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ABSTRACT

AUTONOMOUS DISCOVERY OF TEMPORAL ABSTRACTIONS
FROM INTERACTION WITH AN ENVIRONMENT

MAY 2002

ELIZABETH AMY MCGOVERN

B.S., CARNEGIE MELLON UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew G. Barto

The ability to create and to use abstractions in complex environments, that is, to sys-

tematically ignore irrelevant details, is a key reason that humans are effective problem

solvers. Although the utility of abstraction is commonly accepted, there has been relatively

little research on autonomously discovering or creating useful abstractions. A system that

can create new abstractions autonomously can learn and plan in situations that its original

designer was not able to anticipate.

This dissertation introduces two related methods that allow an agent to autonomously

discover and create temporal abstractions from its accumulated experience with its envi-

ronment. A temporal abstraction is an encapsulation of a complex set of actions into a

single higher-level action that allows an agent to learn and plan while ignoring details that

appear at finer levels of temporal resolution. The main idea of both methods is to search
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for patterns that occur frequently within an agent’s accumulated successful experience and

that do not occur in unsuccessful experiences. These patterns are used to create the new

temporal abstractions.

The two types of temporal abstractions that our methods create are 1) subgoals and

closed-loop policies for achieving them, and 2) open-loop policies, or action sequences,

that are useful “macros.” We demonstrate the utility of both types of temporal abstrac-

tions in several simulated tasks, including two simulated mobile robot tasks. We use these

tasks to demonstrate that the autonomously created temporal abstractions can both facili-

tate the learning of an agent within a task and can enable effective knowledge transfer to

related tasks. As a larger task, we focus on the difficult problem of scheduling the assem-

bly instructions for computers with multiple pipelines in such a manner that the reordered

instructions will execute as quickly as possible. We demonstrate that the autonomously

discovered action sequences can significantly improve performance of the scheduler and

can enable effective knowledge transfer across similar processors.

Both methods can extract the temporal abstractions from collections of behavioral tra-

jectories generated by different processes. In particular, we demonstrate that the methods

can be effective when applied to collections generated by reinforcement learning agents,

heuristic searchers, and human tele-operators.
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CHAPTER 1

INTRODUCTION

The ability to create and to use abstractions, that is, to systematically ignore irrelevant

details in complex environments, is a key reason that humans are effective problem solvers.

An abstraction can be a compact representation of the knowledge gained in one task that

allows the knowledge to be re-used in related tasks. This representation enables an agent

to learn and plan at a higher level. For example, if we consciously had to plan our muscle

movements every time we wanted to bring a fork full of food to our mouth, the planning

necessary for eating an entire meal would be nearly impossible. Instead, we create an

abstraction that encapsulates the entire set of muscle movements that we use to put food

onto the fork and to move it to our mouth. Using this abstraction, we can plan at a higher

level that allows us to ignore details at the muscle level and to focus on larger tasks such as

eating a meal and engaging in dinner conversations at the same time.

Researchers in artificial intelligence (AI) have long studied the use of abstractions to

enable AI systems to solve large and complex problems. By allowing a system to ignore

details that are not immediately relevant to the current task, the size of the space that an

agent must search to find a solution can be reduced. One method for achieving this is to

reduce the branching factor of the search by creating a hierarchy of actions. A second

approach reduces the size of the state space by dropping irrelevant state variables. These

approaches represent the two main categories of abstractions that have been studied: state

and temporal abstractions. By state abstraction, we mean an abstraction that generalizes

or aggregates over state variables. Using the previous example, if the muscle movements

required to pick up the fork can also be applied to picking up a spoon, then the agent can
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generalize across the “fork” and “spoon” variables to create an abstraction of “pick up

utensil.” By temporal abstraction, we mean an encapsulation of a complex set of actions

into a single higher-level action that allows an agent to learn and plan at multiple scales

in time. Temporal abstractions create a hierarchy of actions. As an example, the “pick up

fork” abstraction discussed above is a temporal abstraction because a human can plan to

eat using this abstraction without the need to know whether it will take one second or ten

seconds to bring the fork full of food to her mouth and without the need to plan the muscle

movements consciously.

Temporal abstractions are particularly useful for facilitating the control of complex

systems. By allowing an agent to plan with actions that can take an extended, and possibly

variable, amount of time to complete, the effective depth that the agent must search to find a

solution can be shortened. This can enable an agent to solve more difficult problems. Also,

by encapsulating a set of complex actions into a single higher-level action, such as the

“pick up fork” example discussed above, a temporal abstraction can allow a more effective

transfer of knowledge from one task to another.

This dissertation introduces two related methods that allow an agent to discover and

create temporal abstractions autonomously from the agent’s accumulated experience with

its environment. The temporal abstractions that our methods create make use of state ab-

straction, but the main focus is to create temporal abstractions. Although much of the

relevant research in AI has demonstrated the utility of abstraction, there is comparatively

little work on how to discover or create useful abstractions. Instead, abstractions are gener-

ally hand-crafted — a process requiring considerable time and effort. A system’s ability to

create new abstractions autonomously can enable it to learn and plan in situations that its

original designer was not able to anticipate.

As an example, consider a robot whose main task is to build human habitats on the

moon in preparation for human arrival. To keep costs down, the robot needs to operate as

efficiently and as autonomously as possible. Complete tele-operation would be expensive
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and difficult due to the communication time lag from Earth. Although the robot could

be pre-programmed extensively on Earth, it is not possible to anticipate how every aspect

of the lunar environment will differ from Earth’s environment. Instead, the robot will

perform best if it adapts to the new environment and learns to function as efficiently as

possible. By autonomously creating new abstractions that characterize interactions with

the environment, a robot will be better able to react to unknown situations. For example,

if a robot has learned a temporal abstraction that encapsulates its knowledge of how to

move efficiently through the lunar regolith (or soil), and it encounters an area with deeper

regolith than expected, the robot should be able to use the temporal abstraction to escape

more effectively. With the ability to learn and to create new abstractions, the robot will be

more robust and can save both time and money for the humans involved.

We have two objectives in mind for the temporal abstractions created by our methods.

The first objective is that the new temporal abstractions facilitate knowledge transfer to

similar tasks. By doing so, the automatically created actions should enable an agent to solve

more difficult tasks as long as the tasks have some underlying characteristics in common.

The second objective applies in the cases where the abstractions are generated online from

the behavior of a learning agent. In this case, we want the abstractions to accelerate the

agent’s learning process within the task in which these abstractions are generated. This

turns out to be more difficult than the primary objective of creating abstractions for task

transfer, especially on very complex tasks. This is primarily because the agent must be able

to generate successful experience within the task before it can create the abstractions, which

becomes more difficult as the complexity of the task increases. However, we demonstrate

that it is possible on several tasks.

The main idea of both of our methods is to search for patterns that occur frequently

within an agent’s accumulated successful experience and that do not occur in the agent’s

unsuccessful experience. These patterns are used to create the new temporal abstractions.
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In particular, the methods search either for “bottleneck” regions in sensory space or for

frequently occurring sequences of actions.

The first type of temporal abstraction that our methods create is a closed-loop policy

that achieves a subgoal. The method detects useful subgoals in the sensory space of an

agent and creates policies that achieve these subgoals. These temporal abstractions take the

form of a closed-loop policy, which means that the agent has a mapping from states in the

environment to the actions that should be chosen to achieve the subgoal. In a closed-loop

policy, the actions at any given point depend on feedback from the environment. An exam-

ple of a closed-loop policy to achieve a subgoal is driving to a particular intersection. The

intersection is the subgoal and the actions that the driver chooses to reach the intersection

will depend on such conditions as the amount of traffic and the current weather.

The second type of temporal abstraction that our methods create is an action sequence.

The methods can create two forms of action sequences, both of which are implemented

as open-loop policies. An open-loop policy is one in which the actions chosen do not

depend on feedback from the environment. For example, an open-loop action sequence

could be “walk forward for five seconds.” Once selected, the next action in the sequence

does not depend on the state of the environment but only on the sequence itself. The first

form of action sequence that the method can create allows the agent to selectively choose

the sequence, but once the sequence has been chosen, the agent must execute each of the

actions in the sequence. The second form includes the ability to conditionally terminate the

sequence if the agent reaches an unexpected state. We denote the first type of sequence as

an action sequence and the second type as a conditionally terminating sequence. In both

case, the specific sequence of actions is fixed.

The patterns that the two methods search for in the agent’s experience differ for the

two types of temporal abstractions that they respectively create. To detect useful subgoals,

our method looks for sensory observations that occur frequently across successful paths

to a goal but not on unsuccessful ones. Bottlenecks in sensory space satisfy this criterion
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because the agent must pass through the bottleneck region in order for a task to be solved

successfully. For both types of sequences, the methods look for sequences of actions that

are chosen frequently across multiple successful paths to a goal. Unsuccessful experience

is not considered when detecting these action sequences. Both of these approaches share

the fundamental concept of searching in an agent’s successful experience for frequent ob-

servations or actions.

We are particularly interested in using our methods with machine learning techniques

that enable learning on complex tasks. Machine learning techniques provide an agent with

the ability to adapt to changes in the environment as well as the ability to improve perfor-

mance by learning from experience. This ability is an important component for systems,

such as robots, that need to interact with the real world. Although there are successful ex-

amples of non-learning robots functioning effectively in real-world situations, such as car

assembly lines, these robots are not able to operate outside of the structured environment

for which they have been programmed. We are especially interested in tasks where the

pre-programming of the agents or robots is very difficult, yet the agents must effectively

perform in a complex and changing environment.

In particular, we focus on the machine learning approach known as reinforcement learn-

ing (Sutton and Barto, 1998). Unlike supervised learning approaches, which require an

outside teacher to specify the correct actions to take at each step, a reinforcement learning

agent learns directly from its interactions with its environment. Reinforcement learning has

been demonstrated to be especially effective for control problems where the goal is known

but the method to achieve the goal is not easily specified.

Although reinforcement learning algorithms can approximate or achieve optimal per-

formance for many tasks, the algorithms can take impractical amounts of time to achieve

this level of performance. This limits the size of feasible problems for which a reinforce-

ment learning system can approximate solutions because it can be difficult to approximate

solutions for tasks with long solution paths or large state spaces. By studying techniques
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to create temporal abstractions automatically, this dissertation addresses the issue of the

limitations on the size of feasible problems. Current reinforcement learning systems use

abstractions that are defined a priori to facilitate learning on larger problems. While this

approach often works well, it is limited to how well the human programmers can define

appropriate abstractions. By allowing abstractions to be created automatically, an agent

can learn in larger problems without the need for constant human intervention.

Although the utility of temporal abstractions is commonly accepted, their use has mainly

been explored in small domains. We present results where our methods are used to create

temporal abstractions on a real-world instruction scheduling task. In this task, the system

schedules assembly instructions in a valid manner and in such a way that the instructions

will execute as quickly as possible. This is particularly useful on processors with multiple

specialized pipelines in which the instructions can execute. We use this example to demon-

strate the utility of temporal abstractions on a large task. This is especially relevant because

computing optimal schedules is NP-complete. We also demonstrate that the automatically

created temporal abstractions can facilitate knowledge transfer across similar processors.

The approach that we introduce of extracting information and patterns from the agent’s

accumulated experience with the environment and turning that information into temporal

abstractions is novel. This approach is not limited to creating only the two types of temporal

abstractions that we discuss in this dissertation. Other types of information may be able to

be extracted from this data. For example, Hidden Markov Models or finite automata could

both be used as another form of abstraction by an agent.

The methods that we introduce do not require that the experience used to identify and

create the abstractions come only from the behavior of a learning agent. Other purposeful

methods of exploring an environment, such as heuristic search or human tele-operation,

can be used to generate the experience. We demonstrate that each of these various types of

behaviors can be used successfully by our methods to create useful temporal abstractions.
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Before describing the methods for creating temporal abstractions in more detail, we

give an overview of reinforcement learning in Chapter 2. We also discuss the framework

that we use to represent the temporal abstractions, that of options (Sutton et al., 1998, 1999;

Precup, 2000). In Chapter 3, we place our work within the context of related research.

Chapter 4 presents our method for automatically discovering and creating useful tem-

poral abstractions that achieve subgoals in sensory space. After presenting the method,

we discuss experimental results in a gridworld task and in a simulated robot task. These

results make use of a reinforcement learning agent to generate the behavior used to detect

the subgoals, whereas, in Chapter 5, we present results with a more complicated simulated

robot task that makes use of human tele-operation to generate the experience.

Chapter 6 presents our method for autonomously discovering and creating both ac-

tion sequences and conditionally terminating sequences. In this chapter, we illustrate the

method with experimental results in several gridworlds. Chapter 7 presents a real-world

instruction scheduling task which we use as a platform for testing the sequence discov-

ery algorithm. We present results that demonstrate both better performance for a given

processor and knowledge transfer across processors when using conditionally terminating

sequences. The conditionally terminating sequences in this chapter are created from the

behavior of several heuristic schedulers. This chapter also explores the question of what

makes some sequences more useful than others. The final chapter, Chapter 8, concludes

and discusses our plans for future research in this area.
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CHAPTER 2

FRAMEWORK AND NOTATION

This chapter gives an introduction to the reinforcement learning framework with partic-

ular attention paid to the aspects that we make use of in this dissertation. We also discuss

the options framework (Sutton et al., 1998, 1999; Precup, 2000) used to represent our tem-

porally abstract actions.

2.1 Reinforcement Learning

Reinforcement learning is a collection of methods for approximating optimal solutions

to stochastic sequential decision problems (Sutton and Barto, 1998). An RL system does

not require a teacher to specify correct actions. Instead, it tries different actions and ob-

serves their consequences to determine which actions are best. More specifically, in the RL

framework, a learning agent interacts with an environment over a series of discrete time

steps t = 0,1,2,3, . . . . At each time t, the agent observes the environment state, st , and

chooses an action, at , which causes the environment to transition to a new state, st+1, and

to reward the agent with rt+1. In a system with a discrete number of states, S is the set of

states. Likewise, A is the set of all possible actions and A(s) is the set of actions available

in state s. In a Markovian system, the next state and reward depend only on the preceding

state and action, but they may depend on these in a stochastic manner. The objective of the

agent is to learn to maximize the expected value of reward received over time. It does this
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by learning a (possibly stochastic) mapping from states to actions called a policy. More

precisely, the objective is to choose each action at so as to maximize the expected return,

E

{

∞

∑
i=0

γirt+i+1

}

,

where γ ∈ [0,1] is a discount-rate parameter, which allows the agent to trade off between

the immediate reward and future possible rewards.

Two common solution strategies for learning an optimal policy are to approximate the

optimal value function, V ∗, or the optimal action-value function, Q∗. The optimal value

function maps each state to the maximum expected return that can be obtained starting in

that state and thereafter always taking the best actions. With the optimal value function

and knowledge of the probable consequences of each action from each state, the agent can

choose an optimal policy. For control problems where the consequences of each action

are not necessarily known, a related strategy is to approximate Q∗, which maps each state

and action to the maximum expected return starting from the given state, assuming that the

specified action is taken, and that optimal actions are chosen thereafter. Both V ∗ and Q∗

can be defined using Bellman equations as follows:

V ∗(s) = max
a∈A

∑
s′∈S

Pa
ss′

[

Ra
ss′+ γV ∗(s′)

]

, and

Q∗(s,a) = ∑
s′∈S

Pa
ss′

[

Ra
ss′+ γ max

a′∈A(s′)
Q∗(s′,a′)

]

.

Pa
ss′ is the probability of transitioning from state s to state s′ under action a and Ra

ss′ is the

expected reward for taking action a in state s and transitioning to state s′. We use the control

strategy of learning to approximate Q∗ for the experiments in this dissertation by using Q-

learning (Watkins, 1989) as the basis for learning the action-value pairs. The update rule

for Q-learning is:

Q(s,a) ← Q(s,a)+α
[

rt + γmax
a′

Q(s′,a′)−Q(s,a)

]

, (2.1)
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where α ∈ (0,1] is a step-size parameter which controls how quickly Q changes at each

update. Each update is also called a backup. See Sutton and Barto (1998), Sutton (1988),

and Watkins (1989) for related learning algorithms.

We define some additional terminology and assumptions for this dissertation. Instead

of assuming that the agent observes its state as a single member of a set, we assume that the

agent is using a factored state representation (Dean and Lin, 1995; Boutilier et al., 1995,

1999). This means that the agent’s perceived state is composed of a vector of sensory

information. For example, using a factored representation in a gridworld, the agent could

observe its x and y coordinates instead of simply observing its grid square. Depending on

what sensory readings are available to the agent, the complete state may not be accessible.

If the agent has n sensors, any readings from a non-empty subset of those n sensors will be

called a sensation.

As the agent interacts with the environment, it observes a sequence of states (and sen-

sations), actions, and rewards. This sequence of experiences can be saved and denoted as a

trajectory. More formally,

Definition: A full trajectory is a sequence of states, actions, and rewards

st ,at ,rt+1,st+1,at+1,rt+2, . . . ,st+n,at+n,rt+n+1 where t is a time step (t = 0,1,2, . . . )

and n is a non-negative integer.

The agent can then observe each of the different parts of the trajectory separately by exam-

ining only the states, actions, or rewards.

Definition: A reward trajectory is a sequence of rewards rt+1,rt+2, . . . ,rt+n+1

where t is a time step (t = 0,1,2, . . . ) and n is a non-negative integer.

Definition: A state trajectory is a sequence of states st ,st+1, . . . ,st+n where t

is a time step (t = 0,1,2, . . . ) and n is a non-negative integer.

Definition: An action trajectory is a sequence of actions at ,at+1, . . . ,at+n

where t is a time step (t = 0,1,2, . . . ) and n is a non-negative integer.
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We also define an observation trajectory of length n + 1 starting at time step t to be the

sequence of states and sensations that the agent experiences from time t to time t +n. The

action and reward trajectories can be said to end with a state s if their corresponding full

trajectories end at state s. In episodic tasks, each trajectory is composed of the experience

from a single episode. For continuing tasks, a variety of methods can be used to segment

experiences into finite-length trajectories. For example, a trajectory could end when a

reward peak is reached as suggested by Iba’s (1989) “peak-to-peak” heuristic.

2.2 Options

We use the options framework (Sutton et al., 1998, 1999; Precup, 2000) to define the

temporally abstract actions that our agents automatically discover in this dissertation. An

option is a temporally-extended action which, when selected by the agent, executes until a

termination condition is satisfied. While an option is executing, actions are chosen accord-

ing to the option’s own policy. An option is similar to traditional open-loop macros except

that instead of generating a fixed sequence of actions, it can also follow a closed-loop pol-

icy so that it can react to the environment. By augmenting the agent’s set of base actions,

or its primitive actions, with a set of options, the agent’s performance can be enhanced.

More specifically, in this framework, a Markovian option is represented by the 3-tuple

〈I,π,β〉. I is the option’s input set, or the set of states in which the option can be initiated.

The second component, π, is a closed-loop policy that is defined over all states in which

the option can execute. The fact that π is a closed-loop policy enables the option to react

to changes in the environment. β is the termination condition such that, at each state s,

the option terminates with probability β(s). Although the theory allows for β to take on

values other than one or zero, this is not necessary for the type of options that we use in this

dissertation. The subgoal options used in this dissertation use an internal value function to

generate their policy, π. This value function can be modified over time in response to the

environment, which in turn changes the policy.
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As an example, consider the option of walking to your car in the parking lot at work.

Clearly, the input set, I, should only be those places from which it is viable to actually walk

to your parking lot. For example, I could include the building in which you work and the

surrounding buildings or locations within a mile. It would not make sense to have I include

locations overseas or times when your car is not parked in the lot. The policy, π, would

move your legs one after the other in a reasonable manner to take you to your car. If you

encounter ice along the route, π would react accordingly and change your walking stance

to keep you from falling. Lastly, β would be set to one once you have reached your car and

zero everywhere else.

Sutton et al. (1998, 1999) have also extended the framework to include semi-Markovian

options. Instead of requiring that π be a Markovian policy, the policy of a semi-Markovian

option can rely on the complete history since the option was initiated. We use both Marko-

vian and semi-Markovian options in this dissertation. By using the option framework, we

can rely on the theory of options which allows the use of the same learning and planning

techniques as when using only primitive actions. This is accomplished by defining a corre-

sponding Bellman equation for options. We use the learning algorithm Macro Q-learning

(McGovern et al., 1997) to learn the option action-values. For primitive actions, the update

rule for Macro Q-learning is the same as that for Q-learning. For options, the update is:

Q(s,o) ← Q(s,o)+α
[

Ro + γn max
a′∈A(st+n)

Q(st+n,a
′)−Q(s,o)

]

, (2.2)

where Ro = rt+1 + γrt+2 + γ2rt+3 + . . .+ γn−1rt+n, n is the number of time steps that option

o was executed, s is the state where the option was initiated, and st+n is the state where the

option terminated.

The next chapter discusses related research in detail and the following chapters present

our methods and experimental results.
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CHAPTER 3

RELATED WORK

This chapter discusses related research in the AI, RL, and robotics domains. In par-

ticular, we discuss other methods for creating or using different types of abstractions and

compare several specific approaches to the methods presented in this dissertation. We also

include a discussion of related work on identifying sequences in the knowledge discovery

and bio-informatics domains.

3.1 Relevant AI Literature

Both temporal and state abstractions have been widely studied since the early days of

AI. Amarel’s (1968) paper discussing the Missionaries and Cannibals problem was one of

the first AI papers to state the need for abstraction in problem solving. Amarel presented

a series of different hand-crafted abstractions for use with the Missionaries and Cannibals

problem and demonstrated that the use of certain abstractions could significantly reduce

the search space of the problem and thus make the problem much easier to solve. He also

discussed how a macro operator, which is one form of temporal abstraction, that takes an

agent to a “narrows” in a search space, can be useful for problem solving. The types of

regions that he denotes as narrows are very similar to the bottleneck regions that we use to

create subgoals. The narrows connect what Amarel terms “easily traversable areas.” This

corresponds with our intuition of bottlenecks joining different strongly connected regions

of state space. In both cases, having a policy to reach the critical region, e.g. the bottleneck

or narrows regions, can significantly accelerate the search for a solution by enabling an

agent to move to these important regions more easily.
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Much of the early research on abstraction came from joint psychology and AI research

where computational systems were built to further the understanding of human problem

solving. Newell et al.’s (1963) General Problem Solver and the SOAR project (Laird

et al., 1986) are the two primary examples of such systems. Both of these systems use

abstractions to narrow the search space of the problem solver by creating a hierarchy of

sub-problems that are more easily solved. This shortens the path to a solution for the main

problem which enables problem solving to work more effectively. SOAR formed its tem-

poral abstractions by “chunking” or grouping together sequences of actions used to solve

subproblems. Although these chunks helped the system to solve larger problems, SOAR

sometimes suffered from the “utility problem” (Minton, 1988) where too many chunks

could actually slow down the system by increasing the branching factor of the search. The

work of Anzai and Simon (1979) also fits into this paradigm. They analyzed human prob-

lem solving protocols to guide them in creating a general problem solving mechanism that

can create subgoals and chunk together useful sequences of actions.

We discuss these early systems for two reasons. First, it is useful to know the founda-

tions of much of the work on abstraction in AI because we can build a more robust system

by understanding the advantages and disadvantages of these approaches. Second, these

systems are directly related to our work in several ways. Although Amarel (1968) does not

automatically create subgoals to reach his “narrows,” the concepts of narrows and bottle-

necks are very similar. SOAR is most related through its ability to create useful sequences

of actions, or chunks, in an autonomous manner. The chunks are generally open-loop

action sequences that achieve a subgoal. Although our action sequences and conditionally

terminating sequences are not specifically created to achieve a subgoal, Laird et al.’s (1986)

formulation of what makes a useful sequence is similar to ours in that the sequences must

be associated with success before being used to create a new action.

Other early research on temporal abstraction in AI focused on planning systems. The

first systems used pre-defined temporal abstractions to facilitate planning. For example, the
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STRIPS planner (Fikes et al., 1972) was one of the first planning systems to make use of

temporal abstractions. Later systems focused on a more automated approach to generating

planning hierarchies. For example, the ABSTRIPS system (Sacerdoti, 1974) introduced an

extension of STRIPS that could automate some of the generation of planning hierarchies.

Knoblock’s (1990, 1991) planning system, ALPINE, automatically generated planning hi-

erarchies by dropping literals from the goal description in an ordered manner to create a

more abstract space in which to solve the problem. Prieditis (1993) introduced a system

called Absolver II which automatically found admissible heuristics for use in means-ends

search systems by using a set of pre-defined allowable transformations on the STRIPS goal

and operator space. By generalizing the original problem formulation, Absolver II was able

to significantly decrease the time needed to find a solution.

The most closely related work from the planning domain is that of Korf (1985). His sys-

tem could automatically create open-loop macro operators for use in a means-ends problem

solver. These macros were designed to abstract over non-serializable subgoals, or subgoals

whose solutions violated a part of the overall problem that was already solved. He used the

Rubik’s cube as an example, where a solution path for the whole cube must contain states

where earlier goals such as “solve one color” are temporarily violated. By abstracting

over the non-serializable part of a process, a means-ends problem solver can solve prob-

lems that were previously intractable. A drawback of Korf’s method is that it generates

all possible sequences before pruning the set to those that allow an agent to abstract over

non-serializable subgoals. Our method uses a more focused approach to generate action

sequences.

The work discussed above on generating hierarchies and abstractions automatically

while planning is related to the research presented in this dissertation mainly through

the common focus on automatically generating useful abstractions. In both domains, this

means creating abstractions that enable a system to be used in solving more difficult prob-

lems. However, these planning systems focused on creating abstractions in deterministic
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and completely observable environments. The focus in this dissertation is on control prob-

lems, which are generally neither deterministic nor completely observable. Although some

of the ideas from this planning research may apply, a different approach is needed for these

tasks.

Of the traditional AI search literature, Iba’s (1989) paper is perhaps the most directly

relevant to the methods presented in this dissertation. Although his system automatically

created only open-loop macro operators in a deterministic planning domain, we use several

of his ideas in the design of our subgoal and sequence creation methods. One of the most

novel aspects of Iba’s system, which he called MACLEARN, is that it did not just generate

and test new macros blindly. MACLEARN only generated macros from examination of

“successful” (and unsuccessful) trajectories, where success was defined using the heuristic

evaluation function. As it searched for a path to the goal, MACLEARN saved the observed

states, the selected actions, and the heuristic evaluations experienced along the way. Once

the system observed that a new peak had occurred in the history of the heuristic evalua-

tions, it evaluated the sequence of moves between the peaks for potential macro operators.

This is related to our methods in that we do not blindly generate macros but instead ex-

amine “successful” data, for some task-dependent definition of success. Second, we can

use his idea of searching from peak to peak to delineate trajectories in continuing tasks.

For episodic tasks, a trajectory ends at a goal or failure state, but continuing tasks can be

delineated using peaks in the history of rewards or evaluations that the agent received.

Each proposed new macro in Iba’s system had to pass a filtering step before it could be

added to the action set. The first layer of filters, denoted the static filter, was designed to

ensure that the system did not become overburdened with macros, as discussed by Minton

(1988), who called this the utility problem. The static filter also ensured that the macros

satisfied any given task-specific constraints. We use the idea of a static filter in the same

way to ensure that no new temporal abstractions are too similar to already existing ones and

that any domain-specific constraints are satisfied. MACLEARN also contained a second
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filtering step, denoted the dynamic filter, that actively removed macros that proved to be

less useful over time. This step could be important for pruning any new abstractions that

prove to be less useful across multiple tasks.

3.2 Related Work on Detecting Sequences

The sequence detection task that we present in Chapter 6 is also related to research in

knowledge discovery, combinatorial optimization, and bio-informatics. In the knowledge

discovery domain, there are efficient algorithms to extract patterns or association rules from

large databases. These algorithms usually seek to minimize the number of passes through

the database. Related work in combinatorial optimization focuses on efficiently identifying

common substrings in large collections of strings. This is related to the research in the

bio-informatics domain on identifying common DNA fragments across large collections of

DNA.

One example in the knowledge discovery domain is that of Oates (1999). His method

extracted distinctive sequences from multiple sets of time series data. A distinctive se-

quence is one that differentiates one set of time series data from another set collected from

the same source. The time series data consist of a sequence of sensory readings collected

over a period of time. He used distinctive sequences to predict events that might alter the

source of the time series data, such as a malfunction. This is a different focus than our

work. However, one could imagine using his approach in conjunction with our methods to

enable the agent to predict in additional ways.

Other work within the knowledge discovery domain, such as Oates et al. (1998) and

Zaki (1998, 2001), focuses on discovering rules and structure from time series data. In

these cases, the methods are discovering sequences in the data that can serve as predictive

rules for the future. We discuss the most relevant aspects of Zaki’s work in more detail

in Chapter 6. Although these types of predictive sequences do not correspond directly to

the types of sequences that we detect and create in Chapter 6, they could still be used to
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create useful new sequences. Rosenstein and Cohen’s (1999) work on creating predictive

categories, or time series clusters, from a mobile robot’s sensory readings also fits into this

paradigm.

A closely related task in the combinatorial optimization domain is that of identifying

substrings that are common to sets of more than two strings. This task is also studied in the

bio-informatics domain because it applies to identifying distinctive genetic subsequences in

DNA databases. Gusfield (1997) introduces related sequence identification algorithms from

both domains. The most related algorithm was introduced by Hui (1992). His algorithm

identified the longest substrings that appear in at least k strings in the database in O(n)

time, where n is the total length of all the strings in the database. His solution used suffix

trees to facilitate an efficient search for the substrings. The substrings that were detected

by this approach are the longest substrings common to a specified number of strings. This

is similar to our approach of identifying sequences that occur across a specified percentage

of the agent’s trajectories.

Both the bio-informatics and the combinatorial optimization fields have multiple algo-

rithms that are related to our sequence detection task. In both fields, the efficiency of an

algorithm is important because of the size of the search space. These algorithms typically

require complicated data structures, such as the suffix trees mentioned above, to achieve

this efficiency. It is a topic for future research to investigate how these algorithms might be

adapted to the abstraction discovery problems that we consider here.

3.3 Relevant RL Literature

The use of both temporal and state abstraction in RL has been studied theoretically and

empirically. Since this dissertation does not focus on state abstraction, we will not address

the work on state abstraction directly although there has been interesting work in that area

(e.g., Lin, 1993a,b; Moore, 1994; McCallum, 1995; Uther, 1998). We focus instead on RL

research on temporal abstractions.
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Much of the theoretical foundation for the use of temporal abstraction in RL has been

provided by Precup and Sutton (1997), Parr and Russell (1997), Precup et al. (1998), Parr

(1998) and Sutton et al. (1999). These researchers have shown that the use of temporal

abstraction transforms a Markov Decision Process (MDP) into a Semi-Markov Decision

Process (SMDP) and that convergence results still hold for the learning algorithms known

to converge in the absence of abstraction. This information allows us to create and use

different types of temporal abstractions with the knowledge that the learning algorithms

will still converge.

We use the options framework (Sutton et al., 1998, 1999; Precup, 2000) to represent

the temporal abstractions created by our methods. The options framework is discussed

in detail in Chapter 2. Parr and Russell (1997) and Parr (1998) proposed an alternative

framework where temporal abstractions are expressed as Hierarchies of Abstract Machines

(HAMs) and Andre and Russell (2001) extended this to include Programmable HAMs

(PHAMs). HAMs and PHAMs provide a method for easily including prior knowledge

about the structure of the policy of a temporal abstraction, which can be advantageous if

such knowledge is available in advance. This is not the case for the temporal abstractions

that our methods create, and although the theoretical convergence results also hold for this

formulation of temporal abstractions in RL, we use the options formalism.

Related theoretical work by Hauskrecht et al. (1998) involved the use of localized tem-

poral abstractions to generate smaller and more abstract MDPs. They showed that the new

MDPs could be solved more quickly than the original MDPs and that temporal abstraction

helped to facilitate knowledge transfer across tasks. Their work built on the theoretical

foundations described above and provided some theoretical reasons as to why temporal

abstraction can be useful to an RL system.

One of the advantages to using temporal abstractions in RL is that the abstractions

can enable a system to learn to solve more complex problems. Early work on scaling RL

systems up to larger problems involved the use of shaping, or training the system on a
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series of related subproblems and then using the solutions to the subproblems to facilitate

a solution for the next harder problem (Gullapalli, 1992; Singh, 1991, 1992a,c). These

systems showed that shaping could successfully be used by an RL system to approximate

solutions in cases where a solution would have been very difficult to find otherwise. The

main limitation to these ideas is that the shaping sequence must be defined a priori by the

programmer.

On the algorithmic side, Singh’s (1992b, 1994) H-DYNA algorithm is an early exam-

ple of using closed-loop temporal abstractions to facilitate learning in an RL framework.

Other work includes Bradtke and Duff’s (1995) SMDP learning algorithm, which learns

action values for variable duration actions by backing up the discounted sum of the re-

ward received while the action was executing. Macro Q-learning (McGovern et al., 1997)

combines the SMDP backup for variable duration actions with the Q-learning backup for

primitive actions to learn action-values for both primitive actions and options. Under ap-

propriate conditions, this algorithm converges to an optimal policy. As discussed in Chapter

2, we use Macro Q-learning for all of the learning experiments involving options that are

presented in this dissertation.

Many of the RL algorithms that use temporal abstraction create hierarchies of states

or actions. The systems of Kaelbling (1993) and Dayan and Hinton (1993) are two early

examples. Both of these methods create a hierarchy of value functions based on attributes

of the state space and are able to accelerate learning compared to a flat, or non-hierarchical,

system. This work was extended by Moore et al. (1999) to automatically generate hierar-

chies in goal directed systems. Ryan and Pendrith’s (1998) RL-TOPs also generates hierar-

chies in a partially automatic manner. Their work is distinguished by the use of a traditional

planning paradigm where all actions must have specified pre- and post-conditions. The

work of Theocharous and Mahadevan (2002) also fits into this paradigm by demonstrating

that hierarchical Partially Observable MDPs (POMDPs) can enable a robot to successfully

solve more difficult tasks than are possible without a hierarchy. None of these systems adds
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new actions to the available action set. Rather, the systems focus on restricting the search

space of the RL agent to decrease the time needed to approximate an optimal solution.

The MAXQ algorithm by Dietterich (1998) provides an alternate framework for tem-

poral abstraction in RL. His system uses a fixed hierarchy of temporal abstractions, where

each action at each level of the hierarchy has a separate value function. Each level of the hi-

erarchy also has a value function to control the actions for that level. Using this framework,

Dietterich is able to provide convergence results for MAXQ-learning. Although we use the

options framework to specify the newly created temporal abstractions, the subgoal options

use a separate value function to specify their policies. This is not specifically part of the

the options framework but is part of the MAXQ framework. The value functions are also

refined over time, as in MAXQ. MAXQ currently has no method for automatic creation of

new macro-actions. Makar et al. (2001) have extended the MAXQ framework to multiple

agents and further demonstrated the use of hierarchies for complex learning tasks.

Another approach in RL that is related to ours is that of Drummond (1998). He pro-

posed a system in which an RL agent could detect both walls and doorways through the

use of vision processing techniques applied to the learned value function. This enabled the

agent to re-use parts of the value function for task transfer. Although his method can iden-

tify doorways and walls in a two dimensional gridworld setting, his approach was aimed at

detecting sharp changes in the value function and not at identifying subgoals.

None of the work described above includes a method for automatically creating new

temporal abstractions. However, three existing RL systems do address this problem. The

first two systems assume that the task of the RL agent is to approximate solutions to a

series of related MDPs that share a state space but have different transition probabilities.

Thrun and Schwartz’s (1995) SKILLS algorithm is one such system. By examining optimal

policies within the set of related MDPs, SKILLS can extract a pre-specified number of

action sequences that are common across the tasks. These action sequences can be useful

in other tasks that share this state space. A similar system by Bernstein (1999) uses the

21



optimal policies for a given set of tasks to generate a single new temporal abstraction that

he calls a “reuse option.” To do this, his method examines the probabilities of taking each

action in each state for a given optimal policy. The action distribution for each state in the

reuse option is then formed by averaging the action probabilities from each of the optimal

policies for that state. Both of these systems suffer from their requirement to completely

solve a set of related MDPs. This limits the size of the problems to those that are small

enough to approximately solve in a reasonable amount of time. Both of these systems can

enable transfer of knowledge among similar MDPs as well as accelerate learning on new

tasks. However, neither of these goals can be accomplished using these systems unless the

set of tasks share the same state set.

The third existing system that can automatically discover temporal abstractions in an

RL framework is the one most closely related to approach presented in this dissertation.

Digney’s (1996, 1998) Nested Q-learning algorithm creates new options online while an

agent is learning using Q-learning. This system creates new options by examining two

criteria: frequency of state visitations and the reward gradient at each state. States that are

visited frequently or states where the reward gradient is high are chosen as subgoals for

new options. Like the options created in Chapter 4, these new options take the agent from

any state in the environment to the subgoal. Because newer actions can call existing actions

as subroutines, Nested Q-learning creates a hierarchy of actions for the agent. Our methods

can also create action hierarchies.

Digney’s work on Nested Q-learning shares a common goal with the work presented

in this dissertation. In both of our approaches, one goal is to create temporal abstractions

that will enable an agent to approximate an optimal solution more quickly than a system

that uses only primitive actions. Although we share a common goal, the research presented

in this dissertation and that of Digney differs in several significant ways. First, Nested Q-

learning currently only works with Q-learning, whereas our methods do not require that

RL be used to generate the behavior used to create the abstractions. For example, in Chap-
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ter 5, we demonstrate that the behavior of humans tele-operating a simulated robot can be

used to generate subgoals. Second, our methods can create both options to reach subgoals

(similar to Nested Q-learning) and useful action sequences. Another difference between

our approaches is how we use the behavior of the agent to create new abstractions. Digney

detects the subgoal states using raw visitation frequencies whereas we use diverse density

(Maron, 1998; Maron and Lozano-Pérez, 1998) to identify the subgoals. Diverse density

examines the evidence collected across multiple trials instead of within a single trial. Di-

verse density can incorporate negative evidence, which Digney’s method is not able to do.

By using diverse density to detect the subgoals, our method is also able to identify sub-

goals in large or continuous spaces. Digney’s method relies on using histograms to count

the state visitation frequencies, which limits the problems to which it can be applied.

3.4 Related Research in Robotics and Learning

Although industrial robots already perform complex tasks such as car assembly, these

robots function in fixed situations and are unable to adapt to changes in the environment.

For robots to be truly useful across a wide range of complex tasks, they must be able to

learn and adapt. In order to learn and perform more complex tasks, robots must employ

some form of abstraction above the level of motor torques.

One of the early methods for introducing temporal abstraction into robotics was Brooks’

(1986) subsumption architecture. In this architecture, the programmer defines a layer of

behaviors in which each behavior is a separate control program. The behaviors can execute

simultaneously, and higher-level behaviors can access, or subsume, lower-level behaviors.

These behaviors function as temporal abstractions for the robot by allowing the robot to

abstract over variable-length control programs that accomplish a specified subgoal. This

work is continued in Brooks (1990), where he introduces a new language for specifying

and creating behaviors. The robots described in this later work are able to perform complex

tasks with a high degree of reliability. Although he demonstrates that these behaviors can
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enable robots to solve more difficult tasks than before, the work is limited by the fact that

the behaviors must be pre-programmed.

Mahadevan and Connell (1992) introduced a system that learns the individual behaviors

using RL. Instead of requiring the designer to pre-specify each behavior, the designer only

needs to specify the goal for each behavior and appropriate situations in which to use each

behavior. Their system then learns a policy for each behavior through interaction with the

environment by using RL. This provides a more robust set of policies than could be hard-

coded by the programmer. Mahadevan and Connell demonstrate that their robot can use

learned behaviors, or temporal abstractions, to accomplish difficult tasks.

A different method for using temporal abstraction in robotics was introduced by Huber

et al. (1996) and Huber and Grupen (1997b,a, 1998, 1999). They introduced a control basis

approach where a number of low-level controllers are constructed that solve a wide variety

of tasks. Multiple controllers can execute simultaneously. These controllers can be viewed

as actions that can take a variable length of time to complete. At this level, the actions are

sets of simultaneously active controllers. The termination or convergence of a controller

signals a new event, much like the termination of a variable length action in the SMDP

framework. RL can then be used to learn different policies by viewing the controllers as

temporal abstractions. They demonstrate that this approach enables robots to learn efficient

policies to solve complex tasks. For example, they demonstrate that a four-legged mobile

robot can learn a policy for safely and efficiently rotating in place (Huber, 2000). They also

show that this rotating policy can enable the robot to accelerate its learning on the task of

learning to safely walk to a target. This demonstrates that their framework can be used for

knowledge transfer.

Although these systems introduce methods that facilitate the use of temporal abstraction

in robotics and RL, none of these systems focus on automatically creating the temporal ab-

stractions from interaction with the environment. Although apparently quite different from

other work presented in this section, the method of Ram and Santamarı́a (1997) creates
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new temporal abstractions using case-based reasoning. Their approach extends the discrete

case-based reasoning systems so that it can be applied to continuous systems, such as mo-

bile robots. Their mobile robot was able to use case-based reasoning to create new cases

for each new situation that it encountered while interacting with its environment. By do-

ing so, their robot automatically created temporal abstractions that enabled it to solve new

problems quickly and to transfer knowledge to similar tasks.

The next chapter introduces our method for identifying useful subgoals from the agent’s

interaction with its environment and presents empirical results in both an illustrative and

more complex domain.
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CHAPTER 4

FINDING USEFUL SUBGOALS

The first type of temporal abstraction that we focus on in this dissertation is a subgoal

of achievement, which takes the form of a closed-loop policy that attains a subgoal. The

particular type of subgoals that we focus on are regions in state or sensory space that are

useful to reach. We first present a method by which an RL agent can discover such subgoals

automatically and then illustrate the method in several gridworlds. Last, we demonstrate

the utility of the approach on a simulated Pioneer II mobile robot.

The method presented in this chapter searches online for “bottlenecks” in observation

space. Informally, a bottleneck is a region in the agent’s observation space that the agent

tends to visit frequently on successful paths to a goal but not on unsuccessful paths (for

some suitable definition of success). The bottlenecks of interest are those that appear early

and persist throughout learning. If the agent can discover these bottleneck regions and

learn policies to reach them during the initial stages of learning, it can use these policies

for more effective exploration as well as to refine its overall policy more quickly. These

subgoal policies can then be used to facilitate learning in similar tasks.

We treat the problem of finding bottleneck regions as a multiple-instance learning prob-

lem as defined by Dietterich et al. (1997). In this type of problem, a system attempts to

identify a target concept on the basis of “bags” of instances: positive bags have at least

one positive instance, while negative bags consist of only negative instances. A successful

trajectory corresponds to a positive bag, where the instances are the agent’s observations

along that trajectory. A negative bag consists of observations made over an unsuccessful

trajectory. We argue that the problem of finding bottleneck regions fits this paradigm well
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and we use the concept of diverse density (Maron, 1998; Maron and Lozano-Pérez, 1998)

to detect the bottleneck regions.

4.1 Autonomous Subgoal Discovery

The simplest approach to creating useful options is to search by generating many new

options, randomly or based on simple heuristics, and letting the agent test them by adding

each to its set of actions. Although some of these options may be useful, others may degrade

the agent’s performance, e.g., by adversely affecting its mode of exploration (McGovern,

1998b). Performance can also deteriorate due to the agent having too many actions from

which to select. To help prevent this, the agent needs a more focused method for creating

new options. In the approach described in this chapter, the emphasis is on discovering

useful subgoals that can be defined in the agent’s observation space. New options are then

created to accomplish these subgoals.

To discover new subgoals, the agent searches for bottleneck regions in its observation

space. The idea of looking for bottleneck regions was motivated by studying room-to-room

navigation tasks where the agent should quickly discover the utility of doorways as sub-

goals (McGovern, 1998a). If the agent can recognize that a doorway is a kind of bottleneck

by detecting that the sensation of being in the doorway always occurs somewhere along

successful trajectories but not always on unsuccessful ones, then it can create an option to

reach the doorway as a subgoal. This option can accelerate learning on the current task—if

created early enough—as well as enable the agent to learn more rapidly on related tasks in

the same or similar environments.

A more general motivation for using bottlenecks as subgoals is the effect of the options

on the agent’s exploration. If the agent uses some form of randomness to select exploratory

primitive actions, it has a high probability of remaining within the more strongly connected

regions of the state space for long periods of time. An option for achieving a bottleneck

region, on the other hand, will tend to connect separate strongly connected areas by mov-

27



ing the agent to the gateway between the regions much more frequently. For example,

in a room-to-room navigation task, navigation using primitive movement commands pro-

duces relatively strongly connected dynamics within each room but not between rooms. A

doorway links two strongly connected regions. By adding an option to reach a doorway,

the rooms become more closely connected. This allows the agent to more uniformly ex-

plore its environment. We have shown in previous work (McGovern, 1998b) that the effect

on exploration is one of the main reasons that options are sometimes able to dramatically

improve learning.

The idea of using bottlenecks as subgoals is not confined to gridworlds or navigation

tasks. We expect that other tasks with similar weakly connected regions of state space

would also benefit from subgoal discovery as described in this chapter. For example, con-

sider a game in which the agent must find a key to open a door before it can proceed. If it

can discover that having a key is a useful subgoal, then it will more quickly learn how to

advance from level to level. Although our approach may be widely applicable, it clearly

will not work for every task since goals of achievement are not useful in all environments

and not all tasks exhibit the requisite kind of dynamics. Next, we describe a method for

defining and detecting such bottleneck regions.

4.1.1 Multiple-Instance Learning and Diverse Density

Multiple-instance learning problems as described by Dietterich et al. (1997) are super-

vised learning problems in which each object to be classified is represented by a set of

feature vectors, where only one of the feature vectors may be responsible for the object’s

observed classification. An example from explanation-based learning that these authors

give is a case in which many explanations for an observed result can be obtained from a

domain theory, but only one explanation can account for all the observed results. More

specifically, there are multiple positive and negative bags of instances. Each positive bag

must contain at least one positive instance from the target concept but may contain many
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negative instances. Each negative bag must contain only negative instances. The individual

instances within each bag are not labeled with respect to the target concept. The goal is to

learn the concept from the evidence presented by the different bags.

The problem of mining collections of trajectories for bottlenecks, or other concepts

useful for defining subgoals, can be formulated as a multiple-instance learning problem.

Each trajectory can be viewed as a bag, with the agent’s individual observation vectors

being the instances within the bag. A positive bag contains observation vectors from a

successful trajectory; a negative bag contains the observation vectors from an unsuccessful

trajectory. What constitutes a successful or unsuccessful trajectory can be defined in a

problem-dependent way. For example, successful trajectories might be all those trajectories

in which the agent reached a goal state independent of how many steps that the agent took

to reach the goal. Alternatively, success might depend on reaching a goal within a certain

number of steps. A bottleneck region of observation space as described above corresponds

to a target concept in this multiple-instance learning problem: the agent experiences this

region somewhere on successful trajectories and not on unsuccessful trajectories.

Maron (1998) and Maron and Lozano-Pérez (1998) devised the concept of diverse den-

sity to solve multiple-instance learning problems. The most “diversely dense” region in

feature space is the region with instances from the greatest number of positive bags and

the smallest number of negative bags. This differs from the concept of simple density by

including the idea of using many different bags rather than one large set of instances. The

concept of a diversely dense region corresponds exactly to our concept of a bottleneck re-

gion. A region with high diverse density will be a bottleneck region which the agent passes

through on multiple successful trajectories and not on unsuccessful ones.

To describe how to apply diverse density to subgoal discovery, we first give an overview

of Maron’s definitions and derivations. Maron defines the diverse density of a target con-

cept, ct , to be:
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DD(ct) = Pr(ct |B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m), (4.1)

where Pr(ct) is the probability that ct is the correct concept, B+
i is the ith positive bag, and

B−i is the ith negative bag. The concept with the maximum DD value is the output of a

DD search. To perform this search, we must expand Equation 4.1. Using Bayes’ Rule,

Equation 4.1 can be rewritten as:

DD(ct) =
Pr(B+

1 , . . . ,B+
n ,B−1 , . . . ,B−m|ct)Pr(ct)

Pr(B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m)
. (4.2)

Assuming a uniform prior probability over the target concepts and noticing that the

denominator is constant with respect to the target concept, finding the concept with the

maximum DD value reduces to finding the maximum likelihood of the particular set of

positive and negative bags given a specific concept:

Pr(B+
1 , . . . ,B+

n ,B−1 , . . . ,B−m|ct).

Maron assumes that the bags are conditionally independent given the target concept, which

allows the likelihood to be rewritten as:

∏
1≤i≤n

Pr(B+
i |ct) ∏

1≤i≤m

Pr(B−i |ct). (4.3)

However, it is still not possible to calculate this exactly without a model of how the bags

were generated. Instead, one can use Bayes’ Rule again to rewrite Expression 4.3 as:

∏
1≤i≤n

Pr(ct |B+
i )Pr(B+

i )

Pr(ct)
∏

1≤i≤m

Pr(ct |B−i )Pr(B−i )

Pr(ct)
. (4.4)
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Substituting Expression 4.4 into Equation 4.2, and taking into account the terms that do not

depend on ct , the task reduces to that of finding the maximum likelihood over concepts as

follows:

∏
1≤i≤n

Pr(ct |B+
i ) ∏

1≤i≤m

Pr(ct |B−i ).

It remains to determine the probability of an instance in a bag causing the concept to be

correct, Pr(ct |B+
i ) and Pr(ct |B−i ). Maron discusses several ways to do this. We follow his

suggestion of using a noisy-or model (Pearl, 1988), in which case we have:

Pr(ct |B+
i ) = 1− ∏

1≤ j≤p

(1−Pr(B+
i j ∈ ct)), and (4.5)

Pr(ct |B−i ) = ∏
1≤ j≤p

(1−Pr(B−i j ∈ ct)), (4.6)

where Bi j is the jth instance of the ith bag and p is the number of instances in bag Bi.

The only part of Equations 4.5 and 4.6 that is undefined is the probability of a particular

instance belonging to the target concept: Pr(Bi j ∈ ct). This can be defined in several

ways. For the experiments in this chapter, we used Maron’s single point concept class,

although we have also experimented with linearly separable concept classes (McGovern

and Barto, 2001). Maron defines the single point concept class using a Gaussian probability

distribution, where the probability of a particular instance in feature space belonging to a

point representing the concept falls off exponentially with the distance from the point. The

concept, ct , is assumed to be a k dimensional vector and the probability of an instance

belong to the concept class is:

Pr(Bi j ∈ ct) =

exp

(

−∑1≤l≤k(Bi jl−ctl)
2

σ2

)

Z
, (4.7)

where Bi jl is the lth feature of the jth instance of the ith bag, ctl is the lth feature of concept

ct , Z is a scaling factor, and σ2 is the standard deviation. The standard deviations σ2
+ and σ2

−

31



can be chosen separately for positive and negative bags to allow the two types of evidence

to have different amounts of influence on the DD values.

The point with the maximum DD value can be found using standard search techniques.

We use exhaustive search when it is feasible and otherwise use a simple random search,

which is similar to a genetic algorithms approach, as described by Rosenstein and Barto

(2001). When the concept space is continuous, there are an infinite number of potential

concepts. In this case, we use the search heuristic suggested by Maron where the search

starts multiple times, each at randomly chosen instance from a positive bag. The true target

concept should occur within multiple positive bags, which means that this approach is likely

to choose several starting concepts that are near the target concept. In practice, it is more

accurate to calculate the log likelihood of the diverse density, rather than calculating the

diverse density directly, because of accuracy issues with very small floating point numbers.

Diverse density is similar to a computer vision technique for identifying curves and

edges in images that was introduced by Hough (1962). This technique can be extended to

identify general shapes in images (Ballard and Brown, 1982). The method works by first

identifying a shape to be detected in an image. The location of the shape in the image can

be described by a set of parameters, for example a line can be described by its slope and

intercept points. Although these parameters are usually real-valued, the probable values for

each parameter can be discretized into a set of bins. The Hough method initializes a count

for each of the possible parameter values. As the image is examined, each pixel provides

evidence for some values of each parameter. This evidence is accumulated in the count for

each value. For example, if the method is searching for a straight line in an image, any

pixel in the image can be used to calculate a slope and intercept for a line passing through

that pixel. After the entire image has been examined, the parameters with maximal counts

are chosen as the correct parameters.

The Hough method is similar to diverse density in that diverse density also specifies a

parameterized concept space and accumulates evidence for specific parameters using the
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Figure 4.1. A: The two room gridworld used for the initial experiments. B: The aver-
age negative log likelihood diverse density in a two-room gridworld shows a peak in the
doorway.

bags. Unlike the Hough method, diverse density can also make use of negative evidence.

One drawback to the Hough method is that it does not scale well as the number of param-

eters increases. Diverse density uses a more general approach of probabilities instead of

discrete counters for each parameter, which enables it to be used in larger spaces. Another

difference is that diverse density looks for evidence across different bags while the evidence

used by the Hough method is assumed to be from one source.

We illustrate the ability of diverse density to highlight a bottleneck region using the

online experience of an RL agent learning in the two-room gridworld shown in Figure

4.1A. The bottlenecks should appear as peaks in the negative log likelihood diverse density

values when calculated over the entire state space. In this example, there should be a peak

in the values in the doorway between the two rooms.

We used Maron’s single-point concept class where each gridworld square is considered

to be a target concept. We implemented this by placing the center of the Gaussian proba-

bility distribution (Equation 4.7) in the center of each grid square, and setting the standard

deviation, σ2, to 1.0.

33



The data used to create the bags were collected from the online behavior of an agent

using Q-learning in the 21x10 two-room gridworld. The goal state was placed in the lower

right-hand corner, and each episode started from a randomly chosen state in the left-hand

room. An episode ended when the agent reached the goal. The primitive actions available

to the agent were up, down, right, and left. Each action succeeded in moving the

agent in the chosen direction with probability 0.9 and in a uniform random direction with

probability 0.1. The agent received a reward of 1 for reaching the goal and 0 otherwise. The

discount factor, γ, was 0.9, which made shorter trajectories to the goal better than longer

ones. The learning rate, α, was 0.05. For deterministic environments, α can be set to one.

However, to allow convergence in stochastic environments, we usually chose a learning

rate closer to zero, such as 0.05. The agent explored using the ε-greedy method where

the greedy action was selected with probability (1− ε) and a random action was selected

otherwise. We set ε to 0.1 for this example.

In this example, all bags were positive since the agent always succeeded in reaching the

goal. Each observation, in this case the gridworld state, was added to the bag corresponding

to that trajectory except for the observations within a small radius of the goal. These were

excluded by a static filter, which is discussed in more detail in the next section.

Figure 4.1B shows the negative log likelihood diverse density value for each state in the

gridworld except those surrounding the goal. The walls are blank because they are never

experienced and thus have undefined diverse density values. The squares in the graph

correspond to squares in the gridworld. Each data point is the negative log likelihood of the

diverse density after 40 episodes of learning and averaged over 30 runs. Each run started

learning from scratch with a different random seed. As the graph shows, there is a peak in

the negative log likelihood diverse density in the doorway of the gridworld, which was the

result that we anticipated.
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1. Initialize full trajectory database to /0
2. Initialize running averages ρc to 0
3. For each episode
4. Interact with environment/Learn using RL
5. Add observed full trajectory to database
6. Create positive or negative bag from filtered state trajectory
7. Search for diverse density peaks
8. For each peak concept c found
9. Update the running average by ρc← ρc +1
10. If ρc is above threshold θ
11. If c passes static filter
12. Initialize I by examining trajectory database
13. Set β(c) = 1, β(S− I) = 1, β(·) = 0 else
14. Initialize policy π using experience replay
15. Create a new option o =< I,π,β > to reach concept c
16. Decay all running averages by ρc← λρc

Table 4.1. Pseudocode for the subgoal-creation algorithm.

4.1.2 Using Diverse Density to Form New Options

An RL agent can use diverse density to search for the bottleneck observations, and then

it can use those bottlenecks to create new subgoals and options to reach the subgoals. The

algorithm for doing so is summarized in Table 4.1 and discussed in detail in this section.

At the end of each episode, the agent saves all of its observations and actions from that

episode. The agent then creates a bag for the diverse density calculations consisting of the

observation vectors of that trajectory. The decision whether to label the bag as positive or

negative is based on whether the episode was “successful” according to the task’s definition

of success. In most cases, success means that the agent achieved the goal of the task within

a predefined number of time steps or that it did not visit any failure states (such as hitting a

wall in a navigation task).

A task-dependent filter can be used at this step to remove observation vectors from bags.

For example, if the agent always starts or ends each successful trajectory with the same set

of observations, then those observations will have a high diverse density since each will

appear in all of the positive bags. A filter can exclude observations surrounding the start
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and end of each episode from any bag since these observations are not useful subgoals but

would show up as peaks in the diverse density. This follows Iba’s (1989) use of static filters

for macro-growing. A static filter can be defined on a per-task basis and used to filter out

any undesired subgoals before they can be created by the agent.

Once a set of bags has been created, a search is conducted for concepts with globally

maximum diverse density values. In the initial stages of learning, there will be only a small

number of bags formed from the agent’s early exploratory experience. While this early

experience may contain bottlenecks, it will also contain a number of spurious observations,

e.g., getting stuck near a wall, which can cause the initial results of a diverse density search

to be highly variable. As the agent gains experience and additional bags are created, the

diverse density values should stabilize. However, as the agent’s policy continues to im-

prove, the diverse density values of the observation vectors along the optimal trajectory

will begin to dominate the other values. The bottlenecks of interest are those that appear

early (within the initially noisy experience) and persist throughout learning. Such early

and persistent observation vectors should be indicative of general features of the environ-

ment rather than part of the specifics of a particular task because they appear within the

exploratory experience as well as within the learned behavior.

One method for detecting early and persistent maxima is to maintain a running average

of how often each concept is found to be have a maximal DD value. After each search, the

running average, ρc, for each concept c is decayed by a fraction λ, and the running averages

for the concepts found to be maximal are incremented by one; that is:

ρc ←











λρc +1 if c is found to be maximal

λρc otherwise
(4.8)

where λ ∈ (0,1). If a concept is an early and persistent maximum, then ρc will be incre-

mented at the end of each search. In this case, ρc will converge toward 1
1−λ . The agent

examines the concepts whose averages rise above a specified threshold, θ, and uses those
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to create new options. Knowing the limiting value of ρc helps to pick the appropriate value

for θ.

Once a concept’s average rises above the threshold, the concept is passed to the static

filter. As discussed above, this filter allows the designer to restrict the set of new options

based on specifics of each environment. We also use this filtering step to maintain a min-

imum distance between new options. Too many actions can slow learning by creating a

larger search space for the agent. With an appropriate distance metric for the options, the

static filter can be used to keep the agent from creating too many similar options. For

example, we use the Manhattan distance between the subgoal locations for the gridworld

experiments.

Once a concept has successfully passed the filtering step, it is used to create a new

option. The option’s input set, I, can be initialized in several ways, depending on the

amount of knowledge that the agent has at the time the option is created. The method that

we used to obtain the results reported in this chapter is to search the observation trajectories

for occurrences of the subgoal. When the subgoal is found in a trajectory at time step t, the

set of observations visited by the agent from time t− n to t, where n is a positive integer

specified as a parameter, is added to I. The termination condition of the new option, β, is

set to one for subgoal observation and for all observation vectors in S− I, and is set to zero

otherwise. This means that the option executes either until the subgoal is achieved or until

the agent exits the input set.

The option’s policy, π, is initialized by creating a new value function that uses the same

state representation as the overall problem. The option’s value function is learned using

Lin’s (1992) experience replay method with the saved trajectories. The reward used for the

new option is −1 per step and zero when the option terminates. We selected this reward

structure to encourage the agent to reach the subgoal as quickly as possible. The agent

could also be rewarded negatively for leaving the input set.
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Saving the full history of the agent and using experience replay introduce questions

about the efficiency of our method in terms of both time and space. Although saving the

full history seems expensive in terms of space, it is linear in the length of the trajectories.

If memory is at a premium, the agent could save only the last n trajectories. This has not

been a problem in practice over a number of different tasks including the simulated robot

task described below. We examine the effect of the time spent in experience replay in later

experiments.

4.2 Experimental Results

To illustrate the subgoal discovery method, we describe results for two very simple

gridworld problems. We then describe results using a more realistic problem involving a

simulated Pioneer II mobile robot.

4.2.1 Two-Room Gridworld Illustration

The first gridworld is the two-room environment shown in Figure 4.1A. The environ-

ment and learning parameters are the same as described in Section 4.1.1. In this environ-

ment, the agent’s task is to move as quickly as possible from a random state in the left-hand

room to the lower right corner of the right-hand room. This task allows us to examine the

subgoals that the agent learns, how the newly created options affect learning, the complex-

ity of using experience replay, why the newly created options prove to be useful, and how

the options facilitate task transfer. We measured performance in each of the experiments

by the number of steps that the agent took to reach the goal on each episode.

The agent created a positive bag for each trajectory in which it successfully reached

the goal state from the start state. Because the agent always reached the goal state, no

negative bags were created. The observations of the agent correspond to the gridworld

states. We were able to calculate the diverse density exactly for each state because of the

small number of states. The agent learned using Macro Q-learning. The internal value
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A: Average Negative Log Likelihood B: Subgoals Discovered
Diverse Density

Figure 4.2. A: Average negative log likelihood DD values where the states with higher
negative log likelihood DD values are brighter. The static filter excluded the goal region
while the walls were never reached and therefore have undefined values. B: Locations of
the new subgoals formed by the learning agent. Each state is shaded by the number of
times that it was selected as a subgoal location; brighter squares were selected more often.

function of the option was updated using Q-learning. We limited the agent to creating only

one option per run because we knew a priori that there was only one bottleneck region in

the environment. Each run started learning from scratch with a different random seed. The

decay factor, λ, for the running average, ρ, was 0.9 and the threshold, θ, was 8.0.

Figure 4.2A shows the average negative log likelihood of the diverse density for each

state after 25 episodes. The results in this graph are averaged over 30 runs. Each square

indicates the negative log likelihood diverse density value for the corresponding gridworld

square where higher values are brighter. Although this average graph is slightly smoother

than the individual graphs for each run, the peak in diverse density near the doorway re-

mains the same. These results parallel those shown in Section 4.1.1. Figure 4.2B shows the

locations of the subgoals created over the 30 runs. The brighter squares were chosen more

frequently. As expected, locations near the door were the most frequently detected subgoal

locations.

One reason that it is important for the learning agent to detect these bottleneck states

is the effect on the rate of policy convergence. If the discovered subgoals are useful, then

learning should be accelerated. To determine whether these subgoals were helping the
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Figure 4.3. Average steps to the goal with and without automatic subgoal detection in the
two-room gridworld. The results are averaged over 30 runs.

agent to improve its policy more quickly, we compared the average performance of an

agent using subgoal discovery to the performance of an agent learning using only primitive

actions. The data were averaged over 30 runs. The results of this comparison are shown in

Figure 4.3. The agent using option discovery uses significantly fewer steps to achieve an

optimal policy. Learning with automatic subgoal discovery has considerably accelerated

learning compared to learning with primitive actions alone. Although the variances are

not shown on the graph, the difference in variance between each data point on the two

learning curves is greater than one standard deviation. The initial episodes were the same

because the options were not created until approximately episode 20. This initial time can

be modified by changing θ. We found in practice that as the threshold was set closer to

1
1−λ , the agent created better options. There is a tradeoff between how quickly the options

can be created and how valuable the options are in the overall task and for task transfer.
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Figure 4.4. Results of using experience replay to examine the effect of the option’s initial
policy (partial-experience-replay) and to asses the time spent in experience replay while
creating options (all-experience-replay). The results are averaged over 30 runs.

Future work addresses a dynamic filter that could prune options from the action set if they

proved to be less useful than expected, which could be used to address this tradeoff.

These results indicate that the automatically discovered options can be useful for accel-

erating learning within a given task. To more fully understand why these options proved

to be useful, we performed an additional experiment to examine the effect of the option’s

initial policy on learning. In our framework, each option’s policy is initialized using ex-

perience replay. This means that once the option is created, the agent immediately has a

multi-step action with a reasonable policy to move to the subgoal. This will considerably

affect the agent’s exploration. We wanted to examine the effect of this initial policy sepa-

rately from any effect of adding an additional action to the action set. To do so, we allowed

the agent to run the option discovery algorithm to detect subgoals. However, instead of

creating a new option, the agent only calculated the states that would be updated by expe-

rience replay while creating the policy for the new option. It then used experience replay
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to backup values in the main value function on these states. This gave the agent knowledge

of how to navigate to the doorway from those states.

The results of this experiment are shown in Figure 4.4 and are labeled as “Partial Ex-

perience Replay.” The option-discovery and primitive action curves are the same as in

Figure 4.3 but the axes have been changed to highlight the meaningful regions. The per-

formance of the agent in this experiment is better than that of the agent using primitive

actions but slightly worse than that of the agent using option discovery. The graph shows

that the performance of the agent using this partial experience replay was almost as good

as the performance of the agent using option discovery. This demonstrates that the primary

reason newly created options are beneficial is their initial policy. The remainder of the

difference in performance is postulated to be due to the ability of the options to propagate

value information more quickly (McGovern, 1998b).

Since experience replay involves some amount of computational effort on the part of

the agent, we wanted to ensure that the time spent in experience replay while initializing the

option could not have been better spent by performing an equal amount of experience replay

over the entire state space. To test this, we used a similar experimental setup as described

in the previous paragraphs. The agent learned using the option discovery algorithm but

at the point at which a new option would have been created, the agent only identified the

input set and counted the number of backups that would have been used to initialize the

policy. No new options were added to the action set. To fairly assess the computational

effort of the experience replay when creating an option, we considered the case in which

the agent spends an equal amount of time on experience replay over the entire state space.

Although the agent has experience from the entire state space available, it uses only a

subset of that experience when creating an option because the backups are focused on

the input set. We approximately equalize the amount of time spent in experience replay

by probabilistically selecting state-action-reward tuples from all of the the agent’s saved

experience and applying the Q-learning rule to these. These experiences span the entire
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Figure 4.5. Learning curves in the new two-room task comparing the use of the previously
learned options to primitive actions. The goal has been moved to the upper right corner and
the results are averaged over 30 runs.

state space and not just what would have been the input set of the new option. Figure 4.4

also shows how the results from this case compare with earlier results. The graph for this

case is labeled “All Experience Replay” and its performance is only mildly improved over

that of primitive actions only. The results indicate that while experience replay can help to

accelerate learning within the current task, option discovery is more advantageous.

Another reason that options can be useful is that the agent can use them to facilitate

learning on similar tasks. To illustrate how learned subgoals can be useful for task transfer,

the gridworld task was changed by moving the goal to the upper right-hand corner and by

decreasing the probability of success for each action from 0.9 to 0.8. We reused the options

discovered in the first task. In that task, we had 30 separate runs in which the agent created

one option per run. In this experiment, we again have 30 separate runs, each run starting

with the option discovered during the corresponding run of the previous task. We compare

the performance of the agent reusing the options to an agent learning with primitive actions
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Figure 4.6. Comparison of knowledge transfer using the value function to using the newly
discovered options. The goal is in the upper right corner and the results are averaged over
30 runs.

only. Figure 4.5 shows the results of this comparison. The agent reusing the options was

able to reach the goal more quickly even in the beginning of learning and it maintained this

advantage throughout. This experiment demonstrates that the availability of the options

considerably accelerated learning on the new task. This was consistently observed across

many different transfer tasks using this environment.

To ensure that it is the options themselves that are useful, and not just the availability

of an appropriate multi-step policy in a new environment, we compared the task transfer

results shown in Figure 4.5 with the results of two additional experiments. Both experi-

ments used the value function learned in the original task, where the goal was in the lower

right corner. In the first experiment, the agent initialized its entire value function using

the values from this first task. In the second experiment, the agent reused only the action

values from the states in the option’s input set. The options themselves were not used. The

results of these two experiments are shown in Figure 4.6. One can see that the agents in
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Figure 4.7. A: Comparison of automatic subgoal detection to primitive actions only in
the four-room gridworld. B: Performance of the learned options on task-transfer in the
four-room gridworld.

these two experiments took considerably longer to learn a policy to the goal than the agents

starting with new value functions. These experiments demonstrate that simply reusing the

value function in whole or in part is dramatically worse because the agent has to unlearn

the previous task before it can learn to solve the new task.

4.2.2 Four-Room Gridworld Illustration

As a second simple illustration, we used the four-room gridworld studied by Precup

(2000). This environment is shown in the inset of Figure 4.7A. The agent’s task is to

move from a randomly chosen start state in either left-hand room to the goal location in the

doorway between the two right-hand rooms. The primitive actions and learning algorithms

are the same as described above. The probability of success of each action is 0.9. We

allowed the agent to create up to three options per run, because each non-goal doorway was

a bottleneck. The static filter constrained each option’s subgoal to be at least a Manhattan

distance of 2 away from that of any other option.
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As before, we compare the results of learning with autonomous subgoal discovery to

learning with primitive actions by examining the average number of steps that the agent

needed to reach the goal state from the start state. The results of this comparison are shown

in Figure 4.7A. These results are averages over 30 runs. The agent using option discovery

was able to use fewer steps to learn an optimal policy than the agent using only primitive

actions. Although the difference between the two curves is less striking than in the two-

room gridworld, here one can also see that autonomous subgoal discovery was able to

improve the rate of learning. The locations of the subgoals were clustered around the 3

doorway locations.

To test knowledge transfer, we decreased the action-success probability from 0.9 to 0.8

and moved the goal to the middle of the upper-right room. Figure 4.7B compares perfor-

mance with and without the previously learned options. This experiment demonstrates that

the learned options facilitate knowledge transfer across these tasks.

4.2.3 Simulated Robot Task

As a more realistic example, we tested the subgoal discovery method presented in this

chapter using a simulated Pioneer II mobile robot. The simulated environment and robot

are shown in Figure 4.8. The room has dimensions of 10 units by 10 units. The robot has

seven sonar sensors, a simple vision system with a 1-D “retina” having a 140◦ field of view,

and a gripper with a sensor that signals when a ball is being gripped. The vision system

was modeled as a pinhole camera. The sonars had a 20◦ field of view (10◦ on either side

of nominal). The sonar reading is the distance to the closest object within that 20◦ field

of view but it does not contain the exact heading to the object. This is consistent with the

observed behavior of sonars on physical robotic platforms.

The primitive action set consists of eight actions: two distances forward (0.5 and 1.0

units), three left and three right rotations (5.625◦, 11.25◦, and 22.5◦). Each of the primitive

actions was implemented by a proportional-derivative (PD) controller that executed until it
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of retina

Image of ball

Figure 4.8. Simulated Pioneer mobile robot. The lines emanating from the robot represent
the sonar beams and the two dashed lines show the vision cone. The rectangle on the
bottom shows the ball’s appearance on the retina.

stabilized the robot at the commanded setpoint (for more information about PD controllers,

see Craig, 1989). Since the robot does not have access to its x and y coordinates, the

PD controller for moving forward relies on the middle forward-facing sonar to estimate

distance. The robot has an additional reflex action that was not available as an action

choice: when the gripper sensor is triggered by an object coming into the gripper, the robot

automatically closes and raises the gripper.

The robot’s first task is to locate and pick up the ball, and then bring it within one unit

of a wall without running into a wall at any time. The robot receives a reward of +10

for bringing the ball to the desired location, −1 for touching a wall, and −0.1 per time

step until correctly solving the task. This latter negative reward encourages the robot to

accomplish the task in minimum time. The discount rate, γ, was 0.995, and α was 0.1. The

robot learned through the use of Macro Q-learning with a CMAC tile coding to represent

the state space. Further information about CMAC tile codings can be found in Albus (1971)

and Sutton and Barto (1998).
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Figure 4.9. Frequencies of each sensory variable’s occurrence in a subgoal summed over
30 runs. To achieve the subgoal, the robot must use both displacement and width of the
ball’s appearance on the retina.

The CMAC uses the sensory features described above including the seven sonar read-

ings, the orientation of the object on the retina, the width of the object on the retina, and

the gripper sensor. The Pioneer II robot has wheel encoders to estimate the forward and

rotational velocities of the robot. Following this, the simulator is able to use the estimated

forward velocity and the estimated rotational velocity in its tile coding as well. The CMAC

has six layers of different subsets of these variables for a total of 2896 tiles. The details of

the tiling are given in Appendix A.

The robot is able to create one option per run. The observations of the agent are the

sensor readings at each time step. The subgoal is expressed using only the width and

displacement of the ball’s appearance on the retina. A subgoal that is useful in any task

involving the robot moving the ball is for the robot to have the ball in its gripper. To do

this, the ball should be looming directly in front of the robot with a large image width on the

retina. Figure 4.9 shows the subgoals discovered by the robot over 30 runs as projections

onto the two relevant sensory variables. To achieve the subgoal, the robot must use the

conjunction of these two features. As Figure 4.9 shows, the robot discovered the subgoal

of being close to the ball and being oriented directly toward it.
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The results shown in Figure 4.9 demonstrate that the robot was able to extract a useful

subgoal in a relatively difficult task. Because this was such a difficult task for the agent,

the robot was not able to discover the subgoal in time to accelerate learning on the original

task. However, we expected that the automatically created options would be useful for

transferring knowledge to similar tasks. To test this hypothesis, we gave the robot a more

difficult task in the same environment. Whereas the initial task required the robot to bring

the ball to within one unit of any wall in the room, the new task required the robot to

pickup the ball and bring it within one unit of a corner. As before, the robot was penalized

for hitting a wall. This is a more difficult task because it requires the robot to better identify

its location and to be able to navigate more precisely.

We compared the number of time steps that the robot took to grip the ball in this new

task under two conditions: 1) when it was initialized with the options discovered in the

simpler task and 2) when it did not have access to these options. The primitive actions

were available in both conditions. The agent was able to create one option per run of the

earlier task and the robot started with the corresponding option for each run of the new task.

Figure 4.10 shows the results of this experiment. The robot reusing the options from the

earlier task takes fewer steps to reach the ball than the robot learning with only primitive

actions. Using the automatically discovered options significantly accelerated the initial

learning of the agent. This is reflected in the number of time steps that it takes the robot to

solve the overall task as well.

The results in this simulated robotic domain suggest that the method for automatic op-

tion discovery presented in this chapter is able to discover useful subgoals, and thereby fa-

cilitate knowledge transfer in non-trivial tasks, including tasks with continuous state spaces.

4.3 Conclusions

In this chapter, we introduced a method for automatically creating subgoal options on-

line by searching for bottlenecks in observation space. We formulated the problem as a

49



0 5 10 15 20 25
0

500

1000

1500
Time to grip ball in new task

Episodes

S
te

ps

Primitives

Options

Figure 4.10. Results of using previously discovered options as compared to learning with
primitive actions on a more difficult problem for the robot. These results are averaged over
30 runs.

multiple-instance learning problem and used the concept of diverse density to solve it. We

illustrated this approach in several simulated tasks and showed that it can both accelerate

learning on the current task and facilitate transfer to related tasks.
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CHAPTER 5

GENERATING SUBGOALS FROM EXPERIENCES OF
NON-REINFORCEMENT LEARNING AGENTS

The methods presented in this dissertation for generating subgoal options from the on-

line experience of an agent do not require that the agent generate its experience using

reinforcement learning. Instead, the experience can come from any purposeful method of

exploring an environment. This can include other autonomous methods such as the exe-

cution of a planner or even methods such as tele-operation. In this chapter, we explore

the ability of our methods to create new subgoal-based abstractions from human-generated

experience. We focus on a simulated mobile robot domain.

The ability to use other forms of experience can expand the range of tasks and environ-

ments in which our methods can be used. In particular, this ability enables an agent to create

useful abstractions while observing solutions for tasks which may be very difficult for cur-

rent AI techniques to solve but where humans can generate useful solutions. For example,

consider a tele-operated robot on the moon or Mars. The robot needs to ensure its safety

while accomplishing its scientific mission. Complete tele-operation is unreliable because

of the time lag in communications to and from Earth, and complete autonomy is currently

too complex to achieve. Pre-programming the robot on Earth for all possible contingencies

is also not possible because there are too many unknowns in how the moon or Mars differ

from Earth. Instead, if an on-board learning agent could observe the mixture of actions that

it generates as well as the actions generated from tele-operation, it could generate new and

useful options that could enable greater independence and faster learning.
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5.1 Experimental Setup

To more fully test the hypothesis that useful abstractions can be generated from forms

of experience generated from non-RL agents, we performed several experiments in a mod-

ified version of the simulated robot environment described in Chapter 4. This environment

is shown in Figure 5.1. The two-dimensional room in which the robot operated is 25 units

wide by 20 units high (at the peak). The solidly shaded rectangular objects represent ob-

stacles in the room. The task has been changed in several ways. There are now two colored

balls in the room, one red and one blue. The dynamics of how each ball moves in the envi-

ronment remain the same as before. The robot’s new task is to locate and move the red ball

to the red goal location (upper left dashed area) and to locate and move the blue ball to the

blue goal location (upper right dashed area). This task is much more difficult than the one

described in Chapter 4 where the robot’s room contained no obstacles and the robot only

had to move a single ball to be near a wall. Instead of building an autonomous system to

solve the task, we created an interface that allowed a human to tele-operate the robot.

The robot used in these experiments had an augmented set of sensors compared to the

robot described in Chapter 4. As before, the robot had seven sonar sensors, a simple vision

system with a 1-D “retina,” and a gripper with a sensor that signals when a ball is being

gripped. These sensors are described in detail in Chapter 4. In addition to these sensors,

the robot had two new types of sensory information available: an estimate of its position in

the room and the ability to distinguish between the different colors of the balls. The latter

ability adheres to the blob vision system available on Pioneer robots. Having the exact

(x,y) coordinates is an unrealistic assumption for a real robot due to sensor noise; instead

the robot can sense an estimate of its position where the estimate is based on the robot’s

exact coordinates with Gaussian noise added. The Gaussian noise has a standard deviation

of 0.25. With the ability to use GPS outdoors or the ability to estimate position indoors

(Thrun et al., 2000), this is not an unrealistic assumption. Without some ability to know
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Figure 5.1. The view that the human controllers see while tele-operating the simulated
mobile robot. The task is to move the blue ball to the blue goal region and the red ball to
the red goal region. Sensor readings which are not visually apparent to the human from the
overhead view of the robot are shown on the left hand side.

where the robot is within the room, this task is not solvable. The overhead view given in

the simulator provides information of this nature to the human tele-operators.

Three types of actions are available to the robot: linear movements, rotations, and a

drop action. Both the linear movements and the rotations were implemented by PD con-

trollers that executed until the specified setpoint was achieved. The robot had a choice of

three setpoints for the linear controller: 0.5, 1.0, and −1.0 units. These setpoints allowed

the robot to move forward up to one unit or backward by one unit. The linear movement

controller estimated the distance for achieving the setpoint using the robot’s estimated co-

ordinates. The noise in the sensing meant that the robot could undershoot or overshoot the

target distance. In either of these cases, after the PD controller had terminated, the robot

would have residual linear velocity that it would need to account for. For turning, the robot
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had three left and three right rotation actions (5.625◦, 11.25◦, and 22.5◦) which were also

implemented by a PD controller. This controller used the estimated heading of the robot

to determine if the setpoint had been achieved. The last action available to the robot was

to lower and open the gripper to release any objects held inside. This was implemented as

an option which was only available if an object was being held. The robot did not need

a corresponding grip action as it retained the grip reflex that it used in previous experi-

ments: if an object crossed the gripper threshold and tripped the gripper sensor, the robot

immediately closed and raised the gripper.

For the experiments in this chapter, we collected data from humans tele-operating the

robot. Each human operator was given a verbal description of the task before starting to

control the robot. The human operators had the same set of actions available to them as de-

scribed above and each action was activated by a key press. Visually, the human operators

had an overhead view of the robot and its environment, shown in Figure 5.1. Sensory infor-

mation that was not available from this viewpoint, such as the robot’s linear and rotational

velocities, was displayed as text on the side of the display. Each key press activated either

a PD controller or the drop action, and the action was executed until completion. The robot

on the display was updated accordingly throughout the execution of each action. Once the

action terminated, the human operator was able to select a new action. An episode ended

if the human operator solved the task or if the robot collided with a wall or obstacle. The

human operator was provided with appropriate visual feedback in either case via a message

on the display.

We collected the complete experience (sensory readings, actions, and simulator states)

for each episode that the human operator controlled the robot. This allowed us to com-

pletely replay each episode of experience. We collected data from nine human operators:

six computer science graduate students, one professor in computer science, and two insur-

ance agents. This group contained two women and seven men. We collected a total of 79
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Subject 1 2 3 4 5 6 7 8 9 Total
Successful Episodes 6 4 3 18 4 4 7 3 3 52
Unsuccessful Episodes 0 1 1 8 2 3 6 3 3 27
Total Episodes 6 5 4 26 6 7 13 6 6 79
Percent Success 100 80 75 69 67 57 54 50 50 66

Table 5.1. Summary of the human data collected on the tele-operated robot task.

episodes; the median number of episodes contributed by each person was six. The data for

each subject are summarized in Table 5.1.

5.2 Experimental Results

Examination of the task yields two potentially useful types of subgoals: 1) foveate to

and approach an object (ball) and 2) navigate to a goal region without hitting any obstacles

or walls. Other types of subgoals based on other subsets of the robot’s sensory information

may be useful. However, these two subgoals are the most straightforward.

Using the human data, we performed two experiments to verify the hypothesis that these

subgoals were discoverable by the method we introduced in Chapter 4. The first experiment

created subgoals in the robot’s visual observation space, and the second experiment created

subgoals in the coordinate space of the robot. Both experiments used the human data

to create the bags for the diverse density searches. Once the bags had been created, we

used the method described in Chapter 4 to discover the subgoals. However, in Chapter

4, the experience was available to the agent in an incremental manner. To simulate the

same effect here, we randomly reordered the bags before incrementally passing them to the

discovery algorithm. This made it unlikely that any single person’s data would dominate

the evidence available at any particular moment. Although we could have run the subgoal

discovery algorithm in batch mode using all of the data, the human data was still noisy and

the incremental mode we developed in Chapter 4 was designed to deal with this noise. For

both experiments, bags were labeled positive if the human operating the robot successfully
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moved both balls to their respective goal areas, and negative if anything else occurred, such

as running into a wall or obstacle.

5.2.1 Visual Subgoals

In the first experiment, we allowed the robot to create subgoals in its visual space.

These subgoals were expressed by the width and displacement of an object on the robot’s

one-dimensional retina. This is consistent with the experiments using the simulated robot

that we presented in Chapter 4 and allows us to compare results from the two experiments.

We hypothesize that the methods used to detect and create the subgoal options will create

very similar subgoals using the human tele-operation data as it did when using the behavior

generated from the RL agent as described in Chapter 4. In the experiments using the RL

data, the subgoal created was to foveate on the object and to be close to having the object

in the gripper. We expected a similar “approach the object” option to be created from the

human tele-operation data.

In this environment, the robot was able to distinguish between the two different colors

of the balls in the room. In the experiments described in Chapter 4, there was only one

color of ball in the room. In this experiment, we created two separate sets of bags, one for

the blue balls and one for the red balls. The first reason that we created separate sets of

bags for the two colors of balls was that it allowed us to verify our hypothesis of creating

the “approach-the-object” subgoal twice, once per ball color. The second reason is that,

although we expected the method to create the same “approach-the-object” concept for

both colors of balls, allowing it to distinguish between the colors gave the robot the ability

to create separate policies for each ball which could be useful if each ball had different

dynamical properties.

We randomized the order in which both the blue and the red sets of bags were presented

to the subgoal creation method and ran the method on each of the 30 different orderings.

The parameters of the subgoal discovery algorithm were σ2
+ = 1.0, σ2

− = 0.5, λ = 0.9, and
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θ = 8.0. We chose the widths of the Gaussian probability distributions to highlight the

positive bags over the negative bags but to still include the negative data. This allowed the

data to contain some noise in the negative bags where the object was successfully reached

but the robot ran into a wall. The threshold, θ, and the decay, λ, were chosen as in Chapter

4, where we wanted the concept to appear early in the data and to persist. We again used

an incremental clustering algorithm to store the potential concepts and the frequencies of

how often each concept was found. New concepts were defined to be in an existing concept

cluster if the Euclidean distance was one or less. This distance was calculated using the two

sensory features of the width and displacement of the object on the robot’s retina. These

two features were scaled to have approximately equal ranges.

The subgoals that the agent created for both the red and the blue balls over all 30 runs

are shown in Figure 5.2. Each subgoal is expressed as a conjunction of the two features.

The figure shows that the robot created subgoals where the ball is in the center of its retina

and the ball spans almost its maximum width on the retina, which means that the robot

is close to picking up the ball. This is a useful subgoal for any task involving the robot

moving the ball, as we demonstrated in Chapter 4. The difference between the subgoals

for the two colors of balls seems to come from the human subjects’ tendencies to move

the blue ball to the goal before the red ball. This meant that the humans ran the robot into

walls more frequently with a blue ball in the gripper which affected the results by moving

the maximal concept to having the ball span a smaller width on the robot’s retina, or to be

slightly farther away from the blue ball.

These results are important for several reasons. The first is that by generating sub-

goals from the human data that correlate with the subgoals generated from the RL data,

we demonstrate that our subgoal creation method is more generally applicable beyond RL.

The method is able to generate useful subgoals from experience other than the online be-

havior of an RL agent, which means that subgoals can be discovered in tasks that an RL

agent may not necessarily be able to solve. Although we used human tele-operation data
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Figure 5.2. Frequencies of each sensory variable’s occurrence in a subgoal generated from
the human data summed over 30 runs. To achieve the subgoal, the robot must use both
displacement and width of the object’s appearance on the retina. The results for the blue
balls are shown with the thicker lines and the results for the red balls are shown with the
thin lines.

for these results, the behavior of any purposeful agent that can successfully solve the task

could be used to detect and create the subgoal options.

5.2.2 Navigational Subgoals

Once the robot knows how to pick up objects in the environment, it needs to know how

to navigate to the red and blue goal locations without running into any obstacles. These

two locations can be discovered as subgoals using the diverse density approach described in

Chapter 4. These subgoals are expressed using the robot’s estimated position in the room.

The other sensory readings available to the robot are not included in these subgoals.

The bags for this experiment were created using the estimated positions of the robot,

which means that each bag contained each of the coordinates that the robot visited on a

single trajectory. As in the previous experiment, bags were labeled as positive if both balls

were successfully brought to their respective goal regions and negative otherwise. Because

there were two potentially useful subgoal locations (one for each goal region), we used

the disjunctive-point concept class described by Maron (Maron, 1998). This is a simple
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extension of the single-point concept class described in Chapter 4 where the probability of

a particular instance Bi j being in the concept (c1
∨

c2) is the maximum of the probability

of the instance being in the individual single-point concepts c1 and c2. This generalizes to

any number of disjunctive single points. For this experiment, we used 2 disjuncts (one for

each goal location).

The ordering of the bags was randomized before being incrementally presented to the

discovery algorithm. The parameters for the diverse density and the discovery algorithms

were σ2
+ = 1.0, σ2

− = 1.0, λ = 0.9, and θ = 8.0. In this case, we chose to weight the

positive and negative bags equally. We chose the standard deviation, σ2, of the probability

distribution used by diverse density to be 1.0 because the robot’s size is one unit square.

The incremental clustering used a Euclidean distance of one to determine if two concepts

were the same, and the static filter constrained the two subgoals to be a Euclidean distance

of at least five apart.

Figure 5.3 shows the location of the subgoals in the environment for all 30 runs. Each

subgoal location is shown as an asterisk. As the figure shows, the agent discovered two

main subgoals, each close to the goal location for each color of ball. The subgoals are far

enough away from the obstacles to make navigation to each subgoal safe for the robot. The

subgoals near the red goal location are clustered into two separate regions. Examination of

the human tele-operation data shows two distinct behaviors, each of which accounts for one

of the two red subgoal regions. The first behavior was that, after running into a wall, the

human operators learned to keep the robot as far as possible from walls and sharp corners.

The second characteristic of the human tele-operation data was that many of the human

operators chose to drive the robot above the middle obstacle when navigating from one

goal region to another. Although the human operators did not choose this route on each

episode, none of these trajectories were unsuccessful which means that the diverse density

values for the common areas of these trajectories were high. Although the latter set of
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Figure 5.3. Navigational subgoals discovered by the agent over 30 runs. Each subgoal
location is shown as an asterisk.

subgoals is not immediately adjacent to the red goal region, it should be helpful to a robot

learning to navigate in this environment.

Although we do not have corresponding navigational subgoals to compare against that

were created from RL data, these subgoals correspond with our own intuition of what

useful subgoals should be in this task. If the input set of the options create to reach the

subgoals includes the entire room, it will significantly affect the exploration of the robot.

These options will cause the robot to visit the goal regions with a higher probability than

other regions of the room. This effect should accelerate the learning of an agent on this and

related tasks.

5.3 Conclusions

We have demonstrated that the data from humans tele-operating a simulated robot in

a complex task can be used to generate useful subgoals. These subgoals are detected and
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created using the method introduced in Chapter 4. These experiments demonstrate that the

method can generate useful abstractions in tasks that may be difficult for an autonomous

machine learning agent to solve but where an outside agent can provide example trajecto-

ries. These trajectories do not need to be optimal but can be generated from exploratory

but purposeful behavior.

The fact that the subgoal creation method can generate useful subgoals from the be-

havior of multiple types of purposeful agents increases the range of applications where the

method can be used. Situations ranging from small simulated tasks to robots operating in

space may be able to benefit from this method of automatically creating subgoals.

61



CHAPTER 6

FINDING USEFUL SEQUENCES

The second type of temporal abstraction that we focus on in this dissertation is an ac-

tion sequence. An action sequence is an open-loop policy that encapsulates a sequence of

actions into one new action. An open-loop policy chooses its actions at each step inde-

pendent of any feedback from the environment. This is in contrast to closed-loop policies,

used in Chapter 4 to achieve the subgoals, that choose the actions at each step in response to

feedback from the environment. The action sequences are similar to the idea of chunks in

SOAR where the agent creates new high-level actions from useful sequences of lower-level

actions (Laird et al., 1986). In this chapter, we first present a method for automatically

discovering useful sequences from the online behavior of an RL agent and then illustrate

the advantages and drawbacks of the method on several different gridworlds. Chapter 7

focuses on the use of this method for sequence discovery on the real-world problem of

instruction scheduling.

The method that we use to discover useful action sequences is based on searching for

sequences that occur frequently on successful action trajectories. This idea is related to

the bottleneck ideas described in Chapter 4, where the agent looks for observations that

occurred across multiple successful trajectories but not in unsuccessful ones. Unlike the

diverse density approach used to detect the subgoals, the method introduced in this chapter

does not use negative evidence in discovering the sequences. It may be possible to adapt the

diverse density methods to search for sequences but it would be a more inefficient approach

than the one presented here.
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The method presented in this chapter can create two forms of open-loop action se-

quences. In the first form, once the agent has selected the sequence as its current action,

it must execute each of the lower-level actions in the sequence before it can choose a new

high-level action. The second type of sequence that the method can create allows the agent

to conditionally stop a sequence while it is executing if the agent visits an unexpected state

or experiences an unexpected observation. We denote this latter type of sequence as a

conditionally terminating sequence. We refer to the first type as an action sequence.

The ability to form new actions out of sequences of actions has several advantages to an

agent. Both types of sequences give an agent the immediate ability to search more deeply

in a search tree by shortening the path to a solution. For example, instead of having to

search through three levels of up actions, a gridworld agent can achieve the same effect

in one level by using one up3 sequence. This advantage is also present for the subgoal

options that we introduced in Chapter 4. A related advantage of using sequences as action

primitives is that they enable an agent to quickly build a hierarchy of actions. At the higher-

level, the actions are sequences of primitive actions and other sequences. The lowest level

actions are primitive actions. Other researchers (e.g., Dietterich, 1998; Kaelbling, 1993;

Dayan and Hinton, 1993) have shown that action hierarchies can facilitate both learning

and knowledge transfer. Although subgoal options can be used to build multiple levels of

action hierarchies, it is much more difficult than with sequences.

Another advantage of using sequences is that, even though open-loop policies are usu-

ally considered to be a disadvantage because of their inability to respond to stimuli in the

environment, they require less computational overhead than closed-loop policies because

of the lack of sensing actions. This can allow an agent to explore a new environment more

rapidly. By trading off some of the computational savings of open-loop sequences for effort

spent in sensing actions, it is also possible to create conditionally terminating sequences of

actions. This type of sequence can provide some of the same advantages as the action se-

quences as well as an ability to terminate if the environment changes dramatically. Neither
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type of sequence can modify its specific sequence of actions. We will explore both types

of sequences in this chapter. Another approach to the tradeoff between open-loop policies

and sensing actions can be found in Hansen et al. (1997).

Action sequences can also be disadvantageous to an agent in some situations. For ex-

ample, even though moving upward three times in a row requires little computational effort

to execute, a gridworld agent might be penalized for hitting a wall two out of the three

moves because it did not check the sensory readings before executing the last two up ac-

tions. Although an RL agent can learn not to choose the up3 action in such states, it would

be better if the agent learned a sequence such as go-up-until-wall. The condition-

ally terminating sequences are closer to this ideal than the action sequences. Alternatively,

if the sequences can only be chosen in a certain set of states, the agent might not have the

opportunity to choose the up3 sequence when it is near a wall. Although this could solve

the problem, specific knowledge of each task where the option might be used is necessary.

The optimal set of states in which each option should be applied is task dependent.

6.1 Sequence Discovery

Detecting useful sequences from various types of data is not a new issue in computer

science. One well known algorithm, Longest Common Subsequence (LCS) (Cormen et al.,

1990), is an efficient algorithm for finding the longest common sub-sequence across mul-

tiple sequences. However, this algorithm does not satisfy the requirements of the problem

that we are interested in for two main reasons. The first reason is that data used to create

the sequences are typically generated from the online behavior of a learning agent. This

behavior is inherently noisy because of the exploration necessary to learn good policies.

Stochastic environments contribute to the noise in the data as well. This means that the

useful sequences may not be common to every trajectory, as LCS requires. The second rea-

son that LCS is not applicable is that the longest sequence may not be the one that is most

useful to an agent because the longest sequence will not necessarily be the most widely ap-
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plicable sequence. For example, once an optimal policy is learned, the agent could chunk

the entire sequence of actions from the start state to the goal state. However, this is not

likely to facilitate learning on any other tasks or on the current task, if it is stochastic.

Sequence detection has also been studied in the knowledge discovery, information re-

trieval, and bio-informatics fields. This work is discussed in more detail in Chapter 3. We

focus on Zaki’s (1998, 2001) work on generalized sequence detection in this chapter be-

cause it is most closely related to our research. His methods are aimed at finding predictive

patterns in large collections of data such as those generated by tracking each customer’s

purchases at a grocery store. He looks for rules such as: “85% of people who bought baby

food also bought diapers within a week.” This approach could be adapted to finding action

sequences by searching for patterns such as: “after an agent goes up twice, it chooses to go

right next in 75% of the cases.”

Although Zaki’s algorithm runs efficiently in average case scenarios, it has two disad-

vantages. The first is that our sequence tasks do not fall into his average case scenario but

rather into his worst case scenario, mainly because we have only one item per time step

which negates the efficiency of his database structure. Because of this, the sequences take

exponential time to detect. Second, we are more interested in sequences where the actions

are consecutive. Zaki’s algorithm can detect sequences that are not contiguous in time,

such as “go up now and left 3 steps later”, but it is not clear how an agent would use such a

sequence. The requirement that the actions in a sequence occur consecutively in time with

no gaps significantly reduces the search space for any sequence detection algorithm.

Zaki does provide terminology and theory that we use to construct our algorithm to

run efficiently. We look for sequences with support at least p ∈ [0,1], which means the

sequence occurs in at least a 100p% of the trajectories in the database. Zaki proves that

for any sequence ψ of length n with support at least p, all subsequences of ψ of length less

than n must also have support at least p. A sequence ψ′ = {a1,a2, . . . ,ak} is a subsequence

of sequence ψ = {b1,b2, . . . ,bn} if and only if a1 = bi,a2 = bi+1, . . . ,ak = bi+k for some

65



bi, . . . ,bi+k where i+ k ≤ n. This fact about subsequences having at least the same support

as the larger sequence is one reason that both of our algorithms can run efficiently.

6.1.1 Consec: The Sequence Detection Algorithm

The sequence detection algorithm that we introduce is summarized in pseudocode in

Tables 6.1 and 6.2. We first discuss consec, our sequence detection algorithm, and then

we discuss the method to create options from the sequences.

Building on the knowledge that all subsequences of a supported sequence must have at

least the same support level, we can efficiently construct the complete set of frequent se-

quences using a classical technique known as recursive doubling. In this context, recursive

doubling means that the sequences can be grown by starting with a set that is easy to calcu-

late (e.g., the supported sequences of length one) and doubling the length of the sequences

at each step. This means that the sequences are created for lengths 1,2,4,8, . . . until no

more supported sequences exist. The missing sequences, i.e. those of lengths 3,5,7, . . . ,

are detected using a different method that is still efficient. By using this approach, con-

sec cuts down the number of passes required to build a sequence of length n from O(n) to

O(logn). For applications in which consec must run frequently, or where there are long

or numerous sequences, this is a considerable improvement in running time.

Consec starts by finding the sequences of length one with the specified level of sup-

port. This is accomplished efficiently in one pass through the database. The total number

of primitive actions is known beforehand and the algorithm checks each trajectory for the

existence of each possible action and increments a counter if the action exists within the

trajectory. This count gives the support for each action directly.

After finding the frequent sequences of length one, consec moves to its recursive

doubling phase (this is denoted “find sequences of length ≥ 2” in Table 6.2). In this phase,

the recursion ends if the list of sequences to double is empty. If this is not the case, then

the algorithm initializes both a failure and a success list to be the empty list. Next, it loops
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consec
input: support p

minimum length l
output: list of supported sequences all-seqs

1. seqs1← find all sequences of length 1(p)
2. long-seqs← find all sequences of length ≥ 2 (p, seqs1, seqs1)
3. all-seqs← long-seqs ∪ seqs1
4. remove any all-seqs with length less than l
5. return pruned all-seqs

find all sequences of length 1
input: support p
output: supported primitive actions

1. initialize counts for each action to 0
2. for each trajectory t in the database
3. for each action a
4. if action a ∈ t
5. counts(a)← counts(a) + 1
6. minimum-trajectories← p × number of trajectories in the database
7. return all actions a with counts(a) ≥ minimum-trajectories

Table 6.1. Pseudocode for consec, the sequence detection algorithm, and the method to
find supported primitive actions.
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find all sequences of length ≥ 2
input: support p

supported primitive actions seqs1
list of sequences currently being doubled current

output: all supported sequences

1. if current is /0, then return
2. Initialize fail and success to /0
3. for each sequence s1 ∈ current
4. for each sequence s2 ∈ current
5. new-seq← s1 + s2
6. if new-seq has support p
7. success← success ∪ new-seq
8. else
9. fail← fail ∪ s1
10. doubled← find all sequences of length ≥ 2(p, seqs1, success)
11. slow← grow slowly (p, seqs1, fail, 2 × length of sequences ∈ current)
12. if fail is /0
13. slow2← grow slowly (p, seqs1, current, 2 × length of sequences ∈ current)
14. return← doubled ∪ success ∪ slow ∪ slow2

grow slowly
input: support p

supported primitive actions seqs1
list of sequences currently being grown current
maximum length that the sequences can achieve

output: all supported sequences of less than the specified length

1. if current = /0 or length of sequences ∈ current ≥ maximum length, then return
2. success← /0
3. for each sequence seq ∈ current
4. for each each sequence s1 ∈ seqs1
5. new← seq + s1
6. if new has support p
7. success← success ∪ new
8. slow← grow slowly(p, seqs1, success, maximum length)
9. return← success ∪ seqs ∪ slow

Table 6.2. Pseudocode for the methods used by consec to find all sequences of length
two or more using recursive doubling.
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through the current list of supported sequences and combines them. This is the doubling

phase of the recursive doubling approach. If the new sequence has enough support, it is

added to the success list. Otherwise, the original sequence is added to the failure list. When

each of the current sequences has been either successfully doubled or has failed to combine

with another sequence, the algorithm calls itself recursively on the success list. Finally, the

failure list is examined to see if any longer (but less than double length) sequences exist

with enough support. A special case arises when all sequences are successfully doubled.

In this case, the list of original sequences is also passed to the method that grows the

sequences one item at a time. If this case is ignored, the algorithm can miss some of the

shorter sequences. The combination of the sequences that were successfully doubled and

those which were successfully grown without doubling is returned to consec.

The mechanism for growing the sequences that fail to double is also implemented in a

recursive manner. This method is denoted “grow slowly” in Table 6.2. This method takes

an additional parameter specifying the maximum length that its sequences can reach. This

length is known in advance because these sequences have already failed to double. The

method starts by ensuring that the length of the sequences in the current set to grow is still

acceptable. If this condition holds, then each sequence in the current set is grown by adding

each of the set of length-one sequences to it. If the new sequence has an acceptable level

of support, it is saved. The method recurses on this list of new sequences. All successfully

expanded sequences are returned at the completion of the method.

Once the list of supported sequences has been created, consec prunes the list accord-

ing to user specification. Sequences of length one, and possibly other short sequences, are

not of interest to an agent trying to add new actions to its set because they coincide with

primitive actions. Instead, we include a parameter that specifies the minimum length of

any sequence that consec can return. Consec removes any sequence shorter than the

minimum length before returning the list of supported sequences.
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1. Initialize full trajectory database to /0
2. Initialize running averages ρs to 0
3. For each episode
4. Interact with environment (Potentially learn using RL)
5. Add observed full trajectory to database
6. Use consec to search for sequences
7. For each sequence s found
8. Update the running average by ρs← ρs +1
9. If ρs is above threshold θ
10. If s passes static filter
11. If s is an action sequence
11. Initialize I by examining trajectory database
12. Set β to be 1 when the sequence is terminated and 0 otherwise
13. else
14. Initialize I by examining the sensory component of s
15. Set β to be 1 when the sequence terminates or if the sensation

does not match s and 0 otherwise
16. Set policy π to be the sequence s
17. Create a new option o =< I,π,β >

18. Decay all running averages by ρs← λρs

Table 6.3. Pseudocode for the sequence-creation algorithm.

6.1.2 Sequence Detection and Creation

We use consec to detect the frequent sequences of actions and observations. These

sequences are used to create new options and the method for doing so is summarized in

Table 6.3. This method is very similar to the subgoal detection and creation algorithm that

we presented in Chapter 4.

The method starts by observing the behavior of a purposeful agent. The agent saves its

full experience during each episode. Each episode is marked as successful or unsuccessful,

according to the current definition of success. “Success” can be defined on a per-task basis

but, in most cases, it means that the agent accomplished its goal within a specified number

of steps and that it did not visit any failure states.

When enough data has been collected, the method uses consec to search for the fre-

quent sequences within the successful episodes. If the trajectories are being generated by
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the online behavior of a learning agent, then the initial experience may be very noisy as the

agent explores its environment. Stochastic environments will also contribute to the noise.

If the trajectories are being generated by other means, such as heuristic search, there may

be less variation across trajectories. Assuming that there will be some noise due to ex-

ploration or stochasticity in the environment, the method maintains a running average of

how often each sequence has been detected by consec. This average is updated as de-

scribed by Equation 4.8. As before, we use a threshold, θ, to determine if a sequence has

been found frequently enough to consider it as a possible new action. This threshold can

be chosen to account for the amount of noise in the data by setting it low (little noise) or

high (very noisy). The running average and threshold help to prune the sequences to those

which appear frequently in the supported list. The idea of searching for “early and per-

sistent” bottlenecks also applies here. The early and persistent sequences are more likely

to reflect features of the environment than the later sequences which constitute an optimal

policy for the task. Once the running average for a sequence rises above the threshold, then

that sequence is passed to a static filter.

The static filter (Iba, 1989) ensures that new sequences are not created if they are too

similar to currently existing actions. It can also be used to impose any task-specific con-

straints on new actions. The subgoal discovery method used a static filter for similar rea-

sons. To ensure that the sequences are not too similar to one another, we need to define a

distance metric between sequences. We were able to do this in Chapter 4 for subgoals, but

it is much more difficult to define a distance metric for a sequence of actions than it is for

subgoals in sensory space. With many types of subgoals, it is possible to say that a location

in sensory space, e.g. (x,y), is a specified distance away from other locations such as (x′,y′)

using standard measurements such as the Euclidean distance. For sequences, appropriate

distance metrics are more task dependent and rely on knowledge of the consequences of

each action. For example, in a gridworld, the action sequence right, up, right, up

usually has the same effect as the action sequence right, right, up, up. A distance
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metric for sequences in a gridworld should calculate that these particular sequences are a

distance of zero from one another. Using the Manhattan distance between the expected

consequences of successfully completing each sequence would satisfy this requirement. In

other environments, such as the instruction scheduling task discussed in Chapter 7, an ap-

propriate distance metric can be even more difficult to determine. We discuss the issues for

this task more fully in Chapter 7.

Once an action sequence successfully passes the static filter, it can be added to the

action set of the agent. We continue to use the options framework to represent the temporal

abstractions, in this case, both types of sequences. The policy, π, of the new option is set

to be the sequence of actions. In the case of action sequences that do not conditionally

terminate, the termination condition, β, is set to one at the completion of the sequence, and

zero otherwise. In the conditionally terminating case, β may depend on the results of a

sensing action. For example, if a gridworld agent finds the sequence up, wall-check,

up, wall-check, then β will be set to one in any state where there is a wall or at the

completion of the sequence, and zero otherwise.

The input set, I, also depends on whether the sequence is conditionally terminating or

not. If it is not, I is initialized using a heuristic similar to that used to initialize I for the

subgoal options. More specifically, each of the saved successful trajectories is searched for

occurrences of the action sequence. Every state in which the sequence began to execute is

added to the input set. This means that the input set is the union of all the states in which

the sequence had begun from all of the successful saved trajectories.

For conditionally terminating sequences, consec returns not just a sequence of actions

but a sequence of observations associated with those actions. The input set is initialized

using the sequence of observations by allowing the new option to be chosen in any state

where the agent’s current observation matches the first observation in the sequence. Once

a conditionally terminating sequence has been selected by the agent, the agent continues to

check its observations against the observation sequence at each step. If the two observations
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do not match, the option is terminated. This approach leads to an ability to generalize

to unseen situations assuming that the agent’s set of sensory readings remains consistent

across tasks.

6.2 Experimental results

In this chapter, we use gridworlds to illustrate different aspects of the automatic se-

quence creation algorithm. The following chapter presents results for a real-world instruc-

tion scheduling task. We first concentrate on discovering action sequences and explore

advantages and disadvantages to their use. Next, we explore the use of conditionally termi-

nating sequences.

6.2.1 Experiments with Action Sequences

Action sequences can facilitate learning both within and across tasks. The first task

that we present to the sequence discovery algorithm is a 20x20 stochastic gridworld with

no obstacles. The agent had four primitive actions available to it: up, down, right, and

left. These actions were stochastic in their effects where the action moved the agent

in the indicated direction with probability p and in a random direction with probability

(1− p). For the first experiment, the actions succeeded with probability 0.9. The agent’s

task was to navigate from the lower left corner of the gridworld to the upper right corner.

It received a reward of +1 for reaching the goal and 0 otherwise. The discount rate, γ,

was set to 0.9, so that that the agent tried to reach the goal in as few steps as possible.

The performance for each of the experiments in this chapter was measured by the number

of primitive steps that the agent took to reach the goal state from the start state. This is

averaged over 30 different runs and compared across learning algorithms.

We compared the performance of an RL agent learning using only primitive actions to

that of an agent using the sequence discovery algorithm. The agent explored during learn-

ing using a 5% exploration rate. After each episode, the agent evaluated its action-value
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function greedily. For this experiment, the sequence discovery algorithm created action

sequences and not conditionally terminating sequences. The parameters of the sequence

discovery task were support = 0.9, minimum sequence length = 4, θ = 9.0, and λ = 0.9.

The support level was set to a fairly high number to filter out any sequences that appeared

only a few times during exploration. The running average parameters were also chosen for

this reason: the sequence had to appear with a high probability and it needed to appear fre-

quently enough for the running average to be close to its maximum. The last parameter, the

minimum length of the new sequences, was chosen such that the new sequences would be

significantly different from primitive actions. The agent was restricted to creating only one

new sequence per run to allow us to examine how even one sequence could affect learn-

ing. The static filter accepted any proposed sequence. In addition, we defined successful

trajectories to be only those in which the agent took 1000 steps or fewer to reach the goal.

The sequence detection algorithm, consec, was not initiated until at least 10 successful

trajectories had been observed. For reasons explained in Chapter 4, the learning rate was

set to 0.05.

Figure 6.1 compares the performance of the RL agents learning with and without se-

quence discovery. The sequence discovery results are graphed using a thicker line. These

results are averaged over 30 different runs, each starting with a different random seed. The

two agents share the same random seed on any particular run. The agent using sequence

discovery was able to learn an optimal policy more quickly than the agent without sequence

discovery, which demonstrates that the creation of action sequences can be useful within

a particular task. The initial episodes of both agents are the same because the sequence

discovery algorithm does not create any new sequences until approximately episode 35.

We hypothesized that useful sequences in this particular gridworld would be those that

moved the agent up and to the right. To verify this hypothesis, we graphed the sequences

that the algorithm actually discovered in the following way. Each action in the sequence

was assumed to succeed with probability one. For each sequence, the agent was assumed to
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Figure 6.1. Performance comparison between an RL agent automatically discovering new
action sequences and an agent learning using only primitive actions.

start in position (0,0) and each action in the sequence either moved the agent up (+1,0),

down (−1,0), right (0,+1), or left (0,−1) one step from its current position. The

final position of the agent, at (r,c), is recorded at the completion of each sequence. We

drew a line from (0,0) to (r,c) to represent the effect of each action. Representing the

results in this manner corresponds to our knowledge that, in a deterministic gridworld,

the action sequence up, right, up, right has the same effect as the action sequence

up, up, right, right. Figure 6.2 shows the sequences in this form for each of the 30

runs. The numbers next to each line correspond to the number of runs that discovered that

sequence. As we hypothesized, the sequences move the agent up and to the right.

In the next experiment, we examined how the reuse of the learned action sequences

affected the learning ability of the agent in similar environments. In this experiment, we

used a 40x40 gridworld with no obstacles where the goal state was again placed in the

upper right corner and the start state was in the lower left corner. This environment is

similar to the one described above except that the new environment is larger (40x40 versus
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Figure 6.2. Action sequences discovered by the agent in the first gridworld task. Each
sequence is shown as a line from the origin to where the sequence would move the agent
assuming that all actions in the sequence succeeded. The width and the numbers next to
each line represent the number of different runs in which that the sequence was discovered.

20x20) and the effect of the actions is more stochastic (p = 0.8 versus p = 0.9). Both

of these attributes make this task harder for the agent than the first task. We compare the

performance of an RL agent learning with only primitive actions to that of an agent learning

with primitive actions and with the action sequences discovered in the first task. The agent

created 30 action sequences in the original task, one sequence per run. For this task, the

agent reused the sequences from the corresponding run of the previous task. The learning

parameters remained the same.

Figure 6.3 shows the results of comparing the average performance of the two agents

over 30 runs. The results for the agent reusing the action sequences are shown with a thick

line. The agent using the action sequences was able to find the goal in fewer steps than the

agent with only primitive actions even in the beginning stages of learning. This advantage

continues throughout learning where the agent with the action sequences converged to an

optimal policy more quickly (at about episode 425 versus 500). This experiment demon-
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Figure 6.3. Performance comparison between the agent reusing the sequences learned in
the first task on a new and larger gridworld to an agent learning using only primitive actions.
The results for the agent using knowledge transfer are shown with a thick line.

strates that the action sequences were able to facilitate knowledge transfer by significantly

accelerating the learning of the agent in the new task.

Any type of abstraction suffers from the fact that although it may be useful for one set

of tasks, it may not be useful for other tasks and could even be detrimental to the agent.

This is particularly true for action sequences because they execute without considering

feedback from the environment. If the environment changes significantly between tasks,

this open-loop execution can impede learning instead of facilitating it. For example, if the

agent has learned sequences to move it up and to the right, as in our first experiment, and

it is presented with a new task where the goal has moved to the upper left corner or a task

where a wall has been added that the agent must navigate around, learning could be slowed.

We tested this hypothesis by examining the performance of a learning agent using the

set of discovered sequences and comparing to the performance of an agent using primitive

actions only. We examined both of the cases described above. The size of each of the
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Figure 6.4. Performance comparison between the agent reusing the sequences learned in
the first task on the task with the goal moved to the upper left corner (Panel A) and in
the 20x20 gridworld with a wall inserted in the middle (Panel B). The knowledge transfer
results are shown with a thick line.

gridworlds is the same as the first gridworld where the agent learned the sequences: 20x20.

The stochasticity and learning parameters also remained the same. In the first case, the task

was modified by moving the goal to the upper left corner and, in the second case, a wall was

inserted into the middle of the environment with a doorway in the middle of the wall. The

wall spanned the gridworld from top to bottom. Figure 6.4 shows the comparison between

the two learning agents for both of these environments. In both cases, the performance of

the agent reusing the action sequences is shown as a thick line. As we expected, the use of

the action sequences impeded learning in both tasks. One method for addressing this issue

is to use conditionally terminating sequences that can end when the environment changes

so radically.

6.2.2 Experiments with Conditionally Terminating Sequences

The algorithm that we used to detect and create new action sequences can also be

used to automatically discover useful conditionally terminating sequences by modifying

the search space of consec. Instead of searching for sequences using only the action
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trajectories, consec can also be used to search for sequences of observations and actions

by examining both the observation and action trajectories. As described in Section 6.1.2,

these observation and action sequences can be used to create conditionally terminating se-

quences.

We compared the use of conditionally terminating sequences on several different maze-

like gridworlds to the use of action sequences and to the use of primitive actions. Although

the agent was able to completely observe the state of its environment, conditioning the

sequence’s termination based on a specific position in the gridworld would not be as general

as if the sequence used a more common set of observations. Instead, the agent’s observation

was based on the status of the four gridworld squares that it could move to in one primitive

step. If there was an obstacle in any of the squares, the sensation for that square was

set to one. Otherwise, the agent sensed a zero for that square. These observations were

used only by the conditionally terminating sequences and not as part of the agent’s state

representation as it learned an action-value function.

The RL agent used the maze shown in Figure 6.5 to discover the conditionally termi-

nating sequences. The parameters for the sequence creation algorithm and for learning

were the same as with the experiments where the method created action sequences except

that support was decreased to 0.85. This was necessary due to the variability in the envi-

ronment. For this experiment, successful trajectories were defined as those that took 500

steps or fewer to reach the goal. Consec waited until 15 such episodes had been experi-

enced before looking for sequences. For comparison purposes, we also used this gridworld

and the same parameters to create action sequences that did not conditionally terminate.

We used both types of sequences for knowledge transfer. The greedy performance for the

agents learning the two types of sequences and for the agent learning with primitive actions

only is shown in Figure 6.5B. Neither of the agents discovering sequences was able to do

so in time to accelerate learning on this task. However, the sequences were saved for task

transfer.
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Figure 6.5. A: The maze where the algorithms automatically discovered action sequences
and conditionally terminating sequences. Obstacles are shown as filled in squares. B:
Comparison of learning while automatically discovering the sequences to learning with
primitive actions only.

The reason that the sequences took longer to discover as compared to the earlier task

was because this task was much more difficult than the gridworld with no obstacles. Since

the sequences were not created in time to accelerate learning on the current task, the main

utility of the sequences appears when transferring knowledge from one task to another. To

demonstrate this, we reused the sequences learned in the maze shown in Figure 6.5A on the

maze shown in Figure 6.6A. The new maze is the same size and shares some of the same

structure near the goal region. The agent had again created one option per run for 30 runs

of learning in the first maze. As with the task transfer experiments described above, the

agent reused both types of sequences in this new gridworld by using the sequences from

the corresponding run of the first maze task. The learning parameters remained the same.

We compare the greedy performance of the agent reusing the conditionally terminating

sequences to the greedy performance of the agent reusing action sequences and to the per-

formance of an agent using primitive actions only. The results of this comparison are shown

in Figure 6.6B. The results of the agent using the action sequences are shown with a thick
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Figure 6.6. A: The second maze world B: Comparison of learning with the automati-
cally discovered action sequences and conditionally terminating sequences to learning with
primitive actions only.

line and the results of the agent using the conditionally terminating sequences are shown

with a dashed line. The results indicate that both types of sequences were able to signifi-

cantly accelerate learning over learning with primitive actions only. The action sequences

appear to give the agent an advantage over learning with the conditionally terminating se-

quences, which is surprising. We theorize that this advantage is due to the differences in

the input sets of the two types of options, which makes a difference in where each type

of sequence can be applied. Since the environment remains the same as in the previous

task near the goal region, the action sequences may be quickly drawing the agent to the

goal once it enters the input set of the sequences. The conditionally terminating sequences

are more general and may apply farther from the goal region, which means the agent still

needs to search for the goal. We can examine this hypothesis by using the sequences in a

completely different gridworld.

Trying to apply the action sequences in a very different environment highlights another

disadvantage of the action sequences, in addition to their property of not responding to

or changing with sensory inputs. This shortcoming is the difficulty in correctly applying

81



action sequences to new tasks with completely different state spaces or representations.

The input sets of action sequences are constructed using a specific set of states where the

sequence can be initiated. If the state representation changes for a new task, then the agent

will have no way of knowing what the correct input set of the sequence should be. The input

set of the conditionally terminating sequences depends only on the agent’s observations and

not on the exact state set. This means that as long as the sensations remain consistent across

similar tasks, the conditionally terminating sequences can be used for knowledge transfer.

To examine these issues in more detail, we compared the performance of agents reusing

the conditionally terminating sequences and the action sequences from the first maze in a

completely new maze. This maze is larger than the first maze (25x25 instead of 15x15) and

does not share any structure with either of the first two mazes. The new maze is shown in

Figure 6.7A. The agent can easily apply the conditionally terminating sequences because

the sensations remain the same for this environment. Although the state space has changed,

the representation, e.g. the grid squares, has not. This allows the agent to reuse the action

sequences by directly transferring the original input set of the action sequences to the new

task.

Figure 6.7B shows the results of learning under these three conditions. Again, the re-

sults of the agent using conditionally terminating sequences are shown as a dashed line and

the results of the agent using the action sequences are shown as a thick line. In this new

environment, the agent with the conditionally terminating sequences outperforms both of

the other agents. The agent reusing the action sequences did not perform in a significantly

different way than the agent using only primitive actions. The reason for the performance

difference between the agents using each of the two types of sequences is as we hypothe-

sized above: the conditionally terminating sequences were more generally applicable and

terminate if they observe an unexpected sensation.
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Figure 6.7. A: The third maze world B: Comparison of learning with the automatically dis-
covered action sequences and conditionally terminating sequences to learning with primi-
tive actions only.

6.3 Conclusions

In this chapter, we introduced an algorithm to automatically discover two types of use-

ful action sequences from an agent’s experience. For these experiments, the experience

came from the online behavior of a learning agent but the next chapter discusses creating

sequences from other sources of data. We demonstrated that both types of sequences can be

useful for accelerating learning and for knowledge transfer to similar tasks. The condition-

ally terminating sequences provide a more general method for knowledge transfer to tasks

with larger state spaces or with different state representations. The next chapter shows the

utility of creating conditionally terminating sequences on a real-world task.
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CHAPTER 7

APPLICATION OF SEQUENCE CREATION: INSTRUCTION
SCHEDULING

In this chapter, we present the real-world problem of instruction scheduling. We use

this domain for illustrating the sequence discovery algorithm introduced in Chapter 6.

Although high-level code is generally written as if it were going to be executed sequen-

tially, most modern computers exhibit parallelism in instruction execution using techniques

such as the simultaneous issue of multiple instructions. To take the best advantage of mul-

tiple pipelines, when a compiler turns the high-level code into machine instructions, it em-

ploys an instruction scheduler to reorder the machine code. The scheduler needs to reorder

the instructions in such a way as to preserve the original in-order semantics of the high-

level code while having the reordered code execute as quickly as possible. An efficient

schedule can produce a speedup in execution of a factor of two or more.

Building an instruction scheduler can be an arduous process. Schedulers are specific to

the architecture of each machine, and the general problem of scheduling instructions opti-

mally is NP-Complete (Proebsting, 1998). Because of these characteristics, schedulers are

currently built using hand-crafted heuristics. However, this method is both labor and time

intensive. With knowledge of how to build algorithms that select and combine heuristics

automatically using machine learning techniques, computer architects and compiler design-

ers can save time and money. As computer architects develop new machine designs, new

schedulers can be built automatically to test design changes rather than requiring hand-built

heuristics for each change. This would allow architects to explore the design space more

thoroughly and to use more accurate metrics in evaluating designs.
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Machine learning techniques for instruction scheduling could also be used by the end

user. Instead of scheduling code using a static scheduler trained on benchmarks when

the compiler was written, a user could employ a learning scheduler to discover important

characteristics of their code. The learning scheduler would exploit the user’s coding char-

acteristics to build schedules better tuned for that particular program.

The sequence discovery algorithm can be useful in both of these situations. The addi-

tion of useful sequences can improve the performance of both machine learning algorithms

and heuristic searches. This improvement is useful to architects when exploring the design

space of a machine. Likewise, if a user tends to have a certain repeatable characteristic to

her code that can be extracted into a sequence, the scheduler may be able to produce the

same quality schedules more quickly or to produce better schedules in the same amount of

time.

7.1 Instruction Scheduling in the Java Virtual Machine

We could conceivably choose to focus on any language that is compiled into machine

code on a pipelined machine. However, there is significant overhead in transforming the

high-level code of a language into assembly instructions and machine code for a specific

architecture. We narrowed our choices by considering only platforms that already existed

and that allowed for a new instruction scheduler to be used. This provided greater reliability

and stability as well as a potentially broader base of comparisons for our results. In previous

work, we demonstrated that a scheduler that used machine learning techniques to make its

scheduling choices performed quite well against a commercial C and Fortran compiler and

scheduler (McGovern et al., 2002). However, these results were obtained for a processor

that has been superseded by newer machines: the Digital Alpha 21064. For the experiments

presented in this chapter, we chose to use the open-source Java1 Virtual Machine from

1Java is a registered trademark of Sun Microsystems, Inc.
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IBM called the Jikes Research Virtual Machine (JRVM)(Alpern et al., 2000). This choice

satisfies both the requirement that we move to a more modern language and architecture

and that we use a widely available system. The JRVM is freely available from IBM and is

being actively used by a number of researchers. We continue to focus our experiments on

RISC-based instruction sets. In particular, we use the Power PC architecture for all of the

experiments described in this chapter.

Java is not compiled directly into machine code, like other languages such as C or For-

tran. Instead, it is first compiled into a machine independent byte-code format. This byte

code is read by a Java Virtual Machine (JVM) and either interpreted directly or transformed

into machine code and then executed within the JVM. A high-level view of how Java code

is transformed into byte code and then executed by the JRVM is shown in Figure 7.1. We

specifically describe the JRVM in this figure. First, a programmer writes Java code into a

.java file (such as Hello.java). This is compiled into machine independent byte code

using the javac compiler. The JRVM then reads the byte code and performs a number

of optimizations and transformations such as instruction scheduling and register alloca-

tion. In the JRVM, instruction scheduling takes place after the code has been transformed

into Power PC assembly instructions but before its final transformation into machine code

and before final register assignments have been made. After the optimizations, the JRVM

executes the machine code.

We schedule the assembly instructions within groups of instructions known as basic

blocks. A basic block is a set of instructions with a single entry and a single exit point.

This means that a basic block cannot contain loops. An example basic block from the

“Hello World” program is shown in Figure 7.2A. Our scheduler reorders instructions within

each block but cannot add or remove instructions from the block. Although the ability to

rewrite the block can also improve the running time, we have previously demonstrated that

reordering alone can significantly improve the running time of each block (McGovern et al.,

86



Use Java compiler:

javac Hello.javaHello.java

Java code: Machine independent byte code:

Hello.class

Execute using java virtual machine:

jrvm Hello

2. Transforms byte code into assembly code with optimizations
3. Instruction scheduling reorders assembly instructions to execute

4. Assembly code is transformed into machine code and executed.

1. Reads in byte code for each method as method is invoked

     as quickly as possible.

Java research virtual machine

Hello World!

Figure 7.1. Java code is transformed into machine independent byte code and then pro-
cessed by the Java virtual machine, where our instruction scheduler can reorder the Power
PC assembly instructions before they are transformed into machine code and executed.

2002). Limiting the potential number of actions of the scheduler to include only the ability

to reorder instructions also enables machine learning methods to work more effectively.

When the scheduler reorders the instructions within a basic block, it needs to do so

in such a way as to preserve the in-order semantics of the original Java code. Executing

the code in an invalid order could cause a program to return erroneous results or even to

fail to run. To ensure that validity of the high-level code is maintained, the JRVM uses a

standard approach of representing the constraints with a directed acyclic graph (DAG). The

DAG can express constraints based on different types of potential conflicts such as register

conflicts or read/write conflicts. An example basic block from the Java program “Hello

World” is shown in Figure 7.2A with its corresponding DAG (Panel B). In this example,

if the instructions that are shown in bold in Panel C have already been scheduled, then the

constraints shown as dashed lines have been satisfied and any of the circled instructions

can be scheduled next.
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1: lwz R1, 10psi
2: null check R2, R1
3: lwz R3, R1, -4, R2
4: addi R4, R3, -1
5: slwi R5, R4, 2
6: addi R6, R5, 12
7: lwz R7, JTOC, 268
8: cmpi R8, R4, 0
9: bctrl t44c, ppc, ≥

A: Sample basic block

1: lwz

3: lwz

9: bcond

guard

control

4: addi

reg

reg

control
control

7: lwz

control

8: cmpi5: slwi

reg reg

control

control
reg

reg control

6: addi

reg

2: null_check 

B: DAG

2: null_check 

1: lwz

3: lwz

9: bcond

guard

control

4: addi

reg

reg

control
control

7: lwz

control

8: cmpi5: slwi

reg reg

control

control
reg

reg control

6: addi

reg

C: DAG with some instructions scheduled

Figure 7.2. A: A basic block of Power PC 601 instructions from the Hello World program.
B: The DAG for the basic block in panel A. C: Once the instructions in bold have been
scheduled, the constraints shown as dashed lines have been satisfied and any of the circled
instructions can be scheduled next.
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Permutation Schedule a Basic Block(block)
1. Do number of forward passes, p f , times
2. Initialize the window to the top of the block
3. While (not at end of block)
4. max← get maximum forward move(window of instructions to schedule)
5. n← choose action according to policy π
6. move top instruction down n instructions
7. move instructions 2 through n up one slot each
8. move window down 1 instruction

Table 7.1. High-level view of the permutation scheduling algorithm.

7.2 Permutation Scheduling

There are two main approaches for reordering the instructions within the blocks. The

first approach is to schedule the block in a greedy manner starting with an empty sched-

ule and continuing until all instructions have been scheduled. This approach, called “list

scheduling” in the compiler domain, is the approach that we used in our study of schedul-

ing for the 21064 processor. Although this approach worked quite well, we expected that

the second main approach, called “permutation scheduling,” would be better suited to ex-

periments with our sequence discovery method.

In a permutation scheduler, the scheduler is always working with a complete and valid

ordering of the instructions. This is different from a list scheduler which produces a com-

pletely valid schedule only at the end of each block. Within JRVM, each time the scheduler

is called, the basic blocks have already been ordered in a deterministic and valid manner.

This ordering is generated from the byte code by translating it into Power PC assembly

instructions without optimizations for scheduling. The permutation scheduler reorders the

instructions while maintaining the validity of the schedule at each step.

Table 7.1 summarizes how our permutation scheduler reorders a given basic block.

There is no limit on the number of instructions in a basic block, which means that an

unrestricted permutation scheduler would need to search arbitrarily deep at each step. We
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limit the search by allowing the scheduler to consider only permutations within a moving

window. The size of the window is specified as a parameter.

The scheduler starts by initializing the window of instructions to be at the start of the

basic block. At each step, the scheduler consults the DAG to determine the maximum

number of instructions that the top instruction can be moved downward within the window.

Because the validity of the schedule is maintained at every step, if the top instruction can be

scheduled n instructions later, then any of the scheduling slots from 1 to n−1 are also valid

choices. Once the scheduler knows how many choices are available for moving the top

instruction, it chooses an action using its current action selection policy, π. This policy can

be created using heuristics or machine learning techniques. We demonstrate the use of both

approaches in this dissertation. The scheduler chooses an action, n, which represents the

number of instructions that the top instruction should be moved past. The top instruction

in the window is moved down n instructions and the second through the nth instructions

in the window are each pushed upward one instruction. The window is then moved down

one instruction and the process is repeated until the window reaches the end of the block.

This entire method is repeated as specified by a parameter to ensure that the instructions

have adequate chances to move within larger blocks. The selection policy, π, is described

further in Section 7.6.

7.3 Evaluating the Basic Block Schedules

Each of the different selection methods implemented by the policy π can potentially

produce different schedules for the same basic block. In order to determine which methods

perform better than others and to provide feedback to machine learning techniques, we

need a method for evaluating a given ordering of a basic block. While the actual execution

times for each block provide the most accurate estimate of what a user would observe from

her scheduled code, these execution times are difficult to obtain. Not only is it difficult to

calculate the exact timings for each basic block within a program but the machine must
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be put into single user mode and accounting must be made for the overhead of the JRVM

and of the scheduling method versus the scheduled code. Obtaining the evaluation of each

schedule in this manner would be cumbersome and would make it very difficult to provide

timely feedback to machine learning schedulers. Instead, we implemented a simulator

inside the scheduler that could estimate the execution times for any given ordering of a set

of instructions.

The timing simulator gives the predicted execution time for a set of instructions execut-

ing on a particular Power PC architecture. We designed the simulator to be easily extensible

and we have implemented it for four Power PC architectures: the 601, 603, 603e, and the

604. Each schedule is evaluated assuming that all resources and functional units are avail-

able at the start of the basic block and that all memory references take a constant amount

of time. Although these assumptions are not realistic for the actual execution of the pro-

gram, we used a very similar simulator in our experiments with the 21064 processor and

demonstrated that the results obtained from such a simulator are comparable to the actual

execution times (McGovern et al., 2002). For learning and evaluation purposes, it is im-

portant to note that although the estimated block timing may not correspond exactly with

the actual timing of a block, the relative timings of different orderings of the same block

of instructions should be maintained. Our system does not simulate the actual execution

of the code but instead relies on published timing data for each assembly instruction on

each of the different architectures. The DAG is used to enforce the constraints between the

instructions.

The timing simulator starts by initializing its set of functional units to be available with

all resources free. Each functional unit corresponds to a functional unit for the specified

architecture such as an integer or a floating point unit. On each clock cycle, the simulator

sends multiple instructions to their preferred functional units. If an instruction can be exe-

cuted by more than one functional unit, it is sent to the one with the least delay in starting

that instruction.
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Once the instruction has been passed to a functional unit, the unit accesses the timing

data for the instruction. Each instruction has two timings associated with it. The first is

the number of cycles that the instruction takes to fully issue, and the second is the number

of cycles until the instruction has completed its execution and the results are available to

other instructions. Before executing the instruction, the functional unit checks the DAG

to ascertain at what clock cycle all of its constraints will be satisfied. If necessary, the

functional unit is stalled until the instruction can begin to execute. The functional unit

updates all children of the current instruction in the DAG with the earliest clock cycle that

they can begin to execute.

Once all instructions have been processed by a functional unit, the timer returns the

total number of clock cycles that the instructions took to execute. This timing can be used

by the heuristic schedulers or the learning methods.

7.4 Performance Metric

Once we have predicted execution times for all blocks in a program, we can use the

times to compare the performance of the different scheduling methods. To do this, we cal-

culate a weighted simulated execution time of each basic block in the program, where the

weight for each block is the number of times that the block is executed. This is measured

from prior execution of the program. We compare performance with a deterministic heuris-

tic ordering of the code that we denote BASE. This heuristic is described in Section 7.6.

More precisely, the performance measure for program P is:

ratio(P) =

∑
b∈P

(# executions of b)(time to execute b under ordering π)

∑
b∈P

(# executions of b)(time to execute b under ordering BASE)
(7.1)

where b is a basic block. This performance ratio indicates the speedup or slowdown of

executing the code ordered under policy π compared to executing the code ordered using

the BASE heuristic. If the newly reordered code executes more quickly than the BASE
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ordered code, then the ratio will be less than one; otherwise, the ratio will be greater than

one.

7.5 Benchmark Programs

For the results discussed below, we used the SPEC Java benchmark suite. This suite

consists of seven2 different Java applications each of which focuses on different aspects

of a task such as databases or a Java compiler. These programs contain 35,238 basic

blocks of which 90% (31,791) have 12 instructions or less. However, these small basic

blocks account for only 48% of the execution time of the programs overall. We schedule

basic blocks in sizes of 100 instructions or less. If a block is bigger than this (there are

only 70 such blocks), it is broken into blocks of 100 instructions or less. These larger

blocks are combined before the basic block timer provides their estimated execution times.

This process does not significantly affect the overall running time of the program while

significantly increasing the speed of the scheduler.

7.6 Heuristic Schedulers

In addition to the policies learned using RL, we implemented several heuristics for π.

The first is the deterministic heuristic that we use as a basis of comparison for our other

schedulers. BASE was derived from prior experience with the commercial scheduler on the

Digital Alpha 21064 processor. BASE chooses each action based on two features that are

calculated for each instruction: wcp and etime. The first feature, wcp, is the weighted

critical path, which is the height of the instruction in the DAG with the edges of the DAG

weighted by latency of each instruction. The second feature, etime, is the earliest time

that the instruction can begin to execute if it is scheduled in its current slot. This feature

is calculated by finding the minimum number of cycles that the instruction must stall in

2We use only the singly-threaded SPEC benchmarks.
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the current schedule. At each choice point, BASE chooses the instruction with the smallest

etime, i.e., the instruction that can start the soonest. If there is a tie, BASE chooses

the instruction with the largest wcp value. If both features are valued equally for the two

instructions in the window, BASE makes no changes and proceeds to the next choice point.

Although this heuristic is simple, it has surprisingly good performance, as shown in Section

7.8. This and its simplicity make it a useful scheduler to compare with the performance of

the other schedulers.

We also implemented several heuristic schedulers that did not rely on calculating spe-

cific features for the instructions being considered at each choice point. These heuristic

schedulers require less computational overhead than the ones using features and can pro-

vide a useful comparison. The random scheduler, denoted RANDOM, makes all scheduling

choices in a uniformly random manner. Although RANDOM is not a good strategy in gen-

eral, it is a useful baseline. The heuristic scheduler that we denote FIRST always chooses

the first available move. This means that FIRST always chooses a move of one whenever

a move is available, regardless of the window size. A related heuristic scheduler always

chooses the farthest available move. We call this scheduler FARTHEST.

Although these heuristic schedulers do not require significant computational effort to

make their choices, a better strategy would not choose moves blindly but rather make in-

formed choices based on features describing the state of the schedule. However, comput-

ing features can be computationally expensive. We implemented a hill-climbing scheduler,

which we denote HILL. This scheduler simulates the one-step consequences of taking each

available move and chooses the move that provides the best improvement in running time.

If no improvement is possible within the current window, HILL leaves the schedule un-

changed and moves the window appropriately. This scheduler is guaranteed to perform at

least as well as the original ordering of the code but it likely to find faster schedules because

of the extent of its search. Because HILL makes all choices in a greedy manner, it may not

perform optimally. Although it is computationally expensive, hill climbing is useful for
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approximating a bound on the best performance of the scheduler. A related heuristic was

denoted BASEHILL. In this case, the scheduler first reordered the blocks using the BASE

heuristic and then it used HILL to make further adjustments. We can also use the hill-

climbing approach to approximate a bound on the worst possible schedules by climbing in

the opposite direction, i.e., by taking the worst move at each step. We implemented this

heuristic as well, denoted DOWNHILL, purely for comparison purposes and not because

we feel it is a useful method for instruction scheduling.

The last heuristic scheduler that we implemented was an optimal scheduler, denoted

OPTIMAL. This scheduler searched the space consisting of all valid schedules and re-

turned the best schedule for each block. This search is exponential in the size of the block.

Empirical tests showed that it was only feasible on blocks of size 12 or less. It takes an

impractical amount of time to search through all valid schedules for larger blocks. Instead,

we use BASEHILL to approximate the best schedule for the larger blocks. The OPTIMAL

heuristic can also be used to search for the worst possible schedules. We denoted this search

SUBOPTIMAL. We used the DOWNHILL heuristic to estimate the worst running times

for the blocks of size 13 or more.

7.7 An RL Scheduler

We created a scheduler that learned the best actions to take at each choice point using

RL. This section describes the design of the RL scheduler. The number of states needed

for a complete description of a basic block and the current status of the processor is large.

A basic block has no limit on the number of instructions that it can contain as long as the

single-entry and single-exit constraints are satisfied. A description of the exact state of the

processor would be quite large because it would include everything from the status of each

functional unit, the state of each register and memory cache on the machine, and the current

ordering of the basic block. Because of the size, we use a feature-based representation to

approximate the state. The features include several instruction-specific features as well
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Feature name Explanation
bblen Length of the basic block
passNum Which pass iteration is the scheduler currently on? There are

n forward passes.
latency(i) Number of cycles that instruction i will take to execute.
wcp(i) The height of instruction i in the DAG (the length of the

longest chain of instructions dependent on this one) with the
edges weighted by latency of each instruction.

children(i) The number of children that instruction i has in the DAG.
etime(i) The earliest time that instruction i can execute if it is sched-

uled now.
onwcp(i) Is instruction i on a weighted critical path from the root to

the end of the DAG?
iclass(i) Instruction i’s preferred functional unit (e.g., Integer, Float-

ing Point, Branch, etc)
unit blocked(i) Is the preferred functional unit for instruction i blocked?

Table 7.2. Features used by the RL scheduler to approximate the state space.

as features that are based on the state of the basic block and processor. The features are

summarized in Table 7.2.

Although these features can be used to summarize the state of the basic block and pro-

cessor, they suffer from some of the same problems described above. For example, the

feature wcp can take on a potentially infinite number of values depending on the size and

configuration of the basic block. However, previous work on instruction scheduling on the

DEC Alpha processor demonstrated that certain of the actual feature values did not matter

as much as the results of comparing the values for multiple instructions. This means that in-

stead of using the actual values for wcp, latency, children, and etime, we calculate

the compound features σ(wcp(i1), wcp(i2)), σ(latency(i1), latency(i2)),

σ(children(i1), children(i2)), and σ(etime(i1), etime(i2)) where:

σ(a,b) =































1 if a > b

0 if a = b

−1 if a < b
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Derived Feature name Explanation
bblen Length of the basic block
passNum Which pass iteration is the scheduler cur-

rently on? Has n possible values where n
is the number of forward passes.

σ(latency(i1), latency(i2)) Will instruction i1 take more, fewer, or
the same number of cycles to execute as
instruction i2?

σ(wcp(i1), wcp(i2) Does instruction i1 have a bigger,
smaller, or equal value of wcp as instruc-
tion i2? Instructions with larger values of
wcp are often better to schedule first to
reduce future instruction dependencies.

σ(children(i1), children(i2)) Does instruction i1 have more, fewer, of
the same number of children in the DAG
as instruction i2?

σ(etime(i1), etime(i2)) If instruction i1 and i2 were each sched-
uled to be executed next, which would
have the smaller delay before it could be-
gin to execute?

onwcp(i) Is instruction i on the weighted critical
path from the root to the end of the DAG?

iclass conflict(i1, i2) True if instructions i1 and i2 prefer the
same functional unit, and false other-
wise.

unit blocked(i) Is the preferred functional unit for in-
struction i blocked?

Table 7.3. The set of derived features used to create the tile coding for the RL scheduler.

The list of features derived from the original feature set is summarized in Table 7.3.

Several of the derived features are calculated based on the corresponding feature values

for two instructions at a time. The exact instructions compared depend on the current action

being considered. For action n, the RL scheduler used the top instruction in the window

and the nth instruction. For example, if the window size is three and the window contains

the instructions a, b, and c, then for the no-swap action, the derived features using

two instructions would use instruction a for both instructions. Action swap 1 would use

instructions a and b and action swap 2 would use instructions a and c.
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We used a CMAC, or tile coding, as the function approximator for the action-value

function. The tile coding used the set of derived features to create a coding with 51 layers

and 29,472 total tiles. The exact composition of the tile coding is given in Appendix B.

There are configurations of instructions where the scheduler has no action choices avail-

able. The RL scheduler learns using only the choice points and does not use configurations

of instructions where there is no action choice. If an action is chosen and the resulting

schedule has no moves available, the RL backup does not occur unit the next choice point

is reached. We use Q-learning to learn the action values. Each transition from one choice

point to the next is treated as having occurred in a single time step.

The reward at every step except the last was zero. Once a basic block was completely

reordered, the final reward was:

r(b) = −10

(

estimated running time of b using the RL generated ordering
estimated running time of the original ordering of b

)

where b is a basic block. The estimated running times are generated using the basic block

timing simulator described above. The overall performance measure for a program weights

the ratio of running times by the execution frequency of each block. Since this is not known

in advance, we use only the ratio of running times for each block with a constant weight

of −10. The negative component of the weight is necessary to give the scheduler a larger

reward when a block is reordered to execute more quickly.

7.8 Experimental Results

The instruction scheduling task provides us with a large and complex test bed for the

sequence creation mechanism introduced in Chapter 6. We use the scheduling task to ex-

plore several different aspects of automatically creating and using sequences. One question

that we investigate is what types of behaviors produce the best sequences and why those

sequences are better than others. We can create different sets of sequences to examine

98



this by using the variety of heuristic schedulers that we have implemented to generate the

trajectories for the sequence creation algorithm. Using these sequences, we examine the

question of what sequences are better than others in two ways. First, we observe the effect

of the different sequences on the exploration of the scheduling agent. Second, we test our

hypothesis that the better sequences can enable the hill-climbing heuristic to escape from

local maxima.

Creating a machine learning scheduler that scheduled as well as the best heuristics

proved to be difficult for several reasons. One of the most likely reasons was that the state

was only partially observable. Related to this, if two blocks were mapped to the same set

of observations but the action choices were not the same, the RL scheduler would average

the two sets of choices, which will not work as well as the heuristics that search locally.

The last set of experiments focused on knowledge transfer. In addition to the potential

for improving performance within a task, creating sequences is useful because it enables

knowledge transfer to similar tasks. With this in mind, we tested whether sequences were

able to improve performance across a related set of Power PC architectures.

7.8.1 Performance of Heuristic Schedulers without Sequences

Before examining how sequences affected the performance of the various scheduling

algorithms, we briefly discuss the performance of the heuristic schedulers.

We used a window size of two for all of the results presented in this chapter. Although

a window of two instruction may seem small, with a sufficient numbers of forward passes

in the permutation scheduler, any schedule is reachable from any other schedule for any

window size. We chose six forward passes for all of these experiments by empirically

testing how many passes were necessary to achieve a steady state using the BASE heuristic.

After six forward passes, BASE had converged and made no further changes to the ordering

of the blocks.
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Benchmark Ratio of BASE
to original ordering

Compress 0.926
Jess 0.973
Db 0.973
Javac 0.975
Mpegaudio 0.978
Raytrace 0.935
Jack 0.976

Table 7.4. Performance of the BASE scheduler as compared to the original ordering for
each benchmark.

The first heuristic that we examined is BASE. This heuristic is used to provide a per-

formance baseline for the other heuristics. We compare the performance of BASE to the

performance of the original ordering for each of the benchmark programs. The results of

these comparisons are shown in Table 7.4. These results indicate that the running times of

the code ordered using BASE will be faster than the running time of the original ordering

of the code for each of the benchmarks. This performance combined with the simplicity

of the BASE heuristic, together with the fact that it is easily implemented, makes BASE a

better basis of comparison for the other scheduling methods than the original ordering.

Before analyzing the results of other experiments, we examine the space of possible

performance ratios for each benchmark. We used a combination of the heuristics and opti-

mal search to estimate both the best and the worst possible running times for each program.

To estimate the best possible times, we used the optimal scheduler on all blocks of size 12

or less. For larger blocks, we estimated the best running times using our best performing

heuristic: BASEHILL. To estimate the worst possible running times, we used the subopti-

mal search for the blocks with 12 instructions or less. The running time of the larger blocks

was estimated using the DOWNHILL heuristic. The results of this comparison are shown

in Figure 7.3. The exact numbers are given in Appendix B.

100



Compress Jess Db Javac Mpegaudio Raytrace Jack

0.9

0.95

1

1.05

1.1

R
at

io
s 

to
 B

A
S

E

Benchmarks

Estimate of best/worst performance possible for all blocks

SUBOPTIMAL/DOWNHILL
OPTIMAL/BASEHILL

Figure 7.3. Comparison of the estimated best and worst running times for each benchmark.
These numbers are for the Power PC 601 processor. The dashed line at 1.0 indicates a
running time exactly equal to BASE. The bars above this line represent benchmarks that
perform more slowly than under the BASE ordering while the bars below the line represent
an ordering of a benchmark that would run faster than BASE.
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These results are interesting for several reasons. First, it seems that the most that a

scheduler can do is slow a benchmark down or speed it up by approximately 10%. This

seems to contradict our original statement that a good scheduler can make a difference in

the running time of a program by a factor of two or more. However, we made that statement

from our experience with the scheduler on the Digital Alpha 21064 processor. It is possible

that we need other benchmarks or that the Power PC 601 architecture is different enough

from the 21064 that this speedup is not as easily achieved. It is also possible that if we

could truly optimally and non-optimally schedule all blocks, these numbers would change

dramatically. Another conclusion that can be drawn from these results is that some of the

benchmarks are inherently easier/harder to schedule than others. For example, compress

has approximately a 15% span between the estimated best and worst running times whereas

db has only a 6% span.

We also examine the performance of the other heuristics. Figure 7.4 shows the com-

parison of RANDOM to FARTHEST. The estimated optimal performance is also repeated

on the graph for comparison. The results for RANDOM are averaged over 30 runs, each

starting with a different random seed. As the results show, FARTHEST performs worse

than RANDOM for each of the benchmarks except javac. However, the differences are

not that large. Neither heuristic is able to outperform the BASE heuristic except on the

benchmark mpegaudio where RANDOM is 1.6% faster than BASE. From the results

shown in Figure 7.3, we know that mpegaudio is an easier benchmark to schedule. The

exact performance ratios are given in Appendix B.

The next set of heuristics that we compare is HILL and BASEHILL. This comparison is

shown in Figure 7.5. The estimated optimal performance is repeated on the graph as well.

Both heuristics performed quite well compared to BASE. The BASEHILL heuristic always

performed at least as well as HILL and, for the benchmarks mpegaudio and compress,

reordering the schedule using BASE before hill climbing makes a big difference. This is

not the case for the other benchmarks. The fact that neither hill climber was able to achieve
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Figure 7.4. Comparison of the FARTHEST heuristic to the RANDOM scheduler for each
of the seven benchmarks. RANDOM is averaged over 30 different runs. The estimated
optimal performance is also included. The thin lines on the RANDOM bars show the
standard deviation above and below the mean.

optimal performance demonstrates that there are local maxima in this problem that can trap

hill-climbing schedulers.

Summary and Discussion

We examined the performance of each of the heuristic schedulers using only the primi-

tive actions of swap and no-swap. We used an optimal search approach combined with

the BASEHILL and DOWNHILL heuristic schedulers to approximate the best and worst

performances that a scheduler could achieve for the Power PC 601 processor.

Although the HILL heuristic performs quite well, it is clear that this task has local max-

ima that can hinder the performance of a one-step greedy approach. We examine how the

automatically created sequences can improve the performance of HILL in a later section.

103



Compress Jess Db Javac Mpegaudio Raytrace Jack

0.9

0.95

1

1.05

1.1
R

at
io

s 
to

 B
A

S
E

Benchmarks

Performance of heuristics on all blocks

HILL
BASEHILL
OPTIMAL/BASEHILL

Figure 7.5. Comparison of the HILL heuristic to the BASEHILL scheduler and the esti-
mated optimal scheduler for each benchmark.

7.8.2 Discovering Sequences

The next experiments focus on creating useful sequences from the different behavior

trajectories. The sequences were created using the algorithm introduced in Chapter 6. The

results of using the sequences in the scheduler are presented in later sections.

One of the questions that we wanted to examine with the experiments in this chapter

was which types of behavior trajectories were best for creating useful sequences. With this

in mind, we generated eight different sets of trajectories from which to grow the sequences.

Five of the trajectory sets came from the behavior of a heuristic scheduler and three from

the behavior of an RL agent. The five heuristic trajectory sets used the five heuristic sched-

ulers: HILL, RANDOM, DOWNHILL, BASE, and FARTHEST. Each heuristic scheduler

scheduled each of the seven benchmarks and we collected observations and actions at each

choice point. The RL agent generated three sets of trajectories by training on different types

of data. In the first case, the RL agent trained exclusively on the benchmark compress.

In the second case, an RL agent trained exclusively on the benchmark raytrace. The
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last set of trajectories generated by an RL agent came from an agent training on all of the

benchmarks. We denote this set of data CROSS. For each of the learning schedulers, after

each training run, the scheduler greedily evaluated the current value function and saved its

greedy behavior for the sequence creation algorithm.

Each trajectory was composed of the series of observation and action pairs from each

choice point visited while scheduling the program. Because we used a window size of two,

the two action choices were swap and no-swap. The observations at each choice point

consisted of several local features about the instructions within the window and one block-

level feature. The instruction specific features collected were: wcp, latency, chil-

dren, onwcp, iclass, and etime. Each of these is explained in detail in Table 7.2.

The last feature observed was the current forward pass iteration index. Each of the instruc-

tion specific features was observed for the two instructions in the window.

With this set of features, there are a potentially large number of observations because

there are no bounds on the values of the instruction specific features. However, as dis-

cussed in Section 7.7, the actual values of wcp, etime, latency, and children

are not as useful as the results of a comparison of the values between the two instruc-

tions in the window. We used this knowledge to transform the set of observations of ac-

tual numbers for each feature into comparison values by using the features σ(wcp(i1),

wcp(i2)), σ(latency(i1), latency(i2)), σ(etime(i1), etime(i2)), and

σ(children(i1), children(i2)) from Table 7.3.

With the transformation of the observations there are 194,400 potential observations

(six forward passes, four instruction comparison features with three values each, a binary

feature, onwcp, for each instruction, and ten possible instruction classes for each instruc-

tion). When this is combined with the two possible actions, there are 388,800 possible

observation and action tuples. Because of the size of the search space, frequent sequences

of observations and actions are unlikely to occur, and those that do so will be very spe-

cific to certain situations. To counteract this, we used a subset of the available features to
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create sequences which should be more generally applicable. The subset used for these ex-

periments was σ(wcp1,wcp2), σ(etime1,etime2), and iclass for both instructions. We

chose this subset through empirical examination of the data, which showed that using the

remaining features would make the sequences so specific that they would not apply often

enough to affect the performance of the scheduler.

We used the algorithm introduced in Chapter 6 to detect and create each set of se-

quences. For seven of the data sets, a successful trajectory was defined to be the sequence

of observation and action pairs from a reordering of a block where the new ordering would

execute more quickly than the original one. For DOWNHILL, we defined success to be

those trajectories where the reordering made the schedule worse. Each trajectory contained

observations from only one block. With this definition of success, the trajectories for each

program ranged from trajectories of length 2 to length 2,264. Because of this disparity,

the support level for the sequence detection algorithm, consec, needed to be set to a low

number in order to find any sequences. This could allow spurious sequences to be detected.

We further refined the data by defining successful trajectories to contain at least 15 choice

points. This made the set of trajectories for each benchmark more consistent in size by

focusing on the larger (and harder) blocks and it allowed us to raise the support level.

For these experiments, the static filter accepted only sequences that contained at least

one swap action, those that were not too similar to already existing sequences, and those

that had less than a maximum number of actions. The first of these requirements, that of

containing at least one swap, was necessary because the set of trajectories often contained

long sequences of the no-swap action from the later passes of the heuristic schedulers

(after they had stabilized). However, a sequence of no-swap actions is not a particularly

interesting sequence and, as such, we filtered it from the action set. To determine the

similarity of two sequences, we compared the sequences of actions (swap or no-swap)

and the sequence of observations. If all of the actions and observations were the same for

both sequences, the sequences were said to be the same and the static filter rejected the

106



Sequences Support θ λ Number of
Trajectory sets

SEQ-HILL 0.4 3.0 0.9 7
SEQ-RANDOM 0.3 3.0 0.9 7
SEQ-FARTHEST 0.6 3.0 0.9 7
SEQ-DOWNHILL 0.1 2.0 0.9 7
SEQ-SIMPLE 0.45 3.0 0.9 7
SEQ-COMPRESS 0.7 7.0 0.9 20
SEQ-RAYTRACE 0.45 7.0 0.9 20
SEQ-CROSS 0.4 7.0 0.9 21

Table 7.5. Parameters for sequence detection and creation for each of the different data
sets.

proposed sequence. If they were different in any regard, the static filter could accept the

sequence. The last check that the static filter performed was to ensure that sequences had

less than a number of actions that was specified as a parameter. This was useful because we

wanted sequences to be general and not specific to large blocks, especially because such a

large percentage of blocks in the benchmarks were small.

The eight different behavior trajectory sets were used to create eight sets of sequences

using the parameters summarized in Table 7.5. We denote each set of sequences by SEQ

and the type of data used to generate the sequences. We kept the parameters as consis-

tent as possible across the different data sets. However, both the stochastic and less pur-

poseful heuristic schedulers, RANDOM and DOWNHILL, did not contain any sequences

supported at the levels that we used for the other searches. One conclusion we could reach

from this is that non-purposeful searches do not provide useful trajectories for creating new

sequences. While this may indeed be the case, we were also interested in the utility of the

sequences that could be generated from these behaviors. Consequently, we lowered the

support levels for these data sets.

We chose a minimum sequence length of two for all of the data sets because even a

sequence of two actions can affect the search space of a scheduling agent. Likewise, all

newly created sequences contained at most seven actions and we limited each set to contain
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at most ten new sequences. The threshold parameters differ across data sets according to

how many trajectories were available to the sequence creation algorithm. Sequences are

detected only at the completion of each program, which means that the different data sets

have different amounts of data available for sequence creation. The exact numbers are

shown in Table 7.5. The five heuristic schedulers were run once for each of the seven

benchmarks, which generated seven sets of trajectories each. The two specific learning

agents, those trained on compress and raytrace, trained and generated trajectories 20

times on each of their respective benchmarks. The cross trained RL agent trained 3 times

on each benchmark to generate 21 sets of trajectories. We chose the threshold values, θ,

such that the sequences needed to appear early and persist throughout the data set. Last, we

ran consec on each set of trajectories for each program independently of the trajectories

for the other programs. This means that we reinitialized the trajectory database after each

run of consec.

The exact sequences created from each set of behavior trajectories are given in Ap-

pendix B. The trajectories collected from the HILL and BASE heuristics generated the

fewest sequences while the trajectories generated by the more exploratory behavior sup-

ported the creation of the maximum number of sequences.

Summary

We created eight different sets of conditionally terminating sequences from the behav-

ior of five heuristic schedulers (RANDOM, HILL, BASE, FARTHEST, and DOWNHILL)

and an RL agent learning to schedule using three sets of training data (COMPRESS, RAY-

TRACE, and CROSS). The next sections examine the effect of each of the sequences on the

exploration of a random scheduler and on the ability of a hill-climbing scheduler to escape

from local maxima.
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7.8.3 Effect of Sequences on Exploration

One reason that appropriate options can dramatically affect the behavior of an agent is

the effect that directed multi-step policies can have on the exploration of the agent. In the

case of subgoal options, an agent exploring randomly is better able to explore across weakly

connected regions of the state space. With sequences, the agent’s exploration becomes less

uniform and is instead focused on particular regions of the environment where the se-

quences tend to take the agent (McGovern, 1998b). We hypothesized that the sequences

created for the scheduler from the more purposeful behaviors (SEQ-BASE, SEQ-HILL,

SEQ-COMPRESS, SEQ-RAYTRACE, and SEQ-CROSS) would affect the exploration of

the RANDOM scheduler toward better schedules. Likewise, we hypothesized that the SEQ-

DOWNHILL sequences would affect the exploration of the scheduler toward worse sched-

ules. The RANDOM and FARTHEST heuristic schedulers were not purposefully reorder-

ing the code toward either better or worse schedules. Because of this, we expected that the

performance of the random scheduler with the SEQ-RANDOM and SEQ-FARTHEST se-

quences will not differ significantly from the performance of the random scheduler without

sequences.

In order to test these hypotheses, we allowed the random scheduler to schedule using

each set of automatically created sequences as well as the two primitive actions of swap

and no-swap. The effect of the sequences on exploration is seen more clearly when using

the random heuristic because other heuristics already direct the search of the scheduler

whereas the random scheduler uniformly explores using the available action set.

For these experiments, we compare the average performance of RANDOM using prim-

itive actions only to the performance of RANDOM using each of the eight different sets

of sequences as well as the primitive actions. The scheduler could use only one set of

sequences at any given time. Since the random scheduler is stochastic, we averaged the

results over 30 different runs.
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Hypothesis Benchmarks
Sequences of t-test Compress Jess Db Javac Mpegaudio Raytrace
SEQ-DOWNHILL >

√ √ √ √

SEQ-RANDOM 6= √ √ √

SEQ-FARTHEST 6= √ √ √

SEQ-BASE <
√ √ √ √ √

SEQ-HILL <
√ √ √ √

SEQ-COMPRESS <
√ √

SEQ-RAYTRACE <
√ √ √ √

SEQ-CROSS <
√ √

Table 7.6. Results of the t-tests comparing the performance of the RANDOM scheduler
with sequences to the performance of the RANDOM scheduler with no sequences. The
hypothesis for each t-test is shown in the second column. Any hypothesis accepted with
a p value of 0.05 or less is checked. The results for the benchmark jack are not shown
because none of the t-tests accepted the hypothesis on this benchmark.

The results for these experiments are shown in two formats: using bar graphs and using

t-tests. We use both types of results in discussing each experiment. The results of all of

the t-tests are summarized in Table 7.6. The table lists the sequence set in the first column,

the hypothesis used for the t-test in the second column, and the results of the t-test for six

of the seven benchmarks in the remaining columns. The results for the benchmark jack

are not included in the table because none of the t-tests accepted a hypothesis for this

benchmark. T-tests can be used to test three hypotheses: that two sample sets are drawn

from distributions with different means, that the true mean of one distribution is less than

the mean of the other, or that the true mean of one distribution is greater than the mean of

the other. We use all three types of tests in these experiments.

In order to test one hypothesis for these experiments, we need to perform seven t-tests

in a row, one per benchmark. A potential criticism of using multiple t-tests to test one

hypothesis is that if m tests are used with a p value of x, then there is a 1− (1− x)m

probability of incorrectly rejecting the null hypothesis. To alleviate this concern, we used

the formula α = 1− m
√

1− x to determine what p value (e.g. α) should be used to correctly

reject and accept m t-tests. For these experiments, m was seven because there was one test
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Figure 7.6. Comparison of the performance of the RANDOM scheduler with no sequences
to the performance of the RANDOM scheduler with sequences created from the DOWN-
HILL heuristic. The error bars are one standard deviation above and below each mean.

per benchmark. We wanted the tests to have a certainty level of p = 0.05 which meant that

we used α = 0.00028 for each test. Any test where the hypothesis was accepted is shown

with a check mark in the table.

The first hypothesis that we examine is that the SEQ-DOWNHILL sequences will cause

the random scheduler to perform worse than if it did not use the sequences. The results of

comparing the performance of RANDOM with the SEQ-DOWNHILL sequences to the

performance of RANDOM for each benchmark are shown in Figure 7.6. The lighter bars

show the results using the SEQ-DOWNHILL sequences and the darker bars are the results

with no sequences. Error bars are drawn one standard deviation above and below the means

of each. It appears from the graph that the SEQ-DOWNHILL sequences are influencing

the exploration of the scheduler toward slower schedules. Table 7.6 shows the results of

the t-tests on the hypothesis that the mean performance of the scheduler with the SEQ-

DOWNHILL sequences is greater than the mean performance of RANDOM. This is true
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Figure 7.7. Performance comparison between the RANDOM scheduler with no sequences
and the RANDOM scheduler with sequences created from the FARTHEST and RANDOM
heuristics. The error bars are one standard deviation above and below each mean.

for four of the seven benchmarks, which indicates that our hypothesis was mostly correct.

The remaining benchmarks had too large a standard deviation to determine if the means

were different.

The next experiment examined the hypothesis that the SEQ-RANDOM and SEQ-FAR-

THEST sequences would not significantly affect the behavior of the random scheduler. The

results of comparing the performance of the random scheduler that used each of these two

sets of sequences to the performance of the random scheduler without sequences are shown

in Figure 7.7. The results of the t-tests with the hypothesis that the means were not equal

are given in Table 7.6. The hypothesis that the means were not significantly different was

accepted for four of the seven benchmarks for both sets of sequences. The sequences actu-

ally improved the performance on two of the benchmarks (compress and mpegaudio).

For the benchmark db, the SEQ-FARTHEST sequences degraded the performance of the

random scheduler, and for the benchmark raytrace, the SEQ-RANDOM sequences im-
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Figure 7.8. The performance of the RANDOM scheduler using sequences created from
the BASE and HILL heuristics as compared to the performance of RANDOM with no
sequences. The error bars are one standard deviation above and below each mean.

proved performance. Although it is not the case that the sequences did not significantly

affect performance of all of the benchmarks, it is clear that these sequences did not uni-

formly move the exploration of the random scheduler toward better or worse schedules.

The last set of experiments using sequences with the random scheduler investigated

whether the sequences created from the more purposeful heuristics would cause the random

scheduler to tend to visit better schedules more often. We first examine this hypothesis for

the non-learning heuristics BASE and HILL. The performance comparison of the random

scheduler with the SEQ-BASE and SEQ-HILL sequences to the performance of the random

scheduler without sequences is given in Figure 7.8. The results of the t-tests with the

hypothesis that the means of the random scheduler with the sequences is less than the mean

of the random scheduler with no sequences are given in Table 7.6. It appears from the

graph that this hypothesis is verified for all but the benchmark jack, but in fact, although

the performance on the benchmark compress appears better than RANDOM, it is not a
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Figure 7.9. Performance of the RANDOM scheduler as compared to the performance of
the RANDOM scheduler with the sequences created from the behavior of the RL sched-
uler that trained on the benchmarks COMPRESS and RAYTRACE. The error bars are one
standard deviation above and below each mean.

statistically significant difference. However, our hypothesis that these purposeful behaviors

would create sequences that move the exploration toward better schedules is valid for the

majority of the benchmarks.

Figure 7.9 shows the comparison of the random scheduler using the SEQ-COMPRESS

and SEQ-RAYTRACE sequences to the performance of RANDOM. Table 7.6 again shows

the results of the t-tests on the hypothesis that the sequences will improve the performance

of the RANDOM scheduler. The SEQ-COMPRESS sequences were able to improve the

performance on only two benchmarks but one of these was the benchmark compress,

which is the one used to generate the sequences. Likewise, the SEQ-RAYTRACE se-

quences improved performance on the benchmark raytrace. Overall, the SEQ-RAY-

TRACE sequences either improved or maintained the performance of the RANDOM sched-

uler. The SEQ-COMPRESS sequences did not improve performance as frequently. One
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Figure 7.10. Performance of the RANDOM scheduler using the sequences created from
the RL scheduler that trained on each benchmark (denoted CROSS) as compared to the
performance of the RANDOM scheduler. The error bars are one standard deviation above
and below each mean.

possible reason for this is that the benchmark raytrace may share more characteristics

with the other benchmarks than compress does.

The last comparison that we made with the RANDOM scheduler used the SEQ-CROSS

sequences. These results are shown in Figure 7.10 and the corresponding t-tests are given

in Table 7.6. These results are comparable to the results with the SEQ-COMPRESS se-

quences. Although the SEQ-CROSS sequences only improved performance on two bench-

marks, they did not harm the performance for the other benchmarks.

Summary and Discussion

The experiments presented in this section mostly verified our hypothesis that the se-

quences created from the more purposeful behaviors would positively affect the exploration

of the scheduler while the sequences created from the less purposeful behaviors would

negatively affect the exploration of the scheduler. The sequences created from the DOWN-
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HILL heuristic generally moved the exploration of the scheduler toward worse schedules.

The SEQ-RANDOM and SEQ-FARTHEST sequences did not significantly affect the ex-

ploration of the scheduler and the sequences created from the more purposeful data of

BASE and HILL moved the exploration of the scheduler to a space with better schedules.

The sequences generated from the learning data were the most surprising because they did

not generally improve the performance of RANDOM. However, this may be due to poor

learning on the part of the RL agent.

We next explore the effect of the sequences on the hill climbing heuristic to determine

if the sequences enable the hill climber to escape from local maxima.

7.8.4 Effect of Sequences on the Hill Climbing Scheduler

If the automatically created sequences are useful, they should also be able to improve

the performance of the heuristic schedulers. In particular, because the hill-climbing sched-

uler acts in a greedy manner, it can become stuck in local maxima instead of finding a

globally optimal solution. Multi-step action sequences enable the hill climber to look more

than one step ahead before choosing the greedy action. While this does not guarantee that

the hill climber will be able to escape from local maxima, it increases the probability of

doing so by increasing the depth of the search.

We expected that the performance of a hill-climbing scheduler that was able to use the

automatically created sequences would be better than the performance of the hill climber

without sequences if the sequences were created from the more purposeful behaviors. How-

ever, exactly which behaviors would produce the best sequences for the hill climber should

be different than for the RANDOM scheduler. This is because exploration is already built

into the RANDOM scheduler and it needs only to be directed to the better schedules. The

hill climber does not explore stochastically, which means that it needs sequences that can

provide a capability of moving away from the slower schedules. If the data used to create

the sequences contained no experience at escaping from local maxima, then it is unlikely
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that the corresponding sequences will improve the performance of the hill climber. This is

especially true for the SEQ-HILL and SEQ-BASE sequences. Also, since the hill climber

chose only actions that improved its performance, we further expected that the sequences

created from the DOWNHILL and RANDOM data would neither hinder nor help the hill

climber’s performance. We expected the remaining sets of sequences (SEQ-FARTHEST,

SEQ-COMPRESS, SEQ-RAYTRACE, and SEQ-CROSS) to improve the performance of

the hill climber.

The results presented in Section 7.8.1 indicated that the hill climber performed well

with respect to the optimal scheduler, although there was room for improvement by mov-

ing the hill climber away from local maxima. For these experiments, instead of comparing

the differences in the performance ratios of the hill climber with the sequences to the perfor-

mance ratios of the hill climber without sequences, we calculated the percent improvement

toward the performance of the estimated optimal scheduler when using sequences. This is

a standard technique for combinatorial optimization problems where a known heuristic’s

performance is already close to optimal and the task is to narrow that difference. We used

the following equations to calculate the improvement:

improvement(P) = [(ratio(HILL(P))− ratio(optimal estimate(P)))−

(ratio(HILL with sequences(P))− ratio(optimal estimate(P)))]

%closer to optimal(P) =
improvement(P)

ratio(HILL(P))− ratio(optimal(P))
(7.2)

where P is the program scheduled using the specified heuristic and the ratios are calculated

using Equation 7.1.

We compared the performance of HILL with each of the eight different sets of se-

quences on each of the seven benchmark programs. The numbers reported are from only

one run because the hill climber is deterministic. We again present the results in two ways:

by using bar graphs and by examining the average percent improvement toward the es-
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Sequences Average Standard Best Worst
% improvement deviation improvement improvement

SEQ-FARTHEST 47.63 27.61 90.30 3.37
SEQ-RANDOM 36.28 19.87 69.86 2.71
SEQ-COMPRESS 22.66 16.28 46.31 0.34
SEQ-RAYTRACE 18.69 17.19 46.30 0.19
SEQ-DOWNHILL 5.54 7.45 17.25 -0.35
SEQ-HILL 3.61 9.09 17.25 -10.11
SEQ-BASE 3.61 9.09 17.25 -10.11
SEQ-CROSS 2.43 6.54 17.25 -0.35

Table 7.7. The average percent improvement toward the estimated optimal scheduler for
the hill climbing scheduler using the sequences created from each of the eight data sets.
The standard deviation and the minimum and maximum improvements are also given.

timated optimal schedules. The latter results are summarized in Table 7.7. The exact

improvement for each benchmark and set of sequences are given in Appendix B.

The results of using the sequences with the hill climber were mostly as we predicted

with a few exceptions. As we expected, the SEQ-DOWNHILL, SEQ-HILL, and SEQ-

BASE sequences did not significantly improve the performance of the hill climber (each

had an average of 6% or less improvement). The hill climber using the sequences from

HILL and BASE actually performed 10% worse than the hill climber without the sequences

on the benchmark raytrace. It is likely that the availability of the multi-step actions

led HILL to discover local maxima that would not have been reached with single-step

actions in this case. Also as expected, the more purposeful but exploratory behaviors of

the RL scheduler that trained on the benchmarks compress and raytrace were able

to improve performance by 23% and 17% respectively. Each was able to improve the

performance on the benchmark on which it was trained but neither was able to improve the

performance on the difficult benchmark jack.

The first surprising result was that the SEQ-CROSS sequences failed to improve the

performance of the hill climber except on one benchmark, mpegaudio. However, the

performance of HILL with sequences was consistently better than HILL without sequences
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Figure 7.11. Percent improvement toward the estimated optimal schedule for the hill
climbing scheduler with sequences created from the FARTHEST and RANDOM heuris-
tics. This improvement is measured against the hill climber with no sequences.

on this benchmark. The second unexpected result was that the best sets of sequences turned

out to be SEQ-FARTHEST and SEQ-RANDOM. We show the performance of HILL with

these sequences in more detail in Figure 7.11.

Figure 7.11 shows the percent improvement toward the estimated optimal schedules

as described by Equation 7.2 for the hill climber with the SEQ-FARTHEST and SEQ-

RANDOM sequences. Both sets of sequences are able to improve the performance of the

hill climber on all of the benchmarks. The benchmark jack seems to be the most difficult

to improve but significant progress toward the estimated optimal schedule is evident on

the other benchmarks. It is likely that longer sequences are necessary to climb out of the

remaining local maxima.

The reason that the SEQ-RANDOM and SEQ-FARTHEST sequences were best for

improving the performance of the hill climber is likely two-fold. The first reason is that the

SEQ-FARTHEST sequences cause the hill climber to investigate the results of many swaps
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in a row. Other sets of sequences do not share this characteristic. Second, although the

baseline performance of both of the RANDOM and FARTHEST heuristics is fairly poor,

we have pruned the experience used to create the sequences to only those blocks where the

heuristics improved the running time. This means that the data used to create the sequences

contains more experience at escaping from local maxima than the other data sets. The hill

climber can make use of that experience through the sequences.

Summary and Discussion

This section presented results of using each of the eight different sets of sequences

with the HILL heuristic scheduler. Two sets of sequences, SEQ-RANDOM and SEQ-

FARTHEST, were able to significantly improve the performance of the hill-climbing sched-

uler toward the estimated optimal scheduler. These particular sequences were created from

the behavior of poorly-performing exploratory heuristics. However, by narrowing the expe-

rience used to create the sequences to the blocks where the heuristic improved the running

time of the scheduler, these sequences can provide HILL with knowledge of how to escape

from local maxima.

These results are important for several reasons. Not only have these experiments demon-

strated the utility of the automatically created sequences within one task, but they have

demonstrated one form of knowledge transfer. The sequences created from the behavior of

an RL agent learning on a specific benchmark (SEQ-COMPRESS and SEQ-RAYTRACE)

were able to improve the performance of the hill-climbing scheduler on the benchmark on

which they were trained as well as on the other benchmarks. The next section examines

knowledge transfer across processors.

7.8.5 Knowledge Transfer Experiments

We demonstrated one form of knowledge transfer in the previous experiments by ex-

amining how the sequences generated from one benchmark (i.e., SEQ-COMPRESS and

SEQ-RAYTRACE) successfully improved the performance of the hill climber on other
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Sequences Average Standard Best Worst
% improvement deviation improvement improvement

SEQ-FARTHEST 21.70 21.44 61.50 -0.17
SEQ-RANDOM 19.89 21.88 59.62 -0.17
SEQ-COMPRESS 5.03 5.63 13.30 -0.74
SEQ-RAYTRACE 0.89 2.71 7.01 -0.74
SEQ-DOWNHILL -0.13 0.27 0.00 -0.74
SEQ-HILL -0.13 0.27 0.00 -0.74
SEQ-BASE -0.13 0.27 0.00 -0.74
SEQ-CROSS -0.13 0.27 0.00 -0.74

Table 7.8. The average percent improvement toward the estimated optimal scheduler for
the hill climbing scheduler on the Power PC 603 processor using the sequences created
from each of the eight data sets on the Power PC 601 processor. The standard deviation,
best, and worst improvements are also given.

benchmarks. Although we know that the best scheduler for any processor is specific to

the architecture of that processor, we are interested in another form of knowledge transfer

for the sequences. In particular, we examined whether sequences could also improve the

performance of the hill climber on processors similar to the one for which the sequences

were created.

For the experiments described so far in this chapter, we generated the behavior data,

created the sequences, and tested the sequences on the Power PC 601 processor. For these

experiments, we used the sequences created for the 601 processor on the Power PC 603

processor. The architectures of the two processors are similar although the 603 processor

has several additional functional units. We did not expect that the sequences created on

the 601 architecture would bring the hill climber on the 603 processor as close to opti-

mal performance as they were able to do for the hill climber on the 601 processor but we

expected measurable improvement from the better sequences (i.e., SEQ-RANDOM and

SEQ-FARTHEST). Again, we used the performance measurement of the percent improve-

ment toward the estimated optimal schedule described by Equation 7.2.

The results of this experiment are summarized in Table 7.8 with the complete details

are given in Appendix B. The results of using the SEQ-RANDOM and SEQ-FARTHEST
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Figure 7.12. Percent improvement toward the performance of the estimated optimal sched-
uler for the hill climber on the Power PC 603 architecture. The hill climber used the se-
quences generated for the Power PC 601 architecture from the behavior of the heuristics
RANDOM and FARTHEST.

sequences are shown graphically in Figure 7.12. As expected, the SEQ-RANDOM and

SEQ-FARTHEST sequences were able to significantly improve the performance of the hill

climber toward the estimated optimal performance. The largest improvement was on the

benchmarks raytrace and compress. Neither set of sequences was able to improve

performance on the benchmark db. Although these improvements are not as large as the

improvements observed on the 601 processor, this was expected because of the difference

between the respective architectures. These results demonstrate that the SEQ-FARTHEST

and SEQ-RANDOM sequences are useful across multiple processors.

A second interesting result of this experiment was that the SEQ-COMPRESS sequences

slightly improved the performance of the hill climber overall and specifically on the bench-

mark compress. The SEQ-RAYTRACE sequences proved to be less general for this pro-

cessor but they were able to achieve a 7% improvement toward optimal on the benchmark
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raytrace. This demonstrates that the sequences generated from a specific benchmark

seem to have captured some characteristic of that benchmark that is true across processors.

Summary and Discussion

These experiments demonstrate that the sequences generated for one processor have

not only captured aspects of the benchmarks that are specific to one processor but also have

discovered general characteristics that can enable knowledge transfer to similar processors.

This is important not only for demonstrating the utility of our approach on a real-world

problem but also for any architect who wants to use our algorithm for exploring the design

space of a processor. By demonstrating that the sequences generated for one processor are

useful on similar processors, we have shown that our algorithm could be used to generate

sequences on a general formulation of a processor and then the sequences could be used to

improve the performance of each processor in more specific testing.

7.9 Conclusions

In this chapter, we have demonstrated that the sequence growing method introduced in

Chapter 6 can create useful sequences in a real-world task. In particular, we created se-

quences from eight different sets of behavior and used the different sequences to examine

the question of what makes some sequences more useful than others in more depth. We

demonstrated that sequences created from poorly performing heuristics are not useful to a

scheduling agent and can negatively affect the exploration of the scheduler. Likewise, se-

quences created from the more purposeful behaviors focused the exploration of the random

scheduler into better regions of the scheduling space.

We also demonstrated that the behavior of the exploratory heuristics created better se-

quences for the hill climber by enabling the hill climber to use the experience of escaping

from local maxima that the sequences provide. The hill climber significantly improved

its performance toward the performance of the estimated optimal scheduler by using these
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sequences. We also demonstrate that sequences enabled effective knowledge transfer both

within one processor and across similar processors.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have introduced methods for automatically identifying and cre-

ating two types of temporal abstractions: subgoals of achievement and action sequences.

These temporal abstractions are identified using the accumulated experience of an agent as

it interacts with an environment. We have demonstrated that these methods can create tem-

poral abstractions from the behavior of multiple types of purposeful agents. The behavior

can be generated by an agent using RL to choose its actions, by an agent using heuristic

search, or even from a human tele-operating a robot. By demonstrating that our methods

can create temporal abstractions from multiple types of purposeful behavior, we illustrated

the generality of our approach.

Subgoal options are created by searching for bottlenecks in the agent’s observation

space. We formulated this as a multiple-instance learning problem and used the concept

of diverse density to detect the subgoals. This approach can create subgoals in continuous

spaces as well as in discrete ones. We illustrated our method in several simulated tasks

and showed that it can both accelerate learning on the current task and facilitate transfer to

related tasks. We demonstrated that similar subgoals can be created from experience gener-

ated by an RL agent and from experience generated by humans tele-operating a simulated

robot.

Useful action sequences are discovered by searching for actions that are frequently

chosen in sequence on successful trajectories. We introduced an efficient algorithm for

detecting useful sequences and demonstrated the utility of both action sequences and con-

ditionally terminating sequences in several simulated tasks. These sequences were created
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from the behavior of an RL agent. We also demonstrated that useful conditionally ter-

minating sequences can be generated from heuristic search data. We showed that these

conditionally terminating sequences can both improve the performance of a real-world in-

struction scheduler on the processor for which they were created and that they can facilitate

task transfer to a similar processor.

Although neither subgoals of achievement nor action sequences will be useful in every

task or every environment, we have demonstrated that for many tasks they can both enable

task transfer and accelerate learning within a task. These two techniques are not the only

possibilities for automatically creating options from an agent’s experience in interacting

with an environment. Other possibilities include creating rule-based abstractions or finite

automata. Although the subgoals discussed in this paper are not identified with the specific

criteria of violating the conditions of other subgoals (or allowing the evaluation function to

decrease), both Iba’s (1989) and Korf’s (1985) methods for creating such macro-operators

provide ideas for future types of options that might be discoverable by mining the agent’s

past experience.

Both of our methods also have some potential drawbacks that could be addressed in

future work. One potential drawback to this method is the requirement that negative bags

cannot contain any positive instances. In the case of more complicated environments, it can

be non-trivial to define what constitutes the positive and negative bags. It is desirable to

allow the agent to occasionally visit useful subgoals on unsuccessful trajectories while not

affecting the results of the diverse density calculations. We are currently investigating how

to make the best use of such noisy bags. One such method is to decrease the influence of

each negative instance through the width of the Gaussian probability distribution. It may

also be possible to give each bag a relative measure of success.

Each of the subgoals presented in this dissertation that used the diverse density method

were created by searching in a pre-specified concept space. Maron (1998) presents an

extension of diverse density that can identify both a concept and an appropriate scaling

126



for each dimension of the concept. In practice, we found that scaling the dimensions of

the concepts did not work well in our larger test problems because of the noise inherent in

the data (in particular, with the simulated robotic tasks). By extending the diverse density

approach to allow some noise to occur in the negative bags, the agent may also be able to

choose the appropriate dimensions for each concept in a more autonomous manner.

Another possible extension to the diverse density methods could consider more abstract

concept spaces in which to compute diverse density. For example, concepts in the form of

linearly discriminable regions might allow a robotic agent to detect concepts not expressible

as a single point in feature space. We have some preliminary results in this domain that

demonstrate that concept spaces other than those introduced by Maron (1998) are both

feasible to calculate and can be useful (McGovern and Barto, 2001). Another type of

concept that could be useful would be one that preserves some aspect of the temporal

associations or dynamics between instances in a bag. For example, it would be better for a

robot to learn a concept of “back away from a wall” than “approach a wall.” This type of

abstraction requires that some of the temporal dynamics of the robot’s interaction with its

environment are preserved in the concept.

The main drawback to both action sequences and conditionally terminating sequences

is that the sequence of actions is fixed once the option has been created. Although condi-

tionally terminating sequences can be stopped if an unexpected state is reached, sequences

as introduced in this dissertation cannot adapt over time to a changing environment. It is

possible that an alternative representation may allow sequences to be easier to modify. This

is an area for future research.

Both methods of option discovery require that the agent must first be able to reach the

overall goal using only the given primitive actions (or any options that are pre-defined).

This limits the problems to which the methods can be applied. Current research addresses

ways to extend the approach so that it can be applied when goal states cannot easily be

reached using only primitive actions.
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The methods presented in this dissertation identify useful temporal abstractions from

an agent’s successful interaction with its environment. Using a similar approach, an agent

may also be able to identify situations to avoid using its unsuccessful experience in the

environment. This type of abstraction would enable an agent to focus its exploration in the

more effective and safe areas of the environment. For example, if a robot could quickly

learn to avoid walls after bumping into one, it could focus its exploration on learning to

navigate within a room.

Iba’s (1989) approach to creating macro-operators included a method, called the dy-

namic filter, for filtering macros that proved to be less useful than expected over time. A

similar online method for quickly filtering our automatically created options if they prove

to be less useful than expected could help to accelerate learning within a task. For example,

preliminary results with a dynamic filter indicate that the few subgoal options discovered in

the two-room gridworld described in Chapter 4 that are not in the doorway can be removed

by a dynamic filter in favor of subgoals in the doorway as the agent continues to learn. For

these results, we used the diverse density method for filtering as well as for discovering

the subgoals. The dynamic filter could also be useful in cases in which an option is not as

useful on a new task as expected, and in cases where an initially useful option is keeping

the agent from discovering an even more efficient path to the goal.

We are also currently investigating the application of our methods to tasks on an actual

robotic platform. Although we expect that our methods will prove useful in this domain,

physical robots often need extra care to operate robustly and some of the extensions dis-

cussed above, such as learning from less experience or using different concept spaces, may

be necessary.

Our results suggest that our methods offer a promising approach to one aspect of the

challenge of automatic abstraction.
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APPENDIX A

DETAILS OF THE TILE-CODING REPRESENTATION USED BY
THE SIMULATED ROBOT IN CHAPTER 4

The simulated robot described in Chapter 4 used a CMAC, or tile-coding, over its sen-

sory vector to approximate the action-value function. Table A.1 specifies what sensory

readings were used for each layer of the tile-coding and how each dimension of each layer

was divided. The number of bins is the number of divisions for the specified variable in the

current layer.

129



Layer Sensory variable Bins
Layer 1 Leftmost sonar (#1) 3 (near, middle, far)

Middle sonar (#4) 3
Rightmost sonar (#7) 3
Orientation of object on retina 11
Is there an object in the gripper? 2

Layer 2 2nd left sonar (#2) 3 (near, middle, far)
Middle sonar (#4) 3
2nd right sonar (#6) 3
Orientation of object on retina 11
Is there an object in the gripper? 2

Layer 3 3rd left sonar (#3) 3 (near, middle, far)
Middle sonar (#4) 3
3rd right sonar (#5) 3
Orientation of object on retina 11
Is there an object in the gripper? 2

Layer 4 Middle sonar (#4) 3 (near, middle, far)
Estimated forward velocity 4
Estimated rotational velocity 4
Is there an object in the gripper? 2

Layer 5 Leftmost sonar (#1) 3 (near, middle, far)
Middle sonar (#4) 3
Rightmost sonar (#7) 3
Estimated forward velocity 4
Estimated rotational velocity 4
Is there an object in the gripper? 2

Layer 6 Width of object on retina 7 (logarithmic)
Orientation of object on retina 11
Is there an object in the gripper? 2

Table A.1. Details of the simulated robot’s tile-coding used to approximate the action value
function.
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APPENDIX B

DETAILED RESULTS FROM THE INSTRUCTION SCHEDULING
TASK PRESENTED IN CHAPTER 7

This appendix describes the sequences created for the instruction scheduling task de-

scribed in Chapter 7 and the description of the tile-coding used by the RL scheduler. We

also include the detailed results for each experiment described in Chapter 7. These include

the performance ratios for each heuristic and benchmark without the use of sequences as

well the results of adding sequences to the random and hill climbing schedulers.

B.1 Tile-coding Representation Used by the RL Scheduler

The tile-coding used by the RL scheduler for all of the learning experiments presented

in Chapter 7 is given in Tables B.1 to B.7.

B.2 Conditionally Terminating Sequences Created for the Scheduler

We used eight different sets of behavior trajectories to create the eight sets of sequences.

The behaviors were generated from the five heuristics: RANDOM, DOWNHILL, BASE,

HILL, and FARTHEST and from three different training sets for RL: COMPRESS, RAY-

TRACE, and CROSS. These are described in more detail in Chapter 7.

Tables B.8 to B.15 show the conditionally terminating sequences created from each of

the behavior sets. The sequence of observations and actions that comprise each condition-

ally terminating sequence are shown in the tables. Each table contains all of the sequences

created for one set of behavior trajectories.

131



Layer Sensory variable Bins
Layer 1 σ(etime(i1), etime(i2)) 3

passNum 3
bblen 4

Layer 2 σ(wcp(i1), wcp(i2)) 3
passNum 3
bblen 4

Layer 3 σ(latency(i1), latency(i2)) 3
passNum 3
bblen 4

Layer 4 iclass conflict 2
passNum 3
bblen 4

Layer 5 σ(children(i1), children(i2)) 3
passNum 3
bblen 4

Layer 6 onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 7 σ(latency(i1), latency(i2)) 3
σ(etime(i1), etime(i2)) 3
passNum 3
bblen 4

Layer 8 σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
passNum 3
bblen 4

Layer 9 σ(children(i1), children(i2)) 3
σ(latency(i1), latency(i2)) 3
passNum 3
bblen 4

Layer 10 σ(etime(i1), etime(i2)) 3
σ(children(i1), children(i2)) 3
passNum 3
bblen 4

Layer 11 σ(etime(i1), etime(i2)) 3
σ(wcp(i1), wcp(i2)) 3
passNum 3
bblen 4

Layer 12 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
passNum 3
bblen 4

Table B.1. Layers 1-12 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 13 σ(children(i1), children(i2)) 3

σ(wcp(i1), wcp(i2)) 3
σ(etime(i1), etime(i2)) 3
passNum 3
bblen 4

Layer 14 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
passNum 3
bblen 4

Layer 15 σ(etime(i1), etime(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
passNum 3
bblen 4

Layer 16 σ(etime(i1), etime(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
σ(children(i1), children(i2)) 3
passNum 3
bblen 4

Layer 17 σ(wcp(i1), wcp(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 18 σ(etime(i1), etime(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 19 σ(latency(i1), latency(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 20 σ(children(i1), children(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 21 onwcp1 2
onwcp2 2
iclass conflict 2
passNum 3
bblen 4

Table B.2. Layers 13-21 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 22 σ(latency(i1), latency(i2)) 3

σ(etime(i1), etime(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 23 σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 24 σ(children(i1), children(i2)) 3
σ(latency(i1), latency(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 25 σ(etime(i1), etime(i2)) 3
σ(children(i1), children(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 26 σ(etime(i1), etime(i2)) 3
σ(wcp(i1), wcp(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 27 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 28 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(etime(i1), etime(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 29 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Table B.3. Layers 22-29 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 30 σ(etime(i1), etime(i2)) 3

σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
iclass conflict 2
passNum 3
bblen 4

Layer 31 σ(wcp(i1), wcp(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 32 σ(etime(i1), etime(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 33 σ(latency(i1), latency(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 34 σ(children(i1), children(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 35 σ(latency(i1), latency(i2)) 3
σ(etime(i1), etime(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 36 σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Table B.4. Layers 30-36 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 37 σ(children(i1), children(i2)) 3

σ(latency(i1), latency(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 38 σ(etime(i1), etime(i2)) 3
σ(children(i1), children(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 39 σ(etime(i1), etime(i2)) 3
σ(wcp(i1), wcp(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 40 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 41 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(etime(i1), etime(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 42 σ(children(i1), children(i2)) 3
σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Table B.5. Layers 37-42 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 43 σ(etime(i1), etime(i2)) 3

σ(wcp(i1), wcp(i2)) 3
σ(latency(i1), latency(i2)) 3
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 44 σ(wcp(i1), wcp(i2)) 3
iclass conflict 2
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 45 σ(etime(i1), etime(i2)) 3
iclass conflict 2
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 46 σ(latency(i1), latency(i2)) 3
iclass conflict 2
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 47 σ(children(i1), children(i2)) 3
iclass conflict 2
onwcp1 2
onwcp2 2
passNum 3
bblen 4

Layer 48 unit1 blocked 2
unit2 blocked 2
σ(etime(i1), etime(i2)) 3
bblen 4

Table B.6. Layers 43-48 of the RL scheduler’s tile-coding.
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Layer Sensory variable Bins
Layer 49 unit1 blocked 2

unit2 blocked 2
σ(wcp(i1), wcp(i2)) 3
bblen 4

Layer 50 unit1 blocked 2
unit2 blocked 2
σ(children(i1), children(i2)) 3
bblen 4

Layer 51 unit1 blocked 2
unit2 blocked 2
σ(latency(i1), latency(i2)) 3
bblen 4

Table B.7. Layers 49-51 of the RL scheduler’s tile-coding.

For these experiments, the permutation window was set to two. With this window size,

the possible actions are to either swap the top instruction with the next instruction or to

leave the schedule as is. These are listed as “swap” or “no swap” in the tables.

The observation at each time step used the features σ(wcp1,wcp2), σ(etime1,etime2),

iclass1, and iclass2. The features calculated on instruction 1 refer to the top instruc-

tion in the window and instruction 2 was the following instruction. These features and the

reasons for choosing them are explained in detail in Chapter 7. For the compound features

calculated using σ(a,b), the potential values are −1, 0, or 1 depending on whether a is less

than b, equal to b, or greater than b, respectively. We denote the results of the compari-

son as <, =, and > in the tables. The feature iclass is categorical, with each category

corresponding to a functional unit in the Power PC architecture. All of the sequences were

created for the Power PC 601 processor which has an integer unit (denoted IU), a float-

ing point unit (denoted FPU), and a branching unit (denoted BPU). There is an extra unit

denoted PSEUDO created to process the pseudo instructions created by JRVM.
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Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = IU IU
2 no swap = = IU IU

2 1 no swap = = IU IU
2 swap < = IU IU

3 1 swap < = IU IU
2 no swap = = IU IU
3 no swap = = IU IU

4 1 no swap = = IU IU
2 swap < = IU IU
3 no swap = = IU IU

Table B.8. Sequences generated from the BASE heuristic.

Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 no swap < = IU IU
2 swap > = IU IU

2 1 no swap > = IU IU
2 swap = = IU IU

3 1 swap > = IU IU
2 no swap > = IU IU

4 1 no swap = = IU IU
2 swap > = IU IU

5 1 swap = = IU IU
2 no swap < = IU IU

6 1 swap > = IU IU
2 no swap < = IU IU

Table B.9. Sequences generated from the DOWNHILL heuristic.

Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = IU IU
2 no swap = = IU IU

2 1 no swap = = IU IU
2 swap < = IU IU

3 1 no swap = = IU IU
2 swap < = IU IU
3 no swap = = IU IU

Table B.10. Sequences generated from the HILL heuristic.
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Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = IU IU
2 swap = = IU IU

2 1 swap = = IU IU
2 swap < = IU IU

3 1 swap = = IU IU
2 swap > = IU IU

4 1 swap > = IU IU
2 swap > = IU IU

5 1 swap = = IU IU
2 swap = = IU IU

6 1 swap > = IU IU
2 swap = = IU IU

7 1 swap = = IU IU
2 swap > = IU IU
3 swap > = IU IU

8 1 swap < = IU IU
2 swap = = IU IU
3 swap < = IU IU

9 1 swap < = IU IU
2 swap = = IU IU
3 swap = = IU IU

10 1 swap = = IU IU
2 swap < = IU IU
3 swap = = IU IU

Table B.11. Sequences generated from the FARTHEST heuristic.
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Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = IU IU
2 no swap = = IU IU

2 1 swap < = IU IU
2 swap = = IU IU

3 1 no swap = = IU IU
2 swap < = IU IU

4 1 no swap = = IU IU
2 swap = = IU IU

5 1 swap = = IU IU
2 swap < = IU IU

6 1 no swap > = IU IU
2 swap = = IU IU

7 1 swap = = IU IU
2 no swap < = IU IU

8 1 swap = = IU IU
2 swap = = IU IU

9 1 swap = = IU IU
2 no swap = = IU IU

10 1 no swap < = IU IU
2 swap > = IU IU

Table B.12. Sequences generated from the RANDOM heuristic.
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Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = IU IU
2 swap = = IU IU

2 1 swap > = IU IU
2 swap > = IU IU

3 1 swap = = IU IU
2 swap < = IU IU

4 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO

5 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO

6 1 swap < = PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO

7 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO

8 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO

9 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO
4 swap < < PSEUDO PSEUDO

Table B.13. Sequences generated from the COMPRESS heuristic.

Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO

2 1 swap < = IU IU
2 swap = = IU IU

3 1 swap > = IU IU
2 swap > = IU IU

4 1 swap < = IU IU
2 no swap = = IU IU

5 1 swap < = IU IU
2 swap = > IU IU

6 1 no swap = = IU IU
2 swap < = IU IU

Table B.14. Sequences generated from the RAYTRACE heuristic.
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Sequence Step Action Observations
index σ(wcp1, wcp2) σ(etime1, etime2) iclass1 iclass2

1 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO

2 1 swap < = PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO

3 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO

4 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO

5 1 swap < = PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO

6 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO

7 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO
4 swap < < PSEUDO PSEUDO

8 1 swap < = PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO
4 swap < < PSEUDO PSEUDO

9 1 swap < = PSEUDO PSEUDO
2 swap < = PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO
4 swap < < PSEUDO PSEUDO

10 1 swap < < PSEUDO PSEUDO
2 swap < < PSEUDO PSEUDO
3 swap < < PSEUDO PSEUDO
4 swap < < PSEUDO PSEUDO
5 swap < < PSEUDO PSEUDO

Table B.15. Sequences generated from the CROSS heuristic.
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Heuristics
Benchmark SUB- FARTHEST RANDOM HILL BASE- OPTIMAL

OPTIMAL HILL
Compress 1.09 1.04 1.02 ± 0.01 0.99 0.96 0.96
Jess 1.04 1.02 1.01 ± 0.00 0.99 0.98 0.98
Db 1.04 1.03 1.01 ± 0.01 1.00 0.99 0.99
Javac 1.05 1.01 1.01 ± 0.00 0.99 0.99 0.99
Mpegaudio 1.03 1.01 0.98 ± 0.01 1.00 0.90 0.90
Raytrace 1.09 1.04 1.02 ± 0.00 0.96 0.96 0.96
Jack 1.07 1.02 1.01 ± 0.01 1.00 1.00 0.98

Table B.16. Performance ratios for each of the heuristics on the Power PC 601 processor.

B.3 Detailed Results for Each Instruction Scheduling Experiment

Table B.16 gives the performance ratios for each of the heuristic schedulers on each of

the seven benchmarks. Each of these heuristics is run without any sequences. All of the

heuristics except RANDOM are deterministic and the numbers for these are from one run.

For RANDOM, we report the average and standard deviation over 30 runs, each starting

with a different random seed. The ratios are all calculated as described by Equation 7.1.

Table B.17 shows the differences between the mean performance ratio of the random

scheduler with and without sequences. Each of the means is calculated over 30 different

runs. A positive number in the table means that the random scheduler using the specified

set of sequences performed better than the random scheduler without sequences. Blank

entries performed the same as the random scheduler, on average.

Table B.18 shows the percent improvement toward the estimated optimal scheduler of

the hill climbing scheduler using sequences. The sequences used for these experiments

are noted in each row of the table. Each behavior set was generated on the Power PC 601

processor. These results were also generated on the 601 processor. Each of the percent

improvement numbers was calculated according to Equation 7.2.

Table B.19 details the improvement of the hill climber with sequences toward the es-

timated optimal scheduler on the Power PC 603 processor. The sequences used in this

experiment were generated on the Power PC 601 processor.
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Benchmark SEQ-DOWNHILL SEQ-FARTHEST SEQ-RANDOM
Compress 0.02 0.01
Jess -0.01
Db -0.01 -0.01
Javac -0.01
Mpegaudio 0.02 0.02
Raytrace -0.01
Jack

Benchmark SEQ- SEQ- SEQ- SEQ- SEQ-
BASE HILL COMPRESS RAYTRACE CROSS

Compress 0.01 0.01 0.02 0.01 0.01
Jess 0.01 0.01
Db 0.01 -0.01
Javac 0.01 0.01
Mpegaudio 0.02 0.02 0.03 0.01 0.02
Raytrace 0.01 0.01 0.01
Jack

Table B.17. Differences in the mean performance ratio of RANDOM without sequences
to RANDOM with the specified set of sequences. Numbers less than 0 represent a worse
performance than scheduling randomly without sequences and numbers greater than 0 rep-
resent a better performance.

Sequences Benchmarks
SEQ- Compress Jess Db Javac Mpegaudio Raytrace Jack
FARTHEST 52.49 40.32 69.86 43.85 33.22 90.30 3.37
RANDOM 37.83 40.29 69.86 41.11 28.01 34.17 2.71
COMPRESS 8.11 17.07 46.31 39.41 21.86 25.53 0.34
RAYTRACE 15.90 11.16 46.30 37.16 17.58 2.52 0.19
DOWNHILL 13.43 -0.35 -0.01 8.36 17.25 0.09 0.01
HILL 11.84 -0.37 -0.01 6.83 17.25 -10.11 -0.15
BASE 11.84 -0.37 -0.01 6.83 17.25 -10.11 -0.15
CROSS -0.35 -0.01 17.25 0.09

Table B.18. Percent relative improvement toward an estimate of optimal of the hill climb-
ing scheduler with sequences on the Power PC 601 processor.
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Sequences Benchmarks
SEQ- Compress Jess Db Javac Mpegaudio Raytrace Jack
FARTHEST 38.74 8.90 -0.17 16.79 18.86 61.50 7.27
RANDOM 38.74 2.03 -0.17 13.43 18.86 59.62 6.68
COMPRESS 9.36 -0.74 -0.17 4.31 13.30 9.18
RAYTRACE -0.74 -0.17 0.05 0.09 7.01
DOWNHILL -0.74 -0.17
HILL -0.74 -0.17
BASE -0.74 -0.17
CROSS -0.74 -0.17

Table B.19. Percent relative improvement of the hill climbing scheduler toward the esti-
mated optimal scheduler using the sequences generated on the Power PC 601 processor on
the Power PC 603 processor.
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