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Abstract

Many real world domains, such as severe weather events, are inherently spatiotem-

poral in nature. Each year severe weather induced by thunderstorms causes property

damage, injury, and loss of life. Convectively induced turbulence is a hazard to air-

lines, which at best requires rerouting flight paths, but can lead to significant delays

and even structural damage to the aircraft and loss of life. Tornados are possibly

the most impressive and destructive potential product of thunderstorms. Domains

such as severe weather require a system that is capable of representing and reasoning

about complex spatiotemporal data. The dynamics of attributes and relationships

varying both spatially and temporally provides a unique set of challenges.

Spatiotemporal Relational Probability Trees (SRPTs) are a type of decision-tree

that reason with complex spatiotemporal relational data. High level objects and

their relationships are extracted from the raw low level dataset. This allows the

SRPTs to reason in more abstract terms and to use relationships that are critical to

understanding how things interact. Combining SRPTs into random forests creates

a Spatiotemporal Relational Random Forest (SRRF), which is capable of capturing

more varied and complex concepts than single trees.

This thesis introduces significant enhancements to SRPT that increases its ability

to reason about spatiotemporal data. Often, high-level objects come from scalar-

or vector-valued two- or three-dimensional temporal regions called fields. Previously

these fields were discarded after the generation of high-level objects. We add the

ability to reason about both the objects and the fields within the objects. These

fields allow us to add the ability to ask question about the gradient, divergence, and

curl of those fields. We also add the ability to recognize the shape of fields, allowing

for questions regarding change of shape and orientation. Lastly, we add the ability to

reference a single object within the data, and simple boolean operations for combining

two questions. These additions are validated using SRRFs on a several real-world.

The SRRF algorithm learns robust classifiers on each of the domains, either out-

performing the SRRF without fields or performing equally well. Analysis of the forests

xi



produced showed that features the SRRF algorithm used were consistent with mete-

orological theories. We show that the addition of fields can be a valuable resource to

the SRRF algorithm for spatiotemporal analysis.
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Chapter 1

Introduction to Relational Learning using

Spatiotemporal Relational Probability Trees and

Forests

Our world is filled with objects such as people, buildings, vehicles, all of which are in

relationships with each other. For example,‘Bob is in his Car’ or ‘Jill works at ABC

Construction.’ Many real-world domains are readily, and intuitively, represented

using the relational nature of the world. Frequently these relations are not stationary

in time, Bob is not always in his Car and Jill might quit her job. Furthermore, much

of the real-word is located in space, such as the location of Jill’s office building, and

yet others move through space, such as the location of Bob’s car. But until recently

research has been focused on flattened representations of the data that ignore the

inherent relations. Instead the algorithms use a propositional model of the data such

as is done by association rules in sales data (Agrawl and Srikant 1994).

Of particular interest to us is using decision trees to study relational data. One

benefit of decision trees is that they are human readable. Human readability allows

for verification of the knowledge by domain experts and for sanity checks during

initial experiment setup. Sanity checking is very important as the algorithms simply

do what they are told regardless of what one intends for them to do. Several times

during early phases of this research the classifiers were able to essentially cheat by

finding patterns in the data that were a result of the processing and conversion of raw

data to a useable form. One such example comes from our work classifying storms as

potentially tornadic, where the algorithm picked up on the duration of the storm as

important. While that was supported by the data provided, it wasn’t answering the

question in a useful manner for prediction.

Many techniques exist for learning relational models. Recent work has expanded

the ability of these relational models to include changes in time and space. While there

are interesting static relational datasets, many other fascinating datasets exist that

1



are temporal, such as severe weather. Temporally varying data adds a new dimension

of difficulty to creating accurate models. However, it also provides useful information

that can be leveraged (Sharan and Neville 2008). With the addition of spatial data

one is able to represent an even larger number of potential datasets. The need to

reason on relational data that varies temporally, spatially, and spatiotemporally has

led to the active field of research into spatiotemporal relational models (McGovern

et al. 2008).

Decision trees are not a new field of research. Early use of decision trees worked

solely with propositional data. Quinlin’s C4.5 algorithm (Quinlan 1993), a statistical

classifier, has become a cornerstone of decision trees in machine learning. Neville

et al. (2003) introduced relational probability trees (RPT) built upon probability

estimation trees (PET) (Provost and Domingos 2000) by adding the ability to use

relations in the data. RPTs were extended yet further by McGovern et al. (2008) to

leverage temporal and spatial aspects of the data creating spatiotemporal relational

probability trees (SRPT). However, the early SRPT algorithm was limited on its

ability to ask spatial questions, containing more temporal distinctions than spatial.

Many models take a biased position on modeling the spatiotemporal aspects of

data, resulting in models that are focused primarily on the spatial or temporal fea-

tures alone. This thesis focuses on improving the modeling of the combination of

spatial and temporal features. By creating a model that allows for equal ability to

make temporal, spatial, and spatiotemporal distinctions, we improve the ability of

the spatiotemporal relational models to accurately model real world problems. We

choose to extend SRPT’s because of the benefits of decision trees and the effective-

ness of the SRPT algorithm for classifying spatiotemporal relational data (McGovern

et al. 2008; Supinie et al. 2009; Gagne II et al. 2010; McGovern et al. 2010).

The major contribution to the SRPT algorithm is keeping the low level fields with

the high level objects to create fielded objects. The retention of fields allows for two

new types of distinctions, shape based and field functions. The shape of a field is

detected and can be used as an attribute to reason upon using one of three questions:

Does the field have a given primitive shape? Does the field’s shape change from one

primitive shape to another primitive shape? Does the major axis of the shape tilt

by a given amount? Three field functions are applied to the fields, gradient to scalar

fields and curl and divergence to vector fields. In addition to the new field based

distinctions, we added a distinction that selects a single object and applies another

2



distinction to only that object, and a conjugate boolean distinction that combines

two distinctions with boolean-and or boolean-or.

3



Chapter 2

Literature Review of Propositional, Relational,

and Spatiotemporal Relational Data Mining

Algorithms

As technology advances and digital storage becomes increasingly inexpensive, a mas-

sive amount of data is being collected and stored. The amount of data has quickly

surpassed what traditional long-hand techniques can process, thus requiring new au-

tomated methods of data processing. This has given rise to the field of Knowledge

Discovery and Data Mining (KDD) that since its inception has been a fast and con-

tinuously growing area of study.

Blockeel (1998) presented the idea that KDD is composed of three subtasks: pre-

processing the data, application of an algorithm, and post-processing the algorithms

result. The first step of pre-processing the data takes the raw data, in whatever

form it is in, and transforms it into a form useable by the data mining algorithm

that will be used. Next a data mining algorithm is applied to the pre-processed data

producing some form of results. The results from the algorithm are post-processed

into the most useable form. In this review, we focus on data ming techniques. Data

mining techniques can be divided into to two categories, descriptive and predictive.

Descriptive techniques try to characterize as much of the data as possible by finding

patterns and associations within it. Predictive techniques try to form a hypothesis

that correctly classifies all the data. Since the work in this thesis is predictive, we

focus the review on the this aspect of data mining.

KDD has a long and rich history with a wide variety of techniques that approach

the predictive problem from different angles. Figure 2.1 is a hierarchy of some of

the major algorithms for predictive data-mining. The algorithms fall into two broad

categories, propositional and relational. Propositional algorithms work on datasets

that are easily visualized as a single table where each row an example and the columns

are the attributes. Within the propositional framework several splits formed as some
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Data Mining 
Algorithms

Propositional Multi-Relational

Association Rules

Naïve Bayes
Inductive Logic 

Programming (ILP)

Trees

Relational Dependency 
Networks (RDN)

First Order Inductive 
Logic (FOIL)

Top-Down Induction of 
First Order Logical 

Decision Trees (TILDE)

Probabilistic Markov 
Networks (PMN)

Relational Probability 
Trees (RPT)

Spatio-Temporal 
Relational Probability 

Trees (SRPT)

Spatio-Temporal 
Relational Random 

Forests (SRRF)

Networks

Decision Trees

C4.5

Probability Estimation 
Trees (PET)

Bayesian Networks

Classification Rules

Inductive Classification 
Logic (ICL)

Probablistic 
Relational Models

Relational Bayes 
Networks (RBN)

Multi-Relational 
Decision Tree Learning 

(MRDTL)

Figure 2.1: Data mining algorithms

researchers focused on rule based models, association rules and classification rules,

and others graphical-models, Näıve Bayes and Bayesian networks.

A third approach was also taken with the introduction of decision trees. Quinlan

(1993) introduced a series of propositional decisions trees that including the well

known algorithm C4.5. The C4.5 algorithm takes a set of vectors as training data.

Each component of the vector is an attribute of the sample, either continuous or

discrete. A discrete class label is also associated with each training vector. Trees

are grown by selecting a test for the current node, starting at the root and growing

recursively. There are three possible tests. Let A be the value of a discrete attribute

with possible values Z. The first test is simply “A = z s.t. z ∈ Z.” The second test is

“A ∈ G s.t. G ⊂ Z” where G is found by a greedy partition of Z that maximizes the

splitting criteria. If the value A comes from a continuous attribute, let Z be the unique

values it takes on in the dataset. The only test for continuous attributes is “A ≤ θ”

with theta selected considering a value between each pair of consecutive values in Z,

such that the that the splitting criteria is maximized. C4.5 uses information gain

ratio as the splitting criteria to select from the set of possible splits. The best split is

the one with the highest information gain ratio and no statistical testing is done for

the significance of the split. The tree is allowed to grow until all leaves contain pure

subsets of the training data or the tree runs out of attributes. Instead of stopping

5



criteria to halt the growth of a tree, C4.5 prunes the fully grown tree. C4.5 trees are

very capable classifiers for propositional data, however, the algorithm is limited to

propositional data and cannot be directly applied to relational datasets.

Probability estimation trees (PETs) were created to address the fact that prior

decision tree work was on categorical classifiers. However, for many applications cate-

gorical classification isn’t sufficient and class probabilities are required. For instance,

consider a search ranking algorithm that ranks results on how interesting they are to

the user. Class probabilities enable the results to be ranked by the probability that

the results are in the interesting class. PETs are decision trees where the leaf nodes

contain an estimation of class probability instead of a single categorical classification.

Research had shown that näıve use of decision trees produced poor probability esti-

mators. However, Provost and Domingos (2000) showed that decision trees are not

inherently poor estimators and steps can be taken to produce good class probability

estimators using decision trees. A large body of work has shown successful use of

PETs in a wide variety of domains from speech recognition (Jelinek 1997) to collab-

orative filtering (Heckerman et al. 2000) to network diagnosis (Danyluk and Provost

2000) and cost-sensitive learning research (Domingos 1999; Provost et al. 1998).

Provost and Domingos (2000) address several methods that can increase the qual-

ity of the probability estimation of PETs to make decision trees reasonable probability

estimators. One potential problem with PETs is the probability estimation from small

samples. Provost and Domingos (2000) suggest the use of a Laplace correction. The

normal class probability estimate is fc

N
where fc is the number of instances of the class

c at the current leaf node and N is the total number of instances at the node. The

Laplace correction estimates the probability as fc+1
N+C

where C is the total number of

classes.

Provost and Domingos (2000) also show that the algorithms used to grow the

decision trees are at fault for producing poorly performing probability estimators. The

modern technique of growing large decision trees and then pruning them back, while

yielding highly accurate and small trees, yields generally poor probability estimators.

Care must be taken when pruning to retain good probability estimation. Reduced

error estimation is generally a poor choice for this goal, instead a form of chi-squared

pruning produces better estimators. Chi-squared pruning collapses leaves into their

parent node if the chi-squared test fails to show a statistically significant difference

in the class distribution at the leaves compared to the parent. This thesis takes

6



the opposite approach to pruning, instead opting to stop growth early by requiring

splits to be statistically significant. Our approach is covered in further detail in the

description of our algorithm.

While propositional models existed from the start of KDD, they were quickly

joined by relational models. In order to better model real world problems, data

are no longer flattened into a single propositional table but instead left in multiple

“tables” connected by relationships. This provides a wealth of new information and

prompts the creation of new data mining algorithms specifically designed for relational

data. These new algorithms are called “multi-relational” algorithms, in contrast to

“propositional.”

Within multi-relational data mining two schools formed: one based upon logic

programming and the other on probabilistic models. Logic programming is a pro-

gramming paradigm where programs consist of first order logic clauses to represent

relations between objects. Using these clauses, deductive reasoning can be applied.

Inductive logic programming (ILP) was initially created as a method to synthesize

logic programs from examples and background knowledge. Given an initial set of

first order logic clauses, called the background, and a set of positive and negative

examples, ILP generates a set of hypotheses (first order logic programs) that when

combined with the background knowledge explain the examples. (Muggleton and De

Raedt 1994). ILP can also perform the standard classification task.

First Order Inductive Logic (FOIL) extends work in ILP by using relations in

addition to simple first order logical clauses (Quinlan 1990). Previous ILP work

focused on propositional data with attributes describing each object. However, this

limits the expressive power of the standard language of ILP. For instance, consider

a network of related nodes. Using a propositional language requires an attribute for

each possible connection. Even if the maximum degree is limited this still produces

an unwieldy representation. FOIL adds a representation to the language that allows

for describing relationships. Relationships are represented by a named set of tuples

where each tuple in the set represents a related group of objects. This allows for

a compact representation of the above example of a graph. The goal of FOIL is to

generate a set of first order logic clauses that describes a relation in terms of itself

or other relations. First order logic, while capable of describing a wide variety of

domains, is still limited. It cannot express temporal relations or temporal attributes

with out significant modifications.
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Blockeel and De Raedt (1998) introduced a new data mining algorithm that com-

bined ILP and decision trees. Top-Down Induction of Logical Decision Trees (TILDE)

takes the simple descriptive nature of short first order logic clauses and combines it

with the readability of decision trees. TILDE performs the classification task in the

standard method of decision trees. At each internal node of the tree is a conjunction

of literals that splits examples as they fall through the tree. They eventually end up

at leaf nodes that place them into a class. A major advantage of TILDE over other

ILP methods, including FOIL, is that it has the ability to make global statements

(∃X : p(X)) in addition to existential ones (∀X : p(X)). However, TILDE requires

that everything be represented in first order logic. This does not allow for a struc-

ture comprised of individual related objects to be represented such as an attributed

relational graph.

Multi-Relational Decision Trees (MRDT) extends TILDE to work on a relational

database (Knobbe et al. 1999). In MRDT, the trees use selection graphs for the inter-

nal node. Each node in a selection graph represents an object type (internally a table

in the database) and the edges between nodes represents a relationship between the

two objects (a foreign key relation between the two tables). Edges can be flagged as

present or absent requiring that they either exist or don’t exist respectively. Attached

to each node can be a set of constraints on the attributes of the object (constraints

on the values of the columns of a table). Selection graphs are built in a top-down

manner using a series of refinements. The simplest selection graph is a single node,

so connections between nodes are really connections between selection graphs. One

refinement adds a new edge between selection sub-graphs. Adding a positive edge

requires a relationship to exist and negative edge requires that the relationship does

not exist. Another refinement places a constraint upon the value of an attribute of

a node. Figure 2.2 is an example selection graph that selects the parents who have

at least one child who have a toy and none of these children, who have a toy, are

male. The node labeled “parent” selects all parent objects. The upper subgraph

limits the selected parents to those who are connected to a “child” object and those

children must be connected to a “toy” object. The lower branch further limits the

selected parents by requiring that the subgraph does not match any of the parents.

The subgraph means that no parent that is connected to a “child” object, that have

the attribute “gender” with the value “M” (male), and that are connected to a “toy”,

should be selected.
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Parent

Child

Child Toy

Toy

Gender = 'M'

Figure 2.2: Example selection graph used by MRDT that selects a parent who has

children who have toys, but none of those children (who have toys) are male. Modified

from (Knobbe et al. 1999)

The induction of a decision tree follows a recursive algorithm that grows succes-

sively refined selection graphs. It starts with a single node in the root selection graph

that selects all the objects of the correct type without any refinements. Before each

split is attempted the induction algorithm checks the stopping criteria to determine

if a split is allowed. A split is attempted by searching all refinements of the parent

node’s selection graph that are consistent with the data model. Should a satisfactory

split be found, the refinement and its complement form the left and right branch of

the split respectively. The refinement’s complement selects the objects that don’t

satisfy the refinement. For example, if the refinement is to require a relationship

between parent and child, meaning select the parents that has at least one child,

then the complement is the parents that have no children. If the stopping criteria is

reached or no useable split is found, a leaf node is inserted instead.

An example of a partially grown MRDT is given in Figure 2.3 that classifies a

“parent” as having a car or not. With each branch the successive refinements of the

previous selection graph is clear, as well as the complementation of a selection graph

to form the left and right branches. The root node selects all the parent objects. The

refinement on the root node selects ”parents who have at least one child” and forms

the left branch of the tree. The complement of the refinement selects ”parents who

have no children” and forms the right branch.

Building upon PETs, Neville et al. (2003) developed a new multi-relational prob-

abilistic model on decision trees. Relational Probability Trees (RPT) search over the

space of relational features by dynamically propositionalizing the relational features

using aggregation. Traditional decision tree algorithms assume independently dis-

tributed and homogenous training instances (Jensen and Neville 2002; Jensen et al.

1999), however this assumption is violated in relational data due to the existence
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Parent

Parent Child Parent Child

Parent Child
Age > 18 Parent

Child
Age > 18

Child Parent Child
Income > 50

Parent Child
Income <= 50

Figure 2.3: Example MRDT that classifies a “parent” as having a car or not. Modified

from (Knobbe et al. 1999)

of relations. The mere existence of relations makes the objects interdependent, not

independent. In addition, not all objects of the same type have the same types of

relations or same number of relations. This makes the data heterogenous. RPTs

extend the work of PETs to function on such heterogenous and interdependent data.

The previously mentioned TILDE and MRDT also work on relational data but under

the constraint of first-order logic. RPTs sacrifice some the representational power of

ILP systems, such as being able to refer to a single object, in exchange for the ability

to search a larger number of feature classes.

Training instances are represented by graphs of objects connected to each other

by relationships forming a relational neighborhood. Each graph has a single target

object that is to be classified by the RPT. The objects and relationships within the

graph can also have standard propositional attributes attached. A common example

in relational data mining is predicting if a movie will do well or not. Figure 2.4 shows

an example of a training instance graph for the example movie domain. The RPT

algorithm searches over the space of binary relational features to split the data. Mode,

average, minimum, maximum, exists, count, proportion, and degree are the aggrega-

tion functions available to RPTs to apply to the relational features. Mode is used

for discrete attributes, mode(actor.gender) == female, and average for continuous

ones, average(actor.age) > 15. Minimum, maximum, and exists being special cases

of these aggregation functions. Count, proportion, and degree use thresholds to split

the instances. proportion(actor.gender == female) > 10% and count(actor.age

> 55) > 5 are example distinctions. Figure 2.5 is an example RPT on the example

movie domain that classifies a movie as being a “success” or a “flop”.
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Movie
Name: Star Wars: A New 

Hope
Genre: Sci-Fi
Runtime: 121

Release Date: 1977

Movie
Name: Raiders of 

the Lost Arc
Genre: Adventure

Runtime: 115
Release Date: 1981

Movie
Name: Star Wars: The 
Empire Strikes Back

Genre: Sci-Fi
Runtime: 124

Release Date: 1980

Movie
Name: When Harry 

Met Sally
Genre: Romance

Runtime: 121
Release Date: 1977

Oscars: 6

Actor
Name: Harrison Ford

Gender: Male
Birthdate: 1942

Writer
Name: George Lucas

Gender: Male
Birthdate: 1944

Director
Name: Steven Spielberg

Gender: Male
Birthdate: 1946

Actor
Name: Carrie Fisher

Gender: Female
Birthdate: 1956

Directed

Acted-In

Acted-In

Acted-In

Acted-In

Series

Acted-In

Writer

Writer
Writer

Company
Name: LucasFilm
Birthdate: 1944

Produced

Produced
Produced

Acted-In

Figure 2.4: Example relational graph used as training instances for RPT.

The questions listed above are not much different than traditional propositional

decision trees. Degree features were introduced by RPTs and give RPTs much of their

reasoning power. The degree of relationships (e.g. number of phone calls between

two people), the degree of objects (e.g. number of movies a producer has produced),

and even the degree of attributes (e.g. number of screen-names for an actor) are all

degree features searchable by RPTs. These questions provide RPTs a mechanism for

handling the heterogeneity of relational data. Neville et al. (2003) showed that RPTs

achieve comparable or superior performance than other conditional models, and in

addition, build significantly smaller trees.

Neville and Jensen (2007) presented a new probabilistic graphical model for model-

ing relational data called Relational Dependency Networks (RDN). RDNs have several

benefits over relational Bayes networks (Neville et al. 2004) and relational Markov

models (Taskar et al. 2002; Richardson and Domingos 2006), including simple meth-

ods for parameter estimation, the ability to represent cyclic dependencies, and efficient

techniques for learning structure. Much of the strength of RDNs come from the use

of a pseudolikelihood learning technique, capable of efficiently approximating the full
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Is Genre == "Sci-Fi"?

Is Count(Actor.Gender 
== Female) > 0?

Is Writer.Name == 
"George Lucas"

Is Mode(Director.Birthdate) 
== 1946?

Success: 78% 
Flop: 22 %

Success: 35% 
 Flop: 65%

Success: 98% 
Flop: 2%

Success: 31% 
Flop: 69%

Success: 49% 
Flop: %51

Y

Y

N

N

Y N

Y N

Figure 2.5: Example RPT for the example Movie domain.

joint distribution. RDNs leverage the existence of relational autocorrelation present

in most relational datasets (Jensen and Neville 2002). One way RDNs leverage au-

tocorrelation is by learning cyclic autocorrelation dependencies that are required to

exploit the autocorrelation during inference.

RDN’s primary difference from the similar Bayesian and Markov networks is the

approximation of the joint distribution using a set of conditional probability distri-

butions (CPDs) that are learned independently. This technique yields significant

efficiency gains over the exact models, however, due to the independent learning

of the CPDs, RDNs do not guarantee consistent joint distributions. This restricts

the application of exact inference techniques and inference of causal relationships.

Nonetheless, RDNs do quite well at inferring predictive relationships.

12



Chapter 3

Enhancing Spatiotemporal Relational Probability

Trees and Forests

3.1 Spatiotemporal Relational Probability Trees

Decision trees can be used for classification by asking questions about an item to

be classified. In a binary decision tree, each question can only be answered yes or

no. At each internal node of the tree, a question is asked and the item is sent down

either the yes or no branch based upon the answer to the question. As the item falls

down the decision tree it will eventually land at a leaf node where it is given a class

label. The questions asked by the decision tree are also called distinctions as they

make a distinction between items with different classes by send them down different

branches. Probability Estimation Trees (PETs) give a probability distribution across

the possible class labels, instead of a single definitive class label (Provost and Domin-

gos 2000). Neville et al. (2003) extended PETs to reason on relational data instead

of solely propositional data creating Relational Probability Trees (RPTs). RPTs can

ask questions about the relationships between objects. This allows them to capture

more complex concepts then propositional trees. In addition, RPTs added a set of

distinctions dealing with degree features of the data.

Spatiotemporal Relational Probability Trees (SRPTs) are an extension of rela-

tional probability trees (McGovern et al. 2008). SRPTs add new questions that ask

about spatial, temporal, and spatiotemporal characteristics of the data. This requires

datasets that support spatiotemporal questions by including spatial and temporal

data in addition to the relational data used by algorithms such as RPTs. An example

of a possible spatial question is “Does Object A wrap around Object B?” while “Did

Object A exist before Object B?” is a temporal question. Combining space and time

means asking spatiotemporal questions such as “Is Object A moving closer to Object

B?” Figure 3.1 gives an example SRPT that is used for classifying a thunderstorm as

tornado-producing or non-tornado-producing.
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Has a Front existed 
for at least 42 

timesteps?

Is the Mean of the Relative 
Azimuth of the relation

Storm➝Nearby➝Front >= 295.95?

Prob[1=0.75; 0=0.25]
Counts[1=18; 0=6]

Is the Standard Deviation of 
the WDSD attribute of a 
Storm object >= 3.49?

Prob[1=0.53; 0=0.47]
Counts[1=31; 0=28]

Is the Minimum of the a Fronts 
object's attributeY-Center >= 36.33?

Prob[1=0.39; 0=0.61]
Counts[1=11; 0=17]

Prob[1=0.08; 0=0.92]
Counts[1=2; 0=24]

Prob[1=0.18; 0=0.82]
Counts[1=61; 0=273]

Y (24)

Y (59)

Y (28) N (26)

N (54)

N (113)

Y (137)
N (334)

Figure 3.1: Example Spatiotemporal Probability Tree from the Fronts dataset that

classifies a supercell as being tornadic or non-tornadic. Oval nodes are distinction

nodes and square nodes give the probability distribution function for classification.

Storm→Nearby→Front is indicates a storm object is related to a front object via a

nearby relationship. The labels on the edges indicate if it is the yes or no branch and

how many instances went down the branch during training. The leaf nodes contain

two pieces of information, the probability distribution (Prob) and the number of

instances of each class that were in this leaf during training (Counts).

14



Before the enhancements we added to SRPTs for this thesis, the SRPT had eight

distinctions. They were divided into two categories of distinctions, non-temporal

and temporal. We describe each of these distinctions below. For distinctions that

have multiple fixed options the options are listed [a, b, c, d], such as the Attribute

distinction can use of the statistic functions min, max, mean, or standard deviation

(STD). Some distinctions are conjugate distinctions that ask questions about the

results of another distinction. Non-conjugate distinctions are called base distinctions.

An example of a conjugate distinction is the count conjugate distinction. It takes a

base distinction and counts the number of matching items in the graph. If the number

of matching items is ≥ some threshold then the graph matches. For instance, a count

conjugate distinction with the base distinction “Exists object of type ball?” and a

threshold of 10, then matching graphs must have 10 ball objects.

The non-temporal distinctions are:

• Exists: Does an object or relation of a particular type exist?

• Attribute (Temporal-Scalar): Does an temporal-scalar attribute a have a [MIN,

MAX, MEAN, STD] value ≥ v?

• Attribute (Discrete): Does an discrete attribute a have a value = v?

• Count Conjugate: Are there at least n yes answers to non-conjugate distinction

d?

• Structural Conjugate: Is an answer to non-conjugate distinction d related to an

object of type t through a relation of type r?

The temporal distinctions are:

• Temporal Exists: Does an object or a relation of a particular type exist for at

least t timesteps?

• Temporal Ordering: Do the matching items from non-conjugate distinction a

occur in a temporal relationship with the matching items from a non-conjugate

distinction b? The seven types of temporal ordering are: before, meets, overlaps,

equals, starts, finishes, and during (Allen 1991).

• Temporal Partial Derivative (Non-Field): Is the partial derivative with respect to

time on a non-field attribute a on a object or relation of type t ≥ v?

The enhancements we introduce to the SRPT algorithm allow for the addition of

a number of new spatial and spatiotemporal distinctions based on shape detection

and fielded objects. The distinctions added for using the shape detection are:
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• Shape (3D): Is the primary 3D shape of a fielded object a rectangular-prism,

sphere, cylinder, or cone?

• Shape (2D): Is the primary 2D shape of a fielded object a rectangle, circle, isosceles

triangle, or ellipse?

• Shape Change: Has the shape of an object changed from one of the primary shapes

over to a new shape at any point?

• Shape Tilt: Has the primary axis of the shape, at any timestep, tilted by at least

θ compared to the vector ~v?

The field based distinctions vary in their behavior based upon the type of field,

vector or scalar, and the field function applied, gradient, curl, or divergence. For

clarity these are listed as separate distinctions and the attributes are all assumed to

be temporal.

• Field Gradient: Does the angle between a vector ~v and the [MIN, MAX, MEAN,

STD] vector of the gradient of a scalar-field attribute a ever have an angle ≥ θ?

• Field Curl: Does the angle between a vector ~v and the [MIN, MAX, MEAN, STD]

vector of the gradient of a vector-field attribute a ever have an angle ≥ θ?

• Field Divergence: Does the [MIN, MAX, MEAN, STD] of the divergence of a

vector-field attribute a ever ≥ θ?

• Field Attribute Gradient: Does a field attribute a have a [MIN, MAX, MEAN,

STD] of the magnitude of [MIN, MAX, MEAN, STD] vector of the gradient?

• Field Attribute Curl: Does a field attribute a have a [MIN, MAX, MEAN, STD]

of the magnitude of [MIN, MAX, MEAN, STD] vector of the curl?

• Field Attribute Divergence: Does a vector-field attribute a have a [MIN, MAX,

MEAN, STD] of its [DIVERGENCE] ≥ v?

• Temporal Partial Derivative (Field): Is the partial derivative with respect to time

of the magnitude of the [MIN, MAX, MEAN, STD] of the [CURL, DIVER-

GENCE, GRADIENT] of the field-attribute a ≥ v?

The final two new distinctions allow the SRPT to combine two distinctions and to

select, and reason on, a single object.

• Boolean AND Conjugate: Does a graph end up in both the yes branches of both

base distinction a and base distinction b?

• Boolean OR Conjugate: Does a graph end up in either of the yes branches of both

base distinction a and base distinction b?
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• Single Item Select By Attribute: Does the single object/relation with the [MIN,

MAX] value of the attribute a pass the base distinction b.

• Single Item Select Oldest: Does the oldest object/relation of a particular type

pass the base distinction b.

• Single Item Select List First: Does the first object/relation of a given type pass

the base distinction b. (Ordering is arbitrary, but consistent,)

3.2 Constructing Probability Trees

The construction of an SRPT follows the approach outlined in Algorithm 3.1 and

Algorithm 3.2. The tree grows recursively until adding a new node, or distinction,

fails to statistically significantly change the classification distribution or is stopped

by the parameters to the learning algorithm. Growth of the trees is controlled by the

following user supplied parameters:

• α – p-value threshold

• K – number of samples

• D – max tree depth

• S – distinction set

Growing a SRPT requires using a set of pre-labeled graphs for the training data.

As the tree is built, the set of graphs is recursively split as it falls down the tree

through each distinction. Choosing these distinctions is the main work of the learning

algorithm.

Distinctions are sampled stochastically from the set of all possible distinctions and

the “best” distinction is taken. To determine which distinction is best a contingency

table is built where the rows are the yes and no branches and the columns are the

class distributions. From the contingency table a χ2 value is calculated from which we

can obtain a p-value. As long as the p-value is below the threshold, growth continues

along that branch of the tree. Currently the p-value threshold is not adjusted using

the Bonferroni correction.

Since the space of possible distinctions is extremely large, stochastic sampling is

used to find the best distinction. In early versions of the SRPT algorithm, the sample

count was chosen according to a heuristic that relates the number of samples to a

desired confidence of α1 in sampling the top κ percent to consider. α was fixed at

1The α in Srinivasan’s heuristic should not be confused with the α for stopping SRPT growth.
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Algorithm 3.1: GrowSRPT:Algorithm used for growing a Spatiotemporal

Relational Probability Tree
Input: K = Number of samples, D = Maximum depth of tree, α = p-value

threshold, G = training data, S = distinction set, d = current tree depth

Output: A SRPT

if d ≤ D then
node = FindBestSplit(G, K, α)

if node 6= ∅ then
yesSubset, noSubset = SplitData(node, G)

node.addYesBranch(GrowSRPT(K, D, α, yesSubset, d + 1))

node.addNoBranch(GrowSRPT(K, D, α, noSubset, d + 1))

Return node
end

end

Return new LeafNode(G)

95% and κ was a parameter to the algorithm. Srinivasan (1999) showed the number

of samples chosen using this method is independent of the size of the search space

with the number of samples calculated as K = ln(1−α)
ln(1−κ) . The method of stochastic

sampling of the distinction space as performed by our implementation of the SRPT

algorithm does not meet the assumption of uniform sampling required for Srinivasan’s

heuristic to hold. For this reason, the current implementation of the SRPT algorithm

uses a user supplied parameter, k, that directly specifies the number of distinctions

to sample.

A tree can potentially grow unbounded resulting in over-fitting and unnecessary

complexity. The maximum size of the tree is controlled by the max-depth parameter,

which limits tree’s depth by forcing it to terminate early. The depth can range from

zero, having only a root distinction, to a depth limited only by machine memory.

At times, the p-value threshold (α) will cut off growth along a branch before the

maximum depth is reached; on the other hand, max-depth can cut off the growth

even if there still remain distinctions that would meet the p-value requirement. At

each node of the tree, the best distinction is chosen by sampling. In order to study

the SRPT algorithm under various constraints, the algorithm can be limited to using

only a subset of the possible distinctions.

Tree growth ends with the insertion of a leaf node when the tree has reached

its maximum depth, no statistically significant split can be found, the number of
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Algorithm 3.2: FindBestSplit: Algorithm for finding the best split in a set

of graphs
Input: G = training data, K = number of samples, α = p-value threshold, S =

distinction set

Output: An internal Node or ∅
best = ∅
for i = 1 to K do

distinction = new InternalNode(RandomDistinction(S))

fit, p = Calcχ2(distinction, G)

if p ≤ α and fit > best.fit then best = distinction
end

Return best

graphs in the current branch has dropped below 20, or the graphs in the current

branch comprise only one class. If the number of graphs is below 20 then the χ2 test

is not stable with such small numbers of samples. The näıve estimate of the class

probability at the leaf node is fc

N
where fc is the frequency of class c in the samples,

and N is the total number of samples at the leaf node. Provost and Domingos (2000)

suggested correcting the probability distribution using a Laplace correction factor.

This makes the probability estimation become fc+1
N+C

where C is the total number of

possible classes. The Laplace correction is most useful when the number of instances

of a class is small and has little effect when the class sizes are large. Many domains,

such as the three severe weather domains used in this thesis, contain unbalanced

classes, hence, we feel that using the Laplace correction is valid.

3.3 Spatiotemporal Relational Random Forests

A Random Forest (RF) is a simple, yet powerful, technique that has shown promise

in many domains (Segal 2004; Meinshausen 2006; Fislason et al. 2006; Bosch et al.

2007; Williams et al. 2008). Introduced by Breiman (2001), random forests combine

multiple classification trees, originally C4.5 decision trees (Quinlan 1993), into an

ensemble. Random forests outperform single trees and combat challenges such as

over-fitting. To grow a random forest, the trees in the forest are grown individually

with independent bootstrap resamplings of the training data. The instances chosen by

bootstrap resampling for training a tree are called in-bag-instances, those not chosen
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Algorithm 3.3: GrowSRRF: Algorithm used for growing a Spatiotemporal

Relational Random Forest
Input: G = training data, N =number of trees in the forest, K = number of

samples, P = p-value threshold, S = distinction set

Output: A SRRF

for i = 1 to N do
[in-bag-data, out-of-bag-data] = BootstrapResample(G)

treei = GrowSRPT(in-bag-data, K, P, S)
end

Return Forest(tree1...n)

are the out-of-bag instances. Since each tree is trained on a different subset of the

data it allows individual trees to focus on different aspect s of the data. This allows

the forest to capture more varied and expressive concepts than any single tree would

be capable of. Instead of C4.5 trees, we use spatiotemporal relational probability trees

yielding Spatiotemporal Relational Random Forests (SRRFs). This makes random

forests capable of reasoning about spatiotemporal data. Algorithm 3.3 details the

algorithm for growing a SRRF.

One drawback to forests is that they lose some of the human readability of a

single tree. Variable importance is a measure of the importance of an attribute to

the classification power of a random forest (Breiman 2001). Variable importance is

calculated using Algorithm 3.4. The idea behind variable importance is that there is a

link between the values an attribute takes on and the class of an instance. Attributes

used in distinctions are picked because their values are connected to the object’s class.

It is assumed that if the values for attributes used in distinctions are changed then

the distinctions will be ineffective. Using the assumption that an attribute’s value is

important, and that changing the value will have negative effect on performance of

the random forest, then variable importance is calculated as follows. First, the out-of-

bag instances for each tree are classified and the number of correct classifications the

tree makes are counted. Then the attribute’s values are shuffled within the out-of-bag

instances and the tree is reevaluated, counting the number of correct classifications.

If the attribute was important then shuffling would decrease the performance of the

tree and fewer instances would have been classified correctly. The difference between

the non-shuffled count and the shuffled count yields a raw score. Breiman (2001) uses

the assumption that the scores between trees are independent and can therefore be
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Algorithm 3.4: Algorithm for calculating variable importance
Input: forest = forest to calculate variable importance on, out-of-bag = the

out-of-bag samples for the given forest

Output: Variable importance for each variable

raw scores = new List

for attribute in all attributes do

for tree in forest do
votes = CountCorrectClassifications(tree, out-of-bag)

shuffled outofbag = ShuffleAttribute(out-of-bag, attribute)

shuffled votes = CountCorrectClassifications(tree, shuffled outofbag)

AppendTo(raw scores, votes − shuffled votes)
end

importance[attribute] = Mean(raw scores) / StandardError(raw scores)
end

Return importance

converted into a Z-score that is the variable importance of the attribute. We follow

this assumption.

3.4 Fielded Objects

The high-level objects used by the SRPT are derived from raw data that has been

aggregated. For instance, in the tornado dataset, a storm might contain a vorticity

object representing an area of strong rotational winds. The object could contain an

attribute representing the current wind speed and direction in the form of a single

vector. The benefit of this high level representation is its compactness and simplic-

ity. However, some information is lost since the vortex being represented occupies a

volume of space with wind speed and direction (amongst other variables) available at

many points within the region.

Previously, this information was discarded during the creation of graphs used to

represent the high level objects. All attributes were reduced into a single discrete,

scalar, or vector value. These values are allowed to vary over time producing temporal-

discrete, temporal-scalar, and temporal-vector valued attributes. One of the main

contributions of this thesis is the use of the underlying raw data of such high level

objects. In geographic information systems (GIS) these regions are called fields, and

the addition of fields to the high level objects will produce fielded objects (FIOBs)
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(Goodchild et al. 2007; Cova and Goodchild 2002). By keeping a reference to the

underlying field, the SRPT is able to choose from several new distinctions that are

all based upon the data in the field, such as gradients over space and/or time. The

objects the fields come from are not likely to be rectangular, but the fields are stored

in rectangular matrices. This necessitates a mask be kept with the field that indicates

which values from matrix are actually part the fielded object.

To use the fields within distinctions, several field functions are used to analyze

the data. The standard gradient function can be applied to scalar fields and the curl

and divergence operators can be applied to vector fields. Curl in 3D and gradient in

2D and 3D return vector fields, curl in 2D and divergence in 2D and 3D return scalar

fields. Since the fields are temporal, the field function is applied to each timestep.

After the application of the field function, several statistics are taken to reduce the

vector field at each timestep into a single vector, yielding a temporal-vector. These

are the minimum, maximum, mean and standard deviation.

The mean and standard deviation are taken by simply calculating the component-

wise statistic over the entire field. The minimum and maximum vectors are deter-

mined by the standard `2-norm. The reduction of the field to a single vector per

timestep allows for the use of understandable (and more general) distinctions. Also,

this allows for the comparison of fields of different sizes. Some distinctions further

reduce each temporal-vector into a single temporal scalar by taking the magnitude of

the vector.

We add two field distinctions to the SRPT called Field Attribute and Field Func-

tion. The Field Attribute distinction is essentially the same as the standard Attribute

distinction but it works on the temporal-scalar reduction of the fields. It splits if the

min, max, mean or standard deviation of the reduction is greater than or equal to

a split value. The Temporal Partial Derivative distinction is not a new distinction,

but it can use the temporal-scalar reduction of field attributes in addition to nor-

mal temporal-scalar attributes. Field Function uses the reduction of the field to a

temporal-vector. It splits if the angle between a temporal-vector and a split angle is

always less than a maximum theta. For example, Is the angle between the maximum

gradient vector of the updraft and the vector <0,1,0> always less than 5 degrees?
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3.5 Shape Detection

A new addition that we expect to be particularly useful in tornado prediction is the

ability to detect the primitive shape of a field. For 3D fields, the possible primitive

shapes are spheres, boxes, cylinders, and cones. In 2D the possible primitive shapes

are circles, ellipses, rectangles, and isosceles triangles. We chose the detectable shapes

because each shape has a simple method for determining how far a point lies from

the surface and determining the normal surface vector at an point on the surface

of the shape. Each field has a mask that selects individual points from the raw

rectangular/cubiod region. This mask is viewed as point cloud, which is a set of

points with regular spacing, that is used for shape detection. A couple of different

algorithms with variations were tried before settling on the current implementation.

We describe the unsuccessful approaches before the successful one in order for the

reader to understand the final choice of approach. For all algorithms a method is

needed to determine the quality of the fit of a proposed shape to the field. We used

the sum squared-distance between a sub-set of points from the point-cloud and the

nearest point on the proposed shape. Half of the points were randomly selected as

the subset used for the error calculation of the proposed shape. For testing during

writing the algorithms, random points were generated that came from known shapes.

All of the shape detection algorithms followed the same basic steps. First, they

propose a set of shapes by generating parameters for the primitive shapes that might

fit the point cloud. Different algorithms generate a different number of proposed

parameters and some propose multiple parameter sets per primitive shape. The next

step is to calculate the error of each proposed shape. Using the error estimations, the

best fitting shape is then selected to represent the shape of the point cloud.

3.5.1 3D Shapes

The first algorithm was a RANSAC (RANdom SAmple Consensus) algorithm in-

spired by the work of Schnabel et al. (2007) on shape detection of point clouds using

RANSAC. All the points in the cloud were used and parameterization of each of the

four shapes was generated using between two and three randomly sampled points.

The error function was the squared distance from a sample point to the surface of

the proposed shape. If the sample point was interior to the shape, then the error was
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zero. This method preformed poorly, generally classifying things as spheres regardless

of the underlying shape.

Hence, we designed our final approach. While Schnabel et al.’s work was concerned

with detecting multiple shapes within the point cloud, we are only interested in

detecting a single shape. Hence a new algorithm was devised. First the entire point

cloud was reduced to a convex hull using Qhull (Barber et al. 1996). Qhull also

calculates the face normals allowing us to calculate the vertex normal for each point

on the convex hull. This new algorithm is based upon first finding the minimum

volume bounding box of the convex hull. Finding minimum volume bounding boxes

(MVBB) is in itself a difficult problem. Several methods exist for finding the MVBB.

Perhaps the best known is by O’Rourke (1985). It uses the fact that the two edges of

the convex hull lie on two adjacent faces of the MVBB. However, the implementation

of the exact algorithm is quite complicated due to the Gaussian sphere data structure

used to speed up computations. We implemented a similar algorithm without the

Gaussian sphere.

The vertex normals were used to improve error estimations over the simple method

used in the previous algorithm. When each sample point is compared to the proposed

shape to calculate the error, the sample point’s normal is also compared to what the

normal would be on the proposed shape. The error for a proposed shape is then

the sum error divided by the number of sample point’s with the angle between the

sample normal and the shape normal is less than a given theta (arbitrarily set to

25 degrees). Additionally, if the number of normals whose angles don’t pass the

threshold is less than half the total number of sample points, the proposed shape is

given infinite error. This method of error estimation greatly improved the quality of

fit for detected shapes.

RANSAC is a stochastic algorithm. This means the quality of proposed shapes

was left to chance and at times a very large number of proposed shapes were needed

to find even a decent fit. Our algorithm based on the MVBB is deterministic and

produces a single proposal for each shape from which we pick the best fitting primitive

shape. Figure 3.2 shows some examples of detecting each of the different 3D shapes.

The MVBB itself is the proposed shape for fitting a box to the points.

We next describe the algorithm more formally. Let P be all the points in the

convex hull, k be the number of points in P , and N̂ be the surface normals for each of

those points (i.e. n̂i is the normal for pi). |~v| will denote the magnitude of a vector ~v
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(a) Sphere

(b) Cone

Figure 3.2: Examples of detecting a sphere and a cone. The convex hull is drawn as

a wire frame with the points on the hull shown in blue.
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(a) Box

(b) Cylinder

Figure 3.3: Examples of detecting a box and a cylinder. The convex hull is drawn as

a wire frame with the points on the hull shown in blue.
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u⃗
w⃗

v⃗
O

Figure 3.4: Illustration of the assumed orientation of a minimum volume bounding

box (MVBB) and the reference edges used to represent it. The “base” of the MVBB

is shaded and “O” denotes the origin of the co-ordinate system.

using the `2 norm. Let ~u,~v, ~w be vectors representing the edges of the bounding box

from one of its corners. Without loss of generality let |~u| ≥ |~v| ≥ |~w| and translate

all points in P such that the corner of the MVBB is located at the origin. Figure 3.4

illustrates how the MVBB is assumed to be oriented and which edges are referred to

by ~u,~v, ~w.

The proposed parameters for a sphere have the center located at

c =
1

k

k∑
i=1

pi

and the radius

r =
1

k

k∑
i=1

|c− pi| .

The mean distance from the center is used as the radius instead of the min or max

distance as min/max would select outliers producing a poor fit.

Cylinders are proposed by taking the longest edge of the MVBB, u, as the main

axis, ~a = ~u and the radius equals

r =
|~v|+ |~w|

2
.

The base of the cylinder is

b =
1

2
(~v + ~w) ,

which is the center of the “base” of the MVBB.
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Figure 3.5: Isosceles triangle inscribed in a rectangle illustrates orientation of

cones/triangles within minimum area/volume rectangular bounding boxes/volumes.

Cones can be viewed as 3D isosceles triangles that have been rotated about their

axis to lift them from 2D into 3D. Hence, we can also look at the cone as a projection

from 3-space onto two orthogonal planes parallel to the cones axis. The challenge

with detecting cones in relation to an MVBB comes from the fact that, for certain

isosceles triangles, the base doesn’t share an edge with the rectangle, but instead one

of the sides shares an edge. Figure 3.5 gives an example of this property with the

area of rectangle A being 6.003 units and the area of B is 5.981.

Let the all the points P be viewed as a matrix PM such that PM is a k×3 matrix.

Define

proj~s(pi) =
~s · pi
~s · ~s

as the projection of the point pi onto the vector ~s.

To determine the orientation of the cone’s axis we find which end is the “wide” of

the cone. This is done by projecting all the points on the long edge of the MVBB and

then weighting the edge by the distance from a point to its projection. This creates

a “heavy” end of the edge which is the base of the cone. First, let A be the set of

points on one half of the edge

A =
k⋃
i=1

pi where proj~u(pi) ≥ .5 ∀ pi ∈ P

and ΣA be the weight of the set

ΣA =

|A|∑
i=1

proj~u(ai) .

Similarly let B be the set of points on the other half of the edge

B =
k⋃
i=1

pi where proj~u(pi) < .5 ∀ pi ∈ P
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and ΣB be the weight of the set

ΣB =

|B|∑
i=1

proj~u(bi) .

If ΣA > ΣB then the tip of the cone is

t = bj s.t. proj~u(bj) = min(proj~u(bi)) ∀ bi ∈ B

otherwise the tip is

t = aj s.t. proj~u(aj) = max(proj~u(ai)) ∀ ai ∈ A .

The initial location of the base is determined using geometry by “viewing” the

cone as a projection onto the two vertical planes of the MVBB on which ~v and ~w

lie. Using these two planes we can calculate the base of the two triangles projected

onto them by the cone. Define vecAngle(~s,~t ) to be the angle in radians between the

vectors ~s and ~t, rotate(~s, φ,~t ) be the rotation of the vector ~s φ radians about the

vector ~t, and norm(~s) be the unit length vector of ~s. First the following quantities

are calculated:

z′1 =
√
|~u|2 − |~v|2 z′2 =

√
|~u|2 − |~w|2

z1 = |~u| − z′1 z2 = |~u| − z′2
θ1 = tan−1(|~v|/z1) θ2 = tan−1(|~v|/z2)

φ1 = π
2
− θ1 φ2 = π

2
− θ2

r1 = |~u| ∗ sin(φ1) r2 = |~u| ∗ sin(φ2)

Using these values we can calculate the two bases. If vecAngle(~v, ~u) > vecAngle(b1, ~u)

b1 = r1 ∗ norm(rotate(~v, φ1, ~w)) ,

else

b1 = r1 ∗ norm(rotate(~v,−φ1, ~w)) .

And if vecAngle(~w, ~u) > vecAngle(b2, ~u)

b2 = r2 ∗ norm(rotate(~w, φ1, ~v)) ,

else

b2 = r2 ∗ norm(rotate(~w,−φ1, ~v)) .

From b1 and b2 we calculate the initial estimation of the base of the cone to be
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b0 = b2 + proj~v(b1)~v .

To refine the estimate of the base’s position let ~b0 be the initial base b0 seen as a

vector. Then perform a binary search on the parameter f over the range 0 < f < 2

to minimize the error, σ, of the cone’s fit. The new estimate of the base, b′, at each

step is

b′ = f ∗ ~b0

and the search is stopped when |σt/σt−1| < 10−16. From this estimate of the bases

position we update the major axis of the cone to be from the base to the tip, ~a = b′−t.
The initial estimate of the radius is

r = |b0| .

Another binary search is performed on the parameter g over the range 0 < g < 2 to

minimize the error, σ, of the cone’s fit. The new estimate of the radius, r′, at each

step is

r′ = g ∗ r

and the search is stopped when |σt/σt−1| < 10−16. The final parameter estimation for

the cone is base b′, radius r′ and major axis ~a.

3.5.2 2D Shapes

In addition to doing 3D shape detection, we added the ability to detect 2D shapes.

The first algorithm implemented was also a RANSAC algorithm. While it performed

better than the similar 3D algorithm, there was still room for improvement. The final

2D shape detection algorithm is based on the deterministic 3D one. An example of

detecting each of the 2D shapes is in Figure 3.6. As with 3D detection, the first step

is to find the 2D minimum area bounding box (MABB). The MABB will share an

edge with convex hull of the raw points so the algorithm simply tries each edge of

the hull (Freeman and Shapira 1975). All the points from the hull are projected onto

the initial edge to determine the bounds along that basis, then the basis is rotated

90 degrees to produce a second perpendicular basis. Again the points are projected,

now onto the second basis, to determine the bounds. Then using the bounds along
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(a) Ellipse (b) Circle

(c) Rectangle (d) Triangle

Figure 3.6: Examples of detecting each of the primitive shapes from a point cloud.

Red points are the full field with black points being on the convex hull.

each basis the area is calculated. After testing all edges of the convex hull the MABB

is found.

We can recognize four 2D shapes: circles, rectangles, isosceles triangles, and el-

lipses. Isosceles triangles were chosen over the general triangles because a projection

of the 3D cone onto a 2D plane from a perspective orthogonal to the main axis projects

an isosceles triangles. The equations for estimating the 2D shapes will use many of

the definitions form 3D shapes. Similarly to 3D, let ~u and ~v, with ~u the longer one,

be the edges of the MABB whose corner is the origin. The proposed shape for a

rectangle is just the MABB that has already been found.
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The proposed parameters for a circle have the center located at

c =
1

k

k∑
i=1

pi

and the radius

r =
1

k

k∑
i=1

|c− pi| .

The mean distance from the center is used as the radius for the same reason it was

in 3D.

The parameters for an ellipse are estimated with the major axis ~a = .5~u, the

minor axis ~b = .5~v, and the center at c = ~a+~b. Let

F =

√
|~a|2 − |~b|2

|~a|
,

from this the two foci are at F1 = c− F~a and F2 = c+ F~a.

Triangles, like cones, are more involved than the other shapes. Let the all the

points P be viewed as a matrix PM such that PM is a k × 2 matrix. Define

proj~s(pi) =
~s · pi
~s · ~s

as the projection of the point pi onto the vector ~s.

To determine the orientation of the triangle’s axis let A be the set of points

A =
k⋃
i=1

pi where proj~u(pi) ≥ .5 ∀ pi ∈ P

ΣA be

ΣA =

|A|∑
i=1

proj~u(ai) .

Similarly let

B =
k⋃
i=1

pi where proj~u(pi) < .5 ∀ pi ∈ P

ΣB be

ΣB =

|B|∑
i=1

proj~u(bi) .

If ΣA > ΣB then the tip of the cone is

t = bj s.t. proj~u(bj) = min(proj~u(bi)) ∀ bi ∈ B
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otherwise the tip is

t = aj s.t. proj~u(aj) = max(proj~u(ai)) ∀ ai ∈ A .

Let ~v′ be the short edge of the MABB farthest form the tip t. Let

b1 = pj s.t. proj~v′(pj) = min(proj~v′(pi)) ∀ pi ∈ P

b2 = pj s.t. proj~v′(pj) = max(proj~v′(pi)) ∀ pi ∈ P .

The base of the triangle is then the midpoint on the line between b1 and b2.

3.5.3 Shape Distinctions

We use the automatically identified shapes to add several new distinctions to the

SRPT. The simplest is Shape Match. It simply checks to see if the field at any time

has the given shape type S1. Shape Change asks if at any point the the field has the

shape type S1 and then at some later time changed to type S2. Shape Tilt checks to

see if at anytime the angle between the main axis of the field and a given vector v is

greater than θ. The main axis for the shapes triangle, cone, cylinder, ellipse is clear.

For boxes and rectangles it is the first vector of bounding box and for spheres and

circles it is always the y-axis.

3.6 Brittleness of Trees

A decision tree is considered to be “brittle” if a small change, or even no change at all,

to the parameters used by the algorithm produces radically different decision trees.

The differences between solutions can be both in their structure and classification

power. The structure of an SRPT solution is the shape and choice of nodes in the

tree produced. Since structure determines classification power, structural stability

will also result in stable classification power.

The stochastic nature of the SRPT algorithm introduces brittleness into the so-

lutions generated. Domain experts in such fields as meteorology are wary of the fact

that independent runs over identical data and parameter sets can produce different

solutions. However, brittleness and the wariness of domain experts are a concern not

only in SRPTs but also in other machine learning techniques such as feature selection

(Kalousis et al. 2007)
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Random forests draw their power from the differences between the trees from

which they are composed. The different trees capture different aspects of the data

allowing the forest as a whole to capture a much broader and more detailed picture

of the data and hence reason more precisely. This indicates that brittleness is an

important feature exploited by random forests. The stochasticity of the algorithm

used to generate SRPTs introduces the brittleness, but also allows the algorithm to

search a much broader area of the solution space yielding the distinct trees that are

located at different spots in the solution space.

Brittleness can thus be used as a measure of over-fitting. By comparing all the

trees in a forest, the brittleness of the forest can be measured. A brittle forest indicates

that the forest is comprised of very different trees and hence each tree is playing a part

in classification. If a forest is not brittle then it is beginning to look homogenous with

respect to the individual trees. Homogenous trees means the forest is not capturing

a wide variety of aspects, but instead has narrowed down to a small subset and likely

over-fitting the data.

Studying brittleness under parameter and experimental changes requires the choice

of a metric of similarity between solutions. Since the solutions are trees, the met-

ric must measure similarity between trees. One possibility is the alignment-distance

metric, which measures the “distance” between two trees based upon the number of

changes, deletions, and insertions required to change one tree into the other (Bille

2003). Each of these operations is assigned an associated cost, and the total distance

between trees is the total weighted sum of the operations needed to change one tree

into the other. For the SRPT the change operation is divided into three weighted op-

erations: adding/deleting a missing/extra distinction; changing the distinction type;

and changing the parameters of the distinction.

Tree A Tree B Tree (A,B)

(-0, -0)

(-0, -10) (-1, -100)

1110 159Weighted

0.292Unweighted

NormalizedStandardAlignment
Distance

(-1, -1000)

Figure 3.7: Example calculation of alignment distance between two SRPTs.
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An example of calculating the alignment distance between trees is illustrated in

Figure 3.7. In this example the shapes represent the different types of distinctions and

the color represents the parameters for the distinctions. Tree’s A and B are aligned

on top of each other to form the new tree A, B whose nodes are pairs of distinctions.

The alignment is constrained by the inherent ordering of the nodes, with yes and no

always being the left and right branches respectively. The distance between the trees

is calculated by taking the sum of a distance function applied to each pair of nodes.

First, calculating the alignment-distance requires modifying the trees by adding to

them a number of null-nodes such that the two trees become isomorphic when ignoring

the actual distinctions made by the real nodes. Next, the two trees are overlapped

producing a pair of distinctions at each node. The distance function γ(δ1, δ2) gives

the distance between the distinctions δ1 and δ2. The alignment-distance of the trees

is the sum of the distances between all pairs of nodes.

The choice of the distance function is an important one. Two different functions

are used: γ is an unweighted function and γw is a weighted one. The distinctions have

a type, τ , and a set of parameters, ρ. The full list of distinction types and associated

parameter sets is given in Table 3.1. A sample distinction would be “Does there exist

an object of type acyclic-downdraft.” In this example τ would be exist and ρ would

be acyclic-downdraft. For the null-nodes, τ = ρ = ∅.
The distance functions are defined as follows:

γ(δτ1ρ1 , δ
τ2
ρ2

) =

{
1 if τ1 6= τ2

0 otherwise

and

γw(δτ1ρ1 , δ
τ2
ρ2

) =


1000 if τ1 = ∅ or τ2 = ∅
100 if τ1 6= τ2

10 ∗ |NotInBoth(ρ1, ρ2)| if ρ1 6= ρ2

0 otherwise

where the function NotInBoth(A, B) returns the set of elements not in both the sets

A and B.

The alignment-distance is biased towards the depth of the tree. Since deeper trees

have more nodes, there are more possibilities for discrepancies between trees. Thus,

shallower trees have a smaller maximum-alignment distance than deeper trees. To

correct for this bias, a normalization term of 1/
∑D

i=0 2i = 1/(2D+1 − 1) is applied

to the alignment-distance, where D is the maximum depth parameter. This results
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Distinction Name Parameters

Exists object/relation type

Attribute attribute, stat ∈ [min, max, mean, std, median,

mode, less than, exact], split value

Count Conjugate count, base distinction

Structural Conjugate relation type, base distinction

Temporal Exists object/relation type, extent

Temporal Partial Derivative attribute, extent, if attribute is a field (field func-

tion ∈ [gradient, curl, divergence], stat ∈ [min,

max, mean, std])

Temporal Ordering temporal ordering ∈ [before, meet, overlap, equal,

start, finish, during], base distinction A, base dis-

tinction B

Single Item Select Conjugate attribute or object/relation type, base distinction,

item
selector ∈


[max, min] if attribute

[list first,

earliest,

oldest]
if object or relation

Boolean boolean operator ∈ [and, or], base distinction A,

base distinction B

Shapes field attribute, split type ∈ [match, change, tilt],

split
value =


shape class if split type is match

shape class A,

shape class B
if split type is change

vector, theta if split type is tilt

Field Function field attribute, field function ∈ [gradient, curl, di-

vergence], stat ∈ [min, max, mean, std], vector,

theta

Field Attribute field attribute, field function ∈ [gradient, curl, di-

vergence], stat ∈ [min, max, mean, std, median,

mode, less than, exact], split value

Table 3.1: List of distinctions and their associated set of parameters.Base distinctions

are any non-conjugate distinctions.
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in a normalized brittleness metric that is a per-node distance, making possible the

comparison of trees of different maximum depths.

3.7 Missing Values

A common difficulty when dealing with real-world data is handling missing values.

A great amount of research has gone into various techniques to deal with imperfect

data. Liu et al. (1997) gives a brief overview of several techniques for handling missing

values. In the spatiotemporal framework there are three cases of missing values. The

first is where a non-temporal attribute is missing its value, which is analogous to

missing values in propositional data. The second and third cases deal with temporal

and spatial attributes. Temporal attributes could be missing time steps within the

temporal stream, but still have value for other timesteps. Likewise, spatial attributes

could be missing values from within the field, but still have many values present.

Each of these cases needs to potentially be handled in a different manner.

The simplest method is to discard objects that contain missing values (White

1987). This can have detrimental effects in propositional data, but is likely to have

even larger effects in relational data as the removal of an object would also remove

all the relationships connected to it. The power of relational algorithms is the ability

to leverage the structure imposed by relationships.

In the case of SRPTs it would be possible to simply remove the attribute from

the single object leaving the rest of the attributes and the relations unchanged. This

comes from the ability of the SRPT to handle heterogenous data. All attributes,

objects, and relations are optional. While the SRPT can handle a missing attribute

it is still likely that the removal of the good values would be detrimental.

The alternative to removal is to replace the missing values through some method

of interpolation. Many different techniques have been suggested each with strengths

and weaknesses, such as inferring the value from objects in the same class (Kononenko

et al. 1984) or using decision trees to predict the value (Quinlan 1986). Many other

techniques for handling missing data have also be proposed (Breiman et al. 1984;

White 1987; Friedman et al. 1996). Previous SRPT work made no attempts to handle

missing data and required all data to be preprocessed such that the data given to the

algorithm was pristine. We added a simple method of dealing with missing values
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in 1-dimensional temporal attributes and spatial-attributes (both temporal and non-

temporal). In the case of a single 1-dimensional non-temporal attribute we assume

that the attribute will simply not be in the data, i.e. there is no indication that the

attribute is missing. The SRPT algorithm can easily handle the heterogeneity by the

missing attribute.

To handle cases two and three of missing values we use a simple mean of non-

missing nearest neighbors interpolation. For case two, a 1-dimensional temporal

attribute, the nearest neighbors are temporally local. Hence if at is missing it is

replaced with the linear interpolation from the two temporally closest existing val-

ues, at−i and at+j on either side of at. For case three the nearest neighbors are

spatially local not temporally, regardless if the attribute is temporal or not. In 2-

dimensions the nearest neighbors are the eight touching values (counting diagonal

as touching), and in 3-dimensions they are the 26 touching values. The missing

value is replaced by the mean of the nearest neighbors that are not-missing. Miss-

ing values are replaced in order of increasing indices of the z, y,and x dimension

(< 0, 0, 0 >,< 0, 0, 1 >, ..., < 0, 1, 0 >, ..., < 1, 0, 1 >, ..., < nx, ny, nz >).

The use of a simple mean of nearest neighbors introduces some degree of temporal,

for case two, and spatial, for case three, autocorrelation. Research has shown that

real-world data is frequently auto-correlated (O’Sullivan and Unwin 2002; Longley

et al. 2005; Neville and Jensen 2005), hence the introduction of small amounts of

auto-correlation should have negligible effects. At the very least we assume that the

possible negative effects of the introduction of auto-correlation is far less than the

negative effects of simply removing the attribute. This assumption should be tested

in future research on the topic of auto-correlation.
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Chapter 4

Empirical Results

In order to fully explore each of the datasets we performed a factorial experiment

across three of the parameters used in the construction of SRRFs. The number of

trees were [1, 10, 50, 100]. Note that a SRRF containing a single tree is equivalent

to an SRPT. The number of distinctions sampled were [10, 100, 500, 1000], and the

maximum depth was [1,3,5]. In total, this makes 48 parameter sets. Each set was

repeated 30 times so as to be able to generate confident statistics.

Variable importance was also calculated for a subset of the parameter sets in order

to yield further insight into the SRRFs produced. We calculated variable importance

only on the subset of 100 trees, 1000 samples and max depth 5 in order to see which

variables were important in the best performing set of forests. These are the most

interesting forests with regards to variable importance. In addition, variable impor-

tance is computationally expensive. By limiting the number of forests we use for

calculating variable importance to the most interesting subset, the runtime was re-

duced from 2-3 days to 5-6 hours on some domains . We also calculated the frequency

of which distinctions were picked, as well as the frequency of which objects, relations,

and attributes were used in those distinctions. For distinctions that referenced an at-

tribute, it counted towards the object or relation counts. Also, relations were counted

toward the source and destination objects.

The classification power of a SRPT is measured using the Gerrity Skill Score

(GSS). We chose GSS because it was designed for measuring performance on multi-

class classification problems, and some of the datasets used in this study contain

more than two classes. GSS is Gandin and Murphy’s equitable skill score (Gandin

and Murphy 1992) with a scoring matrix derived to satisfy the constraints of symme-

try and equitability as stated by Gandin and Murphy. To calculate GSS let S be an

equitable scoring matrix whose calculation is given below and E be a matrix (con-

tingency table) such that e(i, j) is the relative frequency of instances with the true

class i being classified as class j. From S and E, GSS = trace(STE). To calculate
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S, following Gerrity (1992), let P (r) be the relative frequency of class r. Using P (r)

define the following:

D(n) =

1−
n∑
r=1

P (r)

n∑
r=1

P (r)
, and

R(n) =
1

D(r)
.

Let K be the number of classes and κ = 1
K−1

.The elements of S are calculated as:

sn,n =κ

[
n−1∑
r=1

R(r) +
K−1∑
r=n

D(r)

]
n = (1, 2, · · · , K)

sm,n =κ

[
m−1∑
r=1

R(r) +
n−1∑
r=m

(−1) +
K−1∑
r=n

D(r)

]
1 ≤ m < K,m < n ≤ K

sn,m =sm,n 2 ≤ n ≤ K, 1 ≤ m < n

GSS varies from -1 to 1 (Gerrity 1992). A value of -1 indicates “intentionally” classi-

fying incorrectly; a value of 0 is equivalent to the performance of a random classifier;

and a value of 1 indicates perfect classification.

We considered a variety of skill metrics including Heidke’s Skill Score (HSS) and

Matthew’s Correlation Coefficient (MCC). Previous work on SRPTs and SRRFs used

True Skill Score (TSS) (aka Hanssen-Kuipers Discriminant, True Skill Statistic, and

Peirces’s Skill Score), however, we chose GSS to replace TSS as it is believed to be

a better skill indicator without the bias introduced by rare-events that TSS exhibits

(Jolliffe and Stephenson 2003; Marzban 1998). It is worth noting that GSS and

TSS yield identical scores in the case of two classes. In addition to GSS, we use

Area under the Receiver Operator Characteristic Curve (AUC) on domains that only

contain two classes as AUC has a long, respected history (Bradley 1997; Egan 1975).

AUC measures the robustness of the classifier across the various probability thresholds

(Provost and Fawcett 2001).

To show the improvement from the addition of fields and new distinctions we

also generate a non-fielded version of each dataset. This was done by reducing each

field into four new attributes based on the minimum, maximum, mean, and standard

deviation of the field. This is how the data would have been processed before the
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addition of fields. We repeated the same parameter search over the non-field datasets

as we did the fielded datasets. This allows for the comparison of the performance

between fields and non-fields.
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4.1 Points

Points is a synthetic dataset designed to test the new capabilities of SRPTs, par-

ticularly shape detection. Each graph is comprised of 3 to 10 objects each having

two attributes: a discrete color and a 3D-field of integers from {0, 1}. The 3D-field

is used to represent a point cloud with a 1 indicating a point at that location and

0 indicating empty space. A single relationship type is used with a random number

of relations within each graph. To generate the data we randomly created a uniform

distribution of class labels. Using the class labels we filled in the required number of

objects with the correct attributes to meet the definition of each class label. Addi-

tional random objects were added to the graph along with relations that randomly

related objects within the graph. These extra objects and relations served to add

noise, forcing the SRRF to extract the relevant information from the domain. The

full schema for Points is in Figure 4.1.

There are three classes in the Points dataset: change, grow, and flip. Each of the

classes is based only upon color and/or the field, the relationships provide noise in the

data and are not relevant for classification. Change has a box to turn into a sphere

and cone to turn into a cylinder. Grow has three blue spheres that grow to have a

volume greater than ≈ 167 cubic units (radius of 40 units). The last class flip has a

cone that flips 180 degrees along its axis.

Figure 4.2 shows the performance of the SRRFs on Points for max depth of 5.

Increasing the number of samples increases performance, however, there is an asymp-

totic behavior as adding more and more samples fails to increase performance. In-

creasing the number of trees also increases performance, though it quickly asymp-

totes as the addition of trees does not capture any additional features of the data. In

Figure 4.3 we see that there is the expected drop between training data and testing

Shape
Color

Points <T3F>
Nearby

Distance <T>

Figure 4.1: Schema for Points dataset: Attributes tagged <T> are temporal, <T3F>

are temporal 3d fields, and untagged attributes are discrete.
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Figure 4.2: Testing set GSS on Points varying across K and N with D=5. Error bars

are standard deviation.
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Figure 4.3: Training set GSS for Points varying across K and N with D=5. Error

bars are standard deviation.
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Figure 4.4: GSS for Points varying across K and D with N=100. Error bars are

standard deviation.

data. However the change in GSS is relatively small from a training mean GSS of ≈ .7

to a testing GSS of ≈ .6. Figure 4.4 shows GSS of the SRRFs on Points illustrating

how changing depth affects GSS. There is not much difference between depth 5 and

3 but between 3 and 1 there appears to be some difference. This trend exists in the

other domains as well, hence we will only be looking at depth 5 results.

Table 4.1 contains N-way analysis of variance (ANOVA) for the factors number

of samples (K), number of trees (N), and max depth (D) versus GSS. The first three

columns shows the significance of single factor effects and the remaining four show

interaction effects between parameters. Each of the three factors, K, N, D individually

show a statistically significant effect on GSS, meaning that a change in the factor

produces a statistically significant change in GSS. These follow common assumptions

on decision trees and random forests. Increasing sampling should allow the SRRFs to

find better distinctions and this is supported by statistics. Also increasing the number

of trees and max depth should increases the performance by allowing the SRRFs to

capture more complex concepts. Again, the effects of each of these parameters is

supported by the statistics.
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GSS N K D N×K N×D K×D N×K×D

≈ 0 ≈ 0 ≈ 0 ≈ 0 0.541 4.98e-4 0.004

Table 4.1: N-Way ANOVA for Points Across all parameters. Values in bold are

significant with α = 5%. ≈ 0 implies a value <= 0.

The interaction between number of samples and number of trees means that vary-

ing the two together produces more of a change in GSS than varying either one alone.

The interaction effect between samples and depth is also significant. While ANOVA

reports that increasing the number of trees (and number of samples) is statistically

significant, if we look at a single slice, such as the right-most set of points in Figure 4.2.

It is questionable if varying the number of trees for 1000 samples and max depth 5

produces a significant change in GSS. To test if there is a difference we performed

an unpaired bootstrap randomization test with 10,000 resamplings to compare the

mean GSS. The results are shown in Table 4.2. The tests indicate that there is a

statistically significant difference between 1 and 10 trees, between 10 and 50 trees,

but not between 50 and 100 trees. We also applied the bootstrap randomization to

varying the number of samples at 100 trees. It shows a significant difference between

10 to 100 samples and 100 to 500 samples, but no difference between 500 and 1000

samples.

Table 4.3 contains the distinction counts and the counts of the attributes used by

the distinctions. From the table we can see that the SRRFs are mostly picking distinc-

tions that make sense give the definition of each class. Count conjugate is the most

frequently chosen distinction. Counting is an important element of the definition of

the grow class. The second most frequently chosen distinction is Attribute.Exact. The

only attribute it selects the shape’s color. Color is critical for successful classification,

Number of Trees 1 and 10 10 and 50 50 and 100

P-Value ≈ 0 0.003 0.819

Number of Samples 10 and 100 100 and 500 500 and 1000

P-Value ≈ 0 0.003 0.956

Table 4.2: Unpaired Bootstrap Randomization on GSS for K=1000 with D=5 between

various N; and for N=100 with D=5 between various K . Values in bold are significant

with α = 5%.
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Total 398531 125699 60422

CountConjugate 20 78484

Attribute.Exact 10 39879 39879

Shapes.Tilt 9 34195 34195

Field.Gradient 7 28660 28660

Attribute.LessThan 5 20543 20543

Shapes.Match 5 18766 18766

FieldAttribute.Gradient 4 16927 16927

Shapes.Change 4 16614 16614

Exist 4 15783

TemporalExists 3 13274

Table 4.3: Distinction counts for the top 10 distinctions and top 2 attributes.

so the frequent use of matching color makes sense. Shapes.Tilt, Shapes.Match and

Shapes.Change also show up as we would expect given the definition of each class.

Overall the SRRFs do a decent job of predicting this highly spatiotemporal domain.

The Points domain is focused on the ability of SRRFs to reason with fielded

objects and should be quite difficult to perform well on with the fielded objects re-

duced to values. Figure 4.5 shows the results of training SRRFs on the non-fielded

Points. The resulting performance shows some ability to learn the classification prob-

lem despite the loss of fields. However, having the fields in the data does produce

statistically significantly higher GSS, according to an unpaired bootstrap randomiza-

tion test with 10,000 resamplings, with a p-value of ≈ 01. The variable importance for

non-fields shows that shapes.color is by far the most important attribute. The next

closest attribute’s variable importance isn’t statistically significantly different than

0. After examining some of the trees and returning to the definition of the classes,

the requirement of one class having 3 blue spheres makes that class predictable even

1Despite the algorithm for bootstrap randomization returning ≈ 0, with 10,000 resamplings the

strongest statement that can actually be made about p is p < 10−4
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Figure 4.5: Testing set GSS for No-Fields Points varying across K and N with D=5.

Error bars are standard deviation.

without the ability to check the other requirement of the class definition. Despite

attempts to hinder the SRRF it was able to do moderately well. From this we can

see that humans easily overlook aspects of a domain they believe are not important

to the classification task. However, the SRRF algorithm considers all the information

provided without the preconceived notations of importance. Moreover, SRRFs can

sometimes find utility in the “unimportant” data.
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4.2 Turbulence2

Convectively-induced turbulence (CIT) presents a major hazard for aviation. CIT

is atmospheric turbulence in and around thunderstorms that frequently causes flight

delays, routing changes and bumpy rides for passengers. In addition, the turbulence

encountered by aircraft can cause structural damage to the aircraft, serious injuries

and even fatalities. Providing better information about probable locations of tur-

bulence to airline dispatch, air traffic control, and the pilots will enable them to

avoid unnecessary ground delays and plan efficient routes that mitigate or avoid tur-

bulence encounters. The National Center for Atmospheric Research includes better

convectively-induced turbulence prediction as one of its goals in its current 2009-2013

RAL Strategic Plan. 3

The Graphical Turbulence Guidance (GTG) system is the current system used for

the forecasting of turbulence over the US (Sharman et al. 2006). It was developed

by the FAA’s Aviation Weather Research Program and currently runs at NOAA’s

Aviation Weather Center. The algorithm employed by the GTG system uses a com-

bination of turbulence “diagnostic” quantities derived from a numerical weather pre-

diction model that forecasts on a three dimensional grid. The Richardson number is

an example of an diagnostic quantity used by the models. It measures the ratio of

atmospheric stability to wind shear with low values suggesting the transition from

Figure 4.6: Map of eddy dissipation rate (EDR) collected by the automated turbu-

lence reporting system on airplanes over a 24 hours period. 4

2Description of Turbulence domain adapted from (McGovern et al. 2010)
3http://www.ral.ucar.edu/strategic plan/2009/goal aap.php
4Image courtesy of the National Center for Atmospheric Research
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Aircraft
Altitude
Bearing

Wind Speed
Richardson Number

Temperature
Cape

Convective Inhibition

Hail (>= 60dBZ)
<same as rain>

Convection (>= 40dBZ)
<same as rain>

Rain (>= 20dBZ)
Cloud Top Temperature <T2F>

Reflectivity <T2F>
Relative Height <T>

Area <T>
Cape <T>

VIL (>= 3.5kg/m2)
<same as rain> Contains

Coverage <T>

Contains

Contains

Contains

Contains

Nearby
Relative Azimuth <T>

Range <T>

Nearby

Nearby

Nearby

Figure 4.7: Schema for turbulence dataset: Attributes tagged <T> are temporal and

<T2F> are 2D temporal fields, untagged attributes are scalars.

laminar to turbulent flow (Wallace and Hobbs 2006). Unfortunately, the 3-D grid

of the numerical model uses for computatoin is too course to resolve thunderstorms

making it incapable of fully capturing the mechanics of CIT generation.

Some modern commercial aircraft are fitted with automated turbulence reporting

systems. These are used to augment the forecasts of the numerical models by asso-

ciating objective atmospheric turbulence measurements with the models and other

observations. By using rapid measurements of the aircrafts vertical acceleration, the

automated turbulence reporting system can deduce atmospheric winds and use sta-

tistical analysis of the wind fluctuations to determine the intensity of the current

turbulence. The turbulence of in-flight aircraft is measured in terms of eddy dissi-

pation rates (EDR) over 1-minutes segments. Figure 4.6 shows a map of the EDR

measurements over a single 24-hour time period. Note areas of turbulence are visible,

such as over the Rocky Mountains.

Data were combined from aircraft reports, archived weather observations, and

archived real-time weather models to create the dataset used for this experiment.

The aircraft reports we used were collected from United Airlines Boeing 757 aircraft

in the summer of 2007. Summer was chosen due to the increase of convection during

the season. This helps in isolating convection as the source of turbulence. To generate

useable data, the raw collected data were transformed into a spatiotemporal relational

representation detailed by the schema in Figure 4.7. Using the in-situ aircraft data
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and the NWP gridded model and observation data, we formed objects that represent

meteorological concepts or distinct regions. Thresholds were applied to the radar

reflectivity data generating connected areas with rain being represented by areas

greater than 20dBZ, convection greater than 40dBZ, and hail greater than 60dBZ.

The natural rarity of CIT and skilled pilots whose job includes avoiding turbulence

make aircraft experienced turbulence an especially rare event. This meant that much

of the data collected contained instances of null or light turbulence with only 1% of

the collected data reporting light-to-moderate or greater (LMOG) turbulence. Rare

events can complicate learning and is a common hurdle in machine learning (Provost

and Fawcett 2001). We under-sampled the data to combat the effects of rare events

to bring the percentage of LMOG turbulence to 26% of the 2055 instances. The final

class distribution is shown in Table 4.4.

Total No Yes

2055 1514 (74%) 541 (26%)

Table 4.4: Turbulence class distribution.

We performed the full parameter search using SRRFs producing Figure 4.8 that

shows an AUC of 0.8236 at 100 trees 1000 samples. Figure 4.9 shows a mean GSS of

0.279 with 100 trees, 100 samples, and depth 5 . Comparing the GSS on the training

set to the performance on the testing set, Figure 4.10, we see a drop in GSS down to

0.441 that could indicate some over fitting.

ANOVA interestingly indicates that all parameters are statistically significant for

affecting GSS. It also shows strong interaction effects between all variables. Focusing

on a particular set of parameters, it appears that there is no difference between 10,

50, and 100 trees at 1000 samples. Performing an unpaired bootstrap randomization

test with 10,000 resamplings to compare the mean GSS, shown in Table 4.6, confirms

there is no statistically significant difference. The test also confirms an asymptote

GSS K N×D N D K×D N×K N×K×D

0.0118 ≈ 0 ≈ 0 8.71e-6 9.13e-5 ≈ 0 2.52e-8

Table 4.5: N-Way ANOVA on Turbulence GSS. Values in bold are significant with

α = 5%.
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Figure 4.8: AUC for the testing set for turbulence across K and N with D=5. Error

bars are standard deviation.
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Figure 4.9: GSS for the testing set for turbulence across K and N with D=5. Error

bars are standard deviation.
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Number of Trees 1 and 10 10 and 50 50 and 100

AUC ≈ 0 ≈ 0 ≈ 0

GSS 5e-04 0.996 0.164

Number of Samples 10 and 100 100 and 500 500 and 1000

AUC ≈ 0 ≈ 0 0.011

GSS ≈ 0 ≈ 0 0.687

Table 4.6: Unpaired Bootstrap Randomization on GSS for K=1000 with D=5 between

various N; and for N=100 with D=5 between various K . Values in bold are significant

with α = 5%.

when increasing the number of samples. Going from 10 to 100 samples on 100 trees

and depth 5 is significant, but 100 to 500 and 500 to 1000 is not significant.

By reducing the fields in the dataset into temporal-scalars as described at the

beginning of Chapter 4, we can determine if adding fields increased the performance

of SRRFs on Turbulence. Figure 4.11 shows GSS for turbulence with no fields. The
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Figure 4.10: GSS on training set for turbulence across K and N with D=5. Error

bars are standard deviation.
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resulting GSS appears identical between them. An unpaired bootstrap randomiza-

tion test with 10,000 resamplings to compare the mean GSS determines there is no

statistically significant difference between the two with a p-value of 0.943. Comparing

AUC using the same test gives the same result with no significant difference with a

p-value of 0.069.

Variable importance (Table 4.7) gives no indication that the SRRF focused on

the same non-field attributes between the two datasets. Only one non-field attribute,

the plane’s Richardson number, shows up as being significantly important for both

fields and non-fields. This makes sense as the Richardson number is a measure of flow

stability. As the atmosphere becomes unstable it tends to produce turbulent air flow

instead of smooth laminar flow.
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Figure 4.11: GSS for Turbulence without Fields varying across K and N with D=5.

Error bars are standard deviation.
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Mean Mean

Fields Variable Non-Fields Variable

Importance Importance

Vil.Area 0.198 Plain.ConvectionInhibition 0.153

Plane.RichardsonNumber 0.106 Plane.RichardsonNumber 0.128

Rain→Contains.Coverage→Vil 0.085 Conv.StdDev CloudTopTemperature 0.124

Rain→Contains.Coverage→Conv 0.084 Conv.Area 0.110

Conv→Contains.Coverage→Vil 0.061 Conv.Max CloudTopTemperature 0.105

Rain.Area 0.056 Plane→Nearby.Azimuth→Conv 0.101

Hail.CloudTopTemperature 0.054 Conv.Mean Reflectivity 0.090

Plane→Nearby.Range→Rain 0.053 Vil.StdDev Reflectivity 0.081

Vil.CloudTopTemperature 0.052 Rain.StdDev Reflectivity 0.080

Plane→Nearby.Range→Vil 0.048 Conv.StdDev Reflectivity 0.071

Table 4.7: Top 10 statistically significant (α = .05) attributes according to variable importance on the Turbulence dataset.

Non-field attributes present in both are shown in bold. Non-field attributes the name of the field is prefixed with the statistic

used in the reduction from a field to a scalar, e.g. Vil.StdDev Reflectivity is the standard deviation of the Vil’s Reflectivity

field.
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Table 4.8: Top 10 Distinctions and Attributes/Objects/Relations for Turbulence with

100 trees, 1000 samples, depth 5 set of trees.

55



4.3 Fronts5

Frontal movements are theorized to play a major role in the formation of tornadoes.

As air masses move across the land and meet, they form boundary regions such as

along a warm front or cold front. With the collision comes the mixing of the air masses.

This mixing is not instantaneous but forms transition zones that can produce regions

of strong temperature and moisture gradients. Formation of boundaries can also occur

along dry-lines or along outflow regions from thunderstorms. Boundaries from warm,

moist air lifting up and over cool, dry air is frequently associated with generation of

thunderstorms. However, the role of such boundaries play in tornadogenesis is not well

understood. These boundaries have been shown to yield zones of enhanced horizontal

rotation that can be titled by a strong updraft present in a supercell thunderstorm

moving through the region. This tilting assists the production of the tornadoes. A

study performed by Markowski et al. (1998) on supercell thunderstorms over a one-

year period found that 70% occurred near frontal boundaries. Due to the limited

sample size and short time period additional study over a longer period is needed in

order to quantify the boundary-tornado relationship.

Figure 4.12: Frequency of tornadic supercells within 30km from 1994-2003.

5Description of Fronts domain adapted from (McGovern et al. 2010)
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Storm
Step Length <T>
Turn Angle <T>
BRGPrev <T>

Wind Direction <T>
Wind DSD* <T>
Wind SSD* <T>
Wind <T2VF>

Rain <T>
Pressure <T2F>
LCLH* <T2F>
ThetaE <T2F>

Bearing <T>
Azimuth <T>
Range <T>
Height <T>

Reflectivity <T>
Latitude <T>

Longitude <T>
Net Displacement <T>
Air Temperature <T2F>

Dew Point <T2F>
Relative Humidity <T2F>

Front
Center X <T>
Center Y <T>

Area <T>
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Major Axis Length <T>
Minor Axis Length <T>

Oriented <T>
ThetaE <T2F>

Air Temperature <T2F>
TFP* <T2F>

Dew Point <T2F>
LCLH* <T2F>

Pressure <T2F>
Wind <T2VF>

On Top Of
Distance <T>

Nearby
Distance <T>

Abbreviations
     Wind DSD: Wind Direction Standard Deviation
     Wind SSD: Wind Speed Standard Deviation
     LCLH:  Height of the Lifted Condensation Level
     BRGPrev: Previous Bearing
     TFP: Thermal Front Parameter

Figure 4.13: Schema for Fronts dataset: Attributes tagged <T> are temporal,

<T2F> are temporal 2D fields, and <T2VF> are temporal 2D vector fields.
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Our data were created by the combination of two sources, one providing the

supercells and the other providing the data need for extracting frontal boundaries.

The supercells come from a nine year study performed by Hocker and Basara from

1994–2003 of 950 Oklahoma supercells (Hocker and Basara 2008). Frontal boundaries

associated with each supercell were extracted from Oklahoma Mesnot observations

(McPherson et al. 2007) using objective front analysis (Jenker et al. 2005; Renard and

Clarke 1965). Each supercell and frontal boundaries group was labeled based on if

it produced a tornado. Figure 4.13 shows the schema used for our experiments. The

schema details the objects, relations, and attributes provided to the SRRF algorithm.

A Nearby relationship indicates a storm and a front are less than 40km apart. On-

Top-Of indicates the distance between them is less than 10km. Figure 4.12 shows

the spatial distribution of the supercells across Oklahoma. Table 4.9 gives the class

distribution in the Fronts domain. 6

Total No Yes

926 711 (77%) 215 (23%)

Table 4.9: Fronts class distribution.

Fronts achieves a maximum mean AUC of 0.7265 at 100 trees, 1000 samples, and

max depth of 5. Figure 4.14 shows GSS across number of trees and number of sam-

ples showing what appears to be well graduated differences between parameter sets.

An unpaired bootstrap randomization test with 10,000 resamplings to compare the

mean GSS is shown in Table 4.11. The test shows there is a statistically significant

difference between 1 and 10 trees and between 10 and 50 trees both at 100 sam-

ples. Comparing the number of samples from 10 to 100 with 100 trees also yields a

statistically significant difference.

The low mean GSS shown in Figure 4.15 indicates that the Fronts domain is

difficult for the SRRFs, with a maximum mean GSS of 0.149. Examining the results

from the testing set shown in Figure 4.16, we see that the mean GSS is 0.493. This

is a fairly large drop between training and testing sets, and is most likely evidence of

over fitting. The ANOVA shows that each factor is important in affecting the GSS

achieved by SRRFs on Fronts. SRRFs with 10 trees have a statistically significant

higher GSS than other number of trees. Also increasing the number of samples does

not statistically asymptote until 500 samples.

6Description of domain adapted from (McGovern et al. 2010)
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Figure 4.14: AUC for Fronts varying across K and N with D=5. Error bars are

standard deviation.
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Figure 4.15: GSS for Fronts varying across K and N with D=5. Error bars are

standard deviation.
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Figure 4.16: Training GSS for Fronts varying across K and N with D=5.

GSS K N×D N D K×D N×K N×K×D

1.19e-14 ≈ 0 2.65e-15 2.54e-5 0.152 2.84e-6 0.898

Table 4.10: N-Way ANOVA on Fronts GSS. Values in bold are significant with α =

5%.

Number of Trees 1 and 10 10 and 50 50 and 100

AUC ≈ 0 0.025 0.085

GSS 0.129 0.004 0.577

Number of Samples 10 and 100 100 and 500 500 and 1000

AUC 1.38e-14 0.089 194

GSS 4e-4 ≈ 0 0.798

Table 4.11: Unpaired Bootstrap Randomization on GSS for K=1000 with D=5 be-

tween various N; and for N=100 with D=5 between various K . Values in bold are

significant with α = 5%.
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Table 4.12: Top 10 Distinctions and Attributes/Objects/Relations for Fronts with

100 trees, 1000 samples, depth 5 set of trees.
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Mean Mean

Fields Variable Non-Fields Variable

Importance Importance

Storm.AirTempature 0.162 Storm.NetDisplacement 0.323

Storm.ThetaE 0.130 Storm.Bearing 0.233

Storm.NetDisplacement 0.120 Front.CenterY 0.202

Storm→Nearby.RelativeAzimuth →Front 0.117 Storm →Nearby.RelativeAzimuth →Front 0.196

Storm.DewPoint 0.112 Front.Max ThetaE 0.195

Storm.Bearing 0.109 Front.Max DewPoint 0.164

Front.ThetaE 0.088 Front.Min Wind 0.155

Front.ThermalFrontParameter 0.085 Front.StdDev Pressure 0.137

Storm.Pressure 0.085 Storm.Latitude 0.129

Storm.LiftedCondensationLevelHeight 0.079 Storm.Longitude 0.125

Table 4.13: Top 10 statistically significant (α = .05) attributes according to variable importance on the Fronts dataset. Non-field

attributes present in both are shown in bold and field attributes in both are shown in italics. For the non-field attributes the

name of the field is prefixed with the statistic used in the reduction from a field to a scalar, e.g. Front.Max DewPoint is the

maximum of the Front’s Dew Point field.
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Figure 4.17: GSS for Fronts without Fields varying across K and N with D=5. Error

bars are standard deviation.

As before, we repeated the full parameter search on Fronts without fields. Figure 4.17

shows GSS without fields. Comparing the plots with and without fields, it appears

that there is little to no difference. Calculating ANOVA confirms this as shown in

Table 4.10. The p-value for the comparison of all parameter sets is 0.167. In addition

we performed a unpaired bootstrap randomization test with 10,000 resamplings. The

bootstrap randomization was limited to only forests of 100 trees at 1000 samples with

a maximum depth of 5 and yields a p-value of 0.196. Comparing AUC with the name

test between fields and non-fields also shows no statistically significant difference with

a p-value of 0.473.

Our hypothesis that adding fields would increase the GSS obtained by SRRFs

fails for the Fronts domain. One possible explanation is that the most useful vari-

ables are not fields, hence they exist with the same data in both the fielded and

non-fielded datasets. Calculating variable importance will give an insight into the

most important attributes and perhaps contain some indication of the poor perfor-

mance. Table 4.13 shows that 6 of 10 of the most important attributes are non-fields.

Storm→Nearby→Front is our notation for indicating a storm object is related to a

front object via a nearby relation. And Storm→Nearby.RelativeAzimuth→Front is
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Figure 4.18: Frequency of Tornadoes in the Fronts Data by Fujita Scale. 7

the relative azimuth attribute of the relation. Several of the attributes also show up

in both the field and non-field versions.

Variable importance (Table 4.13) fails to show any strong evidence of why there is

no statistically significant difference between the field and non-field versions. Given

the very poor performance of the SRRFs on both versions a possible explanation is

that the needed data to do a good job is simply not present in the data. Another

possibility is that the distribution of tornadoes by intensity being biased towards

F0 tornadoes makes the task more difficult. Figure 4.18 shows the distribution of

tornados by Fujita number in the Fronts data. Since the wind speeds in an F0

tornado, a tornado with maximum wind speeds less than 73 mph (33 m/s), are not

much different than severe thunderstorm winds, winds greater than 58 mph (25 m/s),

it is difficult to distinguish features of the storm and its environment that produce each

of these phenomena. Better results might be achieved by counting F0’s and/or F1’s

as negatives. F2 and greater are considered “significant” tornadoes in meteorology

and the focus is frequently placed on predicting them.

7Plot courtesy of David John Gagne II
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4.4 Tornado

Supercell thunderstorms can create several serious hazards including hail 4 inches

in diameter and winds in excess of 100 miles per hour. However, the potentially

most dangerous and damaging are tornadoes. Tornadoes cause millions of dollars

of damage every year and can even result in loss of life. In 2008, tornadoes caused

126 deaths (Storm Prediction Center 2009). The past decade has shown a great

improvement in the ability to predict supercell formation and movement. Despite

these improvements, the ability to predict if a given supercell will produce a tornado

is still far less than satisfactory and poses a challenge to researchers (Markowski and

Richardson 2009).

In order to predict tornadogenesis, we needed data of tornadic and non-tornadic

storms. This was achieved by using a numerical simulation framework that could

produce simulations of thunderstorms, and specifically supercells. The supercell data

used was generated by Rosendahl (2008) using the Advanced Regional Prediction

System (ARPS) model (Xue et al. 2003). Rosendahl’s model used a 500 m horizontal

grid spacing over a 100 km × 100 km domain with 50 vertical levels resulting in

a domain of 200 × 200 × 50 points. To produce the various simulations the initial

conditions were varied across a set of parameter values for the surface mixing ratio

and the shape of the hodograph in the sounding. The simulation was run for three

hours with snapshots of the domain’s state saved every 30 seconds. The saved data

consists of 21 time series of 200×200×50 grids of meteorological variables. Table 4.14

lists all 21 variables.

The application of SRRFs for prediction of tornadogenesis requires that the data

be represented in a spatiotemporal relational manner and labeled. The supercell

simulations were used to generate spatiotemporal relational attributed graphs repre-

senting storms from the simulations. Each simulation could produce multiple storms

each of which was separated into its own graph and labeled independently. The grid-

ded domain was broken into regions using thresholds on the meteorological variables

that created objects of different types. Once the regions were determined the meteo-

rological variables were saved with each object. The objects were then related based

on spatial proximity. Figure 4.19 details each object type and the relations in the

graphs we generated.

Storms were given one of three labels, Yes, No, Maybe, based on the occurrence

of strong low-altitude rotations. Due to the 500m resolution of the simulations, it is
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Figure 4.19: Schema for Tornado dataset: Attributes tagged <T> are temporal,

<T3F> are temporal 3d fields, <T3VF> are temporal 3d vector fields. All objects

can be related to each other via all relations and on the lower right are attributes

present in all objects.
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Water Vapor Mixing Ratio Water Vapor Number Concentration

Cloud Water Mixing Ratio Cloud Water Number Concentration

Rain Mixing Ratio Rain Number Concentration

Ice Mixing Ration Ice Number Concentration

Graupel Mixing Ratio Graupel Number Concentration

Snow Mixing Ratio Snow Number Concentration

Hail Mixing Ratio Hail Number Concentration

Base Pressure U Component of Wind

Pressure Perturbation V Component of Wind

Base Potential Temperature W Component of Wind

Potential Temperature Perturbation

Table 4.14: Full list of extracted meteorological variables from the ARPS simulation

that produced the data for the Tornado domain.

not possible to determine the existence of a tornado using the strict meteorological

definitions of a tornado. A strong low-altitude rotation is said to occur in a storm

if four things happen. First, there must be a pressure drop of 300 Pa within a five

minute interval. Second, during that time period the minimum pressure perturbation

value must be less than -900 Pa. Third, the pressure perturbation object under going

the pressure drop must overlap, be contained by, or be equal to a vertical vorticity

object. Lastly, those two objects must be below 2km. A storm passing all of these

requirements is labeled as Yes, meaning it contains a strong low-altitude rotation, if

at least two of the four conditions are met it is labeled as a Maybe, otherwise it is

labeled No.

The end result produces storms with the class distribution in Table 4.15. How-

ever, this produced a very uneven distribution that is heavily weighted towards the

negative. To produce a less biased distribution the negative storms were under-

sampled. We tossed out all the storms in all ARPS simulations that only produced

negative storms. From a meteorological view point an ARPS simulation that only

produced negative storms is uninteresting, hence this was used instead of random

under-sampling. This reduced the number of negative storms from 846 to 364 yield-

ing the class distribution also in Table 4.15.

In Figure 4.20 we see that the SRRFs achieve a GSS of ≈ .4 for 100 trees and

100 samples at depth 5. The ANOVA calculations in Table 4.16 show that each
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Total No Maybe Yes

Original 1057 846 (80%) 124 (12%) 87 (8%)

Under-Sampled 575 364 (63%) 124 (22%) 87 (15%)

Table 4.15: Tornado class distribution with and without under-sampling.

parameter individually has a statistically significant effect on GSS. Table 4.17 shows

that the appearance of 50 trees out performing 100 trees is not statistically significant.

In fact 10, 50, and 100 trees are statistically the same by an unpaired bootstrap

randomization test with 10,000 resamplings to compare the mean GSS, however,

they all our statistically higher than 1 tree. Figure 4.21 shows only a slight drop of

around 0.1 when moving from the training to the testing set that indicates over-fitting

was most likely not an issue.

To determine if the new additions to SRRFs aided the SRRFs in their task we

also performed the full parameter search on the tornado dataset after all fields were

reduced. Figure 4.22 shows GSS for the non-fielded version of the tornado data. There

is a small, but noticeable, drop in GSS between the fielded and non-fielded. Taking all
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Figure 4.20: GSS for Tornado varying across K and N with D=5. Error bars are

standard deviation.
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Figure 4.21: Training GSS for Tornado varying across K and N with D=5. Error bars

are standard deviation.

the data together and running ANOVA indicates that there is a very strong statistical

significance with a p-value of ≈ 08 when switching between the two datasets. We also

compared non-fields to fields on a single set of parameters of 100 trees, 1000 samples

and max depth 5. An unpaired bootstrap randomization test with 10,000 resamplings

still shows a strong significance with a p-value of 4.05e-5.

Table 4.18 lists the top 10 statistically significant attributes. Given the descrip-

tion of how strong low-altitude rotations are determined the inclusion of multiple

attributes of the pressure perturbation object seems quite reasonable. Also, updrafts

are responsible for the tilting of horizontally rotating air, formed by wind shear,

into vertically rotating air, with respect to its axis of rotation. Table 4.19 (contin-

ued in Table 4.20) lists the distinction counts of the top 10 distinctions and top 10

GSS K N×D N D K×D N×K N×K×D

1.70e-7 ≈ 0 ≈ 0 ≈ 0 0.772 ≈ 0 0.786

Table 4.16: N-Way Anova on GSS. Values in bold are significant with α = 5%.

8Floating-point precession cannot represent values ≤ 2.2e− 16
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Number of Trees 1 and 10 10 and 50 50 and 100

P-Value 0.006 0.095 0.172

Number of Samples 10 and 100 100 and 500 500 and 1000

P-Value ≈ 0 0.443 0.675

Table 4.17: Unpaired Bootstrap Randomization on GSS for K=1000 with D=5 be-

tween various N; and for N=100 with D=5 between various K. Values in bold are

significant with α = 5%.

attributes. The counts of the picked attributes reflect the results of the variable im-

portance. Figure 4.23 shows the best SRRF with one tree, i.e. an SRPT. In this

example we can see several uses of the top attributes (by variable importance and

distinction count).
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Figure 4.22: GSS for Tornado without Fields varying across K and N with D=5.

Error bars are standard deviation.
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Mean Mean

Fields Variable Non-Fields Variable

Importance Importance

PressurePerturbation.PressurePerturbation 0.251 PressurePerturbation.Thickness 0.264

PressurePerturbation→
Overlap.PercentOverlap→Rain

0.188 PressurePerturbation.Volume 0.179

Hail.HorizontalCompositeArea 0.114 Hail.HorizontalCompositeArea 0.177

PressurePerturbation.Volume 0.107
PressurePerturbation→

Overlap.PercentOverlap→Rain
0.156

PressurePerturbation.Thickness 0.101 Hail.Volume 0.134

PressurePerturbation.BaseHeight 0.099
PressurePerturbation→Nearby.MinDistance

→PressurePerturbation
0.105

Hail.Volume 0.089 Updraft.Volume 0.067

Updraft.Volume 0.086 PressurePerturbation.PercentForward 0.065

Updraft.Thickness 0.061 Hail.BaseHeight 0.060

Updraft.Buoyancy 0.060
Hail→Nearby.MinDistance

→PressurePerturbation
0.060

Table 4.18: Top 10 Statistically Significant Attributes According to Variable Importance on the Tornado Dataset
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Figure 4.23: Highest Scoring (by GSS) Single Tornado Tree
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we made several major enhancements to the SRPT algorithm. The

addition of fields to objects, both 2D and 3D fields, either scalar or vector, greatly

increases the information available to the SRPTs. To make use of this new data we

added two types of distinctions increasing the number and type of questions that

SRPTs can ask of the data. First, we added shape detection in both 2D and 3D

allowing for reasoning on the shape of a field, if a field is changing shapes, and if

the axis of the shape is tilting. Second, we provided the means to reason about the

actual value of data in the fields by providing distinctions that deal with the gradient,

curl, and divergence of fields. Our hypothesis was that the addition of fielded objects

would noticeably increase the performance of the SRPT algorithm.

To test our hypothesis, we applied spatiotemporal relational random forests to four

domains, one synthetic and three real world. The Shapes domain, the only synthetic

domain, showed that the SRRFs were able to use the new shapes based distinctions

to reason about a problem consisting of mainly 3D fields where the shapes and the

changing of those shapes were crucial to the classification task.

Turbulence, the first of the real-world domains, involved the prediction of con-

vectively induced turbulence. The results showed that Turbulence is a very difficult

domain for SRRFs to gain traction. However, the AUC of the SRRFs show a robust

classifier. While the additions to the SRRF algorithm, specifically the addition of

fielded data, did not show statistically significant improvement over the non-fielded

version, neither did it cause an loss of performance. It is unclear why the fielded

Turbulence domain was not able to outperform the non-fielded version with the non-

fielded, but it is likely that the sheer difficulty of the problem, as shown by the low

GSS, contributed to the lack of a difference. A new turbulence dataset is in progress.
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It will contain 3D instead of 2D fields and more fielded attributes. We expect im-

proved results on this new dataset.

Fronts is the second real-world domain. The goal of Fronts is to predict tornado

formation based on frontal movement and boundaries and the meteorological variables

in those fronts and nearby thunder storms. Similar to Turbulence the SRRFs were

unable to gain traction on the domain yielding an even lower GSS, but still not

performing worse. Again, like Turbulence, the AUC results for Fronts show a robust

classifier. Comparing the fielded Fronts domain to the non-fielded version showed

the same result as with Turbulence, there was no statistically significant difference

between them with GSS or AUC. A likely reason for the lack of performance difference

is that both Turbulence and Fronts only contain 2D fields and that the data added

by 2D fields is not significantly more useful than the reduced non-field version.

Tornado is the last domain to which we applied SRRF’s. Similar to Fronts, Tor-

nado deals with classifying a thunderstorm as being tornadic or not. For this domain

the SRRFs were able produce markedly better performance than on Fronts or Tur-

bulence. When compared to its non-fielded version Tornado showed a statistically

significant difference between the performance of fields and non-fields. Unlike Fronts

and Turbulence, Tornado contains 3D fields. This may contribute the increase in

performance by the addition of fields. 3D fields contain much more information for

comparably sized 2D fields meaning much more information is lost when reduced to

a single scalar or vector.

While the addition of fields to SRPTs is not guaranteed to significantly increase

the performance as measured by GSS or AUC on all domains, in none of the domains

has it caused a degradation in performance. The classifiers generated by the SRRF

algorithm in all three domains are quite robust as indicated by their AUC. The

low GSS on Fronts and Turbulence suggests that the needed information to perform

well at the classification task is simply missing, hence neither fielded or non-fielded

absent information is useful. Of the three real-world domains only Tornado show

an significant benefit from the addition of fields. This indicates that the domain is

the key factor how well the SRRF can learn the classification task. We have shown

that the addition of fields can be a valuable resource to the SRRF algorithm on some

spatiotemporal relational domains.

Further details of the implementation, source code, and experimental results can

be found at: http://idea.cs.ou.edu/theses/ntroutman
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5.2 Future Work

The multi-relational decision tree learning (MRDTL) algorithm performs one-step

look-ahead when it fails to find a significant split (Leiva 2002). The addition of this

to the SRPT algorithm would be an interesting feature to explore. This would give

the SRRFs the ability to look one step down the tree allowing it to search questions

that might not have immediate significance but could later on. One approach would

be to generate random subtrees of three distinction nodes and check if either child of

the subtree produced a significant split. Look-ahead searching could be enabled at all

times though it would greatly increase the computational expense of the algorithm. A

more moderate approach would be to limit the look-ahead to when no single significant

distinction is found. The current Boolean distinction allows for some limited amount

of the functionality look-ahead would provide, but not nearly as much as having full

look-ahead would provide.

Autocorrelation was mentioned briefly in Section 3.7 in regards to handling miss-

ing values, however it can have much wider effects and frequently appears naturally

instead of as a side-effect of pre-processing. While autocorrelation is usually con-

sidered a nuisance because of its effects on traditional statistics (Jensen and Neville

2002), it is an accepted fact in geographical (spatial) studies and can even be exploited

to advantage (O’Sullivan and Unwin 2002). Thus, under certain circumstances, the

autocorrelation becomes part of the structure that you are studying and should be

left alone. For example, O’Sullivan and Unwin (2002) states “Geographical data are

often not samples in the sense meant in standard statistics. Frequently, geographical

data represent the whole population. Often, we are only interested in understanding

the study region, not in making wider inferences about the whole world, so that the

data are the entire population of interest.” This is best determined on a case by case

basis.

Although Jensen and Neville (2002) demonstrated that relational autocorrelation

can be corrected for using randomization by attribute value (instead of by class label),

it is not immediately clear how to apply this to either spatially or temporally varying

attributes. In some cases, there may be ways to exploit this autocorrelation(Neville

and Jensen 2005; Angin and Neville 2008). The effects of auto-correlation on spa-

tiotemporal relational learning, particularly spatial autocorrelation, still need much

study. Randomization methods allow for determining the effects of autocorrelation

by breaking the autocorrelation and analyzing the changes in performance. While

77



relational randomization is easy, and even to some degree temporal randomization,

exactly how spatial randomization should be handled is an open question.

In addition, we would like to add the ability to reason with degree features, as

the RPT can do. For instance, SRPTs have no method for counting the number of

possible values of a discrete attribute. Nor can they count the number of relations

for a single object, such as asking the question, ”Have any of the actors in this movie

acted in more than 10 other movies?” That question requires counting the the number

of acted-in relations for each actor. Addition of these questions to the SRPTs arsenal

might be beneficial to some domains.
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Appendix

1 Schema and Graph Files

The proposed extensions to the SRPT mandated a complete redesign of the existing

code base. With the goal of easy maintenance and eventual release of the implemen-

tation to the scientific community, the redesign also included reworking the XML

format of the schema and graphs. The schema was simplified by enforcing naming

conventions of xml elements in both the schema and the graphs. A simple schema

file is show in Table A.1. A new addition includes the ability to define relationships

between many object types simultaneously by cross-production construction using a

list of source and destination types. This was partially dictated by the change that

all relations are now directional whereas the old SRPT assumed all relations were

bi-directional.

Along with schema format changes came an overhaul to the format of the XML

files for storing graphs. The schema not only describes what objects, relations, and

attributes can be in the dataset, but also the actual format of the XML files. This is

used to verify that the XML of the graph is correct by forcing all objects, relations,

and attributes to agree with the schema. Table A.2 shows an example XML graphs

file. It can been seen that the format of the XML file follows the schema, using object

and relationship names as the actual tag names. This makes for very human friendly

XML files.

Other notable improvements include experiment files which define the specifics

of an experiment, such as which schema file to use and where the XML and pickled

graphs are stored. This replaces a massive if statement that required constant up-

dating whenever details were changed or new experiments added. The SRPT tree

class was updated to use extendable node types. This allows for easily adding new

classification node types to be used at the leaves.

2 Storing Field Data

In order to facilitate a wide number of use cases there are several ways to store

field data. The field data can be stored local to each attribute, separate but still
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<schema>

<attrib name=’max_time’ type=’int’>10</attrib>

<attrib name=’class_labels’ type=’str-array’>0,1</attrib>

<graph>

<object type=’ball’>

<attribute name=’volume’ type=’float-array’ />

<attribute name=’color’ type=’discrete’ />

</object>

<object type=’square’>

<attribute name=’volume’ type=’float-array’ />

<attribute name=’color’ type=’discrete’ />

</object>

<object type=’pyramid’>

<attribute name=’volume’ type=’float-array’ />

<attribute name=’color’ type=’discrete’ />

</object>

<relation type=’onTopOf’ source-type=’square,pyramid,ball’

target-type=’square,pyramid,ball’>

<attribute name=’distance’ type=’float-array’ />

</relation>

<relation type=’nearby’ source-type=’square,pyramid,ball’

target-type=’square,pyramid,ball’ reflection=’nearby’>

<attribute name=’distance’ type=’float-array’ />

</relation>

</graph>

</schema>

Table A.1: Sample XML Schema file used by new SRPT.
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<graphs>

<graph start_time=’1’ end_time=’27’ class_label=’1’ id=’2’>

<ball start_time=’4’ end_time=’10’ id=’1’>

<color>green</color>

<volume>6,7,8,9,10,11</volume>

</ball>

<square start_time=’23’ end_time=’27’ id=’2’>

<color>blue</color>

<volume>20,20,20,20</volume>

</square>

<pyramid start_time=’10’ end_time=’16’ id=’3’>

<color>green</color>

<volume>5,6,7,8,9,10</volume>

</pyramid>

<onTopOf start_time=’8’ end_time=’9’ source=’1’ target=’3’>

<distance>1,2</distance>

</onTopOf>

<nearby start_time=’13’ end_time=’14’ source=’2’ target=’3’>

<distance>5,3</distance>

</nearby>

<onTopOf start_time=’8’ end_time=’9’ source=’1’ target=’2’>

<distance>2,2</distance>

</onTopOf>

</graph>

</graphs>

Table A.2: Sample XML of a graphs file used by new SRPT.
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in the XML file. We plan to add the ability to store the fields in Hierarchical Data

Format/Network Common Data Form (HDF/NetCDF) files and reference them from

the XML. Since part of the focus of SRPT’s is temporal data, each timestep of an

attribute defines its own field to allow for the changing nature of spatial objects

over time. For the ease of storage and parsing, two dimensional fields are stored as

rectangular regions and three dimensional fields use rectangular cuboids, essentially

two and three dimensional matrices. The regions are defined by a corner attribute

and a size attribute.

The fields are stored as matrices which are square/rectangular but not all the

points may be of actual points of interest. Because of this the raw values are also

accompanied with a mask. The mask selects a subset of the values that will actually

be used by the SRPT algorithm. It is represented as a boolean matrix of the same

size as the data region, with a 1 (used) or 0 (not used) for each value in the field.

With local storage only the appropriate region of the field is stored directly with

the attribute. This is most useful if there is only a local region or if only a small

portion of a much larger parent field is ever used, Table A.3 is an example of the

XML format. The second option is to store the entire parent field as a separate

object within the XML file. Then each attribute just references that object with the

region’s location and size.

Four types of general fields are possible, float and integer scalar fields and float

and integer vector fields. Two and three dimensional fields can be used and all fields

are assumed to be uniformly spaced. Uniform spacing of the fields means that it is

assumed that the distance between any two adjacent values is the same and similarly

for any two diagonal values. For simplicity they are represented the same in the XML

file. All field data is stored as a single one dimensional array, as is the mask. The

array is reshaped into the correct size and dimensionality using the given size attribute

from which the number of dimensions along with the data type is also inferred. The

individual elements of the arrays are space or comma separated and the data and

mask are separated by a semicolon.

Further details of the implementation, source code, and experimental results can

be found at: http://idea.cs.ou.edu/theses/ntroutman
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<happiness datalocation=’self’>

<timestep corner=’2,1’ size=’2,3’>

0.81 0.88 -0.82 -0.78 0.43 0.16; 1 1 0 0 1 0

</timestep>

<timestep>...</timestep>

</happiness >

Table A.3: Example XML for a two-dimensional scalar field stored locally in each

timestep.
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