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Abstract

Precipitation forecasts provide both a crucial service for the general populace

and a challenging forecasting problem due to the complex, multi-scale inter-

actions required for precipitation formation. The Center for the Analysis and

Prediction of Storms (CAPS) Storm Scale Ensemble Forecast (SSEF) system is

a promising method of providing high resolution forecasts of the intensity and

uncertainty in precipitation forecasts. The SSEF incorporates multiple mod-

els with multiple parameterization scheme combinations and produces forecasts

every 4 km over the continental US. The SSEF precipitation forecasts exhibit

significant negative biases and placement errors. In order to correct these issues,

multiple machine learning algorithms have been applied to the SSEF precipi-

tation forecasts to correct the forecasts using the NSSL National Mosaic and

Multisensor QPE (NMQ) grid as verification. The 2010 runs of the SSEF were

used for training and verification. Two levels of post-processing are performed.

In the first, probabilities of any precipitation are determined and used to find

optimal thresholds for the precipitation areas. Then, three types of forecasts

are produced in those areas. First, the probability of the 1-hour accumulated

precipitation exceeding a threshold is predicted with random forests, logistic

regression, and multivariate adaptive regression splines (MARS). Second, de-

terministic forecasts based on a correction from the ensemble mean are made

with linear regression, random forests, and MARS. Third, fixed probability

interval forecasts are made with quantile regressions and quantile regression

forests. Models are generated from points sampled from the western, central,

and eastern sections of the domain. Verification statistics and case study results

show improvements in the reliability and skill of the forecasts compared to the

original ensemble while controlling for the over-prediction of the precipitation

areas and without sacrificing smaller scale details from the model runs.

xii



Chapter 1

Introduction

Precipitation forecasts are among the most challenging in meteorology due

to the wide variability of precipitation over small areas, the dependence of

precipitation amounts on factors at a wide range of scales, and the mixed

discrete-continuous probability distribution of precipitation (Bremnes, 2004;

Ebert, 2001; Doswell et al., 1996). The precipitation forecasting problem can be

divided into three primary questions: where is it going to rain, when is it going

to rain, and how much rain will occur? The answers to all three of those ques-

tions depend on the availability of precipitation ingredients and the placement

and timing of the storms that can take advantage of those ingredients. Although

light and moderate rain is often viewed as a mere annoyance for many people,

heavy rains in short time periods can lead to flash floods that present risks to

lives and property (Doswell et al., 1996). Improving the prediction of heavy

precipitation events in particular is crucial for anticipating those events.

Numerical Weather Prediction (NWP) models are now being run experi-

mentally and regularly at 1 to 4 km horizontal grid spacing, or storm scale,

allowing for the formation of individual convective cells without the need of a

separate scheme to determine if conditions are favorable for convection. This

feature allows for a better representation of storm processes, but it adds addi-

tional uncertainty in placement and timing of precipitation compared to models

with larger grid spacing. An ensemble of storm scale NWP models can provide
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estimates of that uncertainty, but statistical post processing is needed to ac-

count for model biases and to increase reliability. The quality and design of

the post-processing is constrained by many factors, including sample size, com-

position, variables used, number of points requiring a forecast, and predicted

variable format.

This thesis evaluates multiple approaches to post-processing storm-scale en-

semble precipitation forecasts with machine learning and statistical algorithms.

The algorithms are designed to produce the following products: probabilities of

exceeding a given threshold, deterministic precipitation forecasts, and a inter-

vals of precipitation amounts give a fixed probability range. They are trained

using aggregations of the raw ensemble precipitation predictions as well as other

relevant variables. Our approach has improved precipitation quantity forecasts,

provided better estimates of the uncertainty, and better defined the area covered

by the precipitation forecasts.

2



Chapter 2

Related Work

2.1 Model Output Statistics

Since the early days of operational numerical weather prediction, statistical

post-processing of model precipitation forecasts has been recognized as a ne-

cessity for producing accurate and useful predictions. The original method

and basis for subsequent post-processing methods is Model Output Statistics

(MOS; (Glahn and Lowry, 1972; Klein and Glahn, 1974)). The MOS approach

fits a multivariate linear regression model between an observed quantity and a

set of model variables selected using the screening process (Klein et al., 1959),

which iteratively selects the combination of variables that is most correlated

with the predicted quantity. For probability of precipitation MOS forecasts,

one regression equation was applied to similar regions of observations in order

to capture enough variability over the training time period (Klein and Glahn,

1974). Logistic regression, also known as the logit model, was used operationally

for conditional probability of frozen precipitation forecasts (Klein and Glahn,

1974). Bermowitz (1975) applied MOS to predict the probability of precipi-

tation amounts within 5 different categories. Most of the variables chosen by

the screening process were either related to model precipitation or precipitable

water. Incorporating zero precipitation events into the training data did not

3



seem to have a large impact on the performance. The model did have trou-

ble predicting heavy precipitation due to the rareness of those events, although

transforming the predictions to minimize the bias did help with this problem.

Some approaches to MOS also included analyses of observed variables in ad-

dition to model output, which produced slight improvements in skill (Vislocky

and Young, 1989).

2.2 Ensemble Postprocessing

With the advent of operational ensemble weather prediction (Toth and Kalnay,

1993; Tracton and Kalnay, 1993; Molteni et al., 1996), it soon became apparent

that statistical post-processing was needed to produce accurate precipitation

forecasts and uncertainty estimates from the ensemble forecasts. Verification

of the operational ensemble forecasts used the rank histogram method (Hamill

and Colucci, 1997), which is a histogram showing the distribution of the ranks

of observations relative to ensemble member forecasts. It showed that ensemble

precipitation forecasts tended to be underdispersive, so the observed precipita-

tion amount did not fall within the range of ensemble forecasts. Initial calibra-

tion methods with linear regressions fit to a Gamma distribution (Hamill and

Colucci, 1998) and calibration to the rank histogram itself (Hamill and Colucci,

1997; Eckel and Walters, 1998) did show improvements in skill compared to the

uncorrected ensemble and traditional MOS.

As operational ensemble prediction systems matured, researchers investi-

gated different ways of both combining individual ensemble members together

as well as combining different ensemble prediction systems. Hamill and Colucci

4



Figure 2.1: Analysis of 24-h accumulated precipitation on 21 April 1998 (Ebert,
2001).

(1997, 1998) used an ensemble consisting of ETA and RSM members. Krishna-

murti et al. (1999) used a multiple linear regression technique at each grid point

to combine the output from multiple operational models into a “super ensem-

ble” and achieved significant improvements in skill, but the technique was very

sensitive to changes in the model configurations. Ebert (2001) tested a wide

range of approaches to combining multiple ensemble prediction systems made

of different models to create a “poor man’s ensemble” by comparing the spatial

coverage of their precipitation forecasts and the range of predicted intensities

(Fig. 2.1 and Fig. 2.2). Weighted means of the individual members based on

past performance does not tend to improve precipitation forecasts because indi-

vidual members are not consistently better than others from day to day. Using

the ensemble median precipitation resulted in a smaller, more accurate rain

area but intensities were underestimated. Bias correction estimated the rain

area better but overestimated the rainfall amounts. Probability matching per-

formed the best of the different methods tried. It uses the ensemble mean rain

5



Figure 2.2: Comparison of 24-h quantitative precipitation forecasts for 21 April
1998 for seven models and different methods of generating an ensemble averaged
forecast (Ebert, 2001).
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area and then matched the ranked ensemble mean rain points with the ranked

rainfall values from all of the ensemble members. The wider distribution of rain

points produced predicted rain rates closer to those observed.

Many variations of models and datasets were used for precipitation post-

processing in the last decade. Hall et al. (1999) and Koizumi (1999) applied the

neural network technique to precipitation forecasts and found increases in per-

formance over linear regression and persistence. Neural networks are machine

learning models that consist of input, output, and hidden layers containing in-

terconnected nodes. The weights at all the nodes are iteratively determined in

order to fit the model as close to the training data as possible. Neural networks

were applied to ensemble probabilistic QPF in Yuan et al. (2007) where they did

improve calibration but produced more forecasts with low nonzero probabilities

that moved the forecast distribution closer to climatology. Logistic regression,

a transform of a linear regression to fit an S-shaped curve ranging from 0 to 1,

has also been used extensively in multiple post-processing studies for determin-

istic and ensemble forecasts. Applequist et al. (2002) tested linear regression,

logistic regression, neural networks, and genetic algorithms on the precipitation

prediction problem and found that logistic regression outperformed the other

methods at multiple thresholds for 24 hour probabilistic QPF. Since choice of

model is not the only factor that affects the performance of statistical forecasts,

methods to improve the input dataset were also explored. Hamill et al. (2004,

2008) introduced a procedure that used an older version of an operational global

model to produce retrospective forecasts (reforcasts) over a multidecadal period

in order to capture the model climatology of rainfall predictions that sample

the full range of variation in rainfall amounts at every grid point. With the

very large resulting training set, a simple model such as a logistic regression

7



can perform very well on probabilistic QPF. Both studies found that 2-week

forecasts using the reforecast database outperformed 6-10 day forecasts from

the operational ensembles.

More recent work explored different frameworks for producing models and

expressing uncertainty from ensemble forecasts. Bremnes (2004) produced fixed

probability interval forecasts with a quantile regression and found that train-

ing the post-processing algorithms on statistics about the ensemble forecast

performed better than training on all ensemble members. This finding sup-

ported the development of the aggregation methods used in the pre-processing

steps of this project. Bayesian Model Averaging (BMA) (Raftery et al., 2005),

a weighted average of the probability distribution functions for bias-corrected

ensemble member forecasts, has also been applied to precipitation forecasts

(Soughter et al., 2007) with a Gamma distribution in place of the Gaussian

distribution. Because it produces a model of the entire forecast PDF instead

of just a single estimate, BMA can produce probabilistic, deterministic, and

interval forecasts without the need for additional models. Both Bremnes (2004)

and Soughter et al. (2007) use an additional algorithm to determine probability

of precipitation before determining the conditional probability of precipitation

exceeding a threshold or occurring within a range. Wilks (2009) attempted to

address this deficiency in logistic regression approaches by including an addi-

tional term that specified the predicted threshold.

8



Chapter 3

Storm Scale Ensemble Forecast Data

3.1 Ensemble Specification

The post-processing algorithms for this project are being applied to the Center

for the Analysis and Prediction of Storms (CAPS) 2010 Storm Scale Ensemble

Forecast (SSEF) system (Kong et al., 2011; Xue et al., 2011). The 2010 SSEF is

composed of 26 separate model runs from the Weather Research and Forecasting

(WRF) Advanced Research WRF and Nonhydrostatic Mesoscale Model and the

Advanced Regional Prediction System. Each model is run with different com-

binations of microphysics schemes, land surface models, and planetary bound-

ary layer schemes. The SSEF ran every weekday at 0000 UTC in conjunction

with the 2010 National Oceanic and Atmospheric Administration/Hazardous

Weather Testbed Spring Experiment (Clark et al., 2012), which ran from 3

May to 18 June. The SSEF provides hourly model output over the continental

United States at 4 km horizontal grid spacing out to 30 hours. Of the 26 mod-

els in the 2010 SSEF, the 14 models initialized from the Short Range Ensemble

Forecast system are included in the post-processing procedure because they are

the only models that combine perturbed initial and boundary conditions with

perturbed physics. The 12 models not included use the same initial conditions

from a control run, so they do not contribute additional information about the

spread and could bias the mean toward the control run forecast. This dataset

9



is also being used in Hellman (2012) where the Ensembled Dynamic Bayesian

Networks (EDBN) algorithm is introduced. They compare performance to the

random forests presented here.

3.2 Verification Data

A storm scale verification dataset was paired with the storm scale ensemble

forecasts. The National Mosaic Multi-Sensor QPE (NMQ; Vasiloff et al., 2007)

derives precipitation estimates from a 3-dimensional mosaic of the NEXRAD

radar network. The estimates are overlaid on a grid over the CONUS with 1

km horizontal spacing. The original grid has been interpolated to the same grid

as the SSEF.

3.3 Data Selection and Aggregation

The relative performance of any machine learning algorithm is conditioned on

the distribution of its training data. The sampling scheme for the SSEF is

conditioned on the constraints of relatively few ensemble runs over a short,

homogenous time period with nearly 1 million grid points from each time step.

The short training period and large number of grid points preclude training a

single model at each grid point, so a regional approach was used.

The SSEF domain was split into thirds, and points were selected with a strat-

ified random sample from each subdomain in areas with quality radar coverage.

Grid 1 corresponds to the western third of the CONUS, Grid 2 corresponds to

the central third, and Grid 3 corresponds to the eastern third. Fig. 3.1 shows

that most of the continental US was sampled with the exception of areas of the

10



Figure 3.1: Map of spatial histogram showing how frequently the area within a
40 km radius of a particular point was sampled. The domain sub grids are also
shown and labeled.
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Rocky Mountains with poor radar coverage. The sampling of areas within radar

coverage is not uniform and does have a slight bias toward areas that received

large amounts of precipitation during the SSEF time period.

A comparison of the sampled rainfall distributions and the full rainfall dis-

tributions for each subgrid are shown in Fig. 3.2. Undersampling of the 0

and light precipitation points was necessary because of the large number of no-

precipitation events, which overwhelmed the signal from the actual precipitation

events. The upper bins were slightly oversampled since the heavy precipitation

events were very rare and would not be handled well by the machine learning

algorithms otherwise. The random sampling of grid points helps reduce the

chance of sampling multiple grid points from the same storm without explicitly

filtering parts of the domain as in Hamill et al. (2008).

Relevant model variables (Table 3.1) at each sampled grid point were also

extracted from each ensemble member. These variables were selected to cap-

ture additional information about the mesoscale and synoptic conditions in each

model. An additional variable called the Radar Quality Index (RQI) was sam-

pled at each point to determine the trustworthiness of the verification data at

that point. Only points with RQI greater than 0 were included in the training

data.

Multiple ways of aggregating the ensemble variables were tested. For the

probabilistic forecasts, ensemble variables were grouped into mean and stan-

dard deviation. The mean and standard deviation capture information about

the predicted changes in a variable and the spread in those predictions. For

the regression and quantile forecasts, the 5th, 50th and 95th percentiles of each
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Figure 3.2: Histogram comparing the relative frequencies of the full precipitation
distribution for the each subgrid to the sampled rainfall distributions.
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variable were extracted. This format also provides information about the me-

dian forecast and spread while also sampling the range of forecast values and

weakening the influence of outliers.
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Table 3.1: The names and descriptions of model variables sampled from the
SSEF runs. CAPE is Convective Available Potential Energy, and CIN is Con-
vective Inhibition.

Variable Description
accppt 1-hour accumulated precipitation
cmpref Composite reflectivity

dewp2m 2 m dew point temperature
refmax 1-hour maximum reflectivity
mspres Mean sea level pressure
sbcape Surface-based CAPE
sbcins Surface-based CIN
pwat Precipitable water

temp2m 2 m air temperature
tmp700 700 mb temperature

u700 700 mb east-west wind
v700 700 mb north-south wind

hgt700 700 mb height
v500 500 mb north-south wind

wupmax 1-hour max upward vertical velocity
wdnmax 1-hour max downward vertical velocity
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Chapter 4

Machine Learning Methods and Procedures

4.1 Machine Learning Algorithms

4.1.1 Logistic and Linear Regression

A mix of more traditional and complex machine learning algorithms were trained

on the aggregated ensemble data. For the probabilistic domain, logistic re-

gressions were used as the baseline algorithm. Logistic regressions are linear

regression models fitted to a logit curve that ranges from 0 to 1. Logistic re-

gressions were trained using just the raw ensemble probability and the mean and

standard deviation of the ensemble accumulated precipitation forecasts. Two

formulations of logistic regression are being used. The first formulation uses the

ensemble mean precipitation forecast as expressed in Eqn. 4.1:

p(R ≥ t|x1) =
1

1 + e−(β0+β1x1)
(4.1)

where x1 is the ensemble mean precipitation forecast and β0 is the intercept

term. This formulation will adjust the probability of the ensemble forecast

based on systematic biases in the mean but will not change the areal coverage of

the precipitation forecasts. The second formulation incorporates a multivariate
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approach using variable selection similar to standard MOS approaches (Eqn.

4.2):

p(R ≥ t|x1, x2, ...xn) =
1

1 + e−(β0+β1x1+β2x2+...+βnxn)
(4.2)

The terms are chosen through an iterative process that finds the set of terms

that minimize the Akaike Information Criterion (Akaike, 1974), which rewards

goodness of fit but penalizes for large numbers of terms. This approach does

produce the best fit regression model given the available parameters, but the

searching process can take extensive time given the large number of terms and

number of samples in the training set.

For the deterministic predictions, linear regressions were used as the baseline

model. One was trained with the ensemble median precipitation forecast and

the other was trained with the 5th, 50th, and 95th percentiles of the ensemble

precipitation predictions.

4.1.2 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines (MARS; (Friedman, 1991)) were also

applied to the problem. MARS have a form similar to multiple linear regression

but with an added layer of complexity. Each term consists of a hinge function,

which consists of two linear functions that intersect at an intercept point. Linear

combinations of these hinge functions produce a piecewise linear regression that

can approximate complex functions with a relatively compact model. MARS

performs variable selection using forward selection and backward elimination of

variables. For computational timing purpose, the maximum number of variables
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was limited to 15 and only linear relationships were considered. This project

uses the open-source earth1 library as its MARS implementation.

4.1.3 Random Forests

Random forests (Breiman, 2001) consist of an ensemble of classification and

regression trees (Breiman, 1984) with two key modifications. First, the training

data are bootstrap resampled with replacement for each tree in the ensemble.

Then only a small random subset of the total number of variables are evaluated

for splitting at each node in each tree. The final prediction from the forest

is the mean of the predicted values from all the trees. Random forests can

produce both probabilistic and regression predictions through this method. The

random forest method contains a few advantages that often lead to performance

increases over traditional regression methods. The averaging of the results from

multiple trees produces a smoother range of values than individual decision

trees while also reducing the variance of the predictions (Strobl et al., 2008).

The random selection of variables within the tree-building process allows for less

optimal variables to be included in the model and increases the likelihood of the

discovery of interaction effects among variables that otherwise would be missed

by a regression method that selects variables based on a global optimization, as

is done with the logistic regression (Strobl et al., 2008).

Since the tree-building process selects a subset of variables for each tree, a

technique called variable importance (Breiman, 2001) can be used to rank the

relevance of the variables in the dataset. Variable importance is computed by

first calculating the accuracy of each tree in the forest on classifying the cases

that were not selected for training, known as the out-of-bag cases. Within the

1http://www.milbo.users.sonic.net/earth/
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out-of-bag cases, the values of each variable are randomly rearranged, or per-

muted, and those cases are then re-evaluated by each tree. The mean variable

importance score is then the difference in prediction accuracy on the out-of-bag

cases averaged over all trees. The mean variable importance is then divided by

the standard error of the variable importances, which is the standard deviation

divided by the square root of the number of trees. Variable importance scores

can vary randomly among forests trained on the same dataset, so the variable

importance scores from each forest were averaged together for a more definite

ranking. The statistical significance of the importance score can be assessed

through a z-test comparing the distribution of the scores with 0 to determine if

the difference is significant. The z-score approach calculated for a single random

forest depends more on the number of trees than the sample size of the data

(Strobl et al., 2008). By performing a z-test over the distribution of mean scores

from multiple random forests of the same size, the variability in the significance

depends on the number of forests tested instead of the number of trees in each

forest. Variable importance scores can also be influenced by the correlations

among variables in the dataset, so that if two highly correlated variables are

included in the dataset, both may have high importance scores even if only one

of the two is the true cause. Controlling for the causal variable would then cause

the resulting importance of the second variable to decrease substantially (Strobl

et al., 2008). A modified algorithm called conditional variable importance was

developed to address this issue but was not implemented in the R random for-

est library used by the project (randomForest). While variable importance is

effective at determining which variables the random forest model finds most

relevant, it does not reveal what aspects of those variables make them relevant.

There is no information provided about what ranges of values have the greatest
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affect on performance. The importance of the interactions of multiple variables

can be estimated by permuting multiple variables at once and comparing that

importance score with the importance scores of the individual variables (Pap-

penberger et al., 2006), but this method would be computationally infeasible

for datasets with large numbers of variables. Visualizing the distribution of

predicted values versus the distribution of variable values could also provide

additional information (Gagne II et al., 2012).

4.1.4 Quantile Regressions

In addition to producing a single probability or quantity, two methods can pro-

duce fixed probability intervals. Quantile regressions (Koenker and Hallock,

2001) estimate the conditional median and other quantiles by treating the pro-

cedure as an optimization problem. The conditional median is found by min-

imizing the sum of the absolute residuals while the other quantiles are found

by minimizing the asymmetrically weighted sum of the absolute residuals. The

residual in this instance is the difference between the observation and a linear

function of predictor variables and can be solved by linear programming meth-

ods. Because the median and quantiles are being predicted, the model is less

sensitive to outliers in the distribution and does not require the assumption of

a particular empirical distribution.

4.1.5 Quantile Regression Forests

Quantile regression forests (Meinshausen, 2006) are a variation of random forests

that use the distribution of values at the selected leaf node of each tree in the

forest to estimate specified quantiles. Because of the focus on the median and
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quantiles instead of the mean, quantile regression forests are less sensitive to

outlier cases in the training data, which is beneficial on problems where that

could lead the predictions awry.

4.2 Model Training and Evaluation

The training and evaluation procedure for the post processing algorithms used

an approach that maximized the available training and testing data for the al-

gorithms without compromising the independence of either set. Each machine

learning algorithm was trained and evaluated using leave-one-model-run-out

cross validation. The post-processing occurred in a two-step process. First,

each probabilistic algorithm is trained to predict the probability of 1-hour pre-

cipitation exceeding 0.25 mm (0.01 in). This prediction is used to estimate

the area where any precipitation will occur. This forecast can be treated as a

probability of precipitation forecast or it can be thresholded to provide rain and

no-rain areas. Second, another set of algorithms is trained on the conditional

probability of 1-hour precipitation exceeding 6.54 mm (0.25 in) given that pre-

cipitation is occurred at that point. This precipitation threshold was chosen

because it is a moderate amount of rain for the period and matches current

SSEF forecast products, allowing for easier comparisons. Third, another set of

algorithms is trained to predict a correction factor to the ensemble mean precip-

itation forecast. Although the algorithms could be used to predict the amount

of precipitation directly, the distribution of corrections is closer to Gaussian

whereas the distribution of precipitation amounts is heavily skewed to lighter

amounts. The only downside of the correction approach is that it does allow
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for negative precipitation predictions to occur, so any corrections that result in

a forecast below 0 are corrected to 0.

Evaluation techniques depend on the type of forecast. The Brier Skill Score

(BSS) (BSS; Brier, 1950) is one method used to evaluate probabilistic forecasts.

The Brier Skill Score can be decomposed into three terms (Murphy, 1973), as

shown in Eq. 4.3:

BSS =

1

N

K∑
k=1

nk(ok − o)2 −
1

N

K∑
k=1

nk(pk − ok)2

o(1− o)
(4.3)

N is the number of forecasts, K is the number of probability bins, nk is the

number of forecasts in each probability bin, ok is the observed relative frequency

for each bin, o is the climatological frequency, and pk is the forecast probability

for a particular bin k. The first term describes the resolution of the forecast

probability, which should be maximized and increases as the observed relative

frequency differs more from climatology. The second term describes the relia-

bility of the forecast probability, which should be minimized and decreases with

smaller differences between the forecast probability and observed relative fre-

quency. The third term is the uncertainty, which is fixed for a given dataset.

Positive BSS indicates positive skill and vice versa. The components of the

BSS can be displayed graphically with an attributes diagram (Wilks, 2011), in

which the observed relative frequency of binned probability forecasts are plot-

ted against lines showing perfect reliability, no skill where the reliability and

resolution are equal, and no resolution where the observed relative frequency

and probability equal climatology.
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The Area Under the Relative Operating Characteristic (ROC) curve, or

AUC (Mason, 1982) is another method used to evaluate probabilistic forecasts.

To calculate AUC, first, the decision probability threshold is varied from 0 to

1 at regular intervals. At each interval, a contingency table is constructed by

splitting the probabilities into two categories at the decision threshold. From

the contingency table, the probability of detection (POD) and probability of

false detection (POFD) are calculated and plotted against each other. This

plot becomes the ROC curve. The AUC is the area between the lower right

side of the curve and the curve itself. AUC above 0.5 has positive skill. AUC

only determines how well the forecast discriminates between two categories, so

it does not take the reliability of the forecast into account.

The ROC curve also serves as a way to set an optimal decision threshold.

At low thresholds, the number of true positives and false positives is maximized

and both decrease with increasing threshold value but at different rates. True

and false negatives are minimized at low thresholds and both increase with in-

creasing threshold value. The optimum threshold, assuming equal penalties for

false positives and false negatives, would be where the two are most similar.

This occurs where the ROC curve is farthest from the positive diagonal. The

horizontal distance between the ROC curve and the positive diagonal (Fig. 4.2)

is the Peirce Skill Score (PSS; Peirce, 1884; Hansen and Kuipers, 1965), and

thus the PSS is maximized at the optimum decision threshold (Manzato, 2007).

Finding the maximum PSS then is a matter of calculating it at each point along

the ROC curve when POD and POFD are also calculated and finding the posi-

tion of the maximum value. This same procedure could also be used to optimize

to other 2x2 contingency table skill scores, including Heidke Skill Score, Threat
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Figure 4.1: An example ROC curve showcasing the relationship between the
PSS and the ROC curve from Manzato (2007).
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Score, and Equitable Threat Score, but those scores do not necessarily maxi-

mize at the same point on the ROC curve. If the decision process is concerned

with maximizing another score, then using another score would be more effec-

tive at the risk of hedging the forecasts. The optimal threshold is calculated

separately for each sub grid and hour to account for the differences in the re-

gional probability distributions and the increases in uncertainty with forecast

hour. The performance of the threshold choice can be validated by treating the

predictions as a binary classification problem. The contingency table is shown

in Table 4.1. Using that as a reference, the following scores can be computed,

as shown in Table 4.2. Probability of detection (POD) is the ratio of hits to the

total number of observed events. The False Alarm Ratio (FAR) accounts for

the number of false alarms compared to the total number of yes forecasts. The

Equitable Threat Score (ETS) compares the ratio of hits to hits, misses, and

false alarms with the hits of a random classifier. The Peirce Skill Score (PSS)

is the difference between the POD and the POFD. The Bias compares the ratio

of the sum of hits and false alarms to the sum of hits and misses.

Deterministic precipitation forecasts are verified with the mean error (ME)

and the root mean squared error (RMSE). The mean error, shown in Eq. 4.4, is

Table 4.1: An example binary contingency table for whether or not rain is
forecast.

Observed
Yes No

Forecast
Yes a b
No c d
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Table 4.2: The scores calculated from the binary contingency table for use with
the optimal threshold predictions.

Score Formula

POD
a

a+ c

FAR
b

a+ b

POFD
b

b+ d

ETS
a− arandom

a+ b+ c− arandom

arandom
(a+ c)(a+ b)

a+ b+ c+ d

PSS
a

a+ c
− b

b+ d

Bias
a+ b

a+ c

26



indicative of whether the forecasts have a particular bias. A ME of 0 indicates

that the error is evenly spread on both sides of the observed values.

ME =
1

P

P∑
p=1

fp − op (4.4)

The RMSE is shown in Eq. 4.5.

RMSE =

√√√√ 1

P

P∑
p=1

(fp − op)2 (4.5)

In both equations, P is the number of precipitation forecasts, fp is a single

precipitation forecast, and op is the matching observed precipitation. RMSE

places additional penalties on very large errors and is more sensitive to outliers.

Forecasts of fixed probability intervals are evaluated based on the propor-

tion of samples that fall within the quantile intervals as well as the width of the

quantiles. The relative frequency within each quantile should match the per-

centile range. In addition, the widths of the quantiles should also appropriately

match the uncertainty of the predictions. If the forecasted quantiles cover a

large range of the possible distribution of a particular forecasted quantity, then

the forecast is not likely to be particularly useful.
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Chapter 5

Model Verification

5.1 Probabilistic Forecasts

5.1.1 Attributes Diagrams

The attributes diagrams for each subdomain show how the machine learning

algorithms have all greatly improved the raw ensemble forecast. Grid 1 (Fig.

5.1) has the lowest climatological probability of three and had the fewest high

precipitation events (Fig. 3.2). Because of that, there was a relatively large

“skill area” on the attributes diagram, so even the raw ensemble forecast was

skilled although it still had a large under-forecasting tendency. The other two

grids had slightly higher climatological probabilities (Fig. 5.2 and Fig. 5.3).

The calibration logistic regression did decrease the magnitude of the under-

forecasting but did not fully correct it. The other four machine learning models

did produce nearly perfect reliability with their probabilistic forecasts. Their

Brier Skill Scores were nearly identical within each sub-grid. The highest BSSs

for the machine learning models and the lowest BSS for the raw ensemble were

in grid 2 (Fig. 5.2). This large improvement likely occurred due to the wide

range of precipitation events contained within the training data for this area.

Using 50 versus 100 trees did not cause any significant change in the scores of
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the random forest models, which is consistent with previous work with random

forests.
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Figure 5.1: Attributes diagrams for the probability of 1-hour precipitation ex-
ceeding 0.25 mm from the raw ensemble and each machine learning model ap-
plied to grid 1.

Examination of the attributes diagrams for conditional probability of pre-

cipitation threshold exceedance shows smaller degrees of improvement than ob-

served with probability of precipitation. In grid 1 (Fig. 5.4), the raw ensemble

generally over predicts the probabilities, resulting in a large negative BSS. The

machine learning models do correct for this, resulting in BSSs slightly above cli-

matology. Random forests are best able to provide perfect reliability for the low
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Figure 5.2: Attributes diagrams for the raw ensemble probabilities and each
machine learning model applied to grid 2.
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Figure 5.3: Attributes diagrams for the raw ensemble probabilities and each
machine learning model applied to grid 3.
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range of probabilities. In grid 2, the ensemble under-forecasts the lower proba-

bilities and over forecasts the higher probabilities. Multiple logistic regression

and MARS both perform better than random forest because their treatment of

the lowest probabilities was more reliable. Random forest under-predicted them

but did to a lesser extent than the raw ensemble.
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Figure 5.4: Attributes diagrams for the probability of 1-hour precipitation ex-
ceeding 6.35 mm from the raw ensemble and each machine learning model ap-
plied to grid 1.
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Figure 5.5: Attributes diagrams for the conditional probability of 1-hour pre-
cipitation exceeding 6.35 mm from the raw ensemble and each machine learning
model applied to grid 2.
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Figure 5.6: Attributes diagrams for the raw ensemble and each machine learning
model applied to grid 3.
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5.1.2 Forecast Hour Comparisons

Comparison of BSS by hour and by sub-grid show additional trends in the prob-

ability of precipitation forecasts. Within all three sub-grids, the raw ensemble

has the worst BSS (Fig. 5.7). For all models, the best performance occurs at

forecast hour 1 then decreases sharply until forecast hour 4 before stabilizing.

This initial decrease is likely due to radar data assimilation, but that assimi-

lation advantage appears to be quickly lost as the models spin up. There is a

slight increase in performance between hours 6 and 12 for grid 2. This increase

may be due to convection typically becoming more linear or dying during the

early morning hours. There is another major decrease in performance in grid

2 between hours 18 and 24. This time period is when the greatest uncertainty

exists due to convective initiation and the tendency for initial convection to be

isolated. Both 100 and 50 tree random forests have slightly higher BSS than

multiple logistic regression and MARS. The calibration logistic regression did

still improve on the ensemble forecast but not to the same extent as the models

that selected from the full set of model variables. The BSS hourly trends for the

probability of exceeding 6.35 mm of precipitation forecasts follow similar pat-

terns (Fig. 5.8), but the divide between multiple logistic regression and MARS

versus random forests is consistent throughout all forecast hours. The ensemble

forecast has negative BSS for most hours.

Examining AUC reveals how well the different algorithms distinguish pre-

cipitation and non-precipitation events over a range of probability thresholds.

Fig. 5.9 shows how AUC varies by hour for each model and each sub-grid for

the probability of precipitation forecasts. Random forests perform the best at

most hours with multiple logistic regression and MARS providing comparable
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Figure 5.7: Brier Skill Score comparisons by hour for each model and each sub-
grid for probability of precipitation forecasts. The shaded area indicates the
95% bootstrap confidence interval around each value.
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Figure 5.8: Brier Skill Score comparisons by hour for each model and each
sub-grid for probability of precipitation exceeding 6.35 mm. The shaded area
indicates the 95% bootstrap confidence interval around each value.
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but slightly lower AUCs. The calibration logistic regression consistently has

lower AUC than even the raw ensemble. The likely reason for the difference

can be seen in the attributes diagrams (Fig. 5.4, 5.5, and 5.6). The probabilis-

tic forecasts in the lowest bin for each sub-grid are consistently over-forecasted

whereas with the raw ensemble they were under-forecasted. The other models

provide nearly perfect reliability and a larger range of probabilities forecasted,

so their higher AUCs are expected. Hourly trends in AUC are similar to those

in BSS. There is a sharp decrease in AUC from hour 1 to 5 with a slight increase

between 6 and 18 hours. There is another decrease between 18 and 24 hours

but without the slight gain from 25 to 30 hours. In the 6.35 mm probability

forecasts shown in Fig. 5.10, MARS and the multiple logistic regression gen-

erally have the highest AUC throughout all hours, although there is less of a

discrepancy between them and random forest than in Fig. 5.8.

5.1.3 Optimal Threshold Verification

The choice of optimal threshold from the raw ensemble and each machine learn-

ing model is validated by evaluating the discrimination ability of the threshold

with multiple binary verification scores. In Fig. 5.11, the optimal thresholds

slightly increase with forecast hour. All of the machine learning thresholds fall

within the 15 to 40 % range. The raw ensemble stays below 10 % for its thresh-

old value, which is indicative of forecasting precipitation if at least one ensemble

member is predicting it. PSS and ETS share similar hourly trends with AUC as

the peak values are in the initial and 10 to 20 hour time frames. The multivari-

ate machine learning models have improved performance compared to the raw
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Figure 5.9: AUC comparisons by hour for each model and each sub-grid for
probability of precipitation forecasts. The shaded area indicates the 95% boot-
strap confidence interval around each value.
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Figure 5.10: AUC comparisons by hour for each model and each sub-grid for
probability of precipitation exceeding 6.35 mm forecasts. The shaded area in-
dicates the 95% bootstrap confidence interval around each value.
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Figure 5.11: Optimal thresholds and verification statistics associated with that
threshold for the raw ensemble and each machine learning model in grid 1.
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Figure 5.12: Optimal thresholds and verification statistics associated with that
threshold for the raw ensemble and each machine learning model in grid 2.
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Figure 5.13: Optimal thresholds and verification statistics associated with that
threshold for the raw ensemble and each machine learning model in grid 3.
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ensemble and the calibration logistic regression. All of the models show a bias

score greater than 1, which indicates that the models are all over forecasting

the precipitation area. Because of this over forecasting bias, POD is very high,

but FAR is also relatively larger than for the other sub grids.

The verification statistics for the grid 2 are shown in Fig. 5.12. The thresh-

olds are similar for all of the multivariate machine learning models and generally

range between 0.4 and 0.6. The raw ensemble again stays below 0.1. The PSS

and ETS are both highest at hour 1 with sharp decreases until hour 4 before

peaking locally near hour 18 and decreasing for the rest of the period. All of

the models showed no bias initially then an under forecasting bias until hour

18, and an over forecasting bias after that. The over forecasting bias resulted in

a significant jump in FAR although POD was not significantly affected. Grid 3

shows similar trends (Fig. 5.13) although the over forecasting bias is more con-

sistent as well as the trends in POD and FAR. Similar results to these are found

in the SSEF verification from Kong et al. (2011) although the ETS is lower

in that paper due to that study verifying against all grid points and including

points with no radar coverage.

5.1.4 Forecast Day Comparisons

Skill scores for each day varied greatly among the different models. Since the

model skill varies in similar fashion from day to day, the most likely cause of

variance in skill is the distribution of precipitation events. Fig. 5.14 displays

the distribution of BSS vs. the mean and standard deviation of the observed

precipitation over each region. In most cases, the BSS increases when the mean

precipitation and the standard deviation of the precipitation increase. The
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Figure 5.14: Plot of the mean and standard deviation of the 1-hour precipitation
of the samples from each SSEF run vs. the BSS for each of those runs.
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differences are most pronounced in grid 2 where all of the days with a mean 1-

hour precipitation less than 1 mm also have a BSS less than 0.6. Grid 3 exhibits

the weakest correlation, but the BSSs are all above 0.4. The connection between

low rainfall and low BSS is probably due to the lack of higher probabilities being

forecasted within that sample, which would decrease the resolution term (Eqn.

4.3).

5.1.5 Variable Importance

Variable importance z-scores were calculated and averaged over each random

forest and sub-grid to determine if the random forests were choosing relevant

variables and how the choice of variables was affected by region. Variable impor-

tance is only indicative of how the changing the ordering of the distribution of

each variable affects the random forest performance. It accounts for how often a

variable is used in the model, the depth of the variable in the tree, and the num-

ber of cases that transit through the branch containing that variable, but the

importance score cannot be decomposed into those factors. The top 10 variable

importance z-scores for the 100-tree random forests predicting the probability

of precipitation are shown in Table 5.1. Not included among the top ten most

important variables for any of the sub-grids are any of the variables describing

the ensemble precipitation forecasts. More emphasis is placed on the 700 and

500 mb winds, heights, temperatures, and surface pressures than on the actual

precipitation forecasts. The precipitable water, surface dewpoint, composite

reflectivity, and SBCIN are also considered highly important in at least one of

the sub-grids. The mean quantities were also generally more important than

the standard deviations. Most of the variables selected highly are consistently

46



Table 5.1: Top ten variables ranked by the importance z-score along with mean
and standard deviation of the decrease in accuracy from 100 tree random forests
predicting probability of precipitation.

Variable Z-score Mean Std. Error
Grid 1

RQI 728.14 0.6021 0.0008
Max Reflectivity Mean 591.45 0.5541 0.0009

Precipitable Water Mean 571.45 0.5926 0.0010
MSLP Mean 491.79 0.5920 0.0012

Dewpoint 2 m Mean 381.57 0.5588 0.0015
V 500 mb Mean 377.65 0.5807 0.0015

Height 700 mb Mean 330.32 0.5739 0.0017
Temperature 2 m Std. Dev. 329.21 0.5526 0.0017

Precipitable Water Std. Dev. 321.71 0.5567 0.0017
V 700 mb Mean 315.57 0.5621 0.0018

Grid 2
Temperature 700 mb Mean 1154.49 0.4424 0.0004

Height 700 mb Mean 1003.93 0.4343 0.0004
MSLP Mean 971.64 0.4354 0.0004

U 700 mb Mean 895.25 0.4343 0.0005
V 500 mb Mean 780.43 0.4324 0.0006

Precipitable Water Mean 736.19 0.4313 0.0006
SBCIN Mean 702.70 0.4300 0.0006

Temperature 2 m Std. Dev. 696.69 0.4258 0.0006
Dewpoint 2 m Std. Dev. 639.61 0.4227 0.0007

Precipitable Water Std. Dev. 618.40 0.4222 0.0007
Grid 3

Precipitable Water Mean 951.44 0.4751 0.0005
V 700 mb Mean 910.62 0.4818 0.0005
V 500 mb Mean 825.60 0.4783 0.0006
U 700 mb Mean 697.78 0.4751 0.0007

Temperature 700 mb Mean 695.39 0.4763 0.0007
MSLP Mean 680.28 0.4751 0.0007

Composite Reflectivity Mean 671.66 0.4662 0.0007
Temperature 2 m Std. Dev. 468.08 0.4575 0.0010

Height 700 mb Std. Dev. 459.82 0.4604 0.0010
Height 700 mb Mean 457.27 0.4697 0.0010
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Table 5.2: Top ten variables ranked by the importance z-score along with mean
and standard deviation of the decrease in accuracy from 100 tree random forests
predicting probability of precipitation exceeding 6.35 mm.

Variable Z-score Mean Std. Error
Grid 1

Temperature 2 m Std. Dev. 103.57 0.6336 0.0061
Max Downward Vertical Velocity Mean 95.78 0.6422 0.0067

V 700 mb Std. Dev. 95.56 0.6427 0.0067
V 500 mb Mean 91.09 0.6360 0.0070
U 700 mb Mean 88.00 0.6788 0.0077

Temperature 700 mb Std. Dev. 77.14 0.5975 0.0077
Precipitable Water Std. Dev. 76.96 0.6457 0.0084

Temperature 700 mb Mean 75.51 0.6193 0.0082
Dewpoint 2 m Std. Dev. 73.88 0.6302 0.0085

Max Upward Vertical Velocity Std. Dev. 71.35 0.6035 0.0085
Grid 2

V 700 mb Mean 405.70 0.5655 0.0014
V 500 mb Mean 337.18 0.5523 0.0016

Temperature 700 mb Mean 318.23 0.5533 0.0017
Precipitable Water Mean 304.57 0.5531 0.0018

MSLP Mean 281.48 0.5492 0.0020
Max Upward Vertical Velocity Mean 270.98 0.5185 0.0019

Max Downward Vertical Velocity Mean 268.19 0.5241 0.0020
U 700 mb Mean 267.67 0.5450 0.0020

Height 700 mb Mean 266.23 0.5456 0.0020
Max Downward Vertical Velocity Std. Dev. 236.13 0.5189 0.0022

Grid 3
U 700 mb Mean 315.94 0.6178 0.0020

Temperature 700 mb Mean 278.79 0.6146 0.0022
MSLP Mean 260.53 0.6046 0.0023

Composite Reflectivity Mean 257.19 0.6046 0.0024
Precipitable Water Mean 242.52 0.5900 0.0024

Max Downward Vertical Velocity Mean 240.27 0.6037 0.0025
V 500 mb Mean 234.92 0.5834 0.0025

MSLP Std. Dev. 234.05 0.6154 0.0026
Height 700 mb Std. Dev. 228.56 0.5864 0.0026

Max Upward Vertical Velocity Std. Dev. 217.54 0.5599 0.0026
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higher near low pressure centers and in the warm sectors. The precipitation-

related variables received a low z-score because while some of them may have

had a high mean importance score, the standard error of their scores was signif-

icantly larger. In many cases the permutation of the precipitation values helped

nearly as often as it hurt the predictions. This result is likely due to the spatial

and temporal errors in the ensemble precipitation forecasts causing very large

errors if the model did not put the precipitation in the right place. The most

important variables all have smoother continuous fields that are not as subject

to the nonlinear variations of precipitation. For convective precipitation CIN is

a good indicator of where storms will not form. RQI was the most important

variable in grid 1 most likely due to the variability of radar coverage in the

mountain ranges of the western US. While the mean z-scores are fairly similar

for the variables in each sub-grid, the standard errors increased with decreasing

rank, leading to the wider range of overall z-scores across the 34 forests.

The variable importance scores for the 100-tree random forests predicting

the conditional probability of 1-hour precipitation exceeding 6.35 mm are shown

in Table 5.2. Many of the same variables have been selected for the top ten, but

there are some notable contrasts between Tables 5.2 and 5.1. The are many more

standard deviation variables being selected, which is likely due to the probability

for larger precipitation being higher in areas with more uncertainty about their

forecasts. Grid 2 included more vertical velocity variables, grid 1 had the largest

increase in spread variables, and grid 3 includes composite reflectivity as well

as vertical velocities. The vertical velocity variables are indicative of likely

locations for thunderstorms and associated heavy precipitation. As compared

across the variable importance z-scores from all 34 forests, all variables have

statistically significant importance (p < 0.01).
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5.2 Deterministic Forecasts

The anomaly prediction method for deterministic forecasts produced improved

forecasts for all three sub-grids. The variation of the mean error by hour (Fig.

5.15) shows how successfully each model corrected the inherent bias of the en-

semble mean. The random forest, MARS, and both linear regression models

eliminated the bias from the raw ensemble mean, which had a consistent nega-

tive bias. The quantile regression and quantile regression forest have a smaller

mean error than the raw ensemble mean, which is due to the fact that they

are solving for the median of the distribution while the random forest, MARS,

and linear regressions all converge toward the mean. Since the distribution is

skewed by a few outlier heavy precipitation events, the median will generally

be smaller than the mean.

The Root Mean Squared Errors (RMSE) for each model are shown in Fig.

5.16. Again, all of the models consistently improve on the raw ensemble. Ran-

dom forests and MARS have the lowest RMSE consistently, but MARS has a

greater tendency to predict extreme values, which results in the large jumps in

RMSE at some hours. Random forests are a non-parametric model, and its pre-

dictions are not directly affected by the values of predictors, so it is less prone

to extreme errors. Both linear regressions and the quantile regression forest had

similar RMSE values while quantile regressions were slightly worse. The addi-

tional quantile information about the precipitation distribution did not appear

to have any impact on the linear regression predictions since the calibration and

3 value linear regressions have the same ME and RMSE throughout all hours.

The RMSEs were all lowest in grid 1 and highest in grid 2 due to the widest
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range of precipitation values being in grid 2. Unlike the probabilistic forecasts,

the hourly trends of the deterministic machine learning models closely matched

the raw ensemble because the final predictions for the deterministic models are

adjusted from the ensemble mean.

Tendencies in the machine learning models can be examined more closely

by viewing the full distribution of the error. Due to the large number of sam-

ple points, a traditional scatterplot would not reveal a significant amount of

information, so a 2-dimensional histogram with 1 mm bins was used instead.

5.3 Interval Forecasts

The quantile regression and quantile regression forecasts produced forecasts for

a fixed probability width around the deterministic forecast. The 5th and 95th

percentiles were used to produce a 90% confidence interval for the precipita-

tion forecast. The relative frequency of the confidence intervals is shown in

Table 5.3. In all three grids, the majority of the rain events were outside the

ensemble confidence interval. Both Quantile Regressions and Quantile Regres-

sion Forests corrected the distribution so that the interval contained 90% of the

cases. Quantile Regression in all three grids provided a more balanced interval

than the Quantile Regression Forest. Quantile Regression Forest still had a

slight low bias in the distribution.

The best fixed probability interval forecasts should minimize the widths of

their uncertainty forecasts while still including the expected relative frequency

associated with that probability range. The mean and standard deviation of

the full 90% probability interval for quantile regressions and quantile regres-

sion forests is shown in Fig. 5.17. Quantile regression forests have higher

51



mean widths and smaller standard deviations than quantile regressions, but the

standard deviation varies more with quantile regression forests. The quantile

regression mean fluctuates more by hour and is highest at the beginning of the

forecast and at 24 hours, which correspond to where the probabilistic forecasts

had the lowest BSSs (Fig. 5.8). The largest intervals are in grid 2, which is

expected due to the larger range of precipitation values. Fig. 5.18 and 5.19

show how the upper and lower halves of the full interval vary by hour. The

upper half of the interval contains most of the range on average. The quantile

regression forest has a slightly smaller lower interval for all hours and a larger

upper interval for most hours. This unevenness correlates with the slight unbal-

ance seen in the results from Table 5.3. In this instance, the quantile regression

provides a more balanced uncertainty forecast that varies on average with the

uncertainty of the ensemble.

Table 5.3: Percentage of samples that fall within each percentile range for the
SSEF, Quantile Regression, and Quantile Regression Forest.

Grid Model <5 5-50 50-95 >95

1
Raw Ensemble 2.3 12.5 36.4 48.9

Quantile Regression Forest 1.6 49.2 42.9 6.3
Quantile Regression 5.0 44.9 44.9 5.2

2
Raw Ensemble 1.2 7.6 34.0 57.3

Quantile Regression Forest 3.2 47.4 43.7 5.7
Quantile Regression 5.2 44.7 45.0 5.1

3
Raw Ensemble 1.5 8.2 34.7 55.5

Quantile Regression Forest 2.9 46.8 44.0 6.3
Quantile Regression 5.2 44.8 44.9 5.1
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Figure 5.15: Comparison of Mean Error (ME) aggregated by forecast hour for
each machine learning model being evaluated. The shaded area indicates the
95% bootstrap confidence interval around each value.
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Figure 5.16: Comparison of Root Mean Squared Error (RMSE) aggregated by
forecast hour for each machine learning model being evaluated. The shaded
area indicates the 95% bootstrap confidence interval around each value.
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Figure 5.17: Variability of the mean widths of the 95th to 5th percentile fixed
probability intervals by hour for the quantile regression and quantile regression
forest. The shaded areas correspond to 1 standard deviation on each side of a
point.
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Figure 5.18: Variability of the mean widths of the 95th to 50th percentile fixed
probability intervals by hour for the quantile regression and quantile regression
forest. The shaded areas correspond to 1 standard deviation on each side of a
point.
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Figure 5.19: Variability of the mean widths of the 50th to 5th percentile fixed
probability intervals by hour for the quantile regression and quantile regression
forest. The shaded areas correspond to 1 standard deviation on each side of a
point.
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Chapter 6

Case Study

The objective verification analysis of the predictions from the machine learn-

ing models demonstrated that the algorithms all provided improvements to the

ensemble precipitation forecasts on a general basis. That analysis gave a thor-

ough look at many aspects of the forecasts as a whole, but it provided limited

to no information about other crucial aspects of the forecast product. Since

the forecasts and the verification focused on individual grid points, it did not

take any spatial correlations of the error into account beyond differences among

the three sub grids. It also could not show the smoothness of the forecasts or

the spatial concentration of errors. This section will attempt to address these

limitations by providing a subjective analysis of the forecasts from the machine

learning algorithms for a case day from the study period.

6.1 19 May 2010

6.1.1 Synoptic Setup

19 May 2010 provides a test of the algorithm on multiple forms of precipitation

across all three sub grids. The 500 mb maps for 1200 and 0000 UTC show

three main troughs (Fig. 6.1). One is an intensifying trough coming ashore
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Figure 6.1: SPC 500 mb analysis for 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Figure 6.2: SPC 850 mb analysis for 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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in Washington. Another is a closed low centered over northeastern Colorado

that would produce multiple severe weather events across the Southern Plains.

Another closed low centered over upstate New York produced precipitation in

Maine and off the coast of North Carolina. The 850 mb analysis (Fig. 6.2)

shows a plume of moist air extending from the Gulf of Mexico into Texas and

Oklahoma. Strong southerly winds were also present in the layer, which aided

the advection of moisture into the region.

The observed precipitation from the NMQ (Fig. 6.3) showed a mesoscale

convective system advancing through southern Kansas and northern Oklahoma

with additional precipitation near the coasts of North Carolina and Maine at

1200 UTC. By 0000 UTC on 20 May, a line of discrete supercells had formed in

central Oklahoma with a larger area of stratiform precipitation in Kansas and

Missouri. Additional isolated storms were found in eastern Louisiana and off

the coast of the North Carolina and Florida.

6.1.2 Probabilistic Predictions

The predictions from the 100 tree random forest for 19 May are shown in Fig.

6.4. At 1200 UTC, the random forest does capture the placement of the Okla-

homa portion of the MCS very well and places the highest probabilities in that

area. The additional storms further south are well covered and receive slightly

lower probabilities. The probabilities for the storms in Kansas are underesti-

mated given the observed rainfall totals, which is likely due to the precipitation

in Kansas being influenced by a warm front, so measures of the ingredients for

convection, such as CAPE, would be lower. Most of the northern section of the

MCS is not contained in the precipitation area, and the heavy rain in western
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Figure 6.3: Observed precipitation on 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Figure 6.4: Predictions from the 100 tree random forest on 19 May 2010 at 1200
UTC and 20 May 2010 at 0000 UTC.
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Kansas, while given nonzero probabilities, is not given as high a probability as

the observations would suggest. The random forest does produce small, spotty

areas of nonzero probability near North Carolina, Florida, and Maine. The op-

timal thresholding, in this case, appears to remove too much of the precipitation

probabilities. At 0000 UTC on 20 May, the random forest also does a good job

capturing the precipitation areas and generally places the higher probabilities

near the locations of observed storms. It highlights the heavy rain areas in Ok-

lahoma, Florida, North Carolina, Montana, and Washington. The probability

area does extend further into Texas than was observed, and the Washington

and Montana areas are both smaller than observed.

The calibration logistic regression does show higher probabilities than the

original ensemble, but there are clear differences in the probabilities between

regions (Fig. 6.5). Much of the area in grid 2 contained the baseline probability

for the calibration logistic regression,which was higher than grid 2 due to the

larger amount of missed precipitation events in grid 2.

The multiple logistic regression provided many advantageous features from

its forecast (Fig. 6.6). At 1200 UTC, the multiple logistic regression places

the highest probabilities in Oklahoma and lower probabilities in Kansas. The

distribution of the higher probabilities seem to indicate isolated convection as

opposed to the MCS that was actually there at the time. At 0000 UTC, the

logistic regression output places a series of high probability areas across central

Oklahoma, indicating a line of isolated storms. The area forecast also covers the

precipitation in Kansas unlike the other algorithms, but no high probabilities

are provided in that location.
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The MARS algorithm produces similar distributions of probabilities to the

raw ensemble but with a larger range of values (Fig. 6.7). It has higher proba-

bilities throughout central Oklahoma but does not give indication of the isolated

nature of the convection.

6.1.3 Deterministic Predictions

The deterministic precipitation forecasts provided a good estimate of precipita-

tion area and some guidance of where relatively larger amounts of precipitation

would fall, but none of the algorithms predicted the extreme amounts seen in

Fig. 6.8. The raw ensemble (Fig. 6.9), predicts precipitation over a wider area

but smoothes out any intense precipitation values. The random forest (Fig.

6.10) rainfall totals have similar spatial patterns to the probability forecasts.

Higher precipitation values are found farther south than the raw ensemble. The

forecasts still have a smoothed quality to them and do not account for the sharp

variations in precipitation amounts seen in the verification. This result is most

likely due to the smoothing caused by the averaging of the predicted values

from all of the trees. MARS (Fig. 6.11) produced higher precipitation amounts

than the raw ensemble as well but matched the spatial distribution of the raw

ensemble closely. Linear regression (Fig. 6.12) had a higher baseline for its

precipitation areas but the maximum precipitation amounts were less than the

raw ensemble.
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Figure 6.5: Predictions from the calibration logistic regression on 19 May 2010
at 1200 UTC and 20 May 2010 at 0000 UTC.
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Figure 6.6: Predictions from the multiple logistic regression on 19 May 2010 at
1200 UTC and 20 May 2010 at 0000 UTC.
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Figure 6.7: Predictions from the multiple logistic regression on 19 May 2010 at
1200 UTC and 20 May 2010 at 0000 UTC.
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Figure 6.8: Observed precipitation on 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Figure 6.9: The ensemble mean 1-hour precipitation forecast on 19 May 2010
at 1200 UTC and 20 May 2010 at 0000 UTC.
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Figure 6.10: The 100 tree random forest 1-hour precipitation forecast on 19
May 2010 at 1200 UTC and 20 May 2010 at 0000 UTC.
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Figure 6.11: The MARS 1-hour precipitation forecast on 19 May 2010 at 1200
UTC and 20 May 2010 at 0000 UTC.
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Figure 6.12: The linear regression 1-hour precipitation forecast on 19 May 2010
at 1200 UTC and 20 May 2010 at 0000 UTC.
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6.1.4 Interval Predictions

The quantile regression produced a range of precipitation values given the 5th,

50th, and 95th percentiles of the ensemble rainfall predictions. The 95th per-

centile for the transformed distribution, which is the 5th percentile in the fore-

cast distribution, has nonzero probabilities in the areas where precipitation is

most likely, and produces 0 probabilities otherwise (Fig. 6.13). The 50th per-

centile forecast (Fig. 6.14) has many similarities to the ensemble mean forecast.

The 5th percentile forecast (Fig. 6.15) did cover the extreme precipitation fore-

casts and had a slightly higher baseline than the 50th percentile forecasts. The

differences in the regions were clearest in the 5th percentile forecasts with the

central US baseline being higher than the maxima from the east and west coasts.

The forecasts did capture the range of precipitation well. The width of the in-

terval was particularly wide in Oklahoma, but this was appropriate given the

isolated nature of the convection.
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Figure 6.13: The quantile regression 95th percentile correction to the ensemble
mean 1-hour precipitation forecast on 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Figure 6.14: The quantile regression 50th percentile correction to the ensemble
mean 1-hour precipitation forecast on 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Figure 6.15: The quantile regression 5th percentile correction to the ensemble
mean 1-hour precipitation forecast on 19 May 2010 at 1200 UTC and 20 May
2010 at 0000 UTC.
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Chapter 7

Conclusions

This study demonstrated that a storm scale ensemble post-processing system

based on ensemble machine learning algorithms, radar mosaic verification, and

ensemble variable statistics can provide improved precipitation forecasts. Multi-

ple machine learning models of varying complexity were applied to forecasts from

the 2010 SSEF over the continental US for the period from 3 May to 18 June

2010 and verified against a radar-derived precipitation mosaic. Probabilistic,

deterministic, and interval forecasts of 1-hour precipitation accumulation were

created with the different models. Verification statistics showed that random

forests, MARS, and multiple logistic regression provided significant improve-

ments for probabilistic and continuous forecasts by improving the reliability,

the skill, and the bias in the ensemble probabilistic and deterministic forecasts.

Quantile regression forests produce more accurate median forecasts than quan-

tile regressions, but quantile regressions are better at distributing their intervals

to capture the correct probability densities. The models were applied to a case

study to illustrate the geographic variability of the forecasts and tendencies in

the predictions.

While the machine learning algorithms were able to demonstrate improve-

ment in the aggregate over the original ensemble, there are still outstanding

issues with the forecasts that the machine learning algorithms were not able to
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address. The chief issue is the ability to handle both the high and low precipita-

tion amounts. All of the approaches tested here tend to optimize their forecasts

to either the mean or median of the distribution, so they tend to overestimate

the low cases and underestimate the high cases. Including more extreme val-

ues in the training dataset will increase the extreme predictions, but they may

also bias the probabilistic and deterministic forecasts away from the true dis-

tribution of the population. An additional calibration step could be performed

using a simpler approach such as probability matching, but having three levels

of post processing may not be advisable from a computational or meteorological

perspective.

While the additional ensemble variables were able to provide additional in-

formation to supplement the precipitation forecasts, none of them showed a stat-

ically significant variable importance score. There were still many cases where

the randomization of a variables values improved the accuracy. This finding

necessitates the need for more variables to be included in future post-processing

algorithms and for different transformations to be used. Focusing on a single

grid point and a single time is a great way to save computational resources, but

incorporating variables that take the spatial and temporal uncertainties of the

forecast into account may provide further improvement.

Even with the limitations mentioned, the use of multivariate machine learn-

ing algorithms is worth the extra computational effort. The two-step approach

has shown its worth in terms of highlighting the area of interest. The choice

of which machine learning algorithm to use depends on what the user values

the most for their particular system as they all greatly improved on the raw en-

semble but none consistently stood out from the rest. Logistic regressions and

MARS provided smoother forecasts spatially than random forest and were more
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apt to predict extreme values given this dataset, but both are tied to empirical

distributions, so datasets not fitting those distributions will not perform as well.

Random forests are non-parametric and forecast only within the bounds of their

training set, which allows them to handle noisy data better. Because of these

qualities, the choice of algorithm should also depend on the decisions made with

the data selection and pre-processing. The choice of output predictions should

depend on the preferences of the user. Finally, the use of this type of ensem-

ble post-processing is not limited to rain. The prediction of other high impact

weather events could also be enhanced by machine learning approaches.
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