Accelerating Reinforcement L earning through the Discovery of Useful Subgoals

Amy McGovern (amy@cs.umass.edu) and Andrew G. Barto (barto@cs.umass.edu)
Department of Computer Science
University of Massachusetts, Amherst
Amherst, MA 01003

Keywords Abstraction, Reinforcement Learning (RL),
Subgoals, Mobile robots

Abstract

An ability to adjust to changing environments and un-
foreseen circumstances is likely to be an important com-
ponent of a successful autonomous space robot. This pa-
per shows how to augment reinforcement learning algo-
rithms with a method for automatically discovering cer-
tain types of subgoals online. By creating useful new
subgoals while learning, the agent is able to accelerate
learning on a current task and to transfer its expertise
to related tasks through the reuse of its ability to attain
subgoals. Subgoals are created based on commonalities
across multiple paths to a solution. We cast the task of
finding these commonalities as a multiple-instance learn-
ing problem and use the concept of diverse density to find
solutions. We introduced this approach in [10] and here
we present additional results for a simulated mobile robot
task.

1 Introduction

Because robots can better withstand the hardships of radi-
ation and vacuum than can humans, and are able to work
almost continuously, they are ideal candidates for help-
ing to create and maintain human habitats in space. Such
robots will be most effective if they learn and adapt au-
tonomously. The research presented in this paper is a step
towards creating such adaptable and autonomous robots.
The ability to decompose a learning problem into a set of
simpler learning problems can greatly expand the range
of applications in which a learning system can be success-
ful. Within the reinforcement learning (RL) paradigm,
one way to do this is to introduce subgoals with their own
reward functions, learn policies for achieving these sub-
goals, and then use these policies as temporally-extended
actions, or options [13] for solving the overall problem.
In addition to accelerating learning on the current task,
this strategy can facilitate skill transfer to other tasks in

which the same subgoals are useful.

This paper describes a method by which an RL agent
can discover useful subgoals automatically. It is based
on the idea of “mining” an ensemble of behavioral tra-
jectories accumulated by the agent as it interacts with its
environment. This ensemble can be processed in various
ways to form concepts useful to the learning agent. In this
paper, the focus is on discovering subgoals of achieve-
ment by searching online for “bottlenecks” in observation
space. Informally, a bottleneck is a region in the agent’s
observation space that the agent tends to visit frequently
on successful paths to a goal but not on unsuccessful
paths (for some suitable definition of success). The bot-
tlenecks of interest are those that appear early and persist
throughout learning. If the agent can discover these bot-
tleneck regions and learn policies to reach them during
the initial stages of learning, it can use these policies for
more effective exploration as well as to more quickly re-
fine its overall policy. These subgoal policies can then be
used to facilitate learning in similar tasks.

We treat the problem of finding bottleneck regions as a
multiple-instance learning problem as defined by [4]. In
this type of problem, a system attempts to identify a tar-
get concept on the basis of “bags” of instances: positive
bags have at least one positive instance, while negative
bags consist of all negative instances. A successful tra-
jectory corresponds to a positive bag, where the instances
are the agent’s observations along that trajectory. A neg-
ative bag consists of observations made over an unsuc-
cessful trajectory. We argue that the problem of finding
bottleneck regions is well fit by this paradigm, and we use
the concept of diverse density [8] to detect the bottleneck
regions.

Methods for automatically introducing subgoals have
been studied in the context of adaptive production sys-
tems, where subgoals are created based on examinations
of problem-solving protocols (e.g., [1, 2]). Iba’s [6]
macro-growing heuristic is reflected in several parts of
our algorithm and discussed in more detail below. For
RL systems, several researchers have proposed methods
by which policies learned for a set of related tasks are
examined for commonalities [14] or are probabilistically



combined to form new policies [3]. However, neither of
these RL methods introduce subgoals. The most closely
related research is that of [5]. In his system, states that
are visited frequently or states where the reward gradient
is high are chosen as subgoals. Some of this material was
also presented in [10].

2 Reinforcement Learning

In the RL framework, a learning agent interacts with an
environment over a series of time stepst =0,1,2,3,....
At each time t, the agent observes the environment state,
st, and chooses an action, a;, which causes the environ-
ment to transition to state s;1 and to emit a reward, ry1.
In a Markovian system, the next state and reward depend
only on the preceding state and action, but they may de-
pend on these in a stochastic manner. The objective of the
agent is to learn to maximize the expected value of reward
received over time. It does this by learning a (possibly
stochastic) mapping from states to actions called a policy.
More precisely, the objective is to choose each action a;
s0 as to maximize the expected return, E {3y ritit1},
where y € [0, 1) is a discount-rate parameter. Other return
formulations are also possible. A common solution strat-
egy is to approximate the optimal action-value function,
or Q-function, which maps each state and action to the
maximum expected return starting from the given state
and action and thereafter always taking the best actions.
See [12] for details.

We use the options framework (Sutton et al., 1999;
Precup, 2000) to define subgoals. An option is a
temporally-extended action which, when selected by the
agent, executes until a termination condition is satisfied.
While an option is executing, actions are chosen accord-
ing to the option’s own policy. An option is like a tra-
ditional macro except that instead of generating a fixed
sequence of actions, it follows a closed-loop policy so
that it can react to the environment. By augmenting the
agent’s set of base actions—its primitive actions—by a
set of options, the agent’s performance can be enhanced.
More specifically, a (Markov) option is a triple {I, ),
where | is the option’s input set, i.e., the set of states in
which the option can be initiated; Ttis the option’s policy
defined over all states in which the option can execute;
and [ is the termination condition, i.e., the option termi-
nates with probability B(s) for each state s. Each option
that we use in this paper bases its policy on its own in-
ternal value function, which can be modified over time in
response to the environment.

We also define an additional term. A state trajectory
of length n starting at time step t is a sequence of states
St,St+1,---,St+n. IN episodic tasks, each trajectory cor-
responds to a single episode. For continuing tasks, one
can use a variety of methods to segment experience into

finite-length trajectories. For example, a trajectory could
end when a reward peak is reached as suggested by Iba’s
“peak-to-peak” heuristic [6].

3 Autonomous Subgoal Discovery

The simplest approach to creating useful options is to
search by generating many new options, randomly or
based on simple heuristics, and letting the agent test them
by adding them to its set of actions. Although some
of these options may be useful, others can degrade the
agent’s performance, e.g., by adversely affecting its mode
of exploration [9]. Performance can also deteriorate due
to the agent having too many actions from which to se-
lect. Instead, the agent needs a more focused method for
creating new options. In the approach described in this
paper, the focus is on discovering useful subgoals that can
be defined in the agent’s observation space. New options
are then created to accomplish those subgoals.

To discover useful new subgoals, the agent searches
for bottleneck regions in its observation space. The
idea of looking for bottleneck regions was motivated by
studying room-to-room navigation tasks where the agent
should quickly discover the utility of doorways as sub-
goals. If the agent can recognize that a doorway is a kind
of bottleneck by detecting that the sensation of being in
the doorway always occurred somewhere on successful
trajectories but not always on unsuccessful ones, then it
can create an option to reach the doorway. This option
can accelerate learning on the current task—if created
early enough—as well as enable the agent to learn more
rapidly on related tasks in the same or similar environ-
ments.

One motivation for using bottlenecks as subgoals is
the effect of the subgoal options on the agent’s explo-
ration. If the agent uses some form of randomness to se-
lect exploratory primitive actions, it is likely to remain
within the more strongly connected regions of the state
space. An option for achieving a bottleneck region, on
the other hand, will tend to connect separate strongly
connected areas. For example, in a room-to-room nav-
igation task, navigation using primitive movement com-
mands produces relatively strongly connected dynamics
within each room but not between rooms. A doorway
links two strongly connected regions. By adding an op-
tion to reach a doorway subgoal, the rooms become more
closely connected. This allows the agent to more uni-
formly explore its environment. We have shown in previ-
ous work [9] that the effect on exploration is one of two
main reasons that options are sometimes able to dramati-
cally affect learning.

The idea of using bottlenecks as subgoals is not con-
fined to gridworlds or navigation tasks. We expect that
other tasks with similar dynamics would also benefit from



subgoal discovery as described in this paper. For exam-
ple, consider a game in which the agent must find a key
to open a door before it can proceed. If it can discover
that having a key is a useful subgoal, then it will more
quickly be able to learn how to advance from level to
level. Clearly this approach will not work for every task
since bottlenecks or subgoals of achievement do not al-
ways make sense for particular environments.

A: The two-room gridworld environment

Bottleneck area
and useful subgoal location

B: Every-visit histogram

C: First-visit histogram

Figure 1: State visitation histograms for the middle stages
of learning in a two-room gridworld

Automatically finding bottleneck regions in observa-
tion space is a difficult task. It is even more challenging if
it has to be done online. An offline method could examine
optimal trajectories of several related tasks for common-
alities which may reveal bottlenecks. An online method
would need to inspect trajectories as they are gathered
while learning. Consider the case where each discrete
state is completely observed. A first approach might be
to simply look for states that are more frequently visited.
However, if we examine every-visit frequencies, where
each state is counted each time that it is visited, the re-
sulting histogram is not generally helpful for bottleneck
detection. In a room-to-room navigation task, for exam-
ple, the agent spends most of its time within a room and
very little time moving through a doorway. If one counts
only the first visit to each state within a trajectory, on
the other hand, bottlenecks are more readily visible. Ex-
amples of these two types of state-visitation frequencies
for a two-room example are shown as histograms in Fig-
ure 1. The histograms in Panels B and C are shaded by
visitation frequency counts collected over 10 trajectories,
with higher counts shaded more lightly than lower counts.
Each histogram shows data collected over 30 runs of the
30-40th trials of an agent using Q-learning in the 21x10
gridworld shown in Panel A of the figure. The agent used
e-greedy exploration with € = 0.1 and a fixed step-size
parameter of 0.05. All rewards were zero until the agent
reached the goal state where it received a reward of 1.
The discount factor was 0.9, which meant that the agent

was learning how to find the goal as quickly as possible.

The histograms in Figure 1 indicate that first-visit fre-
quencies (Panel C) are better able to highlight the bot-
tleneck states (states in the doorway) than are the every-
visit frequencies (Panel B). However, the idea of just us-
ing visitation frequencies to detect bottleneck states has
several drawbacks. The first is that it is clearly a noisy
process, as the graph illustrates. The second is that it is
not immediately obvious how to do this in problems with
continuous or very large state spaces. Last, visitation fre-
guencies do not incorporate negative evidence for bottle-
neck states in a principled manner. All of these prob-
lems motivate our use of the multiple-instance learning
paradigm and the concept of diverse density to precisely
define and detect bottlenecks.

4 Multiple-Instance Learning and
Diver se Density

Multiple-instance learning problems as described by [4]
are supervised learning problems in which each object to
be classified is represented by a set of feature vectors,
only one of which may be responsible for its observed
classification. An example from explanation-based learn-
ing that these authors give is when many explanations for
an observed result can be obtained from a domain theory,
but only one explanation can account for all observed re-
sults. More specifically, there are multiple positive and
negative bags of instances [8]. Each positive bag must
contain at least one positive instance from the target con-
cept but may contain many negative instances. Each neg-
ative bag must contain all negative instances. The indi-
vidual instances within each bag are not labeled. The goal
is to learn the concept from the evidence presented by the
different bags.

The problem of mining collections of trajectories for
bottlenecks, or other concepts useful for defining sub-
goals, can be formulated as a multiple-instance learning
problem. Each trajectory can be viewed as a bag, with the
agent’s individual observation vectors being the instances
within the bag. Positive bags are successful trajectories;
negative bags are unsuccessful trajectories. What con-
stitutes a successful or unsuccessful trajectory can be de-
fined in a problem-dependent way. For example, success-
ful trajectories might be all those trajectories in which the
agent reached a goal state no matter how many steps it
took. Or success might depend on reaching a goal within
a certain number of steps. A bottleneck region of obser-
vation space as described above corresponds to a target
concept in this multiple-instance learning problem: the
agent experiences this region somewhere on every suc-
cessful trajectory and not at all on unsuccessful trajecto-
ries.



Maron and Lozano-Pérez [8] devised the concept of
diverse density to solve multiple-instance learning prob-
lems. The most diversely dense region in feature space is
the region with instances from the most positive bags and
the least negative bags. This differs from the concept of
simple density by including the idea of using many dif-
ferent bags rather than one large set of instances. The
region of maximum diverse density can be detected us-
ing either exhaustive search or gradient descent. Maron
defines the diverse density of a target concept c; to be
DD(t) =Pr(t|BT,...,B{,BT,...,By,), where Pr(t) is the
probability that the t'" concept from the concepts {ct} is
the correct concept, B;" is the it" positive bag, and B is
the it negative bag. The concept with the maximum DD
value is the output of a DD search.

To perform this search, we must more precisely instan-
tiate the definition of DD given above. Using Bayes’ rule
several times and assuming a uniform prior, we look for
the concept with the highest value as defined by:

[] Preis) [ Prits))-

1<i<n 1<i<m

DD(t) =

Maron generally uses a noisy-or model to model the prob-
ability of any event in a bag causing the t'" concept to be
correct, which yields:

Pr(t|Bj") = 1-— (1-Pr(Bjf €ct))
1<j<p

1<|1p(1 —Pr(Bjj € o)),

Pr(t[B) =

where Bjj is the j™" instance of the it" bag. Lastly, the
probability of a particular instance being in the target con-
cept, Pr(Bij € ¢t), is defined to be a Gaussian based on
the distance from the particular instance to the target con-
cept. In this paper, we use exhaustive search to find the
concept with the highest DD value since it is feasible for
our tasks. Many other search methods can be used suc-
cessfully on larger problems.

The concept of diverse density corresponds exactly to
our concept of a bottleneck region. The region with max-
imum diverse density will be a bottleneck region which
the agent passes through on multiple successful trajecto-
ries and not on unsuccessful ones. Abstract types of con-
cept spaces can be used within this framework. However,
in this paper we restrict attention to the simplest concept
space consisting of individual states. In this case, a sub-
goal is always to reach a given state, and we use bags that
are simply state trajectories.

To take full advantage of diverse density calculations
in the problem of defining subgoals, we do not add all
states to a bag. For example, if the agent always starts
or ends each trajectory in the same set of states, then
those states will have a high diverse density since each
will appear in all of the positive bags. We exclude states

surrounding the starting and ending states from any bag.
This follows Iba’s [6] use of static filters for a macro-
growing mechanism. A static filter can be defined on a
per-task basis and used to filter out any undesired sub-
goals before they can be discovered by the agent.

5 Forming New Options

Once the agent has created a set of bags from its saved
trajectories, it searches for the maximum diverse density
regions. If the agent has only created a small number of
bags because it is still within the initial stages of learn-
ing, the diverse density peaks will be noisy. The bottle-
necks of interest are those that appear early within the
maximum diverse density regions and persist throughout
learning. An easy way to detect which regions appear
early and persist as peaks is to use a running average
of how often each state appears as a peak. The average
for each state is initialized to zero. At the end of each
trajectory, the agent creates a new bag and searches for
concepts with high diverse density. The average, c, for
each concept ¢ found is updated by: ¢ = A("c+ 1) where
A € ]0,1). If a concept is an early and persistent maxi-
mum, then its average will rise quickly and converge to
ﬁ. The agent examines the concepts whose averages
rise above a specified threshold and uses those to create
new options.

To create a new option for a subgoal extracted in this
way, the option’s input set, I, can be initialized in sev-
eral ways. The method used in this paper is to search
the agent’s saved state trajectories for occurrences of the
subgoal state(s). When a subgoal has been found in a tra-
jectory at time step t, the agent adds to | the set of states
visited by the agent from time t —n to t, where n is a
positive integer specified as a parameter. The input set of
the subgoal option is therefore the union of all such states
over all of the agent’s saved trajectories. Other methods
based on examination of the optimal value function could
be used if the subgoals were not created until the learn-
ing was completed. The termination condition, [3, is set
to 1 when the subgoal is reached or when the agent is
no longer in the input set, and is set to 0 otherwise. The
option’s policy, T, is initialized by creating a new value
function that uses the same state space as the overall prob-
lem. The reward function used for the option is to give a
reward of —1 on each step and 0 when the option termi-
nates. The agent can also be rewarded negatively for leav-
ing the input set. The option’s value function is learned
using experience replay [7] with the saved trajectories.

The algorithm for discovering subgoals and creating
new options is summarized in pseudocode in Table 1. Al-
though saving the full history seems expensive in terms
of space, it is linear in the size of the trajectories and can
quite reasonably be saved. Also, if memory is at a pre-



Table 1: Pseudocode of the subgoal-discovery algorithm
presented in this paper

Init full trajectory database to @
For each trial
Interact with environment/Learn using RL
Add observed full trajectory to database
Create positive or negative bag from state trajectory
Search for diverse density peaks
For each peak concept ¢ found
Update the running average by ¢ =A(c+1)
If "¢ is above threshold
If ¢ passes the static filter
Create a new optiono =< I, 1, >
of reaching concept ¢
Init | by examining trajectory database

SetpB(c)=1,B(S—1)=1,B(-) =0else

Init policy Ttusing experience replay

mium, the agent could save only the last n trajectories.
Memory space has not been a problem in practice over a
number of different tasks. The next section illustrates the
utility of this algorithm on several illustrative problems.

6 Experimental Results

6.1 Two-Room Gridworld Illustration

We illustrate diverse density and subgoal discovery on
two simple gridworld problems. The first is the two-room
environment shown in Figure 1A. For these experiments,
the goal state was placed in the lower right-hand corner
and each trial started from a randomly chosen state in
the left-hand room. The primitive actions are the usual
four primitive actions of up, down, ri ght ,and | ef t .
Each action succeeds in moving the agent in the cho-
sen direction with probability 0.9 and in a uniform ran-
dom direction with probability 0.1. The reward, learning
parameters, and learning algorithm are the same as de-
scribed in Section 3. Once the agent created an option, it
switched its learning algorithm from Q-learning to Macro
Q-learning [11]. The agent was limited to creating only
one option per run.

The agent created a positive bag for each trajectory
in which it successfully reached the goal state from the
start state. It did not take into account the number of
steps within a trajectory. No negative bags were created.
Because this gridworld has a small number of states, we
were able to calculate the diverse density exactly for each
state. Figure 2A shows the average log likelihood of the
diverse density for each state after 25 trials. The results in
this graph are averaged over 30 trials. Although this aver-

A: Average Diverse Density

B: Subgoals Discovered

Figure 2: A: Average DD values where the states with
higher DD values are shaded more lightly. The static fil-
ter excluded the goal region while the walls were never
reached and therefore have very low DD values. B: Lo-
cations of the new subgoals formed by the learning agent.
Each state is shaded by the number of times that it was se-
lected as a subgoal location where the lighter the square,
the more often it was selected as a subgoal.

age graph is slightly smoother than the individual graphs
for each run, the peak in diverse density near the doorway
remains the same. Figure 2B shows the locations of the
subgoals created over the 30 runs. As expected, locations
near the door were the most frequently detected subgoal
locations.

Mean steps to goal in 2-room gridworld
25000

20001

e
@
<}
3

10001

Steps to Goal

500 Primitives

Options

0 10 20 30 40 50 60 70 80
Episodes

Figure 3: Average steps to goal with and without auto-
matic subgoal detection two-room gridworld.

One reason that it is important for the learning agent
to be able to detect these bottleneck states is the effect on
the rate of convergence to a solution. If the subgoals are
useful, then learning should be accelerated. To ascertain
that these subgoals were helping the agent to improve its
policy more quickly, the average number of steps that the
agent took to reach the goal when using subgoal discov-
ery was compared to learning using only primitive ac-
tions. The average results of this comparison over 30 dif-
ferent runs are shown in Figure 3. It is clear that learn-
ing with automatic subgoal discovery has considerably
accelerated learning compared to learning with primitive
actions alone. The initial trials were the same because the
options were not added until approximately trial 20. The



automatically created options were useful for accelerat-
ing learning on this simple task. Although the variances
are not shown on the graph, the difference between the
two learning curves is greater than one standard devia-
tion.

Mean steps to goal in 2-room gridworld
1000

— Options

900f — Primitives

- = All Experience Replay
== Partial Experience Replay

Steps to Goal
@
8

20 25 30 35 40 45 50 55 60
Episodes

Figure 4: Comparison of the effect of experience replay
over different parts of the state space to option-growing

These results indicate that automatically discovered
options can be useful for accelerating learning within a
given task. To more fully understand why the options
are useful, we performed two additional experiments in
the two-room gridworld. First, it is possible that the time
spent in experience replay during initialization of the op-
tion’s input set could have been better spent by perform-
ing experience replay over the entire state space. To test
this, we allowed the agent to use an equal amount of ex-
perience replay over the entire state space starting at the
same trial where the agent would have created its new
options. However, no new options were created. Because
the option-discovery agent only performed experience re-
play using the states in the option’s input set, it performed
a much smaller number of backups than the total expe-
rience available per trajectory. Counting the number of
backups that the option-discovery agent would have per-
formed for each trajectory and probabilistically choosing
experiences from the entire trajectory for replay approxi-
mately equalized the amount of computational work per-
formed by the two agents. Figure 4 shows the compari-
son of this approach with the option-discovery agent and
learning with primitive actions only. The latter results are
the same as in Figure 3 but the axes have been changed
to highlight the meaningful regions. These results indi-
cate that while experience replay can help to accelerate
learning on the current task, option discovery is more ad-
vantageous.

We also examined the effect of the option’s initial pol-
icy. In this case, the agent performed experience replay
over the states in the option’s input set except that the
backups occurred in the main value function instead of
in the option’s value function. No options were created.

The results of this experiment are also shown in Figure
4. The performance of the agent using partial experience
replay was almost indistinguishable from performance of
the option-discovery agent. The effect of this partial ex-
perience replay is to give the agent a useful policy for
navigating to the doorway. Since this appears to acceler-
ate learning almost as quickly option-discovery, it is clear
that a primary reason that the newly created options are
beneficial to the agent is their initial policy.

Gridworld Task Tranfer — Goal in Upper Corner
30000

25001

2000

1500 -
Primitives

Steps to Goal

10001

500F
Options

0 10 20 30
Episodes

Figure 5: Learning curves in the new two-room task com-
paring use of the previously learned options to primitive
actions.

Another reason that automatic discovery of subgoals is
useful is that the agent can use the subgoals and their cor-
responding options to facilitate learning on similar tasks.
To illustrate how learned subgoals can be useful for task
transfer, the gridworld task was changed by moving the
goal to the upper right-hand corner and decreasing the
success probability from 0.9 to 0.8. The agent using op-
tions was initialized with the options discovered in the
corresponding run of the previous task. Figure 5 com-
pares the average number of steps to the goal for the
agent using only primitive actions with the average for
the agent using the previously learned subgoal options in
addition to the primitive actions. Clearly, the availability
of these options considerably accelerated learning. This
was consistently observed across many different transfer
tasks using this environment.

To ensure that it is the options themselves which are
useful and not just the availability of an appropriate
multi-step policy in a new environment, we compared the
same task transfer results with two other experiments. In
the first experiment, the agent started the new task with
the learned primitive value function from the prior task.
In the second experiment, the agent started with values
from the states in the option’s input set but did not use
the options themselves. We then compared the learning
of these two agents to the results discussed above. This
comparison is shown in Figure 6. It is clear that simply
reusing the value function in whole or in part is drasti-



Gridworld Task Tranfer — Goal in Upper Corner
18000

— Option transfer

n — Primitives

160007, ¥ v - - All values transfer
Vi = = Option values transfer
140001 [

.

12000f 1 !}
L

1000001 ' 1
H

8000

Steps to Goal

6000
4000
2000

o
19N
MWA
0

0 10 2

0 30 40 50
Episodes

Figure 6: Comparison of knowledge transfer using the
value function to using the newly discovered options.

cally worse. Instead, the advantage of the new options
for task transfer is highlighted even more distinctly.

7 Simulated Robot Task

We also tested this method using a simulated Pioneer mo-
bile robot (Figure 7). The robot has 7 sonars, a simple vi-
sion system with a 1-D “retina” having a 140 degree field
of view, and a gripper with a sensor that signals when a
ball is being gripped. The primitive action set consists
of 7 primitive actions (3 distances forward, 2 left and 2
right rotations all implemented by 2 PD controllers). The
task is to find and pick up a ball and deposit it close to a
wall without running into a wall at any time. The robot
received a reward of +10 for putting the ball in the de-
sired location, —1 for touching a wall, and —0.1 per time
step until correctly depositing the ball. This latter nega-
tive reward encourages the robot to accomplish the task
in minimum time. The robot learned through the use of
Q-learning with a CMAC tile encoding to represent the
state space (see [12]).

Figure 7: Simulated Pioneer mobile robot. The lines em-
anating from the robot represent the sonar beams and the
two dashed lines show the vision cone. The rectangle on
the bottom shows the ball’s appearance on the retina.

The robot was able to create one new option per run.

We restricted the subgoal to be expressed as subset of
the projection of the sensory space onto the subspace
spanned by the width and displacement of the ball’s ap-
pearance on the retina. A subgoal that is useful in any
task involving the robot moving the ball is for the robot to
have the ball in its gripper. To do this, the ball should be
looming directly in front of the robot with a large image
width on the retina. Figure 8 shows the option subgoals
discovered by the robot for 30 runs as projections onto
the two relevant sensory variables. As the figure shows,
the robot discovered the subgoal of getting close to the
ball and oriented directly toward it.

0, 30,

25 25)

. f N

5 & 3
Occurrences

5 @ 8

@
o

0.2

) 0.025
Displacement on retina Width of object on retina

Figure 8: Frequencies of each sensory variable’s occur-
rence in a subgoal over 30 runs. To achieve the subgoal,
the robot must use both displacement and width of the
ball’s appearance on the retina.

This result shows that the robot was able to extract a
useful subgoal in a relatively difficult task. This subgoal
will then be beneficial to the agent in new tasks or as the
environment changes. Previous experiments have been
in discrete state spaces, but the use of the algorithm in
a continuous space such as this helps to demonstrate its
applicability.

8 Discussion and Conclusions

We introduced a method for automatically creating sub-
goal options online by searching for bottlenecks in obser-
vation space. We formulated the problem as a multiple-
instance learning problem and used the concept of diverse
density to solve it. We illustrated this approach in several
simulated tasks and showed that it can both accelerate
learning on the current task and facilitate transfer to re-
lated tasks. Although these were not large-scale tasks,
we believe that our results suggest that this is a promis-
ing approach to one aspect of the challenge of automatic
abstraction.

This research is part of our broader focus on min-
ing the agent’s experience to create many different types
of useful new options. It is clear that the subgoals of
achievement like the type discovered in this paper are not
useful for every environment. However, the broader idea



of mining the agent’s past experience can yield useful op-
tions across many environments. This research is one part
of that approach.

Our current research extends this approach by consid-
ering more abstract concept spaces in which to compute
diverse density. For example, concepts in the form of lin-
early discriminable surfaces might allow a robotic agent
to detect concepts not expressible as a single point in fea-
ture space. We are also developing an online method
for filtering and deleting options that prove less useful,
which can further accelerate learning. This can also help
if an option is less useful on a new task than expected and
in cases where an initially useful subgoal is keeping the
agent from discovering an even shorter path to the goal.

One potential drawback to this method is the require-
ment that negative bags cannot contain any positive in-
stances. In the case of more complicated environments,
it can be tricky to define what constitutes the positive and
negative bags. It is desirable to allow the agent to occa-
sionally visit useful subgoals on unsuccessful trajectories
while not affecting the results of the diverse density cal-
culations. We are currently investigating how to best uti-
lize such noisy bags. One such method is to decrease the
influence of each negative instance through the width of
the Gaussians. It may also be possible to give each bag a
relative measure of success.

Another drawback to this method of subgoal discovery
is that the agent must first be able to reach the overall goal
using only the given primitive actions (or any options that
are pre-defined). This limits the problems to which it can
be applied. Current research addresses ways to extend the
approach so that it can be applied when goal states cannot
easily be reached using only primitive actions.

Acknowledgments

The authors are grateful for comments and helpful dis-
cussions from Andrew Fagg and Balaraman Ravindran.
This work was supported by the National Physical Sci-
ence Consortium, Lockheed Martin, Advanced Technol-
ogy Labs, and the National Science Foundation under
grant ECS-9980062 and EIA 9703217.

References

[1] S. Amarel. On representations of problems of rea-
soning about actions. In D. Michie, editor, Machine
Intelligence 3, volume 3, pages 131-171. Elsevier,
North Holland, 1968.

[2] Yuichiro Anzai and Herbert A. Simon. The the-
ory of learning by doing. Psychological Review,
86(2):124-140, 1979.

[3] Daniel S Bernstein. Reusing old policies to acceler-
ate learning on new MDPs. Technical Report UM-
CS-1999-026, Dept. of CS, U. of Massachusetts,
Amherst, MA, 1999.

[4] T. G. Dietterich, R. H. Lathrop, and T. Lozano-
Perez. Solving the multiple-instance problem with
axis-parallel rectangles.  Artificial Intelligence,
89(1-2):31-71, 1997.

[5] Bruce Digney. Learning hierarchical control struc-
ture for multiple tasks and changing environments.
In From animals to animats 5: SAB 98, 1998.

[6] Glenn A. Iba. A heuristic approach to the discovery
of macro-operators. Machine Learning, 3:285-317,
1989.

[7] Long-Ji Lin. Self-improving reactive agents based
on reinforcement learning, planning and teaching.
Machine Learning, 8:293-321, 1992.

[8] Oded Maron and Tomas Lozano-Pérez. A frame-
work for multiple-instance learning. In Michael I.
Jordan, Michael J. Kearns, and Sara A. Solla, ed-
itors, NIPS 10, pages 570-576, Cambridge, MA,
1998. MIT Press.

[91 Amy McGovern. Roles of macro-actions in accel-
erating reinforcement learning. Master’s thesis, U.
of Massachusetts, Amherst, 1998. Also Technical
Report 98-70.

[10] Amy McGovern and Andrew G. Barto. Automatic
discovery of subgoals in reinforcement learning us-
ing diverse density. In To appear in Proceedings
of the 18th International Conference on Machine
Learning ICML 2001, 2001.

[11] Amy McGovern, Richard S. Sutton, and Andrew H.
Fagg. Roles of macro-actions in accelerating re-
inforcement learning. In Proc. of the 1997 Grace
Hopper Celebration of Women in Computing, pages
13-18, 1997.

[12] Richard S. Sutton and Andrew G. Barto. Reinforce-
ment Learning. An Introduction. MIT Press, Cam-
bridge, MA, 1998.

[13] Richard S. Sutton, Doina Precup, and Satinder
Singh.  Between MDPs and Semi-MDPs: A
framework for temporal abstraction in reinforce-
ment learning. Artificial Intelligence, 112:181-211,
1999.

[14] S. B. Thrun and A. Schwartz. Finding structure
in reinforcement learning. In T. Leen G. Tesauro,
D. Touretzky, editor, NIPS 7, pages 385-392, San
Mateo, CA, 1995. Morgan Kaufmann.



