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Abstract
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1 Introduction

Although high-level code is generally written as if it were going to be executed sequentially, most

modern computers exhibit parallelism in instruction execution using techniques such as the simultaneous

issue of multiple instructions. To take the best advantage of multiple pipelines, when a compiler turns the

high-level code into machine instructions, it employs an instruction scheduler to reorder the machine code.

The scheduler needs to reorder the instructions in such a way as to preserve the original in-order semantics

of the high level code while having the reordered code execute as quickly as possible. An efficient schedule

can produce a speedup in execution of a factor of two or more.

Building an instruction scheduler can be an arduous process. Schedulers are specific to the architecture

of each machine, and the general problem of scheduling instructions is NP-Complete (Proebsting). Because

of these characteristics, schedulers are currently built using hand-crafted heuristic algorithms. However, this

method is both labor and time intensive. Building algorithms to select and combine heuristics automatically

using machine learning techniques can save time and money. As computer architects develop new machine

designs, new schedulers would be built automatically to test design changes rather than requiring hand-built

heuristics for each change. This would allow architects to explore the design space more thoroughly and to

use more accurate metrics in evaluating designs.

A second possible use of machine learning techniques in instruction scheduling is by the end user.

Instead of scheduling code using a static scheduler trained on benchmarks when the compiler was written,

a user would employ a learning scheduler to discover important characteristics of that user’s code. The

learning scheduler would exploit the user’s coding characteristics to build schedules better tuned for that

particular user.

When building a scheduler, there is a tradeoff between the running time of the compiler and the running
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time of the executable generated. Potentially, the longer the compiler runs, the more possibilities it can

consider and the better the schedule it can generate. However, instead of exploring each individual program

online, a compiler could make use of an algorithm tuned off-line. This would decrease the running time of

the compiler while potentially sacrificing some quality of the final schedule.

With these motivations in mind, we formulated and tested two methods of building an instruction

scheduler. The first method used rollouts (Woolsey, 1991; Abramson, 1990; Galperin, 1994; Tesauro and

Galperin, 1996; Bertsekas et al., 1997a,b) and the second focused on reinforcement learning (RL) (Sutton

and Barto, 1998). We also investigated the effect of combining the two methods. All methods were imple-

mented for the Compaq Alpha 21064. These methods address the time tradeoff directly. Rollouts evaluate

schedules online during compilation while reinforcement learning trains on more general programs and runs

more quickly at compile time. The next section gives a domain overview and discusses results using super-

vised learning on the same task. We then present the rollout scheduler, the reinforcement learning scheduler,

and the results of combining the two methods.

2 Overview of Instruction Scheduling

We focused on scheduling basic blocks of instructions on the 21064 version (DEC, 1992) of the Compaq

Alpha processor (Sites, 1992). A basic block is a set of machine instructions with a single entry point and

a single exit point. It does not contain any branches or loops. Our schedulers can reorder the machine

instructions within a basic block but cannot rewrite, add, or remove any instructions. Many instruction

schedulers built into compilers can insert or delete instructions such as no-ops. However, we were working

directly with the compiled object file and had no method for changing the size of a block within the object

file, only for reordering the block.



To appear in Machine Learning: Special Issue on Reinforcement Learning, 2000. 3

The goal of the scheduler is to find a least-cost valid ordering of the instructions in a block. The cost is

defined as the execution time of the block. A valid ordering is one that preserves the semantically necessary

ordering constraints of the original code. This means that potentially conflicting reads and writes of either

registers or memory are not reordered. We ensure validity by creating a dependence graph that directly

represents the necessary ordering relationships in a directed acyclic graph (DAG). The task of scheduling is

to find a least-cost total ordering consistent with the block’s DAG.

A B C D

X = V;

Y = *P;  

P  = P + 1; 4:    ADDQ     R10, R10, 8  

3:     STQ        R2, Y            

2:    LDQ        R2, 0(R10)   

1:    STQ         R1, X           

3

1 2

4

2 1

4

2
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Not Available Available
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C Code Instruction Sequence to be Scheduled Dependence Dag of Instructions Partial Schedule

Figure 1: Example basic block code, DAG, and partial schedule

Figure 1 gives a sample basic block and its DAG. In this example, the original high-level code is three

lines of C code (Figure 1A). This C code is compiled into the assembly code shown in Figure 1B. The DAG

in Figure 1C is constructed from Figure 1B in the following way. Instructions 1 and 2 have no dependences

and thus have no arcs into their nodes. However, instruction 3 reads from a register loaded in instruction

2 which means that instruction 2 must be executed before instruction 3. If the compiler does not know

that X and Y are non-overlapping variables, it must assume that instruction 3 depends on instruction 1.

Lastly, instruction 4 increments the value in the same register that instruction 2 reads, which means that

instruction 4 must be executed after instruction 2. An example of using this DAG is shown by the partial

schedule in Figure 1D. Here, instruction 2 has already been scheduled. This means that instructions 1 and

4 are available to be scheduled next. Instruction 3 must wait for instruction 1 to be scheduled before it can
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become available.

Using this example basic block (Figure 1) and a single pipeline machine, we can demonstrate how a

small schedule change can affect the running time of a program. There are five valid schedules for the four

instructions shown in Figure 1. Assume that two of these schedules were to execute on a single pipeline

machine where loads take two cycles to execute and all other instructions take one cycle. The two example

schedules are shown in Table 1. When executing schedule A, instruction 2 is executed immediately before

instruction 3. However, instruction 3 depends on the results of instruction 2, which takes two cycles to

execute. This causes a pipeline stall for one cycle. Schedule B fills the second cycle of the load in the

pipeline with instruction 4. Instruction 4 does not cause a stall because it has no dependency on the data

being loaded in instruction 2. With the stall, Schedule A takes 5 cycles to execute while Schedule B takes

only 4 cycles. This example illustrates differing execution times with only a small change in instruction

ordering. On larger blocks, on machines with multiple pipelines, and with the ability to issue multiple

instructions per cycle, the difference can be more dramatic.

Original Schedule Schedule A Cycle count Schedule B Cycle count
1. STQ R1, X Instr 1 1 Instr 1 1
2. LDQ R2, O(R10) Instr 2 2 � causes a stall Instr 2 1
3. STQ R2, Y Instr 3 1 Instr 4 1
4. ADDQ R10, R10, 8 Instr 4 1 Instr 3 1
Totals: 5 4

Table 1: Two valid schedules and running times for a single pipelined machine where loads take two cycles
and all other instructions take one cycle.

The Alpha 21064 is a dual-issue machine with two different execution pipelines. One pipeline is more

specialized for floating point operations while the other is for integer operations. Although many instructions

can be executed by either pipeline, dual issue can occur only if the next instruction to execute matches

the first pipeline and the instruction after that matches the second pipeline. A given instruction can take

anywhere from one to many tens of cycles to execute. Researchers at Compaq have made a 21064 simulator
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publicly available that also includes a heuristic scheduler for basic blocks. Throughout the paper, we refer

to this scheduler as DEC1. The simulator gives the running time for a given scheduled block assuming all

memory references hit the cache and all resources are available at the beginning of the block. To counteract

any differences between schedulers that might appear because of this assumption, we also ran the schedules

generated in the simulator on a cluster of identical Compaq Alpha 21064 machines to obtain actual run-time

results.

As the results show, using the simulator’s assumptions often produces good results, but sometimes leads

us to produce mediocre schedules. The whole point of our technique is to do well when scheduling programs

we have not seen before and for which we have no execution time measurements, e.g., of cache hit/miss

statistics. By using techniques that are more complex (both in the sense of running time complexity and

in the sense of complexity of code) one could better approximate the status of all resources at the start of

each block. However, we wished to see how well we could do considering each block independently, so

such techniques are beyond the scope of this paper. Comparing the cost and effectiveness of block-local

techniques with more global approaches to scheduling is an interesting topic for future work.

All of our schedulers used a greedy algorithm to schedule the instructions, i.e., they built schedules

sequentially from beginning to end with no backtracking. This is referred to as list scheduling in compiler

literature. Each scheduler reads in a basic block, builds the DAG, and schedules one instruction at a time until

all instructions have been scheduled. When choosing the best instruction to schedule from a list of available

candidates, each scheduler compares the current best choice with the next candidate. This continues until

all viable candidates have been considered. The overall winner is scheduled and the DAG is updated to give

a new set of candidate instructions. Our algorithms differ in the way in which instructions are compared at

1Although Digital has been purchased by Compaq, we continue to refer to their scheduler as DEC to maintain consistency with
our earlier papers.
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each step.

Moss et al. (1997) showed that supervised learning techniques could induce excellent basic block in-

struction schedulers for this task. To do this, they trained several different supervised learning methods

to choose the best instruction to schedule given a feature vector representing the currently scheduled in-

structions and the candidate instructions. Each method learned a preference relation which defined when

an instruction i is preferred over an instruction j at a given point in a partial schedule. The supervised

learning methods used were the decision tree induction program ITI (Utgoff, Berkman, and Clouse, 1997),

table lookup, the ELF function approximator (Utgoff and Precup, 1997), and a feed-forward artificial neural

network (Rumelhart, Hinton, and Williams, 1986). More details of each method can be found in Moss et

al. (1997) where they show that each method nearly always made optimal choices (i.e. 96 � 97% of the

time) of instructions to schedule for blocks in which computing the optimal schedule was feasible.

Although all of the supervised learning methods performed quite well, they shared several limitations.

Supervised learning requires a training set consisting of correct, or approximately correct, input/output pairs.

Generating useful training information requires an optimal scheduler that executes every valid permutation

of the instructions within a basic block and saves the optimal permutation (the schedule with the smallest

running time). As we expected from knowing that optimal scheduling is NP-Complete (Proebsting), this

search was too time-consuming to perform on blocks with more than 10 instructions (Stefanović, 1997).

This inhibited the supervised methods from learning using larger blocks although the methods were tested

on larger blocks. Using a method such as RL or rollouts does not require generating training pairs, which

means that the method can be applied to larger basic blocks and can be trained without knowing optimal

schedules.

To test each scheduling algorithm, we used 18 SPEC95 benchmark programs (Reilly, 1995). Ten of these

programs are written in FORTRAN and contain mostly floating point calculations. Eight of the programs
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are written in C and focus more on integer, string, and pointer calculations. Each program was compiled

using the commercial Compaq compiler at the highest level of optimization. We call the schedules output by

the compiler COM2. This collection has 447,127 basic blocks, containing 2,205,466 instructions. Although

92 � 34% of the blocks in SPEC95 have 10 instructions or fewer, the larger blocks account for a dispropor-

tionate amount of the running time. The small blocks account for only 30 � 47% of the overall running time.

This may be because the larger blocks are loops that the compiler unrolled into extremely long blocks. By

allowing our algorithms to schedule blocks whose size is greater than 10, we focus on scheduling the longer

running blocks. We present timing results using the simulator and actual runs on Compaq Alpha 21064

machines. To decrease the running time of the simulator, we broke the 206 blocks whose size was greater

than 100 instructions into blocks of size 100 (or less). After scheduling, these blocks were then concatenated

together for actual execution. This constraint did not affect the results significantly but sped up the simulator

considerably.

3 Rollouts

Rollouts are a form of Monte Carlo search, first introduced in the backgammon literature (Woolsey,

1991; Galperin, 1994; Tesauro and Galperin, 1996). In other domains, Abramson (1990) studied what

we call RANDOM-π (below) in a game playing context, and Bertsekas et al. (1997a,b) proved important

theoretical results for rollouts. In the instruction scheduling domain, rollouts work as follows: suppose the

scheduler comes to a point where it has a partial schedule and a set of (more than one) candidate instructions

to add to the schedule. The scheduler appends each candidate to the partial schedule and then follows a fixed

policy, π, to schedule the remaining instructions. When the schedule is complete, the scheduler evaluates the

2In previous papers (McGovern and Moss, 1998; McGovern, Moss, and Barto, 1999) we referred to this as ORIG. This change
is to reduce confusion.
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Figure 2: The actions of a rollout scheduler when rolling out three different instructions five times each.
This process is repeated to schedule each instruction.

running time and returns. When π is stochastic, this rollout can be repeated many times for each instruction

to achieve a estimate of the expected outcome. After rolling out each candidate (possibly repeatedly), the

scheduler picks the one with the best estimated expected running time. This process is illustrated graphically

in Figure 2. In this example, π is a stochastic policy. Each of the three instructions is rolled out five times.

The third instruction has the lowest sample average running time of 5 � 6 cycles and is chosen as the next

instruction to schedule. The process is then repeated at each successive decision point.

Our first set of rollout experiments compared three rollout policies. While Bertsekas et al. (1997) proved

that if we used the DEC scheduler as π, we would perform no worse than DEC, an architect proposing a new

machine might not have such a good heuristic policy available to use as π. Therefore, we also considered

policies more likely to be available. The obvious choice is the random policy. We denote the use of the

random policy for π in the rollout scheduler as RANDOM-π. Under this policy, a rollout makes all choices

in a valid but uniformly random fashion. We also tested the use of two heuristic policies. The first was the

ordering produced by the optimizing compiler COM, denoted COM-π. The second heuristic policy tested
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was the DEC scheduler itself, denoted DEC-π. Although the full heuristics of DEC or COM will not be

available to an architect while designing a machine, a simpler set of heuristics (but more complicated than

RANDOM) may be available.

The rollout scheduler performed only one rollout per candidate instruction when using COM-π and

DEC-π because each is deterministic. Initially, we used 20 rollouts for RANDOM-π. Discussion of how

the number of rollouts affects performance is presented later in this section. After performing a number

of rollouts for each candidate instruction, the scheduler chose the instruction with the best running time

averaged over the rollouts. As a baseline scheduler, we also scheduled each block with a valid but uniformly

random ordering, denoted RANDOM.

Table 2 summarizes the performance of the rollout scheduler under each policy π as compared to the

DEC scheduler on all 18 benchmark programs. Because each basic block is executed a different number of

times and is of a different size, measuring performance based on the mean difference in number of cycles

across blocks is not a fair performance measure. To more fairly assess the performance, we used the ratio of

the weighted execution time of the rollout scheduler to the weighted execution time of the DEC scheduler,

where the weight of each block is the number of times that block is executed. More concisely, we used the

following performance measure:

ratio � ∑all blocks 	 rollout scheduler execution time 
 number of times block is executed �
∑all blocks 	 DEC scheduler execution time 
 number of times block is executed � �

If a scheduler produced a faster running time than DEC, the ratio would be less than one. All execution

times in Table 2 are those of the simulator.

Despite the fact that Stefanović (1997) showed that rescheduling a block has no effect for 68% of the

blocks of size 10 or less, the random scheduler performed very poorly. Overall, RANDOM was 27 � 8%
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Simulator results

Fortran programs
App RANDOM RANDOM-π COM COM-π DEC-π
applu 1.388 1.059 0.991 0.982 0.978
apsi 1.304 1.046 1.024 0.999 0.990
fpppp 1.246 1.049 1.043 1.004 0.998
hydro2d 1.175 1.028 1.018 1.006 0.998
mgrid 2.122 1.301 1.009 1.001 0.967
su2cor 1.187 1.017 1.054 1.018 0.996
swim 2.082 1.259 1.030 1.029 0.975
tomcatv 1.224 1.050 1.029 1.006 0.998
turb3d 1.375 1.063 1.177 1.038 0.980
wave5 1.400 1.092 1.032 1.001 0.990
Fortran geometric mean: 1.417 1.093 1.040 1.008 0.987

C programs
App RANDOM RANDOM-π COM COM-π DEC-π
cc1 1.117 1.007 1.022 1.001 0.997
compress95 1.099 0.983 0.977 0.970 0.970
go 1.173 1.011 1.028 0.998 0.994
ijpeg 1.167 1.010 1.014 0.989 0.981
li 1.083 1.006 1.012 1.001 0.995
m88ksim 1.113 1.001 1.042 0.999 0.997
perl 1.131 1.002 1.016 1.000 0.996
vortex 1.106 1.002 1.029 1.000 0.998
C geometric mean: 1.123 1.003 1.017 0.995 0.991

Overall geometric mean: 1.278 1.052 1.030 1.002 0.989

Table 2: Ratios of the simulated weighted execution time of RANDOM, COM, and rollout schedulers
compared to the DEC scheduler. A ratio of less than one means that the scheduler outperformed the DEC
scheduler. These entries are shown in italics.

slower than DEC. This number is a geometric mean of the performance ratios for 30 runs of each of the 18

SPEC95 benchmark suites. Without adding any heuristics and just using rollouts with the random policy,

RANDOM-π came within 5% of the running time of DEC. This is also an average over 30 runs of each

benchmark. Because COM, COM-π, and DEC-π are deterministic, their numbers are from one run. COM

was only 3% slower than DEC and outperformed DEC on two applications. COM-π was able to outperform

DEC on 6 applications. Over all the 18 benchmark applications, COM-π was essentially equal to DEC. The

DEC-π scheduler was able to outperform DEC on all applications. DEC-π produced schedules that ran about
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1 � 1% faster than the schedules produced by DEC. Although this improvement may seem small, the DEC

scheduler is known to make optimal choices 99 � 13% of the time for blocks of size 10 or less (Stefanović,

1997). We estimated that DEC is within a few percent of optimal on larger blocks but it is infeasible for us

to find out exactly.

To test how well the simulator results corresponded with running the schedules on an actual machine,

we also ran each scheduled binary on a cluster of identical Compaq Alpha 21064 machines. Because

DEC, DEC-π, COM, and COM-π were deterministic, each had only one binary to run per benchmark.

For these schedules, we ran each binary 15 times in a row on two separate but identical Alphas in single user

mode. Each run was timed using gnu time version 1.7. Due to their stochastic nature, RANDOM and

RANDOM-π had 30 binaries per benchmark. Each binary was run once and timed as before. The numbers

in Table 3 are the ratios of the average running time of the given schedule to DEC’s average running time.

Table 3 demonstrates that binaries built using RANDOM still execute more slowly than those produced

using DEC, although the differences in actual running times have decreased from 27 � 8% slower to only

7 � 4% slower. Because DEC is a heuristic scheduler tuned for the simulator, assumptions that it makes for

the simulator can be detrimental on the actual machine. This is apparent when the performance of DEC is

compared to RANDOM on the applications go and vortex where RANDOM was able to outperform DEC.

It is hard to say exactly how or why RANDOM schedules led to better actual performance than did the DEC

schedules on these benchmarks. A plausible explanation is that in a few blocks that are executed quite fre-

quently, the DEC scheduler’s assumptions were always violated and it ended up producing particularly bad

schedules. For example, if certain loads always missed in the cache, then the DEC scheduler’s assumption

that they hit might well lead it to produce schedules that always stall for a long time, whereas RANDOM

could well produce schedules that do not stall as much. Because of these model differences, DEC-π can

perform worse than DEC on the actual machine.
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Run time results

Fortran programs
App RANDOM RANDOM-π COM COM-π DEC-π
applu 1.052 1.009 0.991 0.994 0.995
apsi 1.102 1.019 1.012 1.011 1.003
fpppp 1.108 1.160 0.998 0.984 0.999
hydro2d 1.033 1.009 0.981 0.998 0.998
mgrid 1.348 1.113 0.988 0.989 0.975
su2cor 1.142 1.087 0.999 1.022 1.040
swim 1.039 0.994 1.013 1.012 0.985
tomcatv 1.084 0.996 1.108 1.021 1.024
turb3d 1.204 1.138 0.981 0.975 0.976
wave5 1.045 0.997 0.966 0.999 1.018
Fortran geometric mean: 1.112 1.050 1.003 1.000 1.001

C programs
App RANDOM RANDOM-π COM COM-π DEC-π
cc1 1.019 1.002 1.002 1.009 1.001
compress95 1.006 1.004 1.013 1.012 1.011
go 0.944 0.908 1.010 1.019 1.048
ijpeg 1.130 1.006 0.980 0.987 0.977
li 1.040 1.078 0.997 0.988 0.998
m88ksim 1.070 1.002 0.978 0.983 0.982
perl 1.040 0.998 0.986 0.989 1.003
vortex 0.985 0.973 0.961 0.971 1.049
C geometric mean: 1.028 0.996 0.991 0.994 1.008

Overall geometric mean: 1.074 1.026 0.998 0.998 1.004

Table 3: Ratios of the actual run times for the RANDOM scheduler, the COM scheduler, and the rollout
schedulers. Each is compared to DEC. The ratios for the executables which ran faster than DEC are shown
in italics.

In simulation, the performance of the schedules produced by COM was slightly slower than those pro-

duced by DEC. On the actual runs, COM ends up slightly faster than DEC. This result is consistent with

what was observed by Moss et al. (1997). The COM scheduler almost certainly pays more careful attention

to inner loops, and particularly to how the resources left busy by previous iterations affect future iterations.

We believe that this alone can explain why it performs better on the actual hardware and not as well on the

DEC simulator model. The run-time rollout results are consistent with the results observed in the simulator.

Part of the motivation for using rollouts in a scheduler was to obtain efficient schedules without spending
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the time to build a such precise heuristic scheduler as COM and DEC. With this in mind, we explored

RANDOM-π more closely in a follow-up experiment.

Evaluation of the number of rollouts

This experiment considered how the performance of RANDOM-π varied as a function of the number of

rollouts performed for each candidate instruction. We tested RANDOM-π using 1, 5, 10, 25, and 50 rollouts

per candidate instruction. We also varied the metric for choosing among candidate instructions. Instead

of always choosing the instruction with the best average performance, denoted AVG-RANDOM-π, we also

experimented with selecting the instruction with the absolute best running time among its rollouts. We

call this BEST-RANDOM-π. We hypothesized that BEST-RANDOM-π might lead to better performance

overall because it meant scheduling the first instruction on the most promising scheduling path. Due to the

long running time of the rollout scheduler, we focused on one program in the SPEC 95 suite: applu, which

is written in Fortran and focuses on floating point operations.

Figure 3 plots the performances of the rollout schedulers AVG-RANDOM-π and BEST-RANDOM-

π as a function of the number of rollouts. Performance is assessed in the same way as before: ratio of

weighted execution times. Thus, the lower the ratio, the better the performance. Each data point represents

the geometric mean over 30 runs. Although one rollout may not be enough to fully explore a schedule’s

potential, performance of RANDOM-π with one rollout is 16% slower than DEC, which is a considerable

improvement over RANDOM’s performance of 38% slower than DEC on applu. By increasing the number

of rollouts from one to five, the performance of AVG-RANDOM-π improved to within 10% of DEC. Im-

provement continued as the number of rollouts increased to 50, but performance leveled off at around 4%

slower then DEC. As Figure 3 shows, the improvement-per-number-of-rollouts drops off dramatically from

25 to 50.
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Figure 3: Simulated performance of AVG-RANDOM-π and BEST-RANDOM-π as a function of the number
of rollouts as compared to the performance of DEC. The bars above and below each data point are one
standard deviation from the geometric mean. A lower ratio indicates better performance.

Our hypothesis about BEST-RANDOM-π outperforming AVG-RANDOM-π was shown to be false.

Choosing the instruction with the absolute best rollout schedule did not yield an improvement in perfor-

mance over AVG-RANDOM-π over any number of rollouts. This is probably due to the stochastic nature

of the rollouts. Once the rollout scheduler chooses an instruction to schedule, it repeats the rollout process

again over the next set of candidate instructions. By choosing the instruction with the absolute best rollout,

there is no guarantee that the scheduler will find that permutation of instructions again on the next rollout.

When it chooses the instruction with the best average rollout, the scheduler has a better chance of finding a

good schedule on the next rollout, which is in accord with the theoretical results of Bertsekas et al. (1997).

Although the performance of the rollout scheduler can be excellent, rollouts take a long time to run. A

rollout scheduler takes O 	 n2m � number of basic operations, where m is the number of rollouts and n is the

number of instructions. A greedy scheduler with no rollouts takes only O 	 n � . Unless the running time can

be improved, rollouts cannot be used for all blocks in a commercial scheduler or in evaluating more than
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a few proposed machine architectures. However, because rollout scheduling performance is high, rollouts

could be used to optimize the schedules for important blocks (those with long running times or which are

frequently executed) within a program. With the performance and the timing of the rollout schedulers in

mind, we looked to RL to obtain high performance at a faster running time. An RL scheduler would run in

the O 	 n � time of a greedy list scheduler.

4 Reinforcement Learning

Reinforcement learning (RL) is a collection of methods for approximating optimal solutions to stochastic

sequential decision problems (Sutton and Barto, 1998). An RL system does not require a teacher to specify

correct actions. Instead, it tries different actions and observes their consequences to determine which actions

are best. More specifically, in the RL framework, a learning agent interacts with an environment over a series

of discrete time steps t � 0 � 1 � 2 � 3 �
�
�
� . At each time t, the agent observes environment state, st , and chooses

an action, at , which causes the environment to transition to state st � 1 and to emit a reward, rt � 1. The next

state and reward depend only on the preceding state and action, but they may depend on these in a stochastic

manner. The objective is to learn a (possibly stochastic) mapping from states to actions, called a policy,

that maximizes the expected value of a measure of reward received by the agent over time. More precisely,

the objective is to choose each action at so as to maximize the expected return, E � ∑∞
i � 0 γirt � i � 1 � , where

γ ��� 0 � 1 � is a discount-rate parameter.3

A common solution strategy is to approximate the optimal value function, V � , which maps each state to

the maximum expected return that can be obtained starting in that state and thereafter always taking the best

actions. In this paper we use a temporal difference (TD) algorithm (Sutton, 1988) for updating an estimate,

3This is the most commonly studied framework for studying RL; many others are possible as well (Sutton and Barto, 1998).
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V , of the value function of the current policy. At the same time, we use these estimates to update the policy.

This results in a kind of generalized policy iteration (Sutton and Barto, 1998) that tends to improve the

policy over time. After a transition from state st to state st � 1, under action at with reward rt � 1, V 	 st � is

updated by:

V 	 st ��� V 	 st ��� α � rt � 1 � γV 	 st � 1 ��� V 	 st ��� (1)

where α is a positive step-size (or learning rate) parameter. This is called a backup. Here we are assuming

that V is represented by a table with an entry for each state.

The next section describes how we cast the instruction scheduling problem as a task for RL.

The RL Scheduler

As in the supervised learning results presented by Moss et al. (1997), our RL system learned a pref-

erence function between candidate instructions. That is, instead of learning the direct value of choosing

instruction A or instruction B, the RL scheduler learned the difference of the returns resulting from choos-

ing instruction A over instruction B. In an earlier attempt to apply RL to instruction scheduling, Scheeff et

al. (1997) explored the use of non-preferential value functions. To do this, their system attempted to learn

the value of choosing an instruction given a partial schedule without looking at the other candidate instruc-

tions. However, the results with non-preferential value functions were not as good as when the scheduler

learned a preference function between instructions. A possible explanation for this is that the value of a

given instruction is contextually dependent on the rest of the basic block. This is difficult to represent using

local features but is easier to represent when the local features are used to compare candidate instructions.

In other words, it is hard to predict the running time of a block from local information, but it is not as hard
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to predict the relative impact of two potential candidate instructions. A number of researchers have pointed

out that in RL, it is the relative values of states that are important in determining good policies (e.g., Utgoff

and Clouse, 1991; Utgoff and Precup, 1997; Harmon et al. 1995; Werbos, 1992).

Our RL scheduler learned using a feature vector calculated from the current partial schedule and two

different candidate instructions. This adapted the TD algorithm to learning over pairs of instructions. Each

feature was derived from knowledge of the DEC simulator. The features and our intuition for their impor-

tance are summarized in Table 4. Although these five features are not enough to completely disambiguate

all choices between candidates, we observed in earlier studies of supervised learning in this problem that

these features provide enough information to support about 98% of the optimal choices in blocks of size 10

or less. These features are general enough to help on larger blocks as well. The scheduler learned using a

linear function approximator over the feature vector.

The feature Odd Partial (odd) indicates whether the current instruction to schedule is lined up for issue in

the first (even) or the second (odd) pipeline. This is useful because the 21064 can only dual issue instructions

if the first instruction matches the first pipeline in type and the next instruction matches with the second

pipeline. The feature Actual Dual (d) further addresses this issue by indicating whether or not the given

instruction can actually dual issue with the previously scheduled instruction. This is only relevant if odd is

true. Both odd and d are binary features.

The Instruction Class (ic) feature divides the instructions into 20 equivalence classes, where all instruc-

tions in a class match to a certain pipeline and have the same timing properties. These equivalence classes

were determined from the simulator.

The remaining two features focus on execution times. Weighted Critical Path (wcp) measures the longest

path from a given instruction to a leaf node in the DAG. Edges in the DAG are weighted by the latency, as

in the pipeline stall example given earlier. By scheduling instructions with higher wcp values earlier, the
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Feature Name Feature Description Intuition for Use
Odd Partial (odd) Signifies whether the current num-

ber of instructions scheduled is odd
or even.

If TRUE, we’re interested in
scheduling instructions that can
dual-issue with the previous instruc-
tion.

Actual Dual (d) Denotes whether the current instruc-
tion can dual-issue with the previous
scheduled instruction or not.

If Odd Partial is TRUE, it is impor-
tant that we find an instruction, if
there is one, that can issue in the
same cycle with the previous sched-
uled instruction.

Instruction Class (ic) The Alpha’s instructions can be di-
vided into equivalence classes with
respect to timing properties.

The instructions in each class can be
executed only in certain execution
pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the
DAG (the length of the longest chain
of instructions dependent on this
one), with edges weighted by ex-
pected latency of the result produced
by the instruction

Instructions on longer critical paths
should be scheduled first, since they
affect the lower bound of the sched-
ule cost.

Max Delay (e) The earliest cycle when the instruc-
tion can begin to execute, relative
to the current cycle; this takes into
account any wait for inputs and for
functional units to become avail-
able.

We want to schedule instructions
that will have their data and func-
tional unit available first.

Table 4: Features for Instructions and Partial Schedule

lower bound of the block’s running time can be changed. Also, this may free up more instruction choices

for use later in the block. The final feature, Max Delay (e), tells the learning system how many cycles the

given instruction must wait before it can execute (i.e., how many possible stall cycles).

Using these features, the feature vector was constructed in the following way. Given a partial schedule,

p, and two candidate instructions to schedule, A and B, the value of odd is determined for p, and the values

of the other features are determined for both instructions A and B. Moss et al. (1997) showed in previous

experiments that the actual value of wcp and e do not matter as much as the relative values between the

two candidate instructions. We used the signum (σ) of the difference of their values for the two candidate
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A B

partial schedule p

A B C

candidate instructions

Instruction pair Feature vector
AB feature vec(p,A,B)
AC feature vec(p,A,C)
BC feature vec(p,B,C)
BA feature vec(p,B,A)
CA feature vec(p,C,A)
CB feature vec(p,C,B)

Figure 4: Panel A shows a graphical depiction of a partial schedule and three candidate instructions. Panel
B gives the feature vectors representing this situation.

instructions for these two features4 . Thus, the feature-vector representing each triple 	 p � A � B � , where p is a

partial schedule and A and B are candidate instructions, is:

feature vec 	 p � A � B ����� odd 	 p ��� ic 	 A ��� ic 	 B ��� d 	 A ��� d 	 B ��� σ 	 wcp 	 A ��� wcp 	 B �
��� σ 	 e 	 A ��� e 	 B �
��� �

Figure 4 gives an example partial schedule, a set of candidate instructions, and the resulting feature

vectors. In this example, the RL scheduler has a partial schedule p and 3 candidate instructions A, B, and C.

It constructs six feature vectors from this situation as shown by in the table in Figure 4B.

The RL scheduler makes scheduling decisions using an ε-greedy action selection process (Sutton and

Barto, 1998). For each partial schedule p, the scheduler finds the most preferred action through comparison

of the values given by the current value function to pairs of candidate instructions (given p). With probability

1 � ε, 0 ! ε ! 1, the most preferred instruction is scheduled, i.e., appended to p. With probability ε a random

candidate instruction is scheduled. This process is repeated until all instructions in the block have been

scheduled.

4Signum returns " 1, 0, or 1 depending on whether the value is less than, equal to, or greater than zero.
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We applied the TD algorithm (Equation 1) during this scheduling process as follows. Treating the fea-

ture vectors as states, we backed up values using information about which instruction was scheduled. For

example, using the partial schedule and candidate instructions shown in Figure 4, after appending instruc-

tion A to partial schedule p, the RL scheduler updates the values for 	 p � A � B � and 	 p � A � C � according to

Equation 1. Note that since the value function is only defined for states where choices are to be made, the

final reward is assigned to the last choice point in a basic block even if further instructions are scheduled

from that point (with no choices made).

Scheeff et al. (1997) previously experimented with RL in this domain. However, the results were not as

good as they had hoped. The difficulty seems to lie in finding the right reward structure for the domain (as

well as learning preferences instead of pure values). A reward based on the number of cycles that it takes to

execute the block does not work well because it punishes the learner on long blocks. To normalize for this

effect, Scheeff, et al. (1997) rewarded the RL scheduler based on cycles-per-instruction (CPI). Although

this reward function did not punish the learner for scheduling longer blocks, it also did not work particularly

well. This is because CPI does not account for the fact that some blocks have more unavoidable idle time

than others. We experimented with two reward functions to account for this variation across blocks.

Both reward functions gave zero reward until the RL scheduler had completely scheduled the block. The

first final reward we used was:

r � 	 cycles to execute block using DEC � cycles to execute block using RL �
number of instructions in block

�

This rewards the RL scheduler positively for outperforming the DEC scheduler and negatively for perform-

ing worse than the DEC scheduler. This reward is normalized for block size similar to the reward Zhang and

Dietterich (1995) used for job shop scheduling.
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We also wanted to test learning with a reward that did not depend on the presence of the DEC scheduler.

The second final reward that we used was:

r � 	 weighted critical path of DAG root � cycles to execute block using RL �
number of instructions in block

�

The weighted critical path (wcp) helps to solve the problem created by blocks of the same size being easier

or harder to schedule than each other. When a block is harder to execute than another block of the same

size, wcp tends to be higher, thus causing the learning system to receive a different reward. The feature

wcp is correlated with the predicted number of execution cycles for the DEC scheduler with a correlation

coefficient of r � 0 � 9. Again, the reward is normalized for block size.

Experimental Results

To test the RL scheduler, we used all 18 programs in the SPEC95 suite. As a baseline for our results, we

also compared the performance of the RL scheduler to the performance of the RANDOM scheduler shown

in Tables 2 and 3.

For both reward functions described above, we trained the RL scheduler on the application compress95.

The parameters were ε � 0 � 05 and a learning rate, α, of 0 � 001. After each epoch of training, the learned value

function was evaluated greedily (ε � 0). An epoch is one pass through the entire program scheduling all

basic blocks. Figure 5 shows the results of each reward function using the same performance ratio as before

and on the mean difference in cycle time between the RL scheduler and DEC across blocks without regard

to how often each block is executed. Both measures give an estimation of how quickly the RL schedules

were executing as compared to the DEC schedules but from different angles. These results are from the

simulator.
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Figure 5: Panel A shows the difference in cost across all blocks in compress95 over the 100 training epochs
for both of the reward functions we tested. Panel B shows the corresponding weighted performance of the
system as compared to DEC for both rewards.

As the figure shows, the RL scheduler performed the best using the reward function based on the DEC

scheduler. To test the applicability of the learned value function to other programs we used the best value

function from the 100 epochs of training to greedily schedule the other 17 benchmarks. The results are

shown in Table 5. As before, we also tested the schedules on Compaq Alphas. The method was the same as

for rollouts. These results are also shown in Table 5.

Performance using the DEC reward function

Fortran programs C programs
App Sim Real App Sim Real App Sim Real App Sim Real
applu 1.094 1.017 apsi 1.090 1.029 cc1 1.023 1.007 compress95 0.991 0.967
fpppp 1.086 1.038 hydro2d 1.036 1.002 go 1.034 0.925 ijpeg 1.025 1.031
mgrid 1.410 1.132 su2cor 1.035 1.012 li 1.016 1.004 m88ksim 1.012 0.983
swim 1.569 1.007 tomcatv 1.061 1.028 perl 1.022 0.997 vortex 1.035 0.977
turb3d 1.145 1.016 wave5 1.089 0.994 C geometric mean: 1.020 0.986

Fortran geometric mean: 1.151 1.027 Overall geometric mean: 1.090 1.009

Table 5: Performance of the greedy RL-scheduler on each application in SPEC95 as compared to DEC using
the value function trained on compress95 with the DEC scheduler reward function. The entries in the Sim
columns are from the simulator, and the entries in the Real columns are from actual runs of the binaries.
Better performance than DEC is indicated by italics.
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Table 6 shows the same ratios for learning with the wcp reward function. Because the performance of

the wcp scheduler was not as good as we had hoped, we tested this scheduler only in simulation.

Performance using the WCP reward function

Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.215 apsi 1.199 cc1 1.092 compress95 1.060
fpppp 1.158 hydro2d 1.096 go 1.118 ijpeg 1.133
mgrid 1.504 su2cor 1.118 li 1.057 m88ksim 1.084
swim 1.651 tomcatv 1.116 perl 1.093 vortex 1.075
turb3d 1.330 wave5 1.299 C geometric mean: 1.089
Fortran geometric mean: 1.258 Overall geometric mean: 1.180

Table 6: Simulated performance of the greedy RL-scheduler on each application in SPEC95 using the best
learned value function training on compress95 with the wcp reward function.

By training the RL scheduler on compress95 for 100 epochs, we were able to outperform DEC on

compress95. The RL scheduler came within 2% of the performance of DEC on all C applications and

within 15% on unseen Fortran applications. Although the Fortran performance is not as good as that on the

C applications, the RL scheduler has more than halved the difference between RANDOM and DEC. This

demonstrates good generalization across basic blocks. Although there are benchmarks that perform much

more poorly than the rest (mgrid and swim), those benchmarks perform more than 100% worse than DEC

under the RANDOM scheduler. In actual execution of the learned schedules, the RL scheduler outperformed

DEC on the C applications while coming within 2% of DEC on the Fortran applications.

Although the scheduler trained using the wcp reward function did not perform as well as the scheduler

trained using the DEC reward function, it came within 18% of DEC overall. Although this is twice as

slow as the performance of the scheduler trained using the DEC reward function, it is still 10% faster than

RANDOM overall. The performance of the wcp scheduler may be improved by further examination of the

reward function.
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Because of the vast difference in generalization to Fortran programs from C programs, we also exper-

imented with training the RL scheduler on the Fortran program applu with parameters α � 0 � 0001 and

ε � 0 � 05. As before, we trained for 100 epochs using the DEC based reward function and evaluated each

epoch greedily (ε � 0) after training. We took the best value function from the 100 epochs and tested it on

the other 17 benchmark applications. After testing in the simulator, we also ran each binary on a Compaq

Alpha as described above. Table 7 shows the simulator and actual run-time results.

Fortran programs C programs
App Sim Real App Sim Real App Sim Real App Sim Real
applu 1.061 1.005 apsi 1.063 1.026 cc1 1.024 1.002 compress95 1.001 1.034
fpppp 1.054 1.016 hydro2d 1.031 1.002 go 1.035 0.980 ijpeg 1.042 1.015
mgrid 1.204 1.053 su2cor 1.035 1.048 li 1.022 0.996 m88ksim 1.038 1.078
swim 1.276 0.985 tomcatv 1.054 1.057 perl 1.038 0.994 vortex 1.029 0.999
turb3d 1.059 0.995 wave5 1.078 1.009 C geometric mean: 1.029 1.012

Fortran geometric mean: 1.089 1.019 Overall geometric mean: 1.062 1.016

Table 7: Performance of the greedy RL-scheduler on each application in SPEC95 as compared to DEC using
the value function trained on applu with the DEC scheduler reward function. The entries in the Sim columns
are from the simulator, and the entries in the Real columns are from actual runs of the binaries.

The simulated performance on Fortran applications improved from 15% slower than DEC to only 8%

slower than DEC. At the same time, performance on unseen C programs slowed by slightly less than 1%.

The same is true for the run time results, where Fortran performance improved slightly while C performance

dropped a small amount. This suggests the desirability of having separate schedulers for Fortran and C

programs.

We also experimented with further training and testing on each of the benchmarks. Starting with the

value function learned from compress95, we trained the RL scheduler on each of the other benchmark suites

for 10 epochs and greedily evaluated (i.e., ε � 0) the updated value function at the end of each epoch. This

is similar to a user profiling her code and then rescheduling that code based on the results of the profiling.
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Fortran programs C programs
App Ratio App Ratio App Ratio App Ratio
applu 1.087 apsi 1.080 cc1 1.017 compress95 0.991
fpppp 1.055 hydro2d 1.024 go 1.034 ijpeg 1.027
mgrid 1.359 su2cor 1.034 li 1.009 m88ksim 1.008
swim 1.485 tomcatv 1.053 perl 1.023 vortex 1.027
turb3d 1.090 wave5 1.078 C geometric mean: 1.017
Fortran geometric mean: 1.126 Overall geometric mean: 1.076

Table 8: Simulated performance of the greedy RL-scheduler on each application in SPEC95 after 10 epochs
of training from the compress95 learned value function.

The best number from each of the 10 runs is reported in Table 8.

The 10 epochs of additional training made the performance of the RL scheduler 2% faster overall than

without the additional training.

5 Combining Reinforcement Learning with Rollouts

The encouraging results of RL and of rollouts suggested testing the two methods together. Using the

learned value function from training on compress95 as the rollout policy π, we tested a scheduler we call

RL-π. We used only one rollout per candidate instruction and evaluated the RL policy in a greedy manner.

The simulated and actual run-time results are shown in Table 9. By adding only one rollout, we were able to

improve the C results to be faster than DEC overall. The Fortran results improved from 15% slower to only

4 � 7% slower than DEC. When executing the binaries from the RL-π schedules, a user would see slightly

faster performance than DEC.
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Fortran programs C programs
App Sim Real App Sim Real App Sim Real App Sim Real
applu 1.017 0.999 apsi 1.015 1.012 cc1 1.000 1.005 compress95 0.974 1.014
fpppp 1.021 0.992 hydro2d 1.006 0.999 go 1.001 0.991 ijpeg 0.986 0.986
mgrid 1.143 1.027 su2cor 1.006 1.010 li 0.995 1.005 m88ksim 0.998 0.979
swim 1.176 1.003 tomcatv 1.035 0.999 perl 0.996 0.981 vortex 1.001 0.984
turb3d 1.039 0.988 wave5 1.025 0.992 C geometric mean: 0.994 0.993

Fortran geometric mean: 1.047 1.002 Overall geometric mean: 1.023 0.998

Table 9: Performance of the RL-π scheduler on each application in SPEC95 as compared to DEC. The
entries in the Sim columns are from the simulator, and the entries in the Real columns are from actual runs
of the binaries.

6 Conclusions

We have demonstrated two successful methods of building instruction schedulers for straight line code.

The first method, rollouts, was able to outperform a commercial scheduler both in simulation and in actual

run-time results. The downside of using a rollout scheduler is its inherently slow running time. By using

an RL scheduler, we were able to maintain good performance while significantly speeding scheduling time.

Lastly, we showed that a combination of RL and rollouts was able to compete with the commercial sched-

uler. In a system where multiple architectures are being tested, any of these methods could provide a good

scheduler with minimal setup and training.

Future work could address simulator issues as well as more general instruction issues. At the simulator

level, we would like to refine the feature set and adjust the model such that it can handle inner loops more

realistically. Instead of only timing a block until the last instruction starts to execute, the simulator could

time each block until the data from the last instruction is available. This would help a scheduler to learn

to schedule loops in a better manner. At a more general level, we would like to address issues of global

instruction scheduling and validating the techniques on other architectures and instruction sets. We envision

using abstraction and reinforcement learning to build a global instruction scheduler.
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(1997). Learning to schedule straight-line code. In Proceedings of Advances in Neural Information
Processing Systems 10 (Proceedings of NIPS’97). MIT Press.



To appear in Machine Learning: Special Issue on Reinforcement Learning, 2000. 28

Proebsting, T. Least-cost instruction selection in DAGs is NP-Complete.
http://www.research.microsoft.com/ toddpro/papers/proof.htm.

Reilly, J. (1995). SPEC describes SPEC95 products and benchmarks. SPEC Newsletter.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning internal representations by error
propagation. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol.1: Foundations. Cambridge, MA: Bradford
Books/MIT Press.

Scheeff, D., Brodley, C., Moss, E., Cavazos, J. & Stefanović, D. (1997). Applying reinforcement learning
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