updated to match the objects contained

within that track (Fig. 3.2d). The new object and all objects associated with the

matched track are then removed from any additional processing for the current

time step.

3.2.2 Merge/Split Algorithms

The main step of BTRT is intended to account for most unjustified track break-

ages that may occur in the ProbSevere model; however, it may not correctly

identify justified breaks. For example, when large or elongated objects split or

merge together, there is a large spatial shift in the objects centroids, and the

resulting track breakages may not be identified using the primary track com-

parison method. This is one disadvantage to utilizing a centroid-based tracking

method, as the location of a mass-weighted centroid is sensitive to changes in an

objects shape and size. To partially account for this limitation, any remaining
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Figure 3.2: Schematic demonstrating the main track comparison step of BTRT.

(a) Objects at previous and current time steps are spatially plotted as point

locations. (b) The Theil-Sen fit is calculated for the old objects within a track.

(c) The last old object in the track is extrapolated along the Theil-Sen fit to the

current time step. Its new position is then compared with the current object.

(d) If the extrapolated object falls within a specified buffer distance to the center

of the current object, then the current object is added to that track.
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objects that weren’t matched with a track are then processed using BTRT split

and merge algorithms (Fig. 3.1d,e).

When a large object splits, two or more objects often result that have dif-

ferent identification numbers than the original (Fig. 3.3a). To solve this, the

BTRT split algorithm utilizes a similar process to the main track comparison,

where each remaining new object is compared to each remaining potential track

(Fig. 3.1d). As before, the Theil-Sen trajectory for the track is calculated and

the most recent storm object in that track is extrapolated forward to the current

time. However, this time a static 5 km buffer is added around the perimeter

of the extrapolated object (Fig. 3.3b) to account for more varied motions and

evolutions. (Note that this buffer and all other user-defined values chosen in

this study were selected by anecdotally reviewing a number of case studies and

comparing the results to those of WDSS-II w2besttrack.) If the centroid of

the new object is contained within the buffered, extrapolated object, then the

new object is added to that track, and the object and track are both removed

from further processing (Fig. 3.3c). If multiple new objects are contained within

the extrapolated object, BTRT will prioritize the objects by their ProbSevere

probabilities such that the object with the greatest probability prediction at the

current time step is updated to match the identification number of the objects

within that track. The current PHI prototype tool requires that no two objects

have the same identification number at a given time. Therefore, only one of the

objects resulting from a split may retain the original identification number.

A similar process is used to handle merge operations (Fig. 3.1e), where two

or more storm objects are combined into a single storm object which may have

a different identification number than any of the original objects (Fig. 3.3d).

Again, the Theil-Sen trajectory for each potential track is calculated and the
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Figure 3.3: Schematic showing the split and merge algorithms of BTRT. (a) The

track breaks when one large object splits into two or more. (b) The original

object is extrapolated along the Theil-Sen fit to the current time step and a 5km

buffer is applied. (c) If the centroid of one of the current objects is contained

within the buffered, extrapolated object, then that current object is added back

to the original track. (d) The Track breaks when two smaller objects merge

into one large object. (e) The previous objects are extrapolated along their

Theil-Sen fits to the current time step. (f) If the centroid of one of the original

objects falls within the current object, the current object is added to that track.
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last objects in each track are extrapolated forward to the current time. This

time, a 5 km static buffer is applied to the perimeter of the new storm object.

If the centroid of the extrapolated object is contained within the buffered new

object (Fig. 3.3e), then the new object is updated to have the same identification

number as the objects in that track (Fig. 3.3f). As before, if multiple storm

objects are contained within the new object, BTRT will prioritize objects based

on the ProbSevere probability prediction. Because two or more tracks are being

merged into one, only one of the identification numbers is preserved. Note that

while the split and merge algorithms account for some variation in an objects

centroid location, they may still be limited by the aforementioned sensitivities of

centroid-based tracking methods. Additional improvement may be possible by

implementing an algorithm that considers overlap in an objects area between

time steps; however, this method was not tested in this study. Additional

documentation of the BTRT algorithm along with the operational, open-source

Python code can be found online1.

3.2.3 Application

The BTRT algorithm was applied to the ProbSevere dataset at the beginning

of this study, resulting in 1,520,330 corrected ProbSevere storm objects with

unique identification numbers, or about a 20% reduction from the 1,894,762

original tracked objects. For reference, a Python implementation of the WDSS-

II w2besttrack algorithm was also run on the dataset using similar settings,

which resulted in 767,247 corrected tracks, or a 60% reduction. Note, however,

that the w2besttrack algorithm implements additional thresholds which act as a

noise filter, such that a track must exist for at least three time steps to remain in

1https://github.com/arkweather/BestTrackRT
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Figure 3.4: (a) Monthly breakdown of the number of ProbSevere objects remain-

ing in the dataset after no track corrections (blue), filtered track corrections by

the BTRT algorithm (red), and track corrections by a Python adaptation of

the WDSS-II w2besttrack algorithm (yellow) are applied. (b) Cumulative track

duration density after no corrections (blue), filtered BTRT (red), and WDSS-II

w2besttrack (yellow) are applied to the entire dataset (April June 2015).

26



the final output. To account for this discrepancy, a similar filter was temporarily

applied to the BTRT algorithm, resulting in 695,882 corrected tracks, or a

63% reduction (Fig. 3.4a). The filtered BTRT algorithm and w2besttrack also

produced comparable increases in total track durations as demonstrated by

the cumulative density functions shown in Fig. 3.4b. These statistics show

that BTRT is able to successfully correct the ProbSevere tracking at a rate

comparable to the standard WDSS-II w2besttrack algorithm in real time.
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Chapter 4

Conditional ProbSevere Verification

PHI prototype experiments held in the HWT during the springs of 2014, 2015,

and 2016 consistently demonstrated that the creation of a PHI warning plume

from a manual storm object required notably more time to perform compared to

the same task using the automated guidance. For instance, during the 2016 PHI

prototype experiment, Karstens et al. (2017) determined that a PHI warning on

average required a full minute longer to issue when done manually than when

using the automated guidance. Subsequent updates to these warning plumes

exhibited similar results, with an average of about 45 extra seconds needed

to update plumes derived from manual objects. In addition, Karstens et al.

(2015) found that forecasters incurred workload limitations while maintaining

more than four or five manual objects at a time. However, during formal and

informal discussions, many of the NWS forecasters that participated in the

experiments expressed a distrust of the storm identification and tracking aspects

of the automated ProbSevere guidance, and more than one-third of all new PHI

plumes were created from manual storm objects during the 2016 experiment.

I hypothesize that much of this distrust in the automation stems from a

combination of inherent, systematic technical considerations, such as unjusti-

fied storm tracking breakages, and a lack of experience, understanding, and/or

proven verification with the automated guidance. This hypothesis is supported
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by discussion presented in Roebber et al. (2002), which asserts that forecast-

ers require information about the performance characteristics of a model before

that model can be used effectively. To improve forecaster trust and better es-

tablish forecaster interdependence with the automated PHI guidance, it is then

relevant to assess the predictability of the ProbSevere model as applied to the

FACETs/PHI paradigm [i.e. how probability of detection (POD) changes with

increasing lead time], and to identify potential limitations of the system (Saha

and van den Dool 1988; DelSole 2004). Therefore, the first goal of this thesis is

to provide a detailed analysis of the maximum attainable predictability of the

automated ProbSevere guidance during the spring of 2015, and compare the

automation’s conditional POD statistics to those of the corresponding SBWs

issued by the NWS during the same time period.

4.1 Plume Verification Methods

Recall from section 2.2 that ProbSevere objects are automatically generated

for every identifiable storm within a domain that contains a composite radar

reflectivity maximum ≥ 35 dBZ and spatially covers an area of at least 20

km2 as specified in Cintineo et al. (2014). Of course, not every storm with

a ProbSevere object produces or is expected to produce severe weather, but

rather human forecasters are required to apply their meteorological knowledge

to identify which storms are deserving of a warning. As stated previously, this

chapter is intended to identify the maximum attainable POD of the automated

ProbSevere guidance and derived PHI plumes in an operational environment. To

accomplish this, a number of experimental assumptions were made to simulate

forecaster input in the warning process:
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1. The ProbSevere guidance was implemented as it existed in 2015 but with

the corrections from BTRT applied to the automated storm objects.

2. Hypothetical forecasters issued PHI warnings only on storms that pro-

duced at least one LSR and on every storm that produced at least one

LSR.

3. Hypothetical forecasters used only the ProbSevere guidance for storm

identification and tracking and did not create any manual storm objects

or override the automated guidance settings.

4. PHI warning durations and valid times were provided by machine learning

guidance described in McGovern et al. (2017, 2018b), and durations did

not exceed 120 minutes.

5. PHI warnings were the same shape and size of the derived PHI plumes.

6. Only PHI plumes with a forecast duration that included the time of an

LSR were considered to be warnings.

These experimental assumptions can be stated more simply as, “The hypo-

thetical forecasters always issued warnings that contained or were very near an

LSR at the earliest possible lead time.” However, there are a number of limita-

tions with this method. For example, by assuming the hypothetical forecasters

only issue PHI warnings on storms that produce an LSR, false positives can

only occur in this analysis if the automated ProbSevere geometries or storm

motion calculations result in a warning plume that doesnt cover the point LSR

location. While this is necessary to determine the maximum attainable POD

of the automated guidance, it also artificially biases the false alarm rate (FAR).

To avoid this limitation, a more detailed analysis of unconditional FAR and
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false alarm area (FAA; Karstens et al. 2015; Stumpf et al. 2015) was not con-

sidered in this analysis, though future research may be able to use grid-based

techniques such as those described in Stumpf et al. (2015) to compute these

metrics. Furthermore, warnings were chosen to be the same size as the derived

PHI plumes to stay consistent with methods used during the 2017 PHI proto-

type experiment (Karstens et al. 2018). This was also necessary to determine

the maximum attainable POD for a given warning plume, as defining warnings

based on some probability threshold would necessarily reduce the size of the

warning plume and may decrease that warnings POD and lead time (Karstens

et al. 2015). For this reason Severe Weather Statements (SVSs) were also ex-

cluded when considering SBWs, as they only act to reduce the size of a SBW

and therefore cannot increase the POD or lead time provided by that warning.

Before verification metrics could be calculated, it was first necessary to de-

termine which tracked thunderstorm most likely produced each LSR. To accom-

plish this, all automated ProbSevere storm objects valid at the time of a given

LSR were compared, and any object geometry that geospatially contained the

LSR was matched with that LSR (Fig. 4.1a). If the LSR was not directly con-

tained within a storm object at the time of the report, then the nearest object

to the reports point location (within 20 miles; 33 km) was considered to be a

relative match to allow for error in the reports time and location (Fig. 4.1b).

In this system, a single tracked storm could be associated with multiple LSRs,

but an LSR could only be assigned to a single storm. ProbSevere storm ob-

jects that werent matched to an LSR were removed from the rest of the thesis.

Similarly, LSRs were also assigned to NWS-issued SBWs by determining if a

warning polygon spatially contained an LSR during its valid duration. If more

than one warning contained an LSR, the warning which provided the most lead
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Figure 4.1: Example of how ProbSevere storm objects were match with LSRs.

An LSR was matched to a ProbSevere object if (a) the object contained the

LSR at the time of occurrence, or (b) the outer polygon of the storm object was

the closest spatially to the LSR and less than 20 miles (33 km) from the LSR

at the time of occurrence.

time was matched to the LSR. Any unwarned LSRs were then matched with

the closest warning, and all remaining unmatched SBWs were removed.

To account for the rapid update frequency of automated ProbSevere objects,

it was also necessary to consider objects and derived PHI plumes that were valid

prior to the time of an LSR. Once each LSR was matched with a ProbSevere

storm object, derived PHI plumes were analyzed for each time step in that

object’s history. Any individual plumes within the object’s history that both

contained the LSR and had a forecast duration that included the time of the

LSR were classified as “hits,” which provided lead time for the location impacted

by the hazard (Fig. 4.2a). Similarly, plumes valid for the time of the LSR that

did not contain the LSR were classified as “misses” (Fig. 4.2b). This method

was applied to the NWS-issued SBWs as well, such that any warnings matched

to an LSR that contained that LSR were classified as “hits,” and any warnings

32



associated with an LSR that did not spatially contain that LSR were classified

as “misses”. The lead time provided by both the PHI plumes and the SBWs

was then calculated as the time difference between the LSR and the issue time

of the product. Finally, all classifications were binned into 5-minute lead time

intervals and used to assess the predictability of the automated objects and

SBWs conditioned by the experimental assumptions stated previously. Caution

is advised when interpreting the results presented herein, as manually generated

SBWs and the automated PHI warning plumes in this thesis represent very

different paradigms that ultimately limit the comparability of the two systems.

The methods used in this analysis attempt to make this comparison as equitable

as possible for the sake of garnering trust with the forecasters who would have

to bridge the gap between these two paradigms.

4.2 Plume Verification Results and Statistics

4.2.1 Conditional Verification

Out of the 1,520,330 BTRT-corrected, automated ProbSevere objects analyzed

in this thesis, only 4,937 objects (< 1%) were associated with a storm that

produced at least one LSR. From these, a total of 617,868 PHI warning plumes

were derived using 2-minute intervals corresponding to the update times of

the automated ProbSevere storm objects. Similarly, 4,808 SBWs of the 10,831

analyzed (44%) were associated with at least one LSR.

About 81% of all PHI warning plumes generated 0 - 10 minutes prior to the

time of an LSR contained the location impacted by that LSR (0 - 10-min lead

time; Fig. 4.3), including about 84% of warning plumes verified by hail reports,

75% of those verified by tornado reports, and 80% of warning plumes verified by
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Figure 4.2: Example of how PHI warning plumes were classified as a “hit” or a

“miss.” (a) A plume was classified as a “hit” if it contained the LSR and had

a duration that included the time of the LSR. (b) A plume was classified as a

“miss” if it did not contain the LSR and had a duration that included the time

of the LSR. A plumes miss distance is the shortest distance between the LSR

and the outer polygon of the warning plume.
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damaging wind reports. Notably, approximately 28% of conditionally verified

PHI warning plumes provided around 60 minutes of lead time for a location

impacted by an LSR, and nearly 10% of warning plumes verified by a tornado

report provided 80 minutes of lead time.

These results show the extrapolative skill of the automated ProbSevere

model and associated algorithms for detecting both the location and timing

of severe weather occurrence as a function of lead-time conditioned by the ex-

perimental assumptions stated in section 4.1. Alternatively, one could consider

this as a conditional measure of the success ratio, or 1 - conditional FAR. For

example, this forecast-centric perspective specifically identifies the fraction of

PHI warning plumes that were both valid at the time of an LSR and also con-

tained that LSR at a given lead time. Therefore, the conditional FAR for these

warning plumes would simply be the fraction of valid plumes which did not con-

tain an LSR at a given lead time, or the inverse of the plot shown in Fig. 4.3).

For instance, the warning plumes exhibited a conditional FAR of 19% at a lead

time of 0 minutes, or 1− 0.81. In either case, the decreasing number of warning

plume “hits” with increasing lead time demonstrated by this technique is con-

sistent with prior conceptual work (Brooks et al. 1992) and applications (Hwang

et al. 2015). Note, however, that the fraction of warning plumes verified by an

LSR also exhibited little increase between 0 and 10 minutes of lead time, such

that warning plumes issued a minute or two prior to the time of an LSR were

not necessarily more likely to contain the LSR than a plume issued with 5 to

10 minutes of lead time. This signal may approximate a limit of predictability

of the current ProbSevere guidance, where around 20% of PHI warning plumes

issued for a storm that produces an LSR miss that LSR regardless of lead time.
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Figure 4.3: The fraction of plumes that contained an LSR at a given lead time.

Alternatively, this is equivalent to the conditional success ratio (1 - conditional

FAR), or one minus the fraction of plumes that did not contain an LSR at a

given lead time.
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To further investigate this potential predictability limitation of the ProbSe-

vere guidance, it was necessary to determine how PHI warning plumes compare

to operational SBWs. PHI plumes anecdotally benefit from the ProbSevere

models ability to track a storm via frequent updates and automated tracking

algorithms (Karstens et al. 2015). However, since SBWs are static products

that cannot be moved once issued (except to reduce the warning area via an

SVS), an observation-centric perspective is needed to generally compare the

conditional PHI products with operational SBWs. To accomplish this task, the

maximum lead time of each LSR was determined by first identifying the earliest

PHI warning plume or SBW to contain the LSR, then calculating the difference

in that products issue time and the time of the LSR. Fig. 4.4 then shows the

cumulative fraction of LSRs that had a maximum lead time greater than or

equal to a given lead time. Using this method, traditional POD metrics can be

identified by analyzing an instantaneous lead time on the graph. Furthermore,

by considering only the first PHI warning plume to contain the LSR and treat-

ing it as a static warning polygon, it is possible to provide a general comparison

of the automated guidance to the operational SBWs.

PHI warning plumes exhibited a cumulative conditional POD of about 80%

at the time a report was received (Fig. 4.4), with a cumulative POD of about

15% at a lead time of 60 minutes prior to a report. Notably, the POD of warning

plumes increased to about 18% at 60 minutes of lead time when only considering

areas impacted by either hail or a reported tornado.

SBWs generally exhibited similar POD to the automated PHI plumes, with

about 78% of all LSRs warned at or prior to the time of occurrence (Fig. 4.4).

Directly overlaying these results with the equivalent performance statistics for

the conditional PHI warning plumes (Fig. 4.4) reveals that SBWs performed
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Figure 4.4: Comparison of the cumulative conditional POD of PHI warning

plumes and SBWS. The maximum lead time for PHI plumes was determined

by the issue time of the first plume to contain the warning.
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remarkably consistently for all severe weather hazards over all lead times, such

that no one hazard type had a notably higher cumulative POD than the oth-

ers. In contrast, the automated guidance generally performed better with hail

reports at all lead times, and by both hail and tornado reports at longer lead

times. These results are perhaps not surprising, as the NOAA/CIMSS Prob-

Severe algorithm uses merged composite radar reflectivity and derived MESH

as inputs when identifying storm cells (Cintineo et al. 2014). Tornadoes and

damaging wind gusts, however, conceptually can and perhaps often occur on

the outer flanks of a thunderstorm, where radar reflectivity values may not be

as high. As a result, tornado and wind reports may not be well covered by Prob-

Severe objects and derived warning plumes at the time of the report, but should

generally still fall within a PHI plume prior to the severe weather occurrence.

These findings again demonstrate a potential limit of predictability resulting

from the precision of the ProbSevere model, and may partially explain the lack

of improvement in the number of warning plume “hits” at shorter lead times

noted previously. These potential limitations are discussed further in section

4.2.2.

The automated PHI exhibited similar POD to the NWS-issued SBWs up

to about 10 minutes of lead time. Beyond 10 minutes, the fraction of LSRs

warned decayed at a much steeper rate for SBWs than for PHI, particularly in

the 20- to 40-minute timeframe. At these lead times, 15% to 20% more LSRs

were warned by a PHI warning plume than by an SBW, and 20% to 25% more

hail reports in particular. One likely explanation for these discrepancies can be

found in the official policy governing the issuance of SBWs. During 2015, NWS

policy (NWS 2014) recommended that tornado SBWs should generally have a

maximum valid duration of 45 minutes, while severe thunderstorm SBWs should
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typically have a duration of 60 minutes or less. Harrison and Karstens (2017)

found that only 5% and 1% of tornado and severe thunderstorm SBWs respec-

tively have exceeded these directives since the operational implementation of

the SBW paradigm in 2007, and a majority of warnings had durations much

shorter than the maximum recommended. However, automated PHI warning

plumes are currently restricted to a maximum duration of 120 minutes, and

these durations are determined at each issuance using a predictive machine-

learning technique (McGovern et al. 2017, 2018b). These potentially longer

durations likely account for much of the increased POD of the PHI plumes at

longer lead times compared to the SBWs. Recall, however, that the uncondi-

tioned FAR and FAA of the automated ProbSevere objects and derived PHI

products are not considered in this thesis. As mentioned before, less than 1% of

all automated ProbSevere objects were associated with a storm that produced

an LSR. Therefore, in this alternative warning paradigm, forecasters would still

be required to apply their meteorological knowledge and experience to deter-

mine which automated objects should be assigned a warning, similar to how

SBWs are issued today. Specifically, these results suggest that NWS forecast-

ers would be able to maintain or improve upon current predictability and lead

time metrics while providing end-users with frequent probabilistic information

simply by making the same warning decisions with PHI as they currently make

in the SBW paradigm.

In addition to the predictability assessment, it is worth investigating PHI

warning plumes that were issued for a storm that produced an LSR but did not

actually contain that LSR. When the PHI plumes missed an LSR at short lead

times, they missed by a short distance, and this distance generally increased

with increasing lead time. PHI warning plumes missed the impacted area by
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Figure 4.5: Miss distance distributions [violin plots (Hintz and Nelson 1998)]

for PHI warning plumes that did not contain an LSR as a function of lead time.

The number of plumes in each bin is listed above each violin.

an average of 10 km at the time of the LSR, with a median miss distance of

about 5 km (Fig. 4.5). Plumes that missed an LSR at 10 minutes of lead time

missed by an average of 13 km, and this increased to about 21 km for plumes

valid 60 minutes before the LSR was received. It should be noted that nu-

merous studies (e.g. Witt et al. 1998b; Trapp et al. 2006; Elsner et al. 2013)

have discussed the limitations of using storm reports for warning verification,

including errors in report times and locations. However, anecdotal case studies

and results obtained during the 2015 and 2016 PHI prototype experiments also

suggest that the automated ProbSevere objects may occasionally be too precise

in their depictions of severe weather hazards, potentially missing severe events

that occur around and beyond the outer flanks of a storm. These results intro-

duced questions about how the PHI systems conditional predictability could be

enhanced if the automated ProbSevere objects and derived PHI plumes were
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Figure 4.6: Example of a 5 km buffer applied to a typical ProbSevere object.

expanded spatially to cover a larger area. Therefore, additional research was

performed to assess how the predictability of spatially buffered ProbSevere ob-

jects compares to that of unbuffered objects, particularly for severe events that

may occur beyond the borders of the original first-guess guidance.

4.2.2 Buffered Verification

To determine how increasing the size of an automated ProbSevere object would

impact predictability, a series of buffers were applied to each PHI plume in this

analysis, such that the outer edge of each plume was systematically expanded

outward from the centroid by 2, 5, and 10 km (Fig. 4.6). These modifications

were first manually performed on a subset of plumes, and then synthetically

applied to the rest of the dataset by reclassifying any plumes that missed a

report by less than 2, 5, or 10 km respectively as a “hit”. The synthetic method

was then checked against the manually buffered objects to verify the accuracy

of the results.

Under the forecast-centric perspective, the percent of plumes verified (suc-

cess ratio) at the time of a report saw a notable increase with just a 2 km buffer

applied, increasing from about 80% (Fig. 4.7a) to 84% (Fig. 4.7b) of warning
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plumes verified when considering all reports. Applying 5 km (Fig. 4.7c) and 10

km (Fig. 4.7d) buffers to the automated warning plumes resulted in additional

improvement, with about 89% and 93% of plumes containing an LSR at the time

of the report, respectively. Similar improvements were also noted at longer lead

times, particularly in the percent of plumes verified between 20 and 40 minutes

prior to the report. As might be expected, these results suggest that applying

geometric buffers to the original ProbSevere objects can systematically reduce

the conditional FAR of the automated guidance by partially accounting for un-

certainty in a severe storms location and error in the location of the associated

LSR. However, the reduced improvement in the number of warning plume “hits”

at shorter lead times discussed in section 4.2.1 not only remained, but extended

to longer lead times with increasing buffer size. For instance, the percent of

plumes verified by an LSR began to exhibit reduced improvement at around

10 minutes of lead time with a 2 km buffer applied. With a 5 km buffer, this

threshold extended to about 20 minutes of lead time, and when a 10 km buffer

is applied, reduced improvement appeared as early as 25 minutes prior to an

LSRs time of occurrence. These findings further highlight this potential limit of

predictability within the ProbSevere model and introduce questions about why

the automated guidance continues to miss LSR events even with a buffer ap-

plied, and what meteorological circumstances differentiate a missed event from

a hit.

Despite the marked increase in the number of warning plume “hits” demon-

strated across all lead times under the forecast-centric perspective, most im-

provement in the conditional POD of the warning plumes was seen across the

longer lead times (Fig. 4.8a). At the time of the report, the cumulative frac-

tion of LSRs warned by the automated PHI increased by about 2% with a 2
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Figure 4.7: As in Fig. 4.3, but with a (a) 0 km, (b) 2 km, (c) 5 km, and (d) 10

km buffer applied to the automated ProbSevere objects and their derived PHI

warning plumes.
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km buffer, and by roughly 8% when a 10 km buffer was applied. However,

these improvements generally increased with increasing lead time. Recall that

this observation-centric perspective only considers the first warning plume to

contain a given LSR when calculating lead time. As such, Fig. 4.8 shows the

cumulative fraction of LSRs with a maximum lead time greater than or equal

to a given lead time, as in Fig. 4.4. Therefore, this discrepancy in improve-

ment seen under the forecast-centric and observation-centric perspectives likely

indicates that although LSRs are being warned earlier and more consistently

with a buffer applied, the automated guidance isnt necessarily catching more

LSR events. In particular, the ProbSevere model is likely already predicting as

many severe weather events at shorter lead times as it is currently able, regard-

less of buffer. These results also lend evidence to support the hypothesis that

the geometric precision of the original ProbSevere objects may serve as another

limit of predictability, such that the likelihood of providing extended lead time

for a severe weather event is subject to a storms motion variability and other

non-linear influences.

This buffer technique was also applied to SBWs, and the new cumulative

POD was plotted as a function of lead time as shown in Fig. 4.8b. Similar to

the PHI warning plumes, the cumulative POD of the SBWs showed little im-

provement with a buffer applied, with an increase of just 1% noted with a 10 km

buffer at the time of the report. However, unlike the PHI plumes, SBWs did not

exhibit any notable improvement at the longer lead times. These results can be

largely explained by considering the potential predictability limitations affecting

each warning method. Because the ProbSevere model produces storm objects

for any storm that meets certain reflectivity and area thresholds, and because

the experimental assumptions stated in section 4.1 provide PHI warnings for
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Figure 4.8: As in Fig. 4.4, but with a 0 km, 2 km, 5 km, and 10 km buffer

applied to the automated ProbSevere objects and their derived PHI plumes (a)

and SBWs (b).

any object associated with a storm that produced an LSR, most missed events

are likely due to limitations of the storm tracking algorithms and variability in

storm motion as discussed previously. However, the SBWs in this analysis were

issued by human forecasters without prior knowledge of which storms would

produce an LSR. Given the results shown in Fig. 4.8b, it is therefore likely that

most events not warned by a SBW were missed due to limitations in scientific

knowledge (Brooks 2004) rather than the geometries of the warning polygons.

New functionality added to the PHI prototype tool prior to the 2017 PHI

experiment enabled forecasters to not only add a buffer around an automated

object, but also to spatially shift the buffer such that the additional area is

only added to one side of a storm. For instance, in the case of a classic tornadic

supercell, forecasters could adjust the area of the object to better cover the hook

echo and forward flank of the storm, where a tornado or damaging straight-line

winds may occur. This could also be used to add warning area behind a storm
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to ensure end-users remain in a warning until the threat has completely passed,

or to indicate a storm may be changing direction or splitting, etc.

4.2.3 Area Statistics

Although this thesis did not attempt to calculate FAA performance metrics, a

discussion of buffer verification would be incomplete without the inclusion of

plume area statistics. In particular, the spatial areas swept out by unbuffered,

automated PHI plumes conditionally verified by an LSR were calculated and

compared to those of verified NWS-issued SBWs (Fig. 4.9). Overall, the auto-

mated plumes averaged an area of about 6,000 km2, with a median area of 3,525

km2. When stratified by report type (Fig. 4.9a), it can be seen that warning

plumes conditionally verified by tornado LSRs covered the smallest area, with

a median of 2,264 km2. Plumes conditionally verified by hail LSRs were deter-

mined to have a median area of 2,663 km2, and those verified by wind reports

came in at 4,795 km2. Most area distributions (represented by violin plots;

Hintz and Nelson 1998) were skewed towards lower values, with peaks generally

well below the median.

SBWs were smaller on average than the unbuffered PHI, with a mean area of

about 2,200 km2 and a median of 1,430 km2 across all report types (Fig. 4.9b).

Warnings verified by a tornado report (both severe thunderstorm and tornado

SBWs) had the smallest median area of 951 km2, followed by hail-verified warn-

ings at 1,161 km2. SBWs that verified with a damaging wind report had a

median area of 1,835 km2. These results suggest that SBWs provide a more

precise warning area than the automated guidance. Perhaps this is to be ex-

pected as another limit of predictability, as it is reasonable to assume that
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improvements in severe weather detection come at the expense of larger fore-

cast areas and consequently FAA. However, another possible explanation may

be related to the way PHI plumes are derived. As mentioned in section 4.1 and

Karstens et al. (2015), the area swept out by a PHI warning plume is a function

of a storms motion uncertainty, expected duration, and the geometric attributes

of the plumes parent storm object. Furthermore, it was stated in section 4.2.1

that the automated PHI warning plumes are restricted to a maximum predicted

duration of 120 minutes, or twice the length of a typical SBW duration. There-

fore, it is hypothesized that PHI warning plumes may be spatially larger than

SBWs simply because they are valid for longer periods of time.

To demonstrate this hypothesis, the polygonal areas provided by PHI warn-

ing plumes and SBWs were normalized by their duration as shown in Fig. 4.9c,d.

As expected, verified PHI products were generally given much longer durations

than SBWs, with mean values of about 77 and 45 minutes respectively across

all report types. This difference did help to bring the PHI warning plume nor-

malized areas closer to those of the operational SBWs, but SBWs continued to

exhibit smaller normalized areas overall. For example, SBWs verified by any

LSR had a median normalized area of 31 km2/min while PHI warning plumes

covered a median of 48 km2/min. Even so, the normalized distributions rep-

resented by the violin plots in Fig. 4.9c,d demonstrate that the PHI warning

plumes are comparable to SBWs when duration is taken into consideration.

Thus, the tradeoff for increased lead time is an increase in implied warning

area. Ultimately, it is likely a combination of predictability limitations, du-

ration differences, paradigm differences, and the object identification methods

used by ProbSevere that account for these discrepancies between SBWs and the

PHI warning plumes. These quirks and limitations of the automated guidance
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Figure 4.9: (a) PHI warning plume area distributions [violin plots (Hintz and

Nelson 1998)] broken down by associated LSR type. (b) As in (a) but for

SBWs. (c) Normalized PHI warning plume area distributions broken down by

associated LSR type. Area is normalized by each plumes valid duration. (d) As

in (c) but for SBWs.
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leave forecasters with the challenge to not only correctly pick which storms will

produce severe weather, but also to systematically adjust the associated warn-

ing plumes such that they cover the areas at risk while balancing over-warning

considerations.
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Chapter 5

Automated Probability Trend Predictions

As stated in section 2.2, the ProbSevere automated guidance produces the di-

agnostic probability that a storm will produce severe weather within the next

120 minutes. This value represents the total likelihood that severe weather will

occur during the valid time frame, but does not provide information on how that

probability may change with time. For example, a decaying thunderstorm may

be more likely to be severe within the next 5 to 10 minutes than it is 40 minutes

from the analysis time. Similarly, growing convection could have a low proba-

bility of producing severe weather in the near term, but be in an environment

where it is likely that the storm will become severe later in its lifetime.

During the 2015, and 2016 PHI prototype experiments, participating NWS

forecasters were provided the ProbSevere diagnostic probability that each storm

object would be associated with severe weather. The forecasters were then asked

to predict how these probabilities would change in time, and their predictions

were used to populate gridded warning plume probabilities as described in sec-

tion 2.3. Because ProbSevere provides no information on how these probabilities

will change with time, forecasters were provided a limited first-guess prediction

such that the initial probability of severe was set equal to the current ProbSevere

diagnostic probability for each forecast. These probabilities were then reduced

linearly with increasing forecast time, such that there would be a probability

of 0% at the forecaster-specified end time of each plume (Fig. 5.1; Karstens
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Figure 5.1: Default linear decrease from the current diagnostic ProbSevere prob-

ability to 0% by the end time of a warning plume.

et al. 2015). In addition, functionality was included within the PHI prototype

interface that allowed forecasters to adjust these probability trends by manually

changing the probability at each time step, or by setting an initial value and

a final value which could then be used to automatically fit a positive exponen-

tial decay, negative exponential growth, or bell curve function to those points

to account for subjectively-derived dynamic evolution similar to the scenarios

described previously (i.e., decaying thunderstorm).

Karstens et al. (2015) found using a grid-based method, not replicated in

this thesis, that forecasters participating in the 2014 PHI prototype experi-

ment showed some reliability when issuing lower probability forecasts, but their

predictions generally tended to over-forecast in the mid- to high-probability

spectrum (Fig. 5.2). In fact, the participating forecasters’ average reliability

fell near climatology, and well below the skill-no-skill line during the week-long

52



Figure 5.2: Reliability diagram displaying the mean probabilistic forecasts of all

forecasters participating in the 2014 PHI prototype experiment, verified using

MESH values ≥ 1 in. For comparison, probabilistic forecasts were generated

using a linear decay rate for the recommended probability value. Modified from

Karstens et al. (2015), their Fig. 15a.
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experiments. In contrast, the diagnostic predictions from an early prototype

probability model similar to ProbSevere exhibited reliability that generally fell

between the skill-no-skill line and perfect reliability. The model also tended

to over-forecast at higher probabilities, but at a rate much less than the fore-

casters. Note that the skill-no-skill line falls halfway between climatology and

perfect reliability.

Feedback from this and later PHI prototype experiments suggest that NWS

forecasters lack direct experience with how a storm’s probability of producing

severe weather may evolve in different convective situations. To address this

limitation, the second goal of this thesis is to use machine learning techniques

to produce a first-guess model capable of predicting how a storm’s probability

of being severe will change with time. I hypothesize that such a model could

facilitate an improved first-guess probability trend based on particular meteo-

rological situations rather than a default linear decay, and potentially improve

forecaster interdependence with the automated guidance.

5.1 Training Data

Any model or process that modifies data associated with a ProbSevere storm

object as part of the experimental PHI prototype tool is required to complete its

task in less time than the ProbSevere update interval (~2 minutes). To meet this

requirement, it was therefore necessary to only use data that is readily avail-

able at runtime for training, and only variables provided by or derived from

the BTRT-corrected ProbSevere model output (see section 2.2) were considered

in this thesis. In particular, the time-of-analysis MUCAPE, EBS, and MESH

54



Description Data Fields

RAP Fields MUCAPE, EBS, ∆t−1MUCAPE, ∆t−1EBS

Storm Attributes MESH, ∆εtot, ∆ice, ∆t−1MESH, ∆t−1∆εtot,

∆t−1∆ice

Geometric Attributes Area, Perimeter, ∆t−1Area, ∆t−1Perimeter

Metadata Direction, Duration, Velocity South, Velocity East,

∆t−1Direction, ∆t−1Duration, ∆t−1Velocity South,

∆t−1Velocity East

ProbSevere Probability Current Prob, Max Prob, Prob Variance,

∆t−1Prob, ∆t−2Prob

Table 5.1: Inputs used to train each machine learning model to predict how the

probability of a storm being severe will change with time. ∆t−1 indicates the

change in a variable between the current and previous time step (~2 min).

were extracted from the radar-based ProbSevere storm objects, and the glacia-

tion rate (∆ice) and growth rate (∆εtot) were gathered from the satellite-based

objects to provide a representation of the atmospheric environment of each

storm. In addition, geometric attributes, such as an object’s polygonal area

and perimeter, were derived from the radar-based storm objects to represent

physical changes in a storm. Metadata for each object, including a first-guess

storm duration prediction provided by McGovern et al. (2017, 2018b) and the

storm’s motion vector were also included in the training dataset. Finally, the

current ProbSevere diagnostic probability was provided as input for training to

act as an initial boundary condition for the machine learning model.

Short temporal trends for each of these variables were created by calculating

the change in each value between the previous and current ProbSevere model
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output (~2 min). If a storm object had only been in existence for a single time

step at the time of analysis, then the temporal change was set to 0 for each

variable. In addition, the change in the ProbSevere diagnostic probability for

a given object was calculated for two time steps prior to the current time (~4

min). The maximum diagnostic probability and variance was then calculated

for the entire lifespan of each storm up to the time of analysis. This resulted

in 29 total variables available to use as inputs for training a machine learning

model. A full list of the training input variables is provided in Table 5.1.

5.2 Machine Learning Algorithms

A combination of linear and ensemble regression learning algorithms were trained

and compared in this thesis, including a random forest regressor, AdaBoost re-

gressor, gradient boosting regressor, and an elastic net. In addition, an isotonic

regressor was applied to the output of each of those models in an attempt to

correct for model bias. These machine learning algorithms and techniques are

briefly described in the following subsections.

5.2.1 Random Forests

A random forest (Breiman 2001) is a collection of classification or regression

trees (Breiman 1984) in which each tree is trained on data that is bootstrap

resampled with replacement from the training dataset, and a small random

subset of the total number of training variables are evaluated for splitting at

each node within each tree. This random sampling method forces tree nodes to

split along the best variable in the subset instead of the best overall variable,

meaning that some trees in the forest are grown from suboptimal features within
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a dataset. As a result, random forests grown in this way exhibit greater tree

diversity, which trades a higher model bias for lower variance compared to other

tree-building techniques (Géron 2017). Once a sufficient number of trees have

been grown from the input data, the final prediction from the forest is output

as the mean of the predicted values from all individual trees. By averaging

the results from all trees in this manner, random forests are able to produce a

smoother range of predicted values with lower variance than a single decision

tree (Strobl et al. 2008).

5.2.2 AdaBoost

Géron (2017) defines boosting as any ensemble method that can combine sev-

eral weak learners into a strong learner. Specifically, most boosting techniques

train each iteration of a model sequentially, with each iteration trying to correct

the errors of the previous iteration (Freund and Schapire 1997; Drucker 1997).

The Adaptive Boosting technique (AdaBoost; Freund et al. 1996; Freund and

Schapire 1997; Friedman 2001, 2002) follows this approach by first building and

training a base regression model (typically a decision tree) to make predictions

on an input training dataset. The error in the prediction of each training in-

stance is then calculated, and relative weights are assigned such that training

samples with larger error are given a larger weight. AdaBoost then trains an-

other regression model on the same input data, but with the weights applied

such that training instances with large errors in the previous iteration con-

tribute more to the current predictor’s cost function. The weights are then

updated based on the performance of the new model. This method effectively

forces each iteration of AdaBoost to focus more on correctly predicting training

samples that had a large error in the previous iteration.
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Once a specified number of predictors have been trained, a new set of weights

is applied to each predictor, such that those with large overall error on the

weighted training dataset are weighted less than those with low overall error.

Final predictions from AdaBoost are then computed similarly to those of ran-

dom forests, except instead of treating each predictor equally and taking an

ensemble average, AdaBoost values the predictions of each predictor using the

weights assigned in the final step of the algorithm. This means that predic-

tors that had lower overall error on the training set contribute the most when

making the final predictions.

5.2.3 Gradient Boosting

As the name suggests, gradient boosting (Breiman 1997; Friedman 2001, 2002)

is another type of boosting technique. Similar to AdaBoost, gradient boosting

sequentially adds predictors to an ensemble, with each new member trained to

correct the errors of the previous iteration. However, where AdaBoost applies

weights to the training data in an attempt to reduce the errors of each new

iteration, gradient boosting trains each new predictor on the residual errors of

the previous iteration (Géron 2017). For example, consider a regression decision

tree trained on some arbitrary dataset. The training set residual error for that

tree is the difference between the true value of each sample and the predicted

value for that sample. Using the gradient boosting technique, a new decision

tree is then fit to the training dataset such that the residual errors of the previous

tree are the expected output for each training sample. The training set residual

errors for the new predictor are then calculated and the process is repeated.

Once a specified number of predictors have been trained, the final prediction

of a gradient boosted ensemble is then simply the sum of the predictions of all
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predictors in the ensemble. One disadvantage of gradient boosting is that is

generally takes longer to train than the other methods discussed in this thesis

because the learning processes cannot be parallelized. That is, each tree must

be trained sequentially, and only one tree can be grown at a time. However,

several studies (e.g. McGovern et al. 2017; Gagne II et al. 2009) have shown

that gradient boosting may produce more robust models that are able to better

generalize to noisy input data than other learning techniques.

5.2.4 Elastic Nets

In contrast to the previous three learning techniques, an elastic net (Zou and

Hastie 2005) is a type of linear regression model that constrains the weights of

each input variable to regularize the output of the model by reducing the num-

ber of polynomial degrees (Géron 2017). This regularization forces the model

to not only fit the data, but to keep the weights of each input feature as small

as possible to avoid overfitting. In particular, elastic nets combine the regu-

larization techniques of Ridge regression (Hoerl and Kennard 1970) and least

absolute shrinkage and selection operator (Lasso; Tibshirani 1996) regression

models, such that the cost function for an elastic net can be represented as

J(θ) = MSE(θ) + rα

n∑
i=1

|θi|+
1− r

2
α

n∑
i=1

θ2i . (5.1)

Here, r is the mix ratio, where r = 0 gives a cost function equivalent to that of a

Ridge regression model and r = 1 is equivalent to lasso regression. The hyper-

parameter α determines how much regularization to apply, and θ represents the

weights of each input variable. The primary practical difference between ridge

regression and Lasso regression regularization techniques is that Lasso regular-

ization tends to completely eliminate the weights of the least important features
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by setting them to 0 (Géron 2017). By incorporating a blend of both regular-

ization techniques, elastic nets are able to outperform both Lasso and Ridge

regression individually, particularly when the number of training variables is

much larger than the number of training samples (Zou and Hastie 2005).

5.2.5 Isotonic Regression

In this research, each of the previous machine learning techniques produces

a probability value representing the likelihood of severe weather at a given

forecast time. However, anecdotal test cases found that these models can be

prone to over or under forecasting the probability of a severe storm in various

circumstances, resulting a reliability graph that is systematically offset from the

one-to-one line (Wilks 2011). To account for this, an isotonic regressor was used

to attempt to correct any model bias in this analysis.

Isotonic regression (Dykstra and Robertson 1982) is a form of statistical

inference (Barlow 1972) that is restricted by the order of the data. Specifically,

an isotonic regressor finds a non-decreasing approximation of a function while

minimizing the mean squared error of the training data1. This type of model

does not assume linearity or any other specific form for the target function,

except that each point of the function must be greater than or equal to the

previous point (non-decreasing). In practice, isotonic regression is used as a

calibration technique which trains on the probabilistic output from another

model in order to adjust those probabilities to more closely follow the one-to-

one line on a reliability graph (Zadrozny and Elkan, 2002). Isotonic regression

was applied to the output of each of the previously discussed models as described

in section 5.3.

1http://scikit-learn.org/stable/auto examples/plot isotonic regression.html
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5.3 Machine Learning Methods and Procedures

As stated in Chapters 3 and 4, there were a total of 1,520,330 unique BTRT-

corrected ProbSevere storm objects during the spring and early summer months

(April - June) of 2015 that were available to train and test machine learning

models on for this thesis. However, because the ProbSevere model produces

storm objects for any storm that meets minimum intensity and area thresholds

(section 2.2), a disproportionate number of storm objects in the dataset had

very low (< 10%) probabilities of producing severe weather at any point in

their lifetimes (Fig. 5.3). Because of this, it was necessary to first apply an

undersampling technique to balance the training dataset.

Undesampling was performed by first calculating the maximum diagnostic

probability of severe that ProbSevere predicted during the entire lifetime of each

storm object. That is, the diagnostic probability of severe for every storm object

at every analysis time in that storm’s lifetime was compared, and the maximum

value was taken as the maximum probability for that storm. All storm objects

were then stratified by their maximum probability values into 10% bins. In

order to produce a well-calibrated model, the training input dataset required

an approximately equal representation of storms in each maximum probability

bin. Therefore, the undersampled dataset was created by randomly sampling

without replacement from each bin, until the number of samples drawn from

each bin equaled the number of samples in the smallest bin (Fig. 5.3). The

final training dataset used for training the base models was then made up of

each individual analysis time of every automated ProbSevere storm object in

the undersampled dataset.
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Figure 5.3: Cumulative density functions of the maximum ProbSevere diagnos-

tic probability prediction of the original dataset (blue) and the undersampled

dataset (red). The data was binned in 10% increments, such that the cumula-

tive density reported at a given probability is the percent of ProbSevere objects

with a maximum ProbSevere probability prediction ≤ that probability.
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Recall that each bin is based on the maximum probability of severe over

a storm’s entire lifetime. However, this does not take into account any of the

individual probabilities predicted at a given analysis time for each storm. Anec-

dotally, severe thunderstorms tend to have lower ProbSevere probabilities early

in their lifecycle and then gradually or rapidly ramp up to higher severe prob-

abilities as the storms mature. As such, even storms with a higher maximum

probability of severe have lower diagnostic probabilities for part of their life-

cycle. Because every individual analysis time of a ProbSevere storm object

was included separately in the undersampled training data, this means that

there were still more individual samples with lower diagnostic ProbSevere prob-

abilities. Therefore, all models trained on the undersampled dataset were still

exposed to imbalanced probabilities but at a greatly reduced rate than in the

original data.

K-fold cross validation (Kohavi et al. 1995) was used to train and tune

hyperparameters for a random forest, AdaBoost regressor, gradient boosting

regressor, and an elastic net. ProbSevere objects from 9 April 2015 to 1 May

2015 were chosen as the training and validation dataset and partitioned into

five folds composed of five sequential days of data. At least one day of data

was withheld between each fold to preserve sample independence. Each model

and hyperparameter choice was then trained on data from four of the folds

and validated on the remaining fold. This process was repeated five times for

each model (5-fold cross validation), such that each fold was used for validation

exactly once per model. Finally, the mean absolute error (MAE) was calcu-

lated for each validation fold, and the average MAE of all five validation folds

was reported as the validation performance for that model and hyperparameter

selection. Confidence intervals were also computed for each model using the
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bootstrapping percentile method (Efron and Tibshirani 1986). This technique

randomly chooses samples with replacement from each validation fold and then

calculates the absolute error of each prediction in the bootstrapped data. The

95% confidence interval is then reported as the upper and lower 2.5% points of

the distribution, where 95% of the absolute error of the bootstrapped predic-

tions falls between those values (Efron and Tibshirani 1986).

The best hyperparameters for each model were determined by identifying

the hyperparameter selection that resulted in the lowest validation MAE and

smallest confidence interval. An isotonic regressor was then trained on the

predictions of each model as described in section 5.2.5. ProbSevere objects from

1 May 2015 to 1 June 2015 were used to perform this model calibration, again

using 5-fold cross validation with five sequential days of data in each fold. As

before, more than 90% of the ProbSevere objects in the calibration dataset had

maximum probabilities of less than 10%, so undersampling was again performed

to avoid under-predicting the more severe storms. Finally, the best models

trained by each of the four learning techniques with and without the isotonic

regression calibration were tested on ProbSevere objects from 1 June 2015 to

1 July 2015, and the MAE and confidence intervals were reported. Early tests

indicated that the models generally did not perform well on ProbSevere objects

with a diagnostic probability ≤ 15%, likely due to the undersampling methods

used for training. Furthermore, results and anecdotal observations from the 2015

and 2016 PHI prototype experiments indicate that forecasters generally don’t

directly interact with ProbSevere storm objects with a diagnostic probability

≤ 15%. Therefore only objects with a diagnostic probability > 15% at a given

time step were included in the validation and test sets to better represent how

the models may perform in an operational environment.
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5.4 Model Performance

Validation scores and confidence intervals for the best hyperparameter selec-

tions for each model and isotonic regression are provided in Tables 5.2 and 5.3.

In general, each model exhibited similar mean performance on the validation

set data, with MAEs ranging from 17.7% with the gradient boosting regressor

to 19.3% for the random forest model. Validation set error was reduced for

all models when only considering forecast times ≤ 10 min., with the gradient

boosting regressor once again providing the lowest MAE at 8.19%. Similarly,

MAEs increased when only considering forecast times > 10 min. Interestingly,

the models calibrated by the isotonic regression did not perform notably bet-

ter than the uncalibrated models. In fact, the validation set MAE actually

increased slightly for each model, both at short and long forecast times. One

possible explanation for this is that the initial models were already relatively

reliable and did not need additional calibration. In this case, the isotonic regres-

sion may have overfit the predictions of the base models, resulting in increased

error.

While each model and isotonic regression generally had a validation set MAE

around or less than 20%, the 95% confidence intervals for each model varied more

noticeably. For example, the gradient boosting regressor exhibited a mean val-

idation set confidence interval of 0.007% - 68.8%, while the AdaBoost regressor

had a confidence interval of 0.122% - 56.2%. Overall, each model exhibited

validation set confidence intervals of approximately 0% - 65%, though the up-

per bound reduced to about 40% when only considering short forecast times.

These results indicate that although the models are able to make forecasts

with relatively low error on average, they still occasionally produce probability
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predictions with large absolute error compared to the ProbSevere diagnostic

output. One possible explanation for this can be traced back to how Prob-

Severe produces its diagnostic probabilities. Recall from section 2.2 that the

ProbSevere model is a naive Bayesian classifier which primarily relies on the

most recent satellite and radar observations to produce diagnostic probability

assessments. This means that the ProbSevere probabilities are sensitive to rapid

changes in a storm or its surrounding environment, and as such, the ProbSevere

diagnostic probabilities often exhibit large changes over short time periods. In

contrast, the machine learning models in this thesis are trained on both cur-

rent observations and observational trends from the past one to two time steps.

By including temporal trends for each variable as inputs into the models, each

machine learning algorithm is trained in a way that essentially smooths over

changes in the diagnostic ProbSevere probabilities as shown in Fig. 5.4. Ad-

ditionally, all machine learning algorithms utilized in this thesis except for the

Elastic Net are ensemble regressors which inherently produce a smoother range

of probability predictions than an individual decision tree or statistical model

(Strobl et al. 2008). These smoothing effects are likely partially responsible for

the large confidence intervals of the machine learning models.

Because each model exhibited similar performance such that no one model

was significantly better than the others, an ensemble approach was chosen to

make the final probability predictions. In this method, each model separately

predicts the probability that a storm will be severe at each forecast time, and

these predictions are then averaged to produce the final ensemble prediction.

Numerous studies (e.g. Hamill et al. 2000, 2003; Lewis 2005) have demonstrated

the benefits of ensemble approaches over the use of a single model for diagnos-

tic and probabilistic forecasts. For example, Whitaker et al. (2006) noted that
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Random

Forest

AdaBoost Gradient

Boosting

Elastic Net

Base

All Times 19.3 18.6 17.7 18.9

Short Times 9.56 10.2 8.19 14.8

Long Times 22.4 23.6 20.4 22.5

Isotonic

All Times 20.7 20.9 20.5 21.4

Short Times 10.6 10.2 11.8 14.9

Long Times 23.9 24.3 23.2 23.5

Table 5.2: Validation set MAE for each base regressor and with isotonic regres-

sion applied at all forecast times, short forecast times (≤ 10 min.), and long

forecast times (> 10 min.)
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Random

Forest

AdaBoost Gradient

Boosting

Elastic Net

Base

All Times .417 - 61.6 .122 - 56.2 .007 - 68.8 1.08 - 57.6

Short Times .044 - 41.3 0.00 - 39.9 0.00 - 43.1 .662 - 42.1

Long Times 1.24 - 63.4 1.72 - 57.8 .658 - 70.9 1.36 - 59.7

Isotonic

All Times .544 - 61.4 .619 - 58.4 1.07 - 59.4 1.10 - 59.1

Short Times .221 - 41.8 .186 - 40.8 .598 - 41.0 .542 - 43.3

Long Times 1.54 - 63.5 1.60 - 60.0 1.32 -64.4 1.51 - 61.2

Table 5.3: Bootstrapped validation set confidence intervals for each base re-

gressor and with isotonic regression applied at all forecast times, short forecast

times (≤ 10 min.), and long forecast times (> 10 min.)
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Random

Forest

AdaBoost Gradient

Boosting

Elastic

Net

Ensemble

Base

All Times 20.7 21.5 18.9 21.9 20.4

Short Times 10.6 11.1 9.24 15.6 11.3

Long Times 24.0 24.8 21.9 24.0 23.3

Isotonic

All Times 21.0 20.9 20.7 22.0

Short Times 10.8 10.7 11.9 15.5

Long Times 24.3 24.2 23.5 24.0

Table 5.4: As in Table 5.2, but for test set MAE. The ensemble MAE is calcu-

lated by averaging the predictions of all eight models at each forecast time.

Random

Forest

AdaBoost Gradient

Boosting

Elastic

Net

Ensemble

Base

All Times .379 - 62.2 .111 - 56.3 .003 - 69.2 1.19 - 56.7 .930 - 58.6

Short Times .015 - 42.2 0.00 - 40.2 0.00 - 44.0 .662 - 43.0 .398 - 40.7

Long Times 1.53 - 64.5 1.96 - 57.9 .794 - 71.6 1.67 - 58.7 1.69 - 60.6

Isotonic

All Times .413 - 62.2 .579 - 57.3 1.09 - 62.4 1.08 - 59.4

Short Times .064 - 42.1 .300 - 41.2 .825 - 40.7 .589 - 43.7

Long Times 1.70 - 64.4 1.68 - 59.0 1.37 - 64.6 1.67 - 61.3

Table 5.5: As in Table 5.3, but for test set MAE. Ensemble confidence intervals

are calculated by averaging the predictions of each model at each forecast time.
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ensembles of forecasts with a single model suffer from a deficiency in spread,

partly because they do not represent the error in the forecast model itself. Their

observation is of particular importance to this research, as random forest, Ad-

aBoost, and gradient boosting regressors are all ensemble learning algorithms

(see section 5.2); therefore, the predictions from any one of these models are

likely to be biased by the errors of that model. However, by taking an ensem-

ble of all four base regressors and their isontonic calibrations, it is possible to

incorporate the strengths of each model to better balance out their inherent

biases.

The test set MAE and confidence intervals of each calibrated and uncali-

brated model, as well as for the ensemble as a whole, are provided in Tables 5.4

and 5.5. Overall, each individual model exhibited similar test set performance

to that reported for the validation set, with the gradient boosting regressor

again reporting slightly lower MAE than the other individual models. Averag-

ing the predictions from each model resulted in a test set MAE of 20.4% for the

ensemble, with a 95% confidence interval of 0.930% - 58.6%. Note that the en-

semble test set MAE outperformed all but two of the eight individual members.

Similarly, the ensemble 95% confidence interval was smaller than all but that of

the AdaBoost regressor and its isotonic calibration. These results further sup-

port the use of an ensemble rather than an individual model, as the ensemble

was able to achieve MAE near to that of the gradient boosting regressor (low

MAE, large confidence interval), with a confidence interval similar to what was

achieved by the AdaBoost regressor (high MAE, small confidence interval).

A series of case studies were also performed to further evaluate the ensem-

ble. In these studies, the ensemble was provided with a single ProbSevere storm

object at a single analysis time and asked to predict the probability that the
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Figure 5.4: Probability predictions for a single ProbSevere storm object with

a predicted duration of 37 minutes at a single analysis time. The ensemble

average for each forecast time is shown in a thick black, and the actual diagnostic

ProbSevere probability for the corresponding time is shown in a thick blue.

storm would be severe in 5 minute forecast intervals between the current analy-

sis time and the predicted end time of the storm (McGovern et al. 2017, 2018b).

The predictions from each individual model and the ensemble mean were then

plotted and compared to the true diagnostic ProbSevere probabilities at the

corresponding times (Fig. 5.4). These analyses anecdotally revealed that the

ensemble is generally successful at predicting the overall temporal trend of the

ProbSevere diagnostic probabilities, but often misses large changes in probabil-

ities over a short time span. In fact, the ensemble tends to essentially smooth

out the diagnostic ProbSevere probabilities as discussed previously, but this is

not necessarily undesired behavior. Recall that the purpose of this research is

to provide NWS forecasters with a first-guess probability trend to aid in the

issuance of probabilistic severe weather warnings. Therefore, it may not be
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necessary to capture every short-term change in a storm’s severe probability

as long as the general trend is well forecasted. These results indicate the need

to test the ensemble predictions in an operational environment where human

forecasters can subjectively evaluate the accuracy and value of the first-guess

predictions. To acquire these metrics, the ensemble was implemented in the

PHI prototype tool during the 2017 PHI prototype experiment, and the results

from the participating NWS forecasters are provided in Chapter 6.
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Chapter 6

Results from the 2017 Hazardous Weather

Testbed

The underlying theme of this thesis is to improve forecaster-guidance interde-

pendence in a new probabilistic warning paradigm. This ultimate goal was pur-

sued by providing verification metrics for the automated ProbSevere guidance

(Chapter 4) and designing a new model to provide forecasters with a first-guess

probability trend to use as a starting point when issuing probabilistic forecasts

(Chapter 5). Results from each of these tasks were determined experimentally

using assumptions to simulate how forecasters may use the PHI warning system

operationally. However, human input is needed in order to truly gauge the suc-

cess of this research; therefore NWS forecasters participating in the 2017 PHI

prototype experiment at the NOAA HWT were provided with the verification

results from Chapter 4 and the new probability trend models from Chapter 5.

This chapter focuses on how the forecasters utilized this new information and

functionality to issue experimental PHI warning plumes while balancing the

time constraints of operations during active severe weather events.
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6.1 Testbed Design

The 2017 PHI prototype experiment consisted of three weeks of experimenta-

tion, in which nine NWS forecasters were given the chance to issue experimental

PHI warnings on a series of three archived case studies and displaced real-time

events as described in Karstens et al. (2018). However, because the displaced

real-time events varied significantly from week to week, only results from the

archived case studies are presented herein. Each case study lasted for approx-

imately two hours and featured high-end severe weather events in the central

and southern Plains, including isolated supercells and supercell clusters that

produced long-track tornadoes and significant hail. During the course of the

experiment, each forecaster was exposed to a total of 41 LSRs, and 2,428 warn-

ing plumes were issued for 186 automated ProbSevere storm objects across the

three weeks. Note that this is a significantly smaller sample size than what was

used in the rest of this thesis, and this should be taken into consideration when

interpreting the results presented herein.

6.2 Forecaster and Model Predictions

6.2.1 Plume Verification

Chapter 4 focused on the verification of PHI warning plumes conditioned by

the assumption that a hypothetical forecaster is able to always issue warn-

ings that contain or are very near to an LSR at the earliest possible lead time

(section 4.1). However, the real world is rarely perfect, and the experimental

assumptions presented previously are unable to capture the human element that

a real forecaster provides in an operational setting. Therefore, this subsection
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offers a brief examination of how NWS forecaster-issued warning plumes ver-

ified when utilizing the automated ProbSevere guidance during the 2017 PHI

prototype experiment.

To better identify how the forecasters utilized the automated guidance, each

PHI warning plume was triplicated and post-processed into one of three cate-

gories: “original”, “no buffer”, and “automation only”. As the names suggest,

warnings in the “original” category were analyzed exactly as the forecasters is-

sued them, including any changes to the automated guidance such as spatial

buffers or changes to the motion vector. Warnings in the “no buffer” category

were stripped of any spatial buffer the forecasters may have applied, but all

other changes to the automation were left in place. Finally, warnings in the

automation only category had all forecaster modifications removed such that

the warning plume geometry and attributes were exactly what the automated

guidance produced. For comparison purposes, the forecaster-specified warning

durations were left the same across all three categories. Most warning plumes

had durations of 45 minutes or less, and no warnings were issued for longer than

60 minutes, regardless of the longer-recommended duration times provided by

the automation.

Interestingly, warning plume performance showed little difference between

the three categories overall. Under the forecast-centric perspective, about 75%

of the “original” forecaster-issued plumes contained an LSR at the time of oc-

currence, while about 69% and 70% of the “no buffer” and “automation only”

plumes contained an LSR at the same lead time, respectively (FAR of 25%,

31%, and 30% respectively; Fig. 6.1a). Warning plumes governed only by the

automated guidance had more hits than the forecaster-issued warnings between

20 and 30 minutes of lead time, but the forecaster-issued warnings generally
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Figure 6.1: (a) As in Fig. 4.3 and (b) as in Fig. 4.4 but both for PHI warning

plumes issued by forecasters during the 2017 PHI prototype experiment.
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performed better more than 35 minutes prior to an LSR. Similar results were

noted under the observation-centric perspective, with warning plume POD es-

sentially identical across all three categories within 15 minutes of an LSR (POD

of 0.6 at the time of an LSR). Again, the “automation only” plumes had a

slightly higher POD between 20 and 35 minutes of lead time, while the “orig-

inal” forecaster-issued warning plumes performed slightly better more than 40

minutes prior to an LSR.

Note that both the success ratio and POD in Figs. 6.1a and 6.1b were lower

overall during the 2017 PHI prototype experiment than during the three-month

period analyzed earlier in Chapter 4. This may be partially due to the limited

sample size from the PHI prototype experiment, as well as differences in the

experimental conditions and methods applied to the two datasets. Regardless,

these results are encouraging, as they show that forecasters not only utilized

the automated guidance during the experiment, but they also added value to

the forecasts, particularly at the longer lead times. Ultimately, this appears to

lend support toward improving forecaster interdependence with the automated

guidance, and demonstrates that forecasters can use the automated guidance

as a first-guess and identify situations requiring adjustments that can improve

forecast quality.

6.2.2 Probability Model Performance

Forecasters’ use of the new first-guess probability trend predictions was also

analyzed as part of the 2017 PHI prototype experiment. For this analysis, par-

ticipants were asked to issue PHI warning plumes as described in section 2.3,

but the mean ensemble probability trend predictions were provided in place of

the default linear decrease (Fig. 6.2). Forecasters retained the ability to modify
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Figure 6.2: Example showing the difference between the default linear decrease

probability trend provided to forecasters in 2016 (left), and the first-guess prob-

ability trend predictions provided in 2017 (right).

these probabilities as needed, or they could apply one of the aforementioned

smoothing functions to the predictions as well. It was noted that the random

forest ensemble member required more time to return probability trend predic-

tions than the update interval of ProbSevere (about 2 minutes). Therefore, the

random forest was removed from the ensemble in order to provide probability

trend predictions in real time during the experiment.

The primary objective of this analysis was to determine how much the NWS

forecasters changed the probability trend predictions produced by the first-guess

guidance, and to compare those changes with the diagnostic ProbSevere prob-

abilities. Karstens et al. (2018) showed that there was a significant change in

forecaster use of the provided probabilistic information between the 2016 and

2017 experiments, noting that forecasters in the 2017 PHI prototype experiment

used the ProbSevere diagnostic probability as the initial value in their trend pre-

dictions approximately six times more than participants in the 2016 experiment

(Fig. 6.3). Additionally, forecasters generally did not make significant changes

to the first-guess probability trend predictions in 2017, and most adjustments

to the predictions were to increase the probability of severe at a given forecast
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Figure 6.3: Percent usage of the first-guess diagnostic probability from ProbSe-

vere objects by forecasters in (a) 2016 and (b) 2017, where each bar represents

an idividual forecaster, light-blue shading represents above average usage, and

dark-blue shading represents below average usage for that year. Modified from

Karstens et al. (2018), their Fig. 12.

time (Fig. 6.4). For comparison, the median forecaster-issued and automated

first-guess probability predictions for each forecast time are shown in Fig. 6.4a,

where the shaded regions represent the 25th and 75th percentiles of each data

distribution. These percentiles were calculated by randomly sampling forecaster

and guidance predictions with replacement to create a bootstrapped dataset of

1000 samples each. The original default linear decrease was also calculated for

each forecast and plotted as the others.

Overall, the probability predictions provided by the first-guess ensemble did

not vary much with increasing forecast time, with a median probability of severe

of about 90% at the time of analysis, 77% at a forecast time of 20 minutes,

and 81% at a forecast time of 50 minutes. In contrast, median forecaster-

issued probability predictions steadily decreased from about 95% at warning

issuance to 88% at a forecast time of 20 minutes, before dropping sharply beyond

a forecast time of 45 minutes. This resulted in a median difference between
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Figure 6.4: (a) Median probability predictions by forecasters, the first-guess

guidance, and the default linear decrease as a function of forecast time. (b)

Median difference between the forecaster-issued predictions and the first-guess

and linear decrease predictions as a function of forecast time. The shaded re-

gions represent the 25th and 75th percentiles of the data distribution, calculated

using 1000 bootstrapped samples.
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the forecaster-issued and first-guess probability predictions of about 3% at all

forecast times (Fig. 6.4b). Note that there were only 47 PHI warnings issued

with a duration longer than 45 minutes.

This discrepancy between forecasters and the first-guess guidance at longer

forecast times may be partially due to differences in what the probabilities

being predicted actually represent. Specifically, the first-guess guidance was

trained to predict the diagnostic ProbSevere probability of severe at a given

forecast time. However, the section of the PHI prototype interface where fore-

casters modify these probabilities is labeled as “forecast confidence”, or the

forecaster-subjective probability that a storm will be severe at a given fore-

cast time (Fig 2.2; Karstens et al. 2018; Kahneman and Tversky 1972; Brooks

et al. 1992). While these two probability definitions can be interpreted in very

different ways (e.g. high confidence of low probability, low confidence of high

probability, etc.), anecdotal observations from the 2016 and 2017 PHI prototype

experiments show that forecasters tend to blend these two probability schemes,

such that the forecasters generally predicted probabilities consistent with the

first-guess guidance at short to medium forecast times and probabilities consis-

tent with subjective forecaster confidence at longer forecast times (decreasing

with time). These observations are somewhat evident in the results shown in

Fig. 6.4.

Both the forecaster-issued and first-guess probability predictions were found

to be largely accurate when compared to the diagnostic ProbSevere probability

corresponding to each forecast time of a given PHI warning plume. In gen-

eral, forecasters tended to slightly over-predict severe probabilities at short to

medium forecast times, and under-predict at medium to long forecast times.

Similarly, the first-guess guidance typically predicted probabilities that were
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Figure 6.5: (a) As in Fig. 6.4 but with the true diagnostic ProbSevere proba-

bility. (b) As in Fig. 6.4, but for the difference between the actual ProbSevere

probability and the forecaster and first-guess predictions.

lower than the true diagnostic ProbSevere probabilistic at all forecast times

(Fig. 6.5a). Even so, these differences are shown to not be significant, as the

median difference between the forecast and actual probabilities fell just along

and slightly below the 0% difference line for forecast-issued and first-guess prob-

ability predictions respectively (Fig. 6.5b). In addition, the 0% difference line

fell well within the 25th and 75th percentiles of each dataset, where each dataset

contained 1000 bootstrapped samples as before. These results are quite inter-

esting, as they show that the ensemble first-guess model performed well on most

storms that forecasters issued warnings for. Additionally, forecasters were able

to effectively utilize this new guidance as a first-guess and made adjustments

that resulted in a net improvement in the predictions.

Interestingly, there was a notable discrepancy in the reliability of forecaster-

issued and first-guess predictions, such that forecasters tended to significantly
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Figure 6.6: Reliability diagram for the forecaster-issued and first-guess proba-

bility predictions, as well as that of predictions from the default linear decrease.
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under-forecast at lower predicted probabilities (Fig. 6.6). In contrast, proba-

bility predictions made by the first-guess ensemble generally followed the one-

to-one line fairly closely, although it did tend to under-forecast somewhat in

the medium probability spectrum. Again, this discrepancy can partially be ex-

plained by the differences in what the probabilities predicted by the forecasters

and the model represent. As described previously, forecasters were noted to

frequently decrease their probability predictions at longer forecast times, pre-

sumably corresponding to a decrease in their personal confidence that the storm

would still be severe at those times. However, if the ProbSevere diagnostic prob-

ability did not decrease, then the forecasters lower confidence predictions would

result in an under-forecast of the true severe probability. Note that there were

very few warnings where either the forecasters or the first-guess guidance pre-

dicted a severe probability less than 30%. In fact, most predicted probabilities

at any forecast time during the 2017 PHI prototype experiment were in the

upper-probability spectrum, or from about 80% to 100% (Fig. 6.7). Forecasters

generally issued more high-probability forecasts than the first-guess ensemble,

whereas the ensemble predicted more mid-range probabilities. This is likely a

reflection of the high-end events selected for the case studies used in the ex-

periment, where storms often had impressive radar signatures that would lead

to high confidence that severe weather was occurring. This is further reflected

by the number of high diagnostic probabilities of severe predicted by the auto-

mated ProbSevere guidance, where nearly all storm objects with a PHI warning

had a diagnostic probability > 90%.
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Figure 6.7: Distribution of actual and predicted probabilities at all forecast

times during the 2017 PHI prototype experiment.
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Chapter 7

Conclusions and Future Work

The first part of thesis examined the conditional verification statistics and pre-

dictability limitations of automated ProbSevere storm identification objects and

their derived PHI warning plumes as compared to SBWs under the current warn-

ing paradigm. Less than 1% of all automated objects produced between April

and June 2015 were associated with a storm that produced an LSR, but of those

objects, about 80% of the derived warning plumes provided warning for the se-

vere weather event at or near the time of occurrence. The automated guidance

exhibited POD similar to NWS-issued SBWs during the analyzed time period,

with 80% and 78% of all LSRs warned at the time of the event, respectively.

Note that the FAA of the PHI warning plumes was not analyzed in this thesis.

PHI plumes generally provided longer lead times for a severe weather event than

SBWs, but this may be partially due to NWS guidance on the recommended

maximum duration of SBWs. These results demonstrate the potential pre-

dictability limits of the automated PHI plumes, and suggest that the challenge

for forecasters under the FACETs paradigm would be to correctly select which

storms (ProbSevere objects) will produce an LSR at a rate that is comparable

to SBWs to yield comparable verification metrics. In other words, forecasters

can apply their current warning philosophy to PHI products and achieve similar

or improved results.
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Applying a spatial buffer to the ProbSevere objects and associated PHI

plumes notably increased the fraction of plumes that verified at a given lead

time, but only slightly improved the POD of the automated guidance at an

LSR’s time of occurrence. Instead, buffers were shown to potentially be more

effective at improving lead time for a particular LSR by partially addressing

model limitations when predicting the location of severe weather occurrence.

In comparison, applying a spatial buffer to SBWs resulted in little change to

POD or lead time. Furthermore, even unbuffered automated PHI plumes were

shown to be spatially larger than current SBWs on average, and potentially less

precise than the human-issued products. This presents a second challenge for

forecasters to correctly select and buffer storms (objects) that will produce an

LSR that falls just outside of the automated plume at the expense of anecdotally

adding additional FAA to the implied warning polygon.

In addition, it was shown that the NWS forecaster participants in the 2017

PHI prototype experiment were able to achieve a POD of about 60% at an LSRs

time of occurrence by utilizing and modifying the automated ProbSevere guid-

ance. Furthermore, forecaster modifications resulted in improved performance

of the warning plumes at longer lead times.

The second part of this thesis applied random forest, AdaBoost, gradient

boosting, and elastic net machine learning techniques to produce an ensemble

of models capable of accurately predicting how a storm’s probability of produc-

ing severe weather will change with time. This ensemble was implemented in the

2017 PHI prototype experiment, and forecasters were asked to make probabilis-

tic predictions using the new guidance. It was shown that forecasters used the

initial ProbSevere probability guidance about 25% more frequently in the 2017

experiment compared to the one held in 2016, and forecasters only adjusted the
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new probability trend guidance by a median of about 3% during the three week

experiment. This suggests that forecasters generally trusted or agreed with

the predictions being produced by the ensemble guidance, and indicates im-

proved forecaster-guidance interdependence. Furthermore, both forecaster- and

guidance-issued probability predictions were shown to be accurate compared

to the diagnostic ProbSevere probabilities, although the ensemble predictions

exhibited greater reliability than those issued by the forecasters.

Although the intent of this thesis is to leave forecasters and researchers

with a better understanding of the automated PHI system, additional work is

needed to further improve forecaster interdependence with the automated guid-

ance. For example, future work may incorporate a larger sample size to better

assess the verification of the ProbSevere model, while other research may apply

grid-based methods, such as those described in Stumpf et al. (2015), to identify

where improvements in FAA and plume probabilities are needed. Moreover,

the ensemble probability trend predictions may benefit from additional training

on a larger dataset and the inclusion of supplementary members trained using

more complex learning techniques. Additional research (McGovern et al. 2018a;

Jergensen et al. 2018) is currently underway to better identify and classify the

convective characteristics of a storm (supercell, QLCS, etc.), which may lead

to improved forecasts of a storms expected duration and the likelihood that

it will produce severe weather during that period. These and other improve-

ments to the current automated guidance are hypothesized to be necessary for

a more effective establishment of trust between forecasters and automated guid-

ance. Ultimately, the findings presented in this thesis demonstrate the neces-

sity of human forecasters in the warning issuance process, and the benefits that
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forecaster-guidance interdependence may provide to enhance the meteorological

communitys ability to issue timely, life-saving information to the public.
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