
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

LEARNING ENSEMBLES OF LINEAR GAUSSIAN NETWORKS FOR

NONLINEAR AND SPATIAL DATA

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

MORGAN ROBERTSON
Norman, Oklahoma

2014

LEARNING ENSEMBLES OF LINEAR GAUSSIAN NETWORKS FOR
NONLINEAR AND SPATIAL DATA

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern (Chair)

Dr. Dean F. Hougen

Dr. Andrew H. Fagg

c©Copyright by MORGAN ROBERTSON 2014
All Rights Reserved.

Dedication

To Frederick, my friend and companion in the pursuit of knowledge and truth.

Acknowledgements

I would like to thank David John Gagne II for answering my questions related to

meteorolgy, providing suggestions regarding visualization tools, and generating

the WRF dataset used in this thesis. Scott Hellman, whose work provides

much of the basis for this thesis, answered many of my questions about his

work and provided ideas for my own. I am grateful to Frederick Wagner both

for helping me bounce around ideas and for his support throughout the course

of my research. Finally, I want to thank my advisor, Dr. Amy McGovern, for

the guidance and insight that made this thesis possible.

iv

Table of Contents

Acknowledgements iv

List Of Tables vii

List Of Figures viii

Abstract x

1 Introduction 1

2 Background 3
2.1 Notation . 3
2.2 Bayesian Networks . 4
2.3 Independence Properties of Bayesian Networks 6
2.4 Learning Bayesian Networks . 10

2.4.1 Structure Learning . 10
2.4.2 Parameter Estimation 12

2.5 Linear Gaussian Networks . 13
2.5.1 Conversion to Gaussian Distribution 15
2.5.2 Scoring . 15
2.5.3 Independence Tests . 18
2.5.4 Parameter Estimation 19
2.5.5 Inference . 19
2.5.6 Ensembled Linear Gaussian Networks 21

2.6 Dynamic Bayesian Networks . 23

3 Improving Predictions for Nonlinear and Spatial Data 25
3.1 Weighted Bagging . 25
3.2 Spatial Inference . 31

3.2.1 A Graphical Perspective of Spatial Inference 32
3.2.2 Mathematical Considerations of Spatial Inference 34

4 Empirical Evaluation of Weighted Bagging and Spatial Infer-
ence 37
4.1 The Curvy Dataset . 37
4.2 The Wine Quality Dataset . 43
4.3 The Weather Research and Forecasting (WRF) Dataset 47

v

4.3.1 Evaluation of DELGN with Weighted Bagging 48
4.3.2 Evaluation of Spatial Inference 53

5 Conclusions and Future Work 56

Reference List 59

vi

List Of Tables

4.1 Variables from the WRF dataset used to train DELGN. 48
4.2 Results for predicting composite reflectivity with and without spa-

tial inference. 54

vii

List Of Figures

2.1 A Bayesian network representing the process of finding a job. . . 8
2.2 A linear Gaussian network consisting of a node X with a single

parent Y . A plot of the CPD for X is shown where P (X|Y) =
N
(
1
2
Y + 2.5; 1

)
. Plot from Hellman (2012). 14

2.3 The initial and transition networks specifying a DBN over three
variables, and the unrolled network over three timesteps. 24

3.1 A dataset generated from a three-component GMM and the means
of a 10-network ELGN learned with traditional bagging. 26

3.2 A dataset generated from a three-component GMM and the means
of a 10-network ELGN learned with weighted bagging. 29

3.3 ELGN trained with weighted bagging on a dataset generated from
a sine function with added Gaussian noise. The regression curve
is shown for predicting Y given X. 30

3.4 Adding evidence nodes to a network to perform spatial inference. 33

4.1 The Curvy dataset . 39
4.2 RMSE for the Curvy dataset as the number of clusters and num-

ber of networks per ensemble are varied. Dots in the plot corre-
spond to parameter combinations that were tested. Crosses show
statistically significant parameter settings. 40

4.3 Regression surface for the Curvy dataset produced by ELGN with
weighted bagging (k=24, nNetworks=32). 41

4.4 RMSE of Hellman’s ELGN on the Curvy dataset as the number
of networks per ensemble is varied. Each curve corresponds to a
different value for nV ariables. The performance of linear regres-
sion is also shown for comparision. Standard error is represented
by the shaded areas. 42

4.5 RMSE for the Wine Quality dataset as the number of clusters
and number of networks per ensemble are varied. 45

4.6 RMSE of Hellman’s ELGN on the Wine Quality dataset as the
number of networks per ensemble is varied. Each curve corre-
sponds to a different value for nV ariables. The performance of
linear regression is also shown for comparision. 46

4.7 RMSE for the WRF dataset as the number of clusters and number
of networks per ensemble are varied. Crosses show parameter
settings that are statistically significant compared to persistence. 50

viii

4.8 RMSE of Hellman’s DELGN on the WRF dataset as the number
of networks per ensemble is varied. Each curve corresponds to a
different value for nV ariables. The performance of persistence
is also shown for comparision. 51

4.9 DELGN’s prediction of CREFD MAX for k=4 and nNetworks=8. 52
4.10 Visual comparison of normal and spatial inference. 55

ix

Abstract

The ability to accurately model nonlinear relationships is important in many

real-world domains. Ensembled linear Gaussian networks (ELGNs), a class of

ensembled Bayesian networks in which each conditional probability distribu-

tion (CPD) is a linear Gaussian distribution, have been shown to be capable of

performing nonlinear regression. In this thesis, we introduce weighted bagging

for ELGNs, which allows the components of the ensemble to train on indi-

vidual clusters within the data and better model local relationships. When

combined with Gaussian mixture regression (GMR), we have a powerful model

for performing nonlinear regression. Using both synthetic and real datasets, we

demonstrate ELGN’s effectiveness and explore how various parameter settings

affect performance.

In addition to possessing nonlinear relationships between variables, many

domains include spatial and temporal aspects. Dynamic Bayesian networks

(DBNs) are a common model for representing the evolution of a system over

time. To model correlations between variables at different points in space,

we introduce a method for performing spatial inference. Rather than making

predictions for a set of query variables based only on evidence observed at the

same point in space, we also take into account observed evidence at nearby

points. Nearby evidence is weighted by a kernel function, which results in

strong correlations between predictions at points close together in space. We

apply spatial inference to predict reflectivity in a weather dataset.

x

Chapter 1

Introduction

Over the last few decades, the use of Bayesian networks in machine learning

has become more widespread, offering an alternative to other models such as

decision trees, neural networks, and support vector machines. In contrast to

many other commonly used models, a Bayesian network is a true probabilistic

model, capable of directly encoding a joint probability distribution. Due to

their probabilistic nature, Bayesian networks offer an easy-to-interpret model

of the dependence relationships among variables, and also provide information

about the uncertanty in their predictions.

As with other models, Bayesian networks become more powerful when en-

sembled (Utz 2010) and standard ensembling techniques including randomiza-

tion (Breiman 2001) and bagging (Breiman 1996) can be applied. For domains

with continuous data, ensembles of linear Gaussian networks (ELGNs) (Hell-

man 2012) can be employed. By using Gaussian mixture regression (Sung 2004)

for inference, Hellman demonstrated that an ELGN has the ability to perform

nonlinear regression. Unfortunately, the use of traditional bagging during the

learning process severely hinders the ability of ELGNs to accurately model non-

linear relationships. As an alternative, we present a form of weighted bagging,

which allows each network in the ensemble to better model local relationships

for clusters within the data.

1

Dynamic Bayesian networks (DBNs) (Dean and Kanazawa 1989) are com-

monly used to represent systems that evolve over time. They can easily be

combined with linear Gaussian networks and ensembling techniques to model

continuous data over a sequence of discrete time steps. Unfortunately, there

is not a commonly accepted method for modeling spatial relationships with

Bayesian networks. Unlike time, space can be multidimensional and influence

can flow in more than one direction. These characteristics make spatial relation-

ships much more difficult to capture in comparison to temporal relationships.

To help us take into account spatial correlations within the data, we present

a method for performing spatial inference in Bayesian networks. Rather than

using observations only at the location for which we wish to make a prediction,

we also consider obversations of variables at nearby points.

We take Chapter 2 to provide the background for Bayesian networks. We

discuss independence properties, learning algorithms, and linear Gaussian and

dynamic Bayesian networks. In Chapter 3, we present weighted bagging for

ELGNs as well as spatial inference. Chapter 4 presents experiments that we

carried out to test our new methods and Chapter 5 discusses our conclusions

and ideas for future work.

2

Chapter 2

Background

In this chapter, we provide some background about Bayesian networks. We first

discuss their representation, which encodes a joint probability distribution, and

independence relationships. Next, we examine structure learning and parameter

estimation. Finally, we discuss linear Gaussian and dynamic Bayesian networks,

which are used to model continuous and temporal data, respectively.

2.1 Notation

For ease of readability, we follow a few notational conventions to distinguish

between different types of entities. Variables are represented by capital letters,

such as X. Collections of variables, including sets, vectors, and matrices are de-

noted by a boldface capital letter, such as X. Multivariate normal distributions

are represented as N(µ; Σ) where µ is the mean vector and Σ is the covariance

matrix. µX and ΣXY denote partitions of the mean vector and covariance ma-

trix corresponding to the sets of variables X and X∪Y, respectively. Variance

of a single variable X is denoted by σ2
X .

3

2.2 Bayesian Networks

A Bayesian network is a probabilistic graphical model that encodes a joint prob-

ability distribution over a set of random variables. Variables and dependencies

are represented by a directed acyclic graph (DAG) where nodes correspond to

variables and edges correspond to direct dependencies between connected nodes

(Pearl 1985). The parents of a node X, denoted PaX , are the nodes in the graph

that have a directed edge to X. The value of a random variable corresponding

to a particular node depends directly on the values of its parent nodes. Thus

at each node we have a conditional probability distribution (CPD) of the form

P (X|PaX).

Consider the problem of representing a joint distribution over a set of n

discrete binary-valued random variables. Since each variable has two possible

instantiations, we have 2n total possible instantiations of all variables. If we

represent the joint distribution as a table with a row for each possible instan-

tiation, the size of the table grows exponentially as the number of variables

increases. Clearly, working with a model that explicitly lists a probability for

each instantiation is intractable for any dataset with more than a handful of

variables. If we wish to use multi-valued variables instead of binary variables,

as is often required in practice, the situation is even worse. Fortunately, we

can exploit conditional independencies between variables to greatly reduce the

number of parameters required to specify the joint distribution. This is exactly

what happens in Bayesian networks, resulting in a relatively compact model for

the joint distribution (Pearl 1988).

4

Using the chain rule from probability theory, we can factorize a joint distri-

bution into a product of terms:

P (Xn, ..., X1) = P (Xn|Xn−1, ..., X1)...P (X2|X1)P (X1). (2.1)

Given an arbitrary ordering of the variables, each term consists of a conditional

distribution over a variable given its predecessors in the ordering. If we know

that conditional independencies exist between variables, we can simplify each

term in the factorization by removing some variables to the right of the condi-

tioning bar. Formally, we have from probability theory that P (X|Y)P (Y) =

P (X)P (Y) if and only if X and Y are independent. For each variable Xi,

1 ≤ i < n, define Pai as the set of variables in the ordering that Xi is condi-

tionally dependent upon. Then we can factorize the joint distribution:

P (Xn, ..., X1) = P (Xn|Pan)...P (X2|Pa2)P (X1). (2.2)

A Bayesian network encodes this factoring (Pearl 1985), where Pai are the

parents of node Xi and the ordering of variables is a topological sort of the

graph. In the worst case, this factoring can have as many parameters as the

full specification of the joint distribution if no conditional independencies exist

between the variables, but this is rare in practice. For a Bayesian network, this

case manifests as a fully connected graph. An example of a Bayesian network

is shown in Figure 2.1 and will be analyzed more closely in Section 2.3.

Aside from their ability to compactly represent a joint distribution, Bayesian

networks have several other useful properties. In contrast to many other ma-

chine learning models, such as decision trees, SVMs, and many common types

of neural networks, Bayesian networks can be treated as a form of unsupervised

learning. That is, there need not be an explicit target attribute to be learned.

Instead, relationships between all variables are learned in conjunction. This

5

model of learning is very powerful, as it allows us to make predictions for any

subset of variables given any other subset of variables. We can easily make

predictions even if observation data is missing; that is, we have only a partial

instantiation of observed variables.

In addition, the structure of a Bayesian network provides an easy-to interpret

model of the relationships between variables in a dataset. Unlike a neural

network, which is often considered a black-box model, we can easily examine

the edges of a Bayesian network to see how different variables are correlated.

Using properties of conditional independence encoded by the graph, it is possible

to determine how variables indirectly influence one another. The notion of d-

separation, discussed in the next section, is very powerful for this purpose.

2.3 Independence Properties of Bayesian

Networks

As already mentioned, the structure of a Bayesian network encodes a set of

conditional independencies between variables. Due to the importance of depen-

dence relationships in knowledge discovery and model interpretation, we will

now describe how these relationships are encoded and how observing evidence

affects these relationships.

To illustrate how dependencies are represented in Bayesian networks, sup-

pose that we have obtained the network structure shown in Figure 2.1. The

network represents the process of a student finding a job after completing grad-

uate school. Intelligence influences the student’s grades, while technical skills

influence both grades and how well the job interview goes. The interview com-

bined with grades contribute to the company’s perception of the candidate, and

6

the company’s perception determines whether she gets the job. Suppose we

know that the company has a very positive perception of the job candidate.

Would observing other variables in the network, such as Skills or Grades, give

us more information about whether she will get the job? Given the network

structure, the answer is no. It turns out that Job is independent of all other

variables in the network given its parent variable, Perception. Next, we’ll for-

mally state the conditional independence properties of Bayesian networks that

leads to this and other conclusions about relationships between variables in the

network.

We already know that two variables X and Y are directly dependent (i.e.

correlated) if they share an edge. However, variables can also be dependent if

there isn’t a direct edge between them (Pearl 1986). If we have three variables

X, Y , and Z connected as X − Z − Y , there are four possible ways to orient

the edges:

1. X → Z → Y

2. X ← Z ← Y

3. X → Z ← Y

4. X ← Z → Y

In the first two cases, X, Z, and Y form a chain. In either case, X and Y

are conditionally independent given Z. If we know the value of Z and want to

predict Y , for example, knowing the value of X gives us no additional informa-

tion that is useful in predicting Y . In the third case, X and Y are both parents

of Z, which is to say that Z is a common effect of X and Y . This is also referred

to as a v-structure in the literature. Given the value of Z, X and Y are condi-

tionally dependent. Intuitively, if we know the value of Z and then observe X,

we can then make inferences about Y based on our knowledge of X. Take the

7

Perception

Job

Skills

Grades Interview

Intelligence

Figure 2.1: A Bayesian network representing the process of finding a job.

8

job search example to illustrate this. Assume that the company’s perception of

the candidate is very positive. Given this, it is likely that the interview went

well, the candidate’s grades are high, or both. Now suppose we find out that

the interview went poorly. We can infer that the candidate’s grades are likely

high since the company has a positive view of her in spite of the interview.

The ability to make inferences of this sort is known as explaining away. In the

fourth case, Z is a parent of both X and Y ; that is, Z is a common cause of

X and Y . In this case, X and Y are conditionally independent given Z as in

the first two cases. In the job search example, suppose we know the candidate

has outstanding technical skills. Given this information, also knowing about

her grades gives us no additional information about how the interview went.

The four cases outlined above can be used to establish conditional indepen-

dence relationships for groups of variables, leading to the notion of d-separation

(Pearl 1986; Geiger et al. 1990). In cases (1), (2), and (4), the path between

X and Y is said to be blocked when Z is observed and active when Z is not

observed. In case (3) on the other hand, the path between X and Y is blocked

when Z is unobserved and active when Z is observed. Intuitively, influence can

flow between X and Y when the path between them is active (i.e. not blocked).

For an arbitrary path p between X and Y and a set of variables Z, p is blocked

by Z if either or both of the following conditions hold:

1. p contains a subpath A → C → B, A ← C ← B, or A ← C → B such

that C is in Z

2. p contains a subpath A→ C ← B such that neither C nor any descendant

of C is in Z

9

For sets of variables X, Y, and Z, we define X and Y to be d-separated if

and only if the path between every pair of nodes (X, Y) for X ∈ X and

Y ∈ Y is blocked by Z. D-separation in a graphical model corresponds to

conditional independence: if X and Y are d-separated given Z, then X and Y

are conditionally independent given Z.

2.4 Learning Bayesian Networks

Although the structure and parameters of a Bayesian network can sometimes

be specified by a domain expert, it is often more practical to automatically

learn the network from data, especially if the network consists of more than

a handful of variables. In this section, we will discuss algorithms and issues

related to learning Bayesian networks from data.

Assume that we have a dataset D consisting of m instances which are inde-

pendent and identically distributed (i.i.d.) samples generated from some under-

lying distribution P . The learning task is to construct a model M = (G, θ) that

consists of a graph structure G and a set of parameters θ such that M provides

a good approximation for P . The meaning of “good” depends on a number

of issues and will be discussed later. Learning our model M consists of two

distinct phases: determining the structure of G and estimating the parameters

θ. Approaches to structure learning include constraint-based, search-and-score,

and hybrid algorithms. For parameter estimation, we will discuss maximum

likelihood estimation (MLE).

10

2.4.1 Structure Learning

As we have seen, a Bayesian network represents a set of conditional indepen-

dence relationships between variables. The goal of structure learning algorithms

is to determine these relationships, which are manifested as a set of directed

edges between variables in the network.

In constraint-based algorithms, direct tests of independence are used to es-

tablish whether two variables share an edge. Well-known test statistics such as

χ2 and G2 are computed for discrete data, and measures of correlation can be

computed for continuous data. In the constraint-based approach, two variables

X and Y share an edge if they cannot be shown to be conditionally independent

given another subset of variables. Formally, if there exists a subset of variables

Z ⊆ V such that Ind(X, Y |Z), then X and Y do not share an edge; if no

such subset exists, then X and Y do share an edge. The general approach of

constraint-based algorithms is as follows: For each pair of variables X, Y ∈ V,

attempt to find a subset Z ⊆ V− {X, Y } such that Ind(X, Y |Z). If no such Z

can be found, then X and Y must share an edge.

The PC Algorithm (Spirtes et al. 2000) is an example of one of the first

constraint-based structure learning algorithms. In the constraint identification

phase of the algorithm, we start with a complete undirected graph G. For

increasing conditioning set sizes, an independence test is performed on each

remaining edge in the graph. If the variables sharing the edge are conditionally

independent given the conditioning set, the edge is removed. Once the skeleton

is identified, edges are oriented using a set of rules to ensure that the resulting

structure is a DAG.

The constraint-identification portion of the PC algorithm (without edge ori-

entation) is also known as Fast Adjacency Search (FAS). Rather than using a

11

rule-based algorithm for orienting edges as in the PC algorithm, FAS can be

followed by a search, such as greedy hillclimbing, to orient edges. This ap-

proach was taken by Fast (2010) and Hellman (2012). In this thesis, we use the

max-min hillclimbing (MMHC) algorithm for structure learning (Tsamardinos

et al. 2006). Like FAS, the first stage of the algorithm performs constraint-

identification. Hillclimbing is then used to orient edges.

The other major class of structure learning algorithms is search-and-score.

The basic approach here is to start with some network structure, then iteratively

add, remove, or reverse edges until the final structure is obtained (Koller and

Friedman 2009). The search is guided by the application of a chosen scoring

metric to the structure after each modification. The most basic search-and-score

algorithm is greedy hillclimbing. We start with an arbitrary structure G and

define the set of possible actions to include the addition of any edge not in the

graph; the removal of any edge in the graph; and the reversal of any edge in the

graph such that the graph remains acyclic. On each iteration of the search, we

consider each possible action and apply whichever one results in the greatest

increase in the overall score of the network structure. The algorithm terminates

when no action increases the score, i.e. a local maximum has been reached.

2.4.2 Parameter Estimation

In addition to learning a structure G for our Bayesian network, we must also

estimate a set of parameters θ in order to encode a joint probability distribu-

tion. In this thesis, we use maximum likelihood estimation (MLE) (Koller and

Friedman 2009) to estimate parameters.

12

Given a dataset D as described at the beginning of Section 2.4, MLE finds

parameters θ such that the likelihood of θ is maximized with respect to D.

Formally, we choose θ to maximize the liklelihood function:

L(θ|D) =
m∏
i=0

P (Di|θ) (2.3)

where Di is the ith instance in D and m is the total number of instances

(Koller and Friedman 2009). Thus, we want to select θ such that the product

of probabilities for each instance is maximized given those parameters.

For Bayesian networks, we can exploit an important property of the like-

lihood function called global decomposition (Koller and Friedman 2009). This

property allows us to decompose the likelihood function from Equation 2.3 into

a product of terms where each term corresponds to the local likelihood of pa-

rameters at a node. The likelihood function becomes

L(θ|D) =
m∏
i=0

∏
v∈V

P (Di|θv|Pav) (2.4)

where V is the set of variables in the network and θv|Pav is the set of parameters

for a node given its parents.

2.5 Linear Gaussian Networks

In this thesis, our goal is to model continuous data using Bayesian networks.

We will henceforth restrict our attention to the class of BNs where the CPD at

each node is a Gaussian distribution whose mean is a linear combination of the

values of its parent nodes. This type of network has been well-studied in the

literature (Shachter and Kenley 1989; Geiger and Heckerman 1994; Heckerman

and Geiger 1995) and is commonly known as a linear Gaussian network (LGN).

For real-world datasets, the assumptions of Gaussianity and linear relationships

13

between variables are quite strong, but the flexibility and mathematical con-

veniences resulting from this model sometimes justify its use even when the

assumptions are violated. To demonstrate the validity of this assertion, we will

next investigate some properties of LGNs and will later extend the work of

Hellman to accurately model nonlinear functions using ensembles of LGNs.

For a node Y with parents X = (X1, ..., Xk), the conditional probability

distribution of Y takes the form

P (Y |X) = N(β0 + βTX;σ2) (2.5)

where β0 is a constant scalar, β is a vector of constant weights, and σ2 is the

variance of Y . Notice that the mean of Y is strictly a linear function of the

values of its parents. Conveniently, when each node in the network is linear

Gaussian, it can be shown that the network taken as a whole is equivalent to a

multivariate Gaussian distribution over the variables in the network (Shachter

and Kenley 1989; Wermuth 1980). As we’ll see in Section 2.5.5, this fact allows

us to perform inference in closed form in polynomial time.

2.5.1 Conversion to Gaussian Distribution

The equivalence of LGNs with multivariate Gaussian distributions allows us

to convert a parameterized network to a mean-covariance representation. To

compute the covariance matrix, we use the algorithm presented by Shachter and

Kenley (1989), shown in Algorithm 2.1. First, a topological sort of the graph is

performed, resulting in an ordering orderedNodes. Next, we iterate over nodes

according to the ordering and populate the covariance matrix by calculating

the variance of each node and its covariance with all of its predecessors in

14

Y

X

(a) Linear Gaussian Network (b) CPD for X

Figure 2.2: A linear Gaussian network consisting of a node X with a single

parent Y . A plot of the CPD for X is shown where P (X|Y) = N
(
1
2
Y + 2.5; 1

)
.

Plot from Hellman (2012).

orderNodes. The mean for each node is computed as a function of the means

of its parents according to Equation 2.5.

2.5.2 Scoring

As with discrete Bayesian networks, a scoring metric is required to perform

structure learning with search-and-score algorithms. In this thesis, we use the

Bayesian metric for Gaussian networks having score equivalence, known as the

BGe score, developed by Geiger and Heckerman (1994). The BGe score of an

LGN is proportional to the posterior probability of the structure given the data:

P (G|D) =
P (D|G)P (G)∑

G∗∈G P (D|G∗)P (G∗)
. (2.6)

Using Bayes’ rule, Equation (2.6) gives the posterior in terms of the prior proba-

bility of the network structure and the marginal likelihood of the data given the

15

Algorithm 2.1: Computing the corresponding covariance matrix for a
LGN

Input: BN , a Bayesian network with n nodes
Output: Σ, the covariance matrix
orderedNodes← topologicalSort(BN)
for i = 1, ..., n do

node = orderedNodes[i]
β = node.parentWeights
K = indices of node.parents in orderedNodes
for j = 1, ..., i do

Σij ← Σji ←
∑
k∈K

Σjkβk

end

Σii ← node.variance +
∑
k∈K

Σjkβk

end

network structure. The prior P (G) encodes any prior knowledge of the network

structure that we may possess. If no prior knowledge exists, the uniform dis-

tribution is often used, as is done in this thesis. The denominator of Equation

(2.6) involves a summation over all possible network structures G. Fortunately,

this evaluates to a constant and can safely be ignored for scoring purposes.

A number of assumptions are made when using BGe as a scoring metric,

outlined by Geiger and Heckerman (1994). Perhaps most importantly, it is

assumed that each instance in the training dataset is drawn randomly from a

multivariate Gaussian distribution and that the dataset is complete, i.e. there

is no missing data. The mean vector µ and precision matrix W = Σ−1 of

the generating distribution are assumed unknown and distributed according to

a normal-Wishart prior. The use of the normal-Wishart prior in this case is

analagous to the use of a Dirichlet prior in the BDe score, which is a commonly

used Bayesian scoring metric when the dataset consists of discrete variables

(Heckerman et al. 1995).

16

Due to the mathematical verbosity involved in computing the BGe score,

we refer the reader to the work of Geiger and Heckerman (1994) if a thorough

analysis of the derivation and mathematical details of the BGe score is desired.

One important point about the BGe score is that it requires us to specify a

prior mean vector and covariance matrix. In this thesis, we assume no prior

knowledge of our datasets, which leads us to use the identity matrix as our

prior covariance matrix and the zero vector as our prior mean vector.

Bayesian scoring metrics, including BGe, have several convenient properties.

As we saw previously in Equation 2.6, P (G|D) ∝ P (D|G)P (G). The P (D|G)

term is computed as follows:

P (D|G) =

∫
P (D|G, θG)P (θG|G)dθG (2.7)

where θG is the set of parameters for a specific network structure G (Friedman

and Koller 2000). In computing a Bayesian score, we are effectively averaging

over all possible values of parameters given a specific network structure. This is

in contrast to non-Bayesian scores, such as the Bayesian Information Criterion

(BIC) (Schwarz et al. 1978), which use the MLE of parameters instead of aver-

aging. The result is that Bayesian scores implicitly penalize model complexity

and thereby reduce the potential for overfitting. In the BIC score, an explicit

regularization term is required to penalize complexity.

Another useful property of BGe is decomposability, which results from the

assumptions of parameter modularity and parameter independence. Parameter

modularity, expressed as P (θXi|U|G) = P (θXi|U|G′), states that a node Xi with

the same set of parents U in two different graph structures G and G′ have equal

likelihoods. Parameter independence, expressed as P (θG|G) =
∏
i

P (θXi|U|G),

17

states that the likelihood of parameters given a specific graph structure decom-

poses into a product of likelihoods computed for the parameters at each node.

These two properties allow us to compute the BGe score locally for a node

and its parents without considering the rest of the network strucutre. This

greatly reduces the computational resources required for search algorithms such

as greedy hill climbing. For each action (addition, deletion, or reversal of an

edge) in such an algorithm, the score need be recomputed only for the affected

nodes.

2.5.3 Independence Tests

Constraint-based structure learning algorithms require tests of conditional in-

dependence — that is, for two variables X and Y and a conditioning set of

variables Z, we need to be able to establish whether X and Y are condition-

ally independent given Z. Assuming that our variables are jointly distributed

according to a multivariate Gaussian distribution, we can use partial correla-

tion combined with Fisher’s Z-transformation to perform hypothesis tests of

independence.

The partial correlation of variables X and Y with a controlling set Z, written

ρXY ·Z, is a measure of the linear dependence between X and Y when the effects

of Z are removed. When the controlling set is empty, partial correlation reduces

to Pearson correlation for two variables. In calculating partial correlation, we

must assume that all pairs of variables are linearly related, which is consistent

with the LGN framework. One of several methods to compute partial correlation

is with the following recursive formula (Morrison 1967):

ρXY ·Z∪{Z0} =
ρXY ·Z − ρXZ0·ZρY Z0·Z√
1− ρ2XZ0·Z

√
1− ρ2Y Z0·Z

. (2.8)

18

Using this formula with a dynamic programming technique, computation can

be done in cubic time with respect to the number of variables.

Two Gaussian random variables are conditionally independent given a con-

trolling set if and only if their partial correlation is zero (Baba et al. 2004). In

order to test this, we apply Fisher’s Z-transformation (Fisher et al. 1915) to the

computed partial correlation coefficient, then perform a two-tailed hypothesis

test using the normal distribution. We assume independence as the null hypoth-

esis and reject this hypothesis if the resulting p-value is less than a specified

threshold. To account for the uncertainty in our computed partial correlation

resulting from a finite sample size, we compute Fisher’s Z as done by Spirtes

et al. (2000):

z(ρXY ·Z, n) =
1

2

√
n− |Z| − 3 ln

|1 + ρXY ·Z|
|1− ρXY ·Z|

(2.9)

where n is the sample size.

2.5.4 Parameter Estimation

In section 2.4.2, we gave a general overview for using MLE to estimate the

parameters of a Bayesian network once the structure has been learned. We will

now examine parameter estimation for the specific case of LGNs. Recall from

Equation 2.5 that the mean at each node is a linear linear combination of its

parents’ means. Thus for each node we must learn the parameters β0 and β as

well as the estimate the variance σ2. We use the method presented by Koller

and Friedman (2009).

For a node Y with parents X, we first compute the covariance matrix Σ and

mean vector µ for X∪{Y }. Next, we compute our MLE parameters as follows:

β0 = µY −ΣYXΣXX
−1µX, (2.10)

19

β = ΣXX
−1ΣXY , (2.11)

σ2 = ΣY Y −ΣYXΣXX
−1ΣXY . (2.12)

2.5.5 Inference

One extremely useful property of LGNs is that inference can be done in closed

form, requiring only polynomial time. This is in contrast to the general case,

where the time complexity of exact inference is exponential in the size of the

network (Cooper 1990). To perform inference on an LGN containing variables

V, we first convert the network to its covariance representation as described in

section 2.5.1. Next, given an assignment of evidence variables E and a set of

query variables Q, we condition on E and then marginalize over V − E − Q

(the set of irrelevant variables). Formally, we can express a joint Gaussian

distribution over sets of variables X and Y as follows:

P (X,Y) ∼ N

(µX, µY);

ΣXX ΣXY

ΣYX ΣYY


 . (2.13)

Here, we have simply partitioned the mean vector and covariance matrix.

From Mardia et al. (1979), we have the following conditional distribution for

Y|X:

P (Y|X) ∼ N(µY|X; ΣY|X) (2.14)

where

µY|X = µY + ΣYXΣXX
−1(X− µX), (2.15)

ΣY|X = ΣYY −ΣYXΣXX
−1ΣXY. (2.16)

20

To marginalize over Y (starting from Equation 2.13), we simply remove the

partitions of the mean vector and covariance matrix which involve Y, resulting

in the following distribution:

P (X) ∼ N(µX; ΣXX). (2.17)

Observe that both of the preceding operations result in a Gaussian distribu-

tion when the original distribution is Gaussian. Thus, after performing inference

using conditioning and marginalization, we obtain a multivariate normal distri-

bution over the set of query variables.

2.5.6 Ensembled Linear Gaussian Networks

Ensembling is a common method in machine learning that has been applied to

both classification and regression problems. An ensemble consists of a collection

of models and makes predictions based on a weighted vote of the component

models. Ensembles often peform better in terms of prediction accuracy than a

single model (Dietterich 2000).

Two standard techniques for learning ensembles are randomization (Breiman

2001) and bagging (Breiman 1996). These techniques can be used individually

or together and result in variability among the models in an ensemble. With

randomization, each model is trained on a random subset of variables from

the dataset. Bagging is a technique that produces multiple datasets from the

original dataset by sampling with replacement. Each model is trained on a

different bagged dataset, allowing different models to specialize on different

subsets of the data.

Ensembled LGNs (ELGNs) were first thoroughly analyzed by Hellman (2012),

extending techniques described by Utz (2010) for ensembling discrete Bayesian

21

networks. Bagging and randomization were employed by both Hellman and

Utz. An important observation by Hellman, which is the basis for our work in

Section 3.1, is that an ensemble of LGNs is equivalent to a Gaussian mixture

model (GMM). This results from the fact that a single LGN is equivalent to a

multivariate Gaussian distribution. A GMM, and thus ensemble of LGNs, has

a probability density of the form

f(x) =
k∑

i=1

πiN(x;µi,Σi)

subject to
k∑

i=1

πi = 1

where we have k components, µi and Σi are the mean and covariance of the ith

component, and πi is the prior probability of the ith component.

Although each component of an ELGN is only capable of representing linear

relationships, Hellman demonstrated that Gaussian mixture regression (GMR)

(Sung 2004) could be used to perform nonlinear regression with an ELGN.

Rather than assigning a constant weight to each component, GMR computes

each weight wi based on the value of the probability density function of com-

ponent i at the point X = x where we want to make a prediction:

wi(x) =
πiN(x;µiX,ΣiX)

k∑
j=1

πiN(x;µjX,ΣjX)

. (2.18)

Given a set of query variables Y and a set of evidence X = x, the regression

function m(x) for an ELGN is thus

m(x) = E[Y |X = x] =
k∑

i=1

wi(x)mi(x) (2.19)

where mi(x) is the regression function for the ith component.

22

To account for prediction biases that may be introduced by the use of ran-

domization, Hellman learns an additional constant weight ωi for each compo-

nent, resulting in the final regression function for an ELGN:

m(x) = E[Y |X = x] =
k∑

i=1

wi(x)mi(x)ωi. (2.20)

With randomization, each component of the ensemble is trained on a random

subset of variables. Some combinations of variables may be better predictors

for the set of query variables than others, so it makes intuitive sense to learn

the additional weight ωi for each component. As is recommended by Hellman

et al. (2012), we use ridge regression for learning these weights.

2.6 Dynamic Bayesian Networks

Many domains include a temporal aspect. In such cases, we may be interested in

modeling how a system changes over time. Dynamic Bayesian networks (DBNs)

(Dean and Kanazawa 1989) encode a joint probability distribution over a set

of variables across a number of discrete time slices. In most cases, we make

a first-order Markov assumption, which implies that the state of the system

depends completely on the state of the system at the previous time step. More

formally, for a set of variables X, we have that Ind(X(t+1),X(0:t−1)|X(t)) where

X(T) denotes the set of variables X at a time slice or sequence of time slices T .

Given a set of observations of X at time t, the state of the system for T > t is

independent of the state of the system at T < t.

A DBN is specified by two components: a network representing the ini-

tial distribution over X and a transition network representing the conditional

distribution of X(t+1)|X(t). To represent the distribution of X over multiple

time slices, we unroll the network. To perform unrolling, we start with the

23

initial network, then apply the transition network for as many time steps as we

wish to model. Figure 2.3 shows an example of a DBN consisting of variables

X = (X, Y, Z). The unrolled network for two timesteps is shown in Figure

2.3(c).

X

Y Z

(a) Initial Network

X(t) X(t+1)

Y(t+1)Y(t)

Z(t+1)Z(t)

(b) Transition Network

X(0)

Y(0)

Z(0)

X(1)

Y(1)

Z(1)

X(2)

Y(2)

Z(2)

(c) Unrolled Network

Figure 2.3: The initial and transition networks specifying a DBN over three

variables, and the unrolled network over three timesteps.

24

Chapter 3

Improving Predictions for Nonlinear and

Spatial Data

As we have seen, ensembled linear Gaussian networks have the ability to per-

form nonlinear regression when Gaussian mixture regression is used to compute

component weights during inference. Unfortunately, when traditional bagging

techniques are used to learn ELGNs, they are unable to accurately model non-

linear functions. In Section 3.1, we consider why this is the case and offer a

solution that allows us to better model local relationships within the data.

We have also seen how dynamic Bayesian networks can be used to model

temporal correlations within a dataset and the evolution of a system over time.

In Section 3.2, we demonstrate a new technique for taking into account spatial

correlations when performing inference.

3.1 Weighted Bagging

In this section we aim to improve the prediction accuracy of ELGNs for datasets

that exhibit nonlinear relationships between variables. To accomplish this, we

introduce the use of weighted bagging during the learning process.

By applying the ELGN framework to a given regression problem, we are as-

suming that our dataset D = (x1, ...,xm) with m instances can be modeled with

25

8 6 4 2 0 2 4 6 8
X

10

8

6

4

2

0

2

4

6

8

Y

Figure 3.1: A dataset generated from a three-component GMM and the means

of a 10-network ELGN learned with traditional bagging.

sufficient accuracy by a Gaussian mixture model. Thus we assume that each

instance xi ∈ D is an independent sample produced by some underlying mixture

of Gaussians. When learning an ELGN, we wish to capture information about

the individual components of the generating distribution, including their means,

covariances, and prior probabilities. Unfortunately, when traditional bagging is

used, we cannot distinguish between these different components, resulting in a

model that is incapable of truly representing the underlying multicomponent

distribution.

An an example, consider the dataset shown in Figure 3.1. The data was gen-

erated by a mixture of bivariate Gaussian distributions with three components.

If we apply traditional bagging to learn an ensemble of LGNs, each component

26

network is trained on a random subset of the entire dataset, without regard

for the clusters of datapoints that represent the components of the underlying

distribution. In the plot, the filled circles represent the mean of the equivalent

bivariate normal distribution for each LGN in the ensemble. Observe that these

means tend toward the global mean of the dataset rather than fitting to the

clusters.

In order to accurately model a mixture of Gaussians, we use weighted bag-

ging to generate bagged datasets that are representative of the underlying distri-

bution’s individual components. A form of weighted bagging was first employed

by Shieh and Kamm (2009), where kernel density estimation was used to as-

sign weights to training examples in order to reduce the impact of outliers in

training one-class classifiers. This work was applied to classification tasks by

Biggio et al. (2011) and Segúı et al. (2010). The context here is rather different,

as we aim to faithfully model the components of the generating distribution to

perform regression rather than eliminate noise in classification problems.

In our method, we first use expectation maximization (EM) to estimate

the parameters of a k-component mixture of Gaussians (Dempster et al. 1977;

Bilmes et al. 1998). When the algorithm terminates, we have a m by k weight

matrix w where each weight wij corresponds to the probability that instance

xi was generated by the jth multivariate Gaussian component. In addition to

data weights, EM also returns a set of weights π = (π1, ..., πk) where each πj is

the prior probability of the jth component. In estimating the parameters of the

mixture, the mean and covariance for each component are computed, but these

are not needed to perform weighted bagging and can be discarded.

Once we have estimated the data weights and component priors, we are

ready to learn an ensemble of LGNs. To train each component of the ensemble,

27

we randomly select a column w:j from the weight matrix w with probability πj

for 1 ≤ j ≤ k. Next, we perform weighted sampling with replacement on the

original dataset using w:j to obtain a bagged dataset which is representative of

the jth component of the generating distribution. The procedure for learning

an ELGN with weighted bagging is summarized in Algorithm 3.1.

Algorithm 3.1: Learning an ELGN with weighted bagging

Input: data, k = number of clusters, nNetworks = number of networks
in the ensemble

Output: ensemble: an ELGN
ensemble← Empty ensemble
for i = 1, ..., nNetworks do

means, covariances,w, π ← gaussianEM(data, k)
weights← choose column w:j with probability πj
bag ← sampleWithReplacement(data, weights)
network ← learnLGN(bag)
ensemble.addModel(network)

end

The effect of learning with weighted bagging is to better model local relation-

ships within the data. By running the EM algorithm, we find clusters that can

be modeled well by Gaussian distributions. Then, for each cluster, we learn one

or more LGNs, each of which is equivalent to a Gaussian distribution. Weighted

bagging allows the components of the ensemble to spread throughout the data,

each focusing its learning efforts on a particular cluster. Besides spreading our

models throughout the data, weighted bagging allows us to implicitly represent

the prior probability of each component in the underlying distribution. Each

time a model in the ensemble is learned, we select a column of weights w:j from

the weight matrix with the corresponding prior probability πj. Thus, more

networks are learned around clusters for which the dataset contains a larger

number of instances.

28

Figure 3.2 again shows the dataset from Figure 3.1, but this time we have

learned a 10-network ELGN using weighted bagging. The filled circles repre-

sent the means of the equivalent Gaussian distributions for the networks in the

ELGN. Observe that rather than tending toward the global mean of the data,

the means of the networks are close to one of the cluster centers.

8 6 4 2 0 2 4 6 8
X

10

8

6

4

2

0

2

4

6

8

Y

Figure 3.2: A dataset generated from a three-component GMM and the means

of a 10-network ELGN learned with weighted bagging.

In addition to modeling data generated from a GMM, weighted bagging

allows us to accurately model arbitrary nonlinear functions with Gaussian noise.

Figure 3.3 shows a dataset generated from a noisy sine function. Values for

X were sampled uniformly from the interval (0, 10), then values for Y were

computed as Y = 10 sin(X) + ε where ε ∼ N (0;σ = 2). An ELGN consisting of

32 networks was then learned with EM estimating k = 16 cluster centers. The

29

mean of each network is plotted as a filled circle. We can see that even though

this dataset was generated from a noisy sine function rather than a mixture

of Gaussians, our networks are still spread throughout the data, allowing us

to accurately model local relationships. Using Gaussian mixture regression to

predict Y given values of X, we obtain the regression curve shown in the plot.

From this and the previous example, we can see that learning ELGNs with

weighted bagging can be a powerful means of modeling nonlinear functions. In

Chapter 4, we conduct formal experiments to demonstrate this claim.

4 2 0 2 4 6 8 10 12 14
X

25

20

15

10

5

0

5

10

15

20

Y

Figure 3.3: ELGN trained with weighted bagging on a dataset generated from

a sine function with added Gaussian noise. The regression curve is shown for

predicting Y given X.

30

3.2 Spatial Inference

In Section 2.6, we saw that dynamic Bayesian networks can be used to model

the evolution of a system over time. Since many domains also contain a spatial

aspect, we wish to develop a framework that incorporates spatial correlations

between variables. In contrast to time, space can be multidimensional and in-

fluence can flow in multiple directions. Thus, modeling space is not straightfor-

ward. Work has been done in using Bayesian networks to model spatiotemporal

relationships by Dereszynski and Dietterich (2011) and Tucker et al. (2005),

but these methods have disadvantages. The method presented by Dereszynski

and Dietterich (2011) learns an explicit network structure over all pertinent

locations, and is therefore not scalable for domains with many locations. The

method presented by Tucker et al. (2005) requires the use of a cardinal (grid-

ded) coordinate system, and cannot model correlations between locations at

arbitrary points in space.

In this section, we present a framework for performing inference that takes

into account spatial correlations between variables. Our method makes no as-

sumptions about the choice of coordinate system and can incorporate informa-

tion from arbitrary locations at arbitrary distances when making predictions.

In addition, our method can be used to make predictions at a target location

when observations are made only at other locations and not the target location

itself.

In domains with a spatial aspect, variables can possess correlations with

variables at other points in space. Taking meteorological data as an example,

it is reasonable to expect that variables such as temperature, pressure, and

reflectivity are highly correlated at nearby points in space. As the distance

31

between two points increases, we would expect the correlation to decrease. In

a Bayesian network, direct correlations between variables are represented by a

directed edge from one variable to another. To account for these spatial corre-

lations, our method adds nodes corresponding to observations to the network

prior to inference. To weight observations from different locations, we employ

kernel functions.

3.2.1 A Graphical Perspective of Spatial Inference

To provide an intuitive understanding of how we perform spatial inference, we

will take this section to show how the network is modified given observations of

variables at various points in space. The next section provides the mathematical

details of our method.

Suppose that we have learned a LGN over a set of variables V and now wish

to perform inference for a set of query variables Q at a spatial location l0 given

a set of evidence E. Each piece of evidence E ∈ E must correspond to a variable

V ∈ V, but may be from a location other than l0. For each piece of evidence

E corresponding to a variable V , we add a node V ′ to the network structure as

well as a directed edge from V ′ to the children of V . Nodes added in this way

have a mean and variance equal to that of the corresponding variable.

As an example, consider the network shown in Figure 3.4(a). Suppose we

wish to perform inference at location l0 and that our set of evidence consists of

observations of A at locations l0, l1, and l2; B at location l1; and C at location

l1. If we add nodes and edges corresponding to the set of evidence as described

above, we obtain the network structure shown in Figure 3.4(b). The subscripts

for variables shown in the resulting network correspond to the locations at which

the variables were observed. Note that because C has no children in the original

32

network, C1 is unconnected and therefore has no impact during inference. Also

note that although A is observed at l0, no additional node is added for this

piece of evidence because A0 is already in the network. Of course, we will still

condition on this evidence when performing inference.

A

C

B

D

(a) Original Network

A0

C0

A1 A2 B0

D0

B1 C1

(b) Network with Spatial Evidence

Figure 3.4: Adding evidence nodes to a network to perform spatial inference.

Now that we have an augmented network structure that incorporates ob-

servations from other points in space, we can simply use the algorithm from

(Shacter and Kenley) (described in section 2.5.1) to convert the network to a

multivariate Gaussian distribution. We then condition on the set of evidence E

and marginalize over any irrelevant variables to obtain predictions for the query

set Q.

33

3.2.2 Mathematical Considerations of Spatial Inference

As we have seen previously, the CPD for a node Y with a set of parents X =

(X1, ..., Xk) takes the following form in a LGN:

P (Y |X) = N
(
µY ;σY

2
)

(3.1)

where

µY = β0 + βTX = β0 +
k∑

i=1

βiXi. (3.2)

For each parent variable Xi for which we have observations at one or more

points in space, we modify the equation for µY so that

µY = β0 +
k∑

i=1

βiX̃i (3.3)

where

X̃i =

n∑
j=0

XijK(Xi0, Xij)

n∑
j=0

K(Xi0, Xij)
. (3.4)

In Equation (3.4), Xi0 is defined as variable Xi at the location where infer-

ence is being performed, Xij refers to an observation of variable Xi at location

j, and K is a kernel function whose value depends on the spatial locations of

the two input variables. The above equation for X̃i takes the form of what is

commonly known as the Nadaraya-Watson kernel estimator (Nadaraya 1964),

(Watson 1964). This is essentially a weighted average of observed values of Xi

at various points in space.

Expanding (3.3) gives us the following:

µY = β0 +
k∑

i=1

ni∑
j=0

βijXij (3.5)

where

βij =
K(Xi0, Xij)

ni∑
l=0

K(Xi0, Xil)
(3.6)

34

and ni is the number of observations at other points for Xi. Collecting the βij

and Xij terms into vectors β̃ and X̃, respectively, we have

µY = β0 + β̃T X̃ (3.7)

which is of the form required for the mean of a variable in a LGN.

It is worth noting that Equation 3.4 is closely related to the concept of kernel

regression. In kernel regression, we make a prediction by taking a weighted sum

of values, where the weights are computed with a kernel function. In our case,

the values in the weighted sum correspond to observations at spatial locations.

As an alternative to the simple kernel estimator used here, locally weighted

regression (LWR) (Cleveland 1979; Atkeson et al. 1999) could offer the ability

to model complex nonlinear relationships between locations. However, LWR

is a nonparametric method that requires use of the training data to perform

regression. By using Equation 3.4 with observations to make predictions, we

avoid the need to store and reference the training data.

Just as we added a term corresponding to each observation in our compu-

tation of µY , we must also add entries to the covariance matrix ΣXX for each

observation. Given the independence properties of Bayesian networks and the

algorithm to convert a network to a multivariate Gaussian distribution, this

turns out to be straightforward. In the previous section, we only added edges

between evidence nodes and their children. Thus, all evidence nodes are con-

ditionally independent of the ancestors of their children until the children are

conditioned upon. The corresponding entries in the augmented version of ΣXX,

which we refer to as ΣX̃X̃, are thus zero. We set the variance for an evidence

35

node corresponding to a variable V equal to σV
2. After taking into account

observations at other points, the variance of Y with parents X̃ is then

σY
2 = σ2 + β̃TΣX̃X̃ β̃. (3.8)

36

Chapter 4

Empirical Evaluation of Weighted Bagging and

Spatial Inference

As discussed in Section 3.1, the use of weighted bagging to learn ELGNs should

allow us to accurately model arbitrary nonlinear functions. In this chapter,

we empirically demonstrate the efficacy of weighted bagging in achieving this

end. We begin by analyzing the performance of ELGN on a synthetic dataset

with clear nonlinear relationships, then move on to a very different real-world

dataset obtained from the UCI Machine Learning Repository (Bache and Lich-

man 2013). For each experiment, we compare ELGN with weighted bagging to

Hellman’s ELGN (which uses traditional bagging) and to least-squares linear

regression or persistence. In all cases, we find that ELGN with weighted bag-

ging is able to perform as well as or better than the other models. In addition

to evaluating ELGN with weighted bagging, we also assess spatial inference in

the weather forecasting domain.

4.1 The Curvy Dataset

Our first experiment is intended to convince the reader that ELGNs are indeed

capable of accurately modeling arbitrary nonlinear functions. The dataset for

this experiment, which we call the Curvy dataset, is a set of instances that

37

we artificially generated and consists of three variables, X, Y , and Z. To

produce the dataset, we uniformly sampled X and Y in the range (−10, 10),

then computed

f(X, Y) = e−
X2

10
−Y 2

20 − e−
(X−1)2

10
− (Y −1)2

5 . (4.1)

We then added Gaussian noise to produce Z so that Z = f(X, Y) + ε where

ε ∼ N (0;σ = 0.05). The plot of f(X, Y) is shown in Figure 4.1(a). The Curvy

dataset consists of 2000 instances. In our experiments, we randomly select 1000

instances from Curvy for training and use the remaining instances for test-

ing. For ELGN, we vary the number of clusters found by EM (k), the number

of networks per ensemble (nNetworks), and the number of variables per net-

work (nV ariables). For Hellman’s ELGN, we vary nNetworks and nV ariables.

Each experiment is run 30 times and performance is evaluated using root mean

squared error (RMSE).

Figure 4.2 shows the performance of ELGN on the Curvy dataset. RMSE,

indicated by color, is plotted against the number of networks per ensemble and

the number of clusters. Figure 4.2(a) shows results for two variables per network

while 4.2(b) shows results for three variables per network. In both plots, we see

that performance is worst when k or nNetworks is small and improves as both

k and nNetworks increase. For nNetworks < k, we expect poor performance

since there is not a network learned for every cluster found; therefore, it makes

little sense to set nNetworks < k. When k = 1, we are only able to represent

linear relationships, so performance is poor on the Curvy dataset. As we increase

k, we have more flexibility to model nonlinear relationships, so performance

improves. When k becomes very large, we expect performance to worsen due

to overfitting, but this has not occurred within the range of parameters that we

considered. Increasing nNetworks has the effect of increasing the number of

38

X

10
5

0
5

10Y
10 5 0 5 10

Z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(a) Underlying function of the Curvy dataset

X

1510505
10

15Y
15 10 5 0 5 10 15

Z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

(b) The Curvy training data

Figure 4.1: The Curvy dataset
39

0 5 10 15 20 25 30
k

0

10

20

30

40

50

60

nN
et

w
or

ks

RMSE for nVariables=2

0.1167

0.1197

0.1227

0.1257

0.1287

0.1317

0.1347

0.1377

0.1407

0.1437

0 5 10 15 20 25 30
k

0

10

20

30

40

50

60

nN
et

w
or

ks

RMSE for nVariables=3

0.0792

0.0864

0.0936

0.1008

0.1080

0.1152

0.1224

0.1296

0.1368

0.1440

Figure 4.2: RMSE for the Curvy dataset as the number of clusters and number

of networks per ensemble are varied. Dots in the plot correspond to parameter

combinations that were tested. Crosses show statistically significant parameter

settings.

40

X

10
5

0
5

10Y
10 5 0 5 10

Z

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Figure 4.3: Regression surface for the Curvy dataset produced by ELGN with

weighted bagging (k=24, nNetworks=32).

41

models learned around each cluster, which we expect to produce a smoothing

effect and help to reduce overfitting.

In Figure 4.3 we show a plot of the regression surface produced by an ELGN

with k = 24 and nNetworks = 32. By visual inspection, it appears that ELGN

provides a relatively accurate model for f(X, Y), the underlying function that

produced our dataset.

0 10 20 30 40 50 60 70
nNetworks

0.128

0.130

0.132

0.134

0.136

0.138

0.140

0.142

RM
SE

Performance of Hellman's ELGN

2
3
L.R.

Figure 4.4: RMSE of Hellman’s ELGN on the Curvy dataset as the number of

networks per ensemble is varied. Each curve corresponds to a different value for

nV ariables. The performance of linear regression is also shown for comparision.

Standard error is represented by the shaded areas.

Figure 4.4 shows the performance of Hellman’s ELGN on the Curvy dataset.

Since traditional bagging is used, the only parameters that we vary are nNetworks

and nV ariables. To provide a comparison, we also used linear regression to

42

model the Curvy dataset. We see from the plot that Hellman’s ELGN performs

similarly to linear regression, indicating that ELGN has difficulty capturing

nonlinear relationships when traditional bagging is used.

In contrast to Hellman’s ELGN, Figure 4.2 provides evidence that ELGN

with weighted bagging has the ability to capture nonlinear relationships. To for-

mally compare the use of traditional and weighted bagging for learning ELGN,

we use a two-sample one-tailed t-test with a significance level of α = 0.05. We

use Bonferroni correction to reduce the significance level in order to account for

statistical anomalies that could result from testing multiple sets of parameters.

With this method, we find that ELGN with weighted bagging performs signif-

icantly better than Hellman’s ELGN for most parameter settings when k > 2

and nNetworks > 4. Significant parameter settings are marked with a cross in

Figure 4.2.

4.2 The Wine Quality Dataset

In our next experiment, we use ELGN to learn on the Wine Quality dataset

(Cortez et al. 2009) obtained from the UCI Repository. We chose to focus on

the red wine portion of the dataset, which contains 1599 total instances. Each

instance consists of eleven real-valued attributes describing physical characteris-

tics of a particular wine and a quality attribute, which is a score in the range 0.0

to 10.0. We wish to predict the quality of a wine given its physical attributes.

As in the previous experiment, we compare ELGN with weighted bagging to

Hellman’s ELGN and linear regression. In each of 30 runs, we train on 1000

randomly selected instances and use the remainder for testing.

43

Figure 4.5 shows results for ELGN with weighted bagging. As we expect for

any dataset, we have worse performance in the lower right corner of the plot,

when nNetworks < k. However, we see fairly consistent performance across

the rest of each plot. This seems to indicate that the dataset contains nearly

linear relationships between variables, as increasing k does not provide any

additional power to model the data. For fixed values of k and nNetworks, we

see that performance generally improves as the number of variables per network

is increased. This is similar to what we observed with the Curvy dataset.

Results for Hellman’s ELGN and linear regression are shown in Figure 4.6.

Both performed similarly to ELGN with weighted bagging, supporting the hy-

pothesis that the relationships in the dataset are mostly of a linear nature. Like

ELGN with weighted bagging, we find that the performance of Hellman’s ELGN

improves as the number of variables per network is increased.

For the Wine Quality dataset, ELGN with weighted bagging offers no advan-

tage in terms of prediction accuracy over Hellman’s ELGN or linear regression.

If the relationships within the data are truly linear, we cannot expect to have

significantly better performance than a linear model. However, the results of

this experiment are still important because they demonstrate the robustness of

ELGN. Provided that the number of networks per ensemble is sufficiently large,

it seems that ELGN is resistant to overfitting as k is increased. Thus, ELGN

with weighted bagging can provide an accurate model for linear and nonlinear

datasets alike.

44

1 2 3 4 5 6 7 8
k

1

2

3

4

5

6

7

8

nN
et

w
or

ks

RMSE for nVariables=3

0.745

0.770

0.795

0.820

0.845

0.870

0.895

0.920

0.945

0.970

1 2 3 4 5 6 7 8
k

1

2

3

4

5

6

7

8

nN
et

w
or

ks

RMSE for nVariables=8

0.680

0.716

0.752

0.788

0.824

0.860

0.896

0.932

0.968

1.004

1 2 3 4 5 6 7 8
k

1

2

3

4

5

6

7

8

nN
et

w
or

ks

RMSE for nVariables=11

0.657

0.687

0.717

0.747

0.777

0.807

0.837

0.867

0.897

0.927

Figure 4.5: RMSE for the Wine Quality dataset as the number of clusters and

number of networks per ensemble are varied.

45

0 5 10 15 20 25 30 35
nNetworks

0.60

0.65

0.70

0.75

0.80

0.85

RM
SE

Performance of Hellman's ELGN

3
8
11
L.R.

Figure 4.6: RMSE of Hellman’s ELGN on the Wine Quality dataset as the

number of networks per ensemble is varied. Each curve corresponds to a different

value for nV ariables. The performance of linear regression is also shown for

comparision.

46

4.3 The Weather Research and Forecasting

(WRF) Dataset

Weather forecasting is a complex domain that contains both spatial and tem-

poral relationships among variables. The ability to predict reflectivity is crucial

in helping meteorologists determine how a storm will develop over time. This

can allow meteorologists to warn the public about dangerous storms, prevent-

ing property damage and the loss of life. In this section, we apply ELGN to

predict reflectivity for data obtained from the Center for Analysis and Predic-

tion of Storms (CAPS) (Clark et al. 2012). The dataset is from May 20, 2013

and is centered over the state of Oklahoma. Storms that day produced several

tornadoes, including a destructive EF5 tornado that passed through the city of

Moore, Oklahoma. The entire dataset consists of observations of approximately

200 variables at time slices spaced five minutes apart over the course of 24 hours.

The data correspond to gridded spatial locations 500 meters apart.

Our task for the following experiments is to predict maximum composite re-

flectivity (CREFD MAX) for the next time slice given observations of variables

at the current time slice. Since we must model temporal relationships, we learn

a dynamic ensemble of LGNs (DELGN). Dynamic Bayesian networks, discussed

in Section 2.6, can be trivially combined with LGNs. Since the dataset contains

a large number of variables, we chose eight in addition to CREFD MAX to train

our networks. To aid us in selecting variables, we examined partial and Spear-

man rank correlations with CREFD MAX at the following time step and chose

variables that were well-correlated. Selected variables with brief descriptions

are shown in Table 4.1.

47

Variable Description

CREFD MAX Maximum derived composite radar reflectivity

REFD MAX Maximum derived radar reflectivity

REFDM10C MAX Maximum derived radar reflectivity at -10C

REFL 10CM Radar reflectivity with lambda=10cm

W DN MAX Maximum downdraft wind speed

W UP MAX Maximum updraft wind speed

GRPL05 MAX Graupel mass 0-5 km above ground

PRATE Precipitation rate

LTG3 MAX Maximum lightning threat

Table 4.1: Variables from the WRF dataset used to train DELGN.

Due to the large size of the dataset, we created a training set by sampling

from multiple time slices throughout the day at random spatial locations. Re-

flectivity is highly skewed in the original dataset, with approximately 90% of

the instances having a CREFD MAX value at zero. For this reason, we used

a biased sampling technique to produce the training set so that approximately

50% of the instances have CREFD MAX > 0. In total, the training set contains

2000 paired instances (where each pair consists of instances from neighboring

time slices).

4.3.1 Evaluation of DELGN with Weighted Bagging

In this experiment, we evaluate the performance of DELGN with weighted

bagging in the WRF domain. Our test set consists of 1000 paired instances

sampled from time slices at 20:10 GMT and 20:15 GMT at random spatial

48

locations. We compare DELGN with weighted bagging to a persistence predic-

tor and Hellman’s DELGN. The persistence predictor simply uses the value of

CREFD MAX at the current timestep as its prediction for CREFD MAX at

the next timestep. In Figure 4.7 we can see that the performance of DELGN

generally seems to improve as we increase the number of variables per network.

Interestingly, it also appears that we are modeling somewhat nonlinear relation-

ships within the data. If we look specifically at the plot for nV ariables = 8, we

can see that some of the best performances occur when k is set to two, three,

or four. This is an indication that a more flexible nonlinear model is capable of

providing more accurate predictions than a strictly linear model.

The results of Hellman’s DELGN and a persistence predictor are shown in

Figure 4.8. From the plot, it appears that DELGN with traditional bagging

performs similarly to or slightly better than persistence. To compare DELGN

with weighted bagging to Hellman’s DELGN and persistence, we again use

a two-sample one-tailed t-test with an initial significance level α = 0.05 and

Bonferroni correction. We find that DELGN with weighted bagging performs

significantly better than persistence for five of our parameter settings, but not

significantly better than Hellman’s DELGN. Statisitically significant parameter

settings are marked with a cross in Figure 4.7.

To provide an intuitive idea of how DELGN with weighted bagging per-

forms, Figure 4.9 shows plots of composite reflectivity at 20:15 GMT. Figure

4.9(a) shows the actual reflectivity at that time while Figure 4.9(b) shows the

predicted reflectivity for DELGN with weighted bagging given observations for

the previous time step. By visual inspection, DELGN appears to provide reason-

able predictions for reflectivity. One important thing to note in this example is

that DELGN rarely provides predictions of zero reflectivity. At locations where

49

1 2 3 4 5 6 7 8
k

2

4

6

8

10

12

14

16

nN
et

w
or

ks

RMSE for nVariables=5

3.9

4.8

5.7

6.6

7.5

8.4

9.3

10.2

11.1

12.0

1 2 3 4 5 6 7 8
k

2

4

6

8

10

12

14

16

nN
et

w
or

ks

RMSE for nVariables=8

3.4

4.4

5.4

6.4

7.4

8.4

9.4

10.4

11.4

12.4

Figure 4.7: RMSE for the WRF dataset as the number of clusters and number

of networks per ensemble are varied. Crosses show parameter settings that are

statistically significant compared to persistence.

50

0 2 4 6 8 10 12 14 16
nNetworks

3.0

3.5

4.0

4.5

5.0

RM
SE

Performance of Hellman's ELGN

5
8
Persistence

Figure 4.8: RMSE of Hellman’s DELGN on the WRF dataset as the number

of networks per ensemble is varied. Each curve corresponds to a different value

for nV ariables. The performance of persistence is also shown for comparision.

51

the actual reflectivity is zero, DELGN predicts small nonzero values. For fu-

ture work, a two-part prediction algorithm could apply a classifier to determine

whether the reflectivity is nonzero, and if so, apply DELGN; otherwise, it would

predict zero.

0 200 400 600 8000

100

200

300

400

500

600

700

800

(a) Actual Reflectivity

0 200 400 600 8000

100

200

300

400

500

600

700

800

(b) Predicted Reflectivity

Figure 4.9: DELGN’s prediction of CREFD MAX for k=4 and nNetworks=8.

52

4.3.2 Evaluation of Spatial Inference

In this experiment, we investigate whether the use of spatial inference improves

prediction accuracy in the WRF domain. As in the previous experiment, we

learn a DELGN using weighted bagging on the WRF training set described ear-

lier. Given observations at 20:20 GMT, we wish to predict composite reflectivity

at 20:25 GMT at gridded locations spaced 8 km apart. We make predictions

using both normal and spatial inference and compare the two to determine if

spatial inference offers an advantage.

Given our spatial inference framework described in Section 3.2, we must

select a kernel function to weight evidence from nearby locations. For this

experiment, we choose the squared exponential kernel, which takes the following

form (Rasmussen 2006):

K(d) = exp

(
− d

2

2l2

)
where d is the distance between two locations and l is the characteristic length-

scale, a user-defined parameter. We set l to 500 m for this experiment, which is

the distance between adjacent grid points in the WRF dataset. This choice for l

seems reasonable since reflectivity values can be substantially different between

locations a few kilometers apart. Due to the computational resources required,

we use only the observations at the target location and four adjacent grid points

to perform spatial inference.

For this experiment, we select the four sets of parameters with the best

performance from the previous experiment for training DELGN with weighted

bagging. Figure 4.10 shows the average predicted reflectivity at grid points

spaced 8 km apart for 20:25 GMT when DELGN was trained with parameters

k = 2, nNetworks = 16, and nV ariables = 8. By visual inspection, there does

53

k nNetworks nVariables
RMSE

(Normal)

RMSE

(Spatial)

Statistically

significant?

2 16 8 4.27 4.15 No

3 12 8 4.47 4.68 No

3 16 8 4.26 4.33 No

2 12 8 4.88 4.17 No

Table 4.2: Results for predicting composite reflectivity with and without spatial

inference.

not appear to be much difference in the predictions made with and without

spatial inference.

Results of our spatial inference experiments are summarized in Table 4.2.

Compared to normal inference, our results for spatial inference are not signif-

icantly better. The mean RMSE of a persistence predictor for this test set is

4.50. We hypothesize that the choice of kernel and kernel parameters have a

nontrivial impact on the performance of spatial inference. For our experiments,

we chose a commonly used kernel function and manually set the length-scale pa-

rameter. Further experimentation is required to determine whether other kernel

and parameter choices can improve the prediction accuracy of spatial inference.

54

0 10 20 30 40 50
0

10

20

30

40

50

(a) Actual Reflectivity

0 10 20 30 40 50
0

10

20

30

40

50

(b) Normal Inference

0 10 20 30 40 50
0

10

20

30

40

50

(c) Spatial Inference

Figure 4.10: Visual comparison of normal and spatial inference.

55

Chapter 5

Conclusions and Future Work

We presented weighted bagging for learning ELGNs, which allows us to better

model local relationships for clusters within the data. When we use weighted

bagging for learning and Gaussian mixture regression for inference, ELGNs

are capable of accurately modeling nonlinear relationships. We also presented

spatial inference for Bayesian networks, which allows us to model spatial corre-

lations by taking into account observations at a nearby locations.

Once potentially interesting avenue for research would be the application

of boosting (Freund and Schapire 1995) as an alternative to weighted bagging

for learning ELGNs. For each component learned in the ensemble, boosting

re-weights the training instances according to the performance of previously

learned models. Though AdaBoost was originally developed for classification

tasks, training examples could be re-weighted based on an error metric such as

RMSE. One disadvantage of boosting is that it only applies to supervised learn-

ing problems and is only applicable if we have a specific target variable in mind

when learning an ELGN. Nevertheless, boosting would provide an interesting

comparison.

For our spatial inference experiments, we chose a kernel along with a length

scale parameter that seemed reasonable for the data we were working with. Fur-

ther investigation of different kernel functions and parameter settings is needed

56

to take full advantage of our spatial inference framework. For example, a ker-

nel that takes direction into account may be useful in the weather forecasting

domain since storms tend to move in certain patterns. Rather than choosing

parameters, it would be advantageous to devise algorithms for automatically

learning kernel parameters from training data.

Gaussian processes (Rasmussen 2006) are a powerful means to modeling

nonlinear data over random fields, including time and space. The unification of

Bayesian networks with Gaussian processes would give us a model that is both

easy to interpret in terms of dependence relationships and capable of performing

nonlinear regression in spatiotemporal domains. In contrast to linear Gaussian

networks, however, Gaussian processes are a nonparameteric kernel method

and require storage of the training data to perform inference. In domains where

Gaussian processes are already commonly used, the Bayesian network aspect of

this hybrid model could provide important insights about how variables in the

domain are related.

57

Reference List

Atkeson, C. G., A. W. Moore, and S. Schaal, 1999: Locally weighted learning.
Artificial Intelligence Review .

Baba, K., R. Shibata, and M. Sibuya, 2004: Partial correlation and condi-
tional correlation as measures of conditional independence. Australian & New
Zealand Journal of Statistics , 46, 657–664.

Bache, K. and M. Lichman, 2013: UCI machine learning repository.
URL http://archive.ics.uci.edu/ml

Biggio, B., I. Corona, G. Fumera, G. Giacinto, and F. Roli, 2011: Bagging clas-
sifiers for fighting poisoning attacks in adversarial classification tasks. Multiple
Classifier Systems , Springer, 350–359.

Bilmes, J. A. et al., 1998: A gentle tutorial of the em algorithm and its ap-
plication to parameter estimation for gaussian mixture and hidden markov
models. International Computer Science Institute, 4, 126.

Breiman, L., 1996: Bagging predictors. Machine Learning , 24, 123–140.

—, 2001: Random forests. Machine Learning , 45, 5–32.

Clark, A. J., S. J. Weiss, J. S. Kain, I. L. Jirak, M. Coniglio, C. J. Melick,
C. Siewert, R. A. Sobash, P. T. Marsh, A. R. Dean, et al., 2012: An overview
of the 2010 hazardous weather testbed experimental forecast program spring
experiment. Bulletin of the American Meteorological Society , 93.

Cleveland, W. S., 1979: Robust locally weighted regression and smoothing scat-
terplots. Journal of the American Statistical Association, 74, 829–836.

Cooper, G. F., 1990: The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial Intelligence, 42, 393–405.

Cortez, P., A. Cerdeira, F. Almeida, T. Matos, and J. Reis, 2009: Modeling
wine preferences by data mining from physicochemical properties. Decision
Support Systems , 47, 547–553.

Dean, T. and K. Kanazawa, 1989: A model for reasoning about persistence and
causation. Computational Intelligence, 5, 142–150.

Dempster, A. P., N. M. Laird, D. B. Rubin, et al., 1977: Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical
Society , 39, 1–38.

58

Dereszynski, E. W. and T. G. Dietterich, 2011: Spatiotemporal models for data-
anomaly detection in dynamic environmental monitoring campaigns. ACM
Transactions on Sensor Networks (TOSN), 8, 3.

Dietterich, T. G., 2000: Ensemble methods in machine learning. Multiple Clas-
sifier Systems , Springer, 1–15.

Fast, A. S., 2010: Learning the structure of Bayesian networks with constraint
satisfaction. Open Access Dissertations , 182.

Fisher, R. A. et al., 1915: Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population. Biometrika, 10,
507–521.

Freund, Y. and R. E. Schapire, 1995: A decision-theoretic generalization of on-
line learning and an application to boosting. Computational Learning Theory ,
Springer, 23–37.

Friedman, N. and D. Koller, 2000: Being Bayesian about network structure.
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelli-
gence, Morgan Kaufmann Publishers Inc., 201–210.

Geiger, D. and D. Heckerman, 1994: Learning gaussian networks. Proceedings of
the Tenth International Conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers Inc., 235–243.

Geiger, D., T. Verma, and J. Pearl, 1990: Identifying independence in Bayesian
networks. Networks , 20, 507–534.

Heckerman, D. and D. Geiger, 1995: Learning Bayesian networks: a unification
for discrete and gaussian domains. Proceedings of the Eleventh Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc.,
274–284.

Heckerman, D., D. Geiger, and D. M. Chickering, 1995: Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learning ,
20, 197–243.

Hellman, S., 2012: Learning ensembled dynamic Bayesian networks . Master’s
thesis, University of Oklahoma.

Hellman, S., A. McGovern, and M. Xue, 2012: Learning ensembles of continuous
Bayesian networks: An application to rainfall prediction. Intelligent Data
Understanding (CIDU), 2012 Conference on Intelligent Data Understanding ,
IEEE, 112–117.

59

Koller, D. and N. Friedman, 2009: Probabilistic Graphical Models: Principles
and Techniques . MIT Press.

Mardia, K., J. Kent, and J. Bibby, 1979: Multivariate Analysis . Probability and
Mathematical Statistics, Academic Press.

Morrison, D. F., 1967: Multivariate Statistical Methods . McGraw-Hill Book.

Pearl, J., 1985: Bayesian networks: A model of self-activated memory for evi-
dential reasoning.

—, 1986: Fusion, propagation, and structuring in belief networks. Artificial
Intelligence, 29, 241 – 288.

—, 1988: Probabilistic reasoning in intelligent systems: networks of plausible
inference. Morgan Kaufmann.

Rasmussen, C. E., 2006: Gaussian Processes for Machine Learning . MIT Press.

Schwarz, G. et al., 1978: Estimating the dimension of a model. The Annals of
Statistics , 6, 461–464.

Segúı, S., L. Igual, and J. Vitrià, 2010: Weighted bagging for graph based
one-class classifiers. Multiple Classifier Systems , Springer, 1–10.

Shachter, R. D. and C. R. Kenley, 1989: Gaussian influence diagrams. Manage-
ment Science, 35, 527–550.

Shieh, A. D. and D. F. Kamm, 2009: Ensembles of one class support vector
machines. Multiple Classifier Systems , Springer, 181–190.

Spirtes, P., C. N. Glymour, and R. Scheines, 2000: Causation, Prediction, and
Search, volume 81. MIT Press.

Sung, H. G., 2004: Gaussian mixture regression and classification. Ph.D. thesis,
Rice University.

Tsamardinos, I., L. E. Brown, and C. F. Aliferis, 2006: The max-min hill-
climbing Bayesian network structure learning algorithm. Machine Learning ,
65, 31–78.

Tucker, A., V. Vinciotti, X. Liu, and D. Garway-Heath, 2005: A spatio-temporal
Bayesian network classifier for understanding visual field deterioration. Arti-
ficial Intelligence in Medicine, 34, 163–177.

Utz, C. M., 2010: Learning ensembles of Bayesian network structures using
random forest techniques . Master’s thesis, University of Oklahoma.

Wermuth, N., 1980: Linear recursive equations, covariance selection, and path
analysis. Journal of the American Statistical Association, 75, 963–972.

60

