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Abstract. Major severe weather events can cause a significant loss of life and property. We
seek to revolutionize our understanding of and ability to predict such events through the mining

of severe weather data. Because weather is inherently a spatiotemporal phenomenon, mining

such data requires a model capable of representing and reasoning about complex spatiotemporal
dynamics, including temporally and spatially varying attributes and relationships. We introduce

an augmented version of the Spatiotemporal Relational Random Forest, which is a Random Forest

that learns with spatiotemporally varying relational data. Our algorithm maintains the strength
and performance of Random Forests but extends their applicability, including the estimation of

variable importance, to complex spatiotemporal relational domains. We apply the augmented

Spatiotemporal Relational Random Forest to three severe weather data sets. These are: predicting
atmospheric turbulence across the continental United States, examining the formation of tornadoes

near strong frontal boundaries, and understanding the translation of drought across the southern
plains of the United States. The results on such a wide variety of real-world domains demonstrate

the extensive applicability of the Spatiotemporal Relational Random Forest. Our long-term goal

is to significantly improve the ability to predict and warn about severe weather events.

1. Introduction

The majority of real-world data, such as the weather data studied here, varies as a function of
both space and time. For example, a thunderstorm evolves over time and may eventually produce
a tornado through the spatiotemporal interaction of components of the storm. In this paper, we
introduce and validate a greatly augmented version of the Spatiotemporal Relational Random Forest
(SRRF) algorithm for use with severe weather data. The SRRF is a Random Forest (RF) [4]
approach that directly reasons with spatiotemporal relational data and is a major contribution to
the research in spatiotemporal relational models. Due to the increased complexity introduced by
spatiotemporally varying data, most data mining algorithms ignore one or both of these aspects
(e.g. temporal only relational models such as [7, 12, 23]) and our recent work is the the only work
that we know of that addresses both spatiotemporal and relational data [15, 26, 2].

Our work is motivated by and validated in three real-world earth science domains. The first is
predicting thunderstorm-induced turbulence as experienced by aircraft, focusing on the continental
United States. Such turbulence is inherently spatiotemporal, with thunderstorms causing increased
turbulence on a short time scale in the local region around a storm and also on a longer time scale
across a greater spatial extent. With this domain, our goal is to enhance the current operational
products that provide turbulence prediction to aviation interests by improving the spatiotemporal
reasoning of the models. Prior work demonstrated that RFs were a promising approach in the turbu-
lence domain [29]. This summer, we are performing case studies of the SRRF and and investigating
the possibility of integrating the trained SRRFs into an operational turbulence guidance product
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Spatiotemporal data mining using the SRRFs can aid the development of effective turbulence
predictions by uncovering and exploiting relationships between storm features and environmental
characteristics that go beyond mechanisms that are currently understood by atmospheric scientists.
In doing so, it has the potential to not only create practical predictive systems, but also to improve
scientific understanding of turbulence.

The second domain is that of understanding and predicting tornadoes. The results presented in
this paper are a piece of a larger overall project focusing on revolutionizing our understanding of
tornadoes. In this paper, we look at the interaction of tornadoes and frontal boundaries as they
moved across the state of Oklahoma over a 10 year period. Prior tornado research has found that
70% of strong tornadoes in 1995 were located within 30 km of a front [14]. The goal of this part
of the project is to use SRRFs and objective front analysis to perform a climatological study of
tornadic supercell thunderstorms and how the relative positions of fronts affect them.

The National Oceanic and Atmospheric Administration’s National Weather Service has a goal of
developing Warn-on-Forecast capabilities by 2020, instead of the current warn on detection approach
[25]. The Warn-on-Forecast concept hopes to increase the lead time of severe weather and tornado
warnings by accurately predicting the time and location of severe storms using numerical models.
Our data mining approach promises to identify those within-storm features that discriminate between
storms that will produce tornadoes and those that will not. It can be directly used within the
numerical modeling of storms and given to the weather forecasters who issue the warnings.

In the third domain, we study the progression of droughts across the Southern Great Plains for
a 134 year period. Drought is a spatiotemporal phenomenon that operates on a very different time
scale than tornadoes or turbulence. While those appear and disappear relatively quickly, drought
takes months to years to progress. The goal with this work is to improve the prediction of drought
through an improved understanding of how drought moves in each local region.

RFs [4] are a simple and powerful algorithm with a strong track record (e.g., [22, 17, 8, 3, 28]).
RFs learn an ensemble of C4.5 [20] trees, each of which is trained on a separate bootstrap resampled
dataset and using a different subset of the attributes. The power of the approach comes from the
differences in the trees, which enable the forest to capture more expressive concepts than with a
single decision tree. Since the trees are each trained on a different subset of the data, they can focus
on different aspects of the overall classification problem. In addition to their predictive capabilities,
one of the reasons that RFs are so popular is their ability to analyze the variables for their overall
importance at predicting the concept.

We introduced a preliminary version of the SRRFs in [26]. This paper represents a significant
extension of that work. The contributions of this paper are: 1) The SRRF algorithm has been
extended to address variable importance of spatiotemporal relational data. Since we are working
directly with the domain scientists, the human interpretability of the models is critical. A single
tree can be examined easily but an entire forest is more difficult to analyze, making the variable
importance aspect crucial. 2) Our underlying Spatiotemporal Relational Probability Tree (SRPT,
[15]) algorithm has been considerably enhanced to improve the spatiotemporal distinctions. This
gives us the ability to represent temporally and spatially varying fields within objects, which signifi-
cantly augments our ability to mine and understand severe weather. 3) We have thoroughly explored
the parameter space of the algorithm on all of our domains. 4) We have significantly extended the
application to multiple real-world severe weather domains in preparation for extensive field testing
occurring in the summer and fall of 2010.

2. Growing SRRFs

Growing a SRRF is very similar to the approach used to grow a RF [4] with a few critical changes
required by the nature of the spatiotemporal relational data. Algorithms 1, 2, and 3 describe the
learning process in detail. Before discussing these, we describe how we represent the spatiotemporal
relational data for efficient learning.
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Figure 1. Schema for aircraft turbulence data set. Object and relationship types
are underlined and bolded. Temporal attributes are denoted with a T and fielded
attributes with a F (with 2F specifying 2-dimensional fields).

The data are represented as spatiotemporal attributed relational graphs [15]. This representation
is an extension of the attributed graph approach [19, 18, 11] to handle spatiotemporally varying data.
All objects, such as people, places, or events, are represented by vertices in the graph. Relationships
between the objects are represented using edges. With the severe weather data, the majority of
the relationships are spatial. Both objects and relationships can have attributes associated with
them and these attributes can vary both spatially and temporally. In the case of a spatially or
spatiotemporally varying attribute, the data are represented as either a scalar or a vector field,
depending on the nature of the data. This field can be two or three dimensional for space and can
also vary as a function of time. In addition to attributes varying over space and time, the existence
of objects and relationships can also vary as a function of time. If an object or a relationship is
dynamic, it has a starting and an ending time associated with it.

To illustrate the data representation, Figure 1 shows the schema for the turbulence data. All
objects and relations are required to be typed. In this case, the attributes on the rain, hail, con-
vection, and vertically integrated liquid objects are all 2-dimensional spatiotemporal scalar fields.
The attributes on the aircraft object are all static as they are measured at a single moment in time.
Note that the schema shows the types of objects and relationships possible but any specific graph
can vary in the number of such objects present. For example, all graphs in the turbulence data will
have an aircraft object but they may have any number (including 0) of rain, hail, and convective
regions as defined by the weather nearby the aircraft.

An SRRF is composed of individual Spatiotemporal Relational Probability Trees (SRPTs) [15],
which are probability estimation trees similar to Relational Probability Trees [19] but with the ability
to split the data based on spatiotemporal attributes of both objects and relations. Since our initial
introduction of SRPTs, their capabilities have significantly expanded. The most significant change
is their ability to represent and reason about attribute fields within objects. We summarize the
types of questions that the SRPTs can use to make distinctions about the data.

The non-temporal splits are:

• Exists: Does an object or relation of a particular type exist?
• Attribute: Does an object or a relation with attribute a have a [MAX, MIN, AVG, ANY] value

≥ than a particular value v?
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Algorithm 1: Grow-SRPT
Input: s = Number of distinctions to sample, D = training data, m = Maximum depth of tree, d =

current tree depth, p p-value used to stop tree growth
Output: An SRPT
if d ≤ m then

tree ← Find-Best-Split(D,s,p)
if tree 6= ∅ then

for all possible values v in split do
tree.addChild(Grow-SRPT(D where split = v))

end
Return tree

end

end
Return leaf node

Algorithm 2: Find-Best-Split
Input: s = Number of samples, D = training data, p p-value used to stop tree growth
Output: A split if one exists that satisfies the criteria or ∅ otherwise
best ← ∅
for i = 1 to s do

split ← generate random split
eval ← evaluate quality of split (using chi-squared)
if eval < p and eval < best evaluation so far then

best ← split
end

end
Return best

• Count Conjugate: Are there at least n yes answers to distinction d? Distinction d can be any
distinction other than Count Conjugate.

• Structural Conjugate: Is the answer to distinction d related to an object of type t through a
relation of type r? Distinction d can be any distinction other than Structural Conjugate.

The temporal splits are:
• Temporal Exists: Does an object or a relation of a particular type exist for time period t?
• Temporal Ordering: Do the matching items from basic distinction a occur in a temporal

relationship with the matching items from basic distinction b? The seven types of temporal
ordering are: before, meets, overlaps, equals, starts, finishes, and during [1].

• Temporal Partial Derivative: Is the partial derivative with respect to time on attribute a on
object or relation of type t ≥ v?

The spatial and spatiotemporal splits are:
• Spatial Partial Derivative: Is the partial derivative with respect to space of attribute a on

object or relation of type t ≥ v?
• Spatial Curl: Is the curl of fielded attribute a ≥ v?
• Spatial Gradient: Is the magnitude of the gradient of fielded attribute a ≥ v?
• Shape: Is the primary 3D shape of a fielded object a cube, sphere, cylinder, or cone? This

question also works for 2D objects and uses the corresponding 2D shapes.
• Shape Change: Has the shape of an object changed from one of the primary shapes over to a

new shape over the course of t steps?
Algorithm 1 describe the procedure for growing an individual tree. This procedure follows the

standard greedy decision tree algorithms with the exception of the sampling of the splits. Because
there is a very large number of possible instantiations for the split templates listed above, we sample
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the specific splits using a user specified sampling rate. For each sample, a split template is selected
randomly and the pieces of the template are filled in using randomly chosen examples in the training
data. This process is described in Algorithm 2. The split with the highest chi-squared value is chosen
so long as its p-value satisfies the user specified p-value threshold. This threshold can be used to
control tree growth, with higher values enabling the growth of deeper trees and lower values enabling
potentially higher quality splits but less complicated trees.

Algorithm 3: Growing SRRFs
Input: s = Number of distinctions to sample, n = number of trees in the forest, D = training data
Output: An SRRF
for i = 1 to n do

[in-bag-data, out-of-bag-data] ← Bootstrap-Resample(D)
Ti ← Grow-SRPT(in-bag-data, s)

end
Return all trees T1...n

Algorithm 3 shows the overall learning approach for growing a SRRF. The SRRFs preserve as
much of the RF training approach as possible. The training data for each tree in the forest is still
created using a bootstrap resampling of the original training data. The difference in the learning
methods arises from the nature of the spatiotemporal relational data and the SRPTs versus C4.5
trees. In the RF algorithm, each node of each tree in the forest was trained on a different subset of
the available attributes. Since the individual trees were standard C4.5 decision trees, this limited
the number of possible splits each tree could make. Because each tree was also trained on a different
bootstrap resampled set of the original data, the trees were sufficiently different from one another
to make a powerful ensemble. Because there are a very large number of possible splits that the
SRPTs can choose from, an SRPT finds the best split through sampling, as described above. Like
the original RF trees, SRPTs are still built using the best split identified at each level. With fewer
samples, these splits may not be the overall best for a single tree, but they will be sufficiently different
across the sets of trees that the power of the ensemble approach will be preserved. However, if the
number of samples is too small, the number of trees needed in the ensemble to obtain good results
may be prohibitively large. We examine these hypotheses empirically in the experimental results.

For a particular attribute a, RFs measure variable importance by querying each tree in the forest
for its vote on the out-of-bag data. Then, the attribute values for attribute a are permuted within
the out-of-bag instances and each tree is re-queried for its vote on the permuted out-of-bag data.
The average difference between the votes on the unpermuted data for the correct class and the votes
for the correct class on the permuted data is the raw variable importance score. We have directly
converted this approach to the SRRFs and can measure variable importance on any attribute of an
object or relation. Spatially and temporally varying attributes are treated as a single entity and
permuted across the objects/relations but their spatial and/or temporal ordering is preserved. We
examine the variable importance in each of our data sets.

3. Parameter Exploration

In order to study the effects of the parameters on the SRRF algorithm, we performed a combi-
natorial experiment on two datasets. The primary parameters that affect the performance of the
SRRF are the number of possible splits each SRPT can examine at each level of tree growth (this
is analogous to the number of attributes in a C4.5 tree), the maximum depth the tree is allowed to
reach, the number of trees in the forest, the p-value used to control tree growth (using the chi-squared
statistical test), and the types of distinctions the tree can use.
• Number of samples: [10, 100, 500, 1000, 5000].
• Maximum depth of the tree: [1, 3, 5].
• Number of trees in the forest: [1, 10, 50, 100].
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• We fixed the p-value to 0.01
• Distinctions: [all, non-temporal only]

This yields 120 parameter sets in total, each of which is run 30 times for statistical testing. Due to
space limitations, these results are presented online at http://idea.cs.ou.edu/cidu2010/.

4. Convectively-induced turbulence

Convectively-induced turbulence (CIT) – atmospheric turbulence in and around thunderstorms
– is a major hazard for aviation that commonly causes delays, route changes and bumpy rides for
passengers, particularly in the summer. Turbulence encounters can cause structural damage to
aircraft, serious injuries or fatalities, and frightening experiences for travelers. Better information
about likely locations of turbulence is needed for airline dispatchers, air traffic managers and pilots to
accurately assess when ground delays are truly necessary, plan efficient routes, and avoid or mitigate
turbulence encounters. For these reasons, enhanced prediction of CIT is one of the stated goals of
the FAA’s current effort to modernize the national air transportation system, called NextGen.

An existing system for forecasting turbulence over the US is called Graphical Turbulence Guid-
ance (GTG) [24]. GTG was developed by the FAA’s Aviation Weather Research Program, and
currently runs operationally at NOAA’s Aviation Weather Center1. The GTG algorithm is based on
a combination of turbulence “diagnostic” quantities derived from an operational numerical weather
prediction (NWP) model’s 3-D forecast grids. For example, the Richardson number measures the
ratio of atmospheric stability to wind shear; low values of this quantity suggest the transition from
laminar to turbulent flow [27]. Unfortunately, operational NWP models run on a grid that is too
coarse to resolve thunderstorms, and thus are unable to fully capture CIT generation mechanisms
even if they are quite accurate. Therefore, the best hope for CIT prediction is to couple model-derived
information about the storm environment and diagnostics of turbulence with timely observations
from satellite or radar that characterize the location, shape, and intensity of a storm.

The advent of an automated turbulence reporting system on board some commercial aircraft
makes it possible to associate objective atmospheric turbulence measurements with features from
NWP models and observations. The system uses rapid measurements of the vertical acceleration of
the aircraft to deduce the atmospheric winds, and then performs a statistical analysis of the wind
fluctuations to determine the turbulence intensity, which is measured in terms of eddy dissipation
rate (EDR) over 1-minute flight segments. The data used in these experiments were collected from
United Airlines Boeing 757 aircraft in the summer of 2007. Convection is most prevalent in the
summer and studying this time period helps to generate a dataset in which convection is the most
prevalent source of turbulence.

One difficulty in using intelligent algorithms to predict turbulence is that the data contain an
overwhelming number of cases with null or light turbulence reported. Turbulence is a rare phenom-
enon to begin with, and the data were collected from aircraft whose pilots were doing their best to
avoid turbulence so as to maximize passenger comfort and safety. As a result, light-to-moderate or
greater (LMOG) turbulence occurs in less than 1% of the data points and an algorithm can achieve
99% accuracy by simply predicting “no turbulence” everywhere. To counteract this, we resampled
the data, retaining only 3% of the null or light turbulence cases. The final data set contains 2055
cases, approximately 26% of which are LMOG turbulence (1514 negatives and 541 positives).

The data available for this study comes from a combination of the the measurements collected
from the United aircraft, archived weather observations for the same time period, and archived real-
time NWP model data (Rapid Update Cycle2). This is transformed to a spatiotemporal relational
representation using the schema shown in Figure 1. The in-situ aircraft data and the interpolated
NWP model data were used to make the aircraft objects, and the gridded model and observation
data were used to make the other objects. Each of the objects represents a meteorological concept

1See http://aviationweather.gov/adds/turbulence/
2http://ruc.noaa.gov/
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Figure 2. AUC for the Turbulence data as a function of the number of splits
sampled at each node of tree growth size for 10-, 50-, and 100-tree SRRFs and a
single SRPT. The maximum tree depth was fixed at 5 and the chi-squared threshold
at 0.01.

or distinct region. We applied thresholds to the radar reflectivity data to obtain connected areas
greater than 20 dBZ (“rain” objects), 40 dBZ (“convection” objects) and 60 dBZ (“hail” objects). We
then extracted connected regions within 40 nautical miles of the aircraft, and co-located them with
infrared satellite and NWP model data. The same method was used for radar-derived vertically
integrated liquid (VIL), with a threshold of 3.5 kg m−2. The aircraft objects are static and the
observations are available only at the same time that the turbulence was measured. The other
objects are tracked for 30 minutes (in 5 minute increments).

Figure 2 shows the Area Under the Receiver Operating Characteristic Curve (AUC) for the SRRF
turbulence predictions on an independent test set as a function of the number of distinctions sampled
in the forest. AUC is a standard measure of performance of a probabilistic classifier. An AUC of
1 indicates perfect performance and an AUC of 0.5 indicates random performance. The maximum
tree depth for this graph was fixed at 5. As the sample size increases, the performance of the forest
increases and then asymptotes. This is expected, as increasing the number of samples increases the
probability that the tree will ask a question that splits the data well, but eventually also reduces
the diversity of the forest and increases the risk of overfitting. The asymptotic behavior of the
performance occurs because if the sample size is large enough, the trees have probably examined
all the best distinctions. Additionally, increasing the number of trees in the SRRF increases the
performance. This behavior is also expected as ensembles with more members are expected to better
capture the underlying relationships. Increasing the number of trees in the SRRF also appears to
yield an asymptotic performance gain. This is likely occurring for two reasons. The first is that
bootstrap sampling becomes more uniform with the larger number of ensemble members, so the
effectiveness of the ensemble is reduced. The second is that, as the number of samples increases, the
trees become more similar. RF performance has also been shown to asymptote as the diversity of
the trees in the forests is reduced [4].

Table 1 gives the importance of the top 10 attributes in the turbulence data. Attributes on objects
list the object they are associated with (e.g. VIL.Area means the area attribute of objects of type
VIL) and attributes listed with an arrow are on the relations. For example, the contains relationship
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Table 1. Top 10 statistically significant important attributes (α = 0.05) in the
turbulence data for a forest with 100 trees, 1000 samples at each node, max tree
depth of 5. This is computed over 30 runs.

Attribute Mean Variable Importance
VIL.Area 0.198
Aircraft.RichardsonNumber 0.106
Rain→Contains.Coverage→VIL 0.085
Rain→Contains.Coverage→Convection 0.084
Convection→Contains.Coverage→VIL 0.061
Rain.Area 0.056
Hail.CloudTopTemperature 0.054
Aircraft→Nearby.Range→Rain 0.053
VIL.CloudTopTemperature 0.052
Aircraft→Nearby.Range→Vil 0.048

between Rain and VIL objects has a Coverage attribute that is the second most important attribute.
Most of these attributes characterize the storm environment. The most important attribute, the
area on VIL objects, reflects the size of active thunderstorms in the vicinity of the aircraft. Large
thunderstorms are often more intense and longer-lived, with greater outflow and environmental
disturbance than smaller storms. The Rain object’s area may play a similar role, though somewhat
less effectively. Cloud top temperatures within Hail and VIL objects provide additional indications
of storm severity; cold cloud tops suggest deeper clouds and potentially more powerful updrafts,
downdrafts and gravity waves. The range attribute on the relationship between aircraft and both
rain and VIL objects indicates the proximity of the plane to precipitating cloud or active convection,
and hence is related to the storm’s ability to influence it. The coverage attribute on the contains
relationship between Rain and VIL and Convection objects denotes the fraction of active convection
the larger rain regions, which may help distinguish rain due to convection from less turbulence-prone
stratiform or orographic rainfall. Only one of these top 10 attributes is derived from the NWP model
analysis: the Richardson number at the plane location indicates both turbulence due to the model-
resolved storm and also non-CIT turbulence related to environmental factors such as the jet stream
that may also occur in the dataset.

5. Surface boundaries and tornadogenesis

When different air masses meet, such as along a warm front or a cold front, boundary regions
exist. Given that air mixes continuously, the transition zone along the boundary is not instantaneous
and includes regions of strong temperature and moisture gradients. In addition to fronts, boundaries
also occur along drylines or due to outflow from thunderstorms. While boundaries are commonly
associated with the generation of storms through the lifting of warm, moist air over cool, dry air,
their overall impact on the generation of tornadoes is not well understood. Markowski et al. [14]
describe how boundaries can yield a zone of enhanced horizontal rotation. A supercell thunderstorm
with a strong updraft moving through the zone can vertically tilt the enhanced horizontal rotation
which assists with the process of producing a tornado. That study analyzed strong tornadic super-
cell thunderstorms over a one-year period and found that 70% occurred near frontal boundaries.
However, due to the limited sample size and time period, further study was needed to quantify the
relationship between boundaries and tornadoes over longer periods.

Our data was created from a ten-year analysis of supercell thunderstorms and surface boundaries
in the state of Oklahoma. The supercell data came from a climatology of 926 Oklahoma supercells
from 1994-2003 by Hocker and Basara [9]. Surface frontal boundaries associated with each supercell
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Pressure <T2F>
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Abbreviations
     Wind DSD: Wind Direction Standard Deviation
     Wind SSD: Wind Speed Standard Deviation
     LCLH:  Heigh of the Lifted Condensation Level
     BRGPrev: Previous Bearing
     TFP: Thermal Front Parameter

Figure 3. Schema for tornadogenesis data. Temporal data is denoted with a <T>
and 2-dimensional fielded data with a <T2F>.

Table 2. The distribution of tornadic and non-tornadic supercell durations.

Tornadic Non-Tornadic
Count 215 711

Proportion 0.235 0.765
Median Duration (hr) 2.71 1.71
Mean Duration (hr) 2.90 1.96

Std. Dev. Duration (hr) 1.48 1.09
Max. Duration (hr) 9.33 7.06
Min. Duration (hr) 0.32 0.08

were analyzed from Oklahoma Mesonet surface observations [16] using objective front analysis tech-
niques [21, 10]. Each group of supercells and frontal boundaries was labeled based on whether or
not the supercell produced a tornado. The front and supercell data were related using the schema
shown in Figure 3, where Nearby relationships indicated storms and fronts less than 40 km apart
and On Top Of relationships indicated a distance of less than 10 km apart, the typical diameter of
a supercell thunderstorm. This data included a wide variety of temporal and spatial attributes.

Table 2 shows the class distribution of the supercell thunderstorms and Figure 4 shows the spatial
distribution of tornadic supercells in Oklahoma. Most supercells in the data were found to be non-
tornadic. Tornadic supercells were found to last an hour longer on average than non-tornadic
supercells, a significant (p=0.01) difference. Although duration is well correlated with tornadic
supercells, it is not a predictive variable and is not useful while a storm is developing as its final
duration is not known until the storm has ended.

To determine what impact environmental variables have on the distribution of tornadic supercells,
we applied the SRRFs to this data. As with the previous experiment, we examined the AUC as a
function of the number of trees in the forest and the number of distinctions sampled at each level.
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Figure 4. Number of tornadic supercells that have passed within 30 km of a point
from 1994-2003.
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Figure 5. AUC for the Fronts and Tornado Data as a function of sample size for
10- and 50-tree SRRFs and a single SRPT. Error bars indicated 95% confidence
intervals.

These results are shown in Figure 5. The AUC indicates that this is a robust classifier and the forests
are again able to outperform the single SRPT. Also, as with the turbulence data, the performance
asymptotes as a function of the number of trees in the forest and as the number of splits sampled
at each level of tree growth increases.

To understand which variables are the most important in determining whether a supercell is tor-
nadic, we calculated the variable importance for the resampled data, as shown in Table 3. Seven
of the top ten variables were associated with the storm only, indicating that characteristics of the
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Table 3. The top 10 most important variables for the front and tornado data,
averaged over 30 runs of a 100-tree SRRF with a sample size of 1000 and a maximum
tree depth of 5.

Attribute Mean Variable Importance
Storm.AirTempature 0.162
Storm.ThetaE 0.130
Storm.NetDisplacement 0.120
Storm→Nearby.RelativeAzimuth →Front 0.117
Storm.DewPoint 0.112
Storm.Bearing 0.109
Front.ThetaE 0.088
Front.ThermalFrontParameter 0.085
Storm.Pressure 0.085
Storm.LiftedCondensationLevelHeight 0.079

storm environment are generally more influential than conditions along surrounding boundaries.
Air temperature, equivalent potential temperature (theta-e), and dewpoint were all among the most
important variables, which is potentially indicative that storms have different tornadic probabilities
given different moisture and heating conditions. Net displacement is tied to the duration of the
storm, which is consistent with the findings of [5] that long duration supercells are more likely to be
tornadic. The angle between the storm and the front and the bearing of the storm considered highly
important but not the distance to the front, so how the storm moves relative to local boundaries is
more indicative of tornadic potential than how far away a boundary is. A storm’s motion can affect
how long it remains in a favorable environment and from there affect the tornadic potential. Storm
pressure is related to the intensity of the storm. Lifted Condensation Level (LCL) Height estimates
the distance from the cloud base to the ground and is directly related to the dew point depression.
Bunkers [5] and others have shown that lower LCL heights are associated with weaker downdrafts
and cold pools, leading to longer-lasting supercell storms and more favorable environments for tor-
nadoes. As shown by the selection of important variables, the SRRF confirms trends discussed in
the literature for the studied domain.

6. Drought

Drought, loosely defined as insufficient water for normal purposes, has one of the highest costs of
any natural event in terms of socioeconomic loss. In the United States alone, drought has cost the
economy over $5B annually on average since 1980 and extreme drought events rival hurricanes in
their destructive potential [13]. Although drought differs significantly from the previous application
domains, the impact demonstrates that there is a need for an improved understanding of drought.
One of the interesting differences for SRRFs is that drought acts on a much slower temporal and
much wider spatial scale.

The geographical extent of our drought analysis roughly corresponds to the Southern Great Plains
of the United States. Because we have previously demonstrated [6] that the Palmer Drought Severity
Index (PDSI) exhibits strong spatial and temporal structure in terms of its predictability, we continue
to focus on the PDSI data. The PDSI drought data is provided on a 2.5 degree geographic coordinate
grid and each coordinate has 134 years of data recorded in one month intervals3. Incomplete data
records due to the presence of bodies of water and the slow early establishment of meteorological
records reduce the number of useful grid cells around the edges.

Figure 6a shows the schema for the spatiotemporal relational data used to study the PDSI. The
inherent gridded nature of the data logically leads to using each grid point as an object and the

3http://iridl.ldeo.columbia.edu/
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Figure 6. a) Schema for the drought data. b) AUC as a function of the number
of distinctions sampled and the number of trees in the forest at Tulsa, Oklahoma.

relations are the spatial relationships between the grid points. We focus on labeling the center point
of a 3x3 spatial grid given the PDSI value over the previous 3 months at all neighboring locations.
A graph is labeled as positive if the center grid point is in drought in the current month. With 134
years of data, we have approximately 1600 graphs for each location.

For the drought data, we performed several experiments. First, we varied the number of trees
in the forest and the number of samples as described for all of the previous domains. For this
experiment, we focused on the location of Tulsa, Oklahoma. The reason for running this experiment
on only one location was to find the best set of parameters and then repeat those parameters across
the entire data set, focusing on the variable importance analysis.

Figure 6b shows the AUC as a function of the number of distinctions samples and the number
of trees in the forest. As with the previous domains, performance increases as the number of trees
increases and asymptotes around 50 to 100 trees. Performance also improves as a function of the
number of samples while asymptoting around 500 samples.

Domain scientists want to be able to use such a model to better understand drought, not just to
predict it. We focus on the variable importance for this aspect. For this experiment, we trained a
SRRF with 50 trees and 100 samples for all 18 locations that have sufficient data at all neighboring
locations. We ran 30 runs of this training with the same parameter set and used variable importance
to analyze which direction is most important in predicting drought.

Figure 7 shows the corresponding map of the results obtained using the SRRF. The length of
the arrows emanating from each grid point indicates the variable’s importance. For example, a
long arrow pointing towards the southeast would indicate that spatiotemporal information to the
southeast of the center grid point is more useful in predicting the future occurrence of drought in
the center than a direction that exhibited a lower variable importance (shorter arrow).

It is immediately seen that spatiotemporal structure exists in the abilities of the various cardinal
and inter-cardinal directions to predict the presence of drought at the center grid points. This
highlights the potential ability of the SRRF algorithm to aid in drought response planning and
mitigation over short time spans. However, not only does Figure 7 demonstrate the ability to
predict, it also begins to hint at geographic structure with regards to how drought responds to
its spatiotemporal informational surroundings. This is most clearly seen from the similarity of
the rosettes of variable importance surrounding the sites in Eastern and Central Kansas. Their
qualitative similarity is suggestive that drought behaves similarly across this geographic region.
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Figure 7. Importance of spatiotemporal information, as a function of direction, in
the prediction of future states of drought.

Other potential regions may be seen in the Western Oklahoma/Northern Texas Panhandle, and in
the Southeastern New Mexico/Southern Texas Panhandle rosettes.

Our results are encouraging and warrant further investigation into the strength of the similarity
between rosettes, the inclusion of seasonality into the study, and the variations that drought indices
different from the PDSI might present. And finally, as nearly all geographic regions exhibit indi-
vidualized behavior, rather than relying upon Tulsa to calibrate the experimental parameters, each
grid cell should be examined for its own set of “best parameters.”

7. Conclusions

We have introduced and validated a significantly augmented Spatiotemporal Relational Random
Forest, a new Random Forest based algorithm that learns with spatiotemporally varying relational
data. We have focused our application of the SRRF algorithm on three real-world severe weather
domains: turbulence, tornadoes and drought. In each domain, we demonstrated that the SRRF is a
strong predictor and that the variable importance analysis significantly aids human understanding
of the results. The contributions of this paper include the enhanced SRRF algorithm, the variable
importance analysis for spatiotemporally varying relational data, the enhancements of the underlying
SRPT, parameter exploration, and a thorough validation on real-world severe weather data.

The current FAA turbulence prediction algorithm, GTG [24], is based primarily on NWP model
data, though efforts are underway to integrate observations to better diagnose convective turbulence
[29]. We anticipate that the SRRF will aid in this improvement by uncovering new spatiotemporal
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relationships with predictive value via the variable importance analyses. Furthermore, to evaluate
its potential to become a useful component of the prediction algorithm, we are evaluating gridded
predictions made by the SRRF on case studies drawn from selected days. Based on the results of
this study, we hope to integrate the SRRF into the current prediction product in the Fall of 2010.

Our work in the tornado domain is a piece of a larger project focusing on understanding the
formation of tornadoes through high resolution simulations as well as the analysis of observational
data. Future work on this same 10-year climatological data set includes extending the time period,
extending the period before each storm, and expanding the set of environmental variables. All
of our work on tornadoes will also be immediately relevant for the Warn-on-Forecast models being
developed for the National Weather Service. Our study of a 10 year dataset of tornadoes in Oklahoma
is helping to better understand “what” atmospheric variables are critical “when”. This provides basic
new insights into the overall set of processes related to the occurrence of tornadic supercells. In the
future, this will be integrated with the knowledge gained through field studies such as VORTEX 24.

Our drought application is also a piece of a larger project studying the predictability of drought in
the continental United States using a variety of data mining techniques. The goal of this project is
to improve our understanding of how drought moves and thus to improve the predictions of drought,
enabling those affected by it to mitigate the impact.

Research Reproducibility: All of the graphs from the parameter exploration studies, the data,
and the code used for all of the experiments are available at: http://idea.cs.ou.edu/cidu2010.
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