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Abstract

We introduce Spatial Probability Trees (SPTs), which provide a method of
learning spatial probability distributions using a decision-tree type of structure.
SPTs split the data using statistics calculated with respect to a single point in space
and produce a local probability distribution centered on this point. By aggregating
these regional probabilities across the entire space, SPTs can be used to generate
global probability density functions. We apply SPTs to computer Go to predict
expert moves, and show that this predictive power can be used to significantly
improve the playing strength of state-of-the-art computer Go players that utilize
Upper Confidence Bounds for Trees. In addition, we can perfectly predict the best
expert move 35% of the time.

1 Introduction

Go is a two-player board game that is typically played on a 19 x 19 board. Players take
turns placing stones on the board; one player placing black stones and the other white
stones. Go differs from games such as chess in that, other than color, all stones are
functionally identical. The goal of Go is to control the most territory at the end of the
game.

The rules for Go are simple, but the resulting game is incredibly complex. The
19 x 19 board means that there are 361 points on the board. Each point on the board
can either be empty, have a black stone, or have a white stone. This yields 336! (=
10'72) possible board positions Hsu (2007), of which approximately 1.2% (=~ 10'79)
are legal Miiller (2002). The complexity of Go results in a difficult yet interesting
problem for learning and search. Given the size of the search space and the difficulty
of designing a static evaluation function, conventional game tree search is ill-suited to
playing Go. The current best Go players utilize Upper Confidence Bounds for Trees
(UCT)Kocsis and Szepesvari (2006). Players such as Fuego and MoGo utilize UCT



Parameter Description
l Leaf node size
r Distinction sampling rate
m Minimum node size
d Maximum tree depth

Table 1: SPT Parameters

search to play Go remarkably well, although not at the skill level of top expert human
players Enzenberger and Miiller (2009); Lee et al. (2009). Given the complexity of the
game, much of the research has been dedicated to solving smaller problems. These
include evaluating the safety of groups (the problem of life and death), tactical search,
and identification of useful patterns of stones Wolf (2000); Silver, Sutton, and Miiller
(2007); Cazenave and Helmstetter (2005); Dabney and McGovern (2007). Success in
these smaller problems can be used to enhance UCT search by providing knowledge
that helps to guide the search. Although these approaches are promising, Go remains
an open problem.

We look at the idea of providing advice to UCT search from the perspective of a
spatial prediction task. In Go, we can ask the question, “Where would an expert play
given a specific board layout?” The answer to this question can be used to directly
guide the UCT search Werf et al. (2003); Stern, Herbrich, and Graepel (2006); Araki
et al. (2007); Coulom (2007); Sutskever and Nair (2008); Gelly and Silver (2008). We
introduce a novel spatial prediction method, the Spatial Probability Tree (SPT) and we
demonstrate that SPTs enable a top computer Go player to significantly improve its
playing strength and that they are powerful predictors of expert moves.

2 Spatial Probability Trees

The core functionality of an SPT is to provide the probability of an event occurring at
every point in a given space. This is done with a learned, decision tree-like structure.
SPTs currently operate within discrete, gridded domains, although they can be easily
modified to work in continuous domains. An example of a small Go board represented
as a grid for an SPT is shown in Figure 1.

The motivation for SPT comes from observing that, in Go, the shape (patterns) of
stones in a small area of the board can be very important in that local region of the
board. We developed a model that explicitly works with this idea that local features
can provide predictive information not just for the cell where the pattern is centered,
but for a small spatial area around the pattern. This local information is not necessarily
useful by itself. However, when taken in aggregate over an entire space, meaningful
probabilities for an event occurring in that space can be generated.

We first describe the SPT itself and then the learning algorithm. The parameters
to the SPT are outlined in Table 1 and described in detail below. An SPT consists of
distinction nodes and leaf nodes, all of which are grounded to a single point in space,
which we call the focus point. Distinction nodes ask questions about the focus point
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(a) Raw Go Board (b) Gridded Representation

Figure 1: b) shows the gridded representation of a). 1 Represents a black stone, 2 a
white stone, 4 an edge, and 8 an empty spot.

and the area surrounding it. Leaf nodes provide the probability of an event happening
at the focus point or the surrounding area.

The most basic question that an SPT can ask is, “Is the frequency of a specific value
in a window of size n around the focus point < m?” For example: “Is the number of
black stones in a 3 x 3 window around the focus point less than 3?” “Is the number of
empty spaces in a 5 X 5 window around the focus point less than 7?” “Is the number
of edge points in a 3 x 3 window around the focus point less than 1?” Although these
types of questions seem very simple, they are very powerful when chained together in
a tree structure.

For our Go experiments, we also provide domain specific distinctions. These in-
clude, “How many liberties (vacant places vertically or horizontally adjacent to the
stones) will a group (a chain of stones of the same color that are horizontally or ver-
tically adjacent) connected to the focus point have after a stone is placed at the focus
point?” “How many stones would be captured by playing at the focus point?” “Was the
last move played in a window of size n around the focus point?”

As in a standard binary decision tree, observations that meet the criteria of a dis-
tinction are passed down to the subtree on the yes branch, and all other observations
are sent down to the subtree on the no branch. At the bottom of each branch is a leaf
node. A leaf node is an [ x [ probability density function (pdf), where [ is the leaf size.
The leaf node also contains the probability that the next move is not within the window.
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(a) Go Board (b) Label

Figure 2: a) An observation on the Go board, with the focus set to the boxed white
stone and the next expert move at the X. b) The corresponding label. In this case, the
label size is 3x3.

2.1 Creating an SPT

In most cases, training data must be preprocessed before it can be used to generate an
SPT. We obtain our training data from the KGS Go Server'. To process the data, each
grid with a labeled event must be transformed into a set of observations. On a 19x19
Go board, there will be one point with the next expert move labeled. Every point on
the board is considered to be a separate observation and the label for each observation
depends on the leaf pdf size . Unlike traditional decision trees, the label is an [ X [
window of 0’s with at most one 1. If the next expert move falls within this window, then
the corresponding point in the window is set to 1 and the observation is considered to
be a positive observation. Figure 2 shows an example for a 3x3 section of a Go board.
Given the size of the board and the fact that there is only one next expert move, the
training data is heavily skewed towards negative observations. To counteract this, we
undersample the negative observations until the ratio is approximately 50/50.

Once the data has been preprocessed, a new SPT can be constructed as described in
Algorithm 1. Our approach follows the standard greedy decision-tree learning strate-
gies. In order to create the tree, we must identify a distinction that splits the data in a
useful manner. This process is described in Algorithm 2. Due to the large number of
possible distinctions, simply trying all of them is not feasible. Instead, we randomly
sample according to the sampling rate . By evaluating how well each sampled distinc-
tion splits the data (explained below), we can find a suitable distinction. This splitting
is performed recursively. Tree growth stops if a node has too few training observations
(m) or if the maximum depth d has been reached.

The pdf of a leaf node is calculated by summing each cell across all of the ob-

Thttp://www.gokgs.com/



Algorithm 1: GrowSPT
Input: D = Processed data, ¢ = current depth, d = maximum depth, m =
minimum node size, r = distinction sampling rate
Output: An SPT
if ¢ < d then
tree <— findBestSplit(D,m,r);
if tree # () then
ydata <— examples in D that meet split criteria;
ndata <— examples in D that fail split criteria;
tree.add Yes(growSPT(ydata, c+1, d, m, r));
tree.addNo(growSPT(ndata, c+1, d, m, r));
return free
end
end
return Leaf node

servations’ labels, effectively adding all of the labels together and then normalizing.
The probability that the next move is not within the window is also computed from the
frequency of negative observations at the leaf node.

Given a leaf node, we can calculate the likelihood that it explains an observation.
For a single observation, the likelihood that it is explained by a leaf node is read from
the node’s pdf. For a set of observations, the likelihood is the product of the likeli-
hood of each individual observation. Because this product quickly goes to zero as the
number of observations increases, we instead calculate the log likelihood. To evaluate
a distinction d at a leaf node, we first calculate the likelihood that the given data is
explained by the node, L,,;;, as well as the likelihood that the data is explained by leaf
nodes that would be created if the distinction was selected, L. We then calculate the
log likelihood ratio of these two models, In(Lg) —In( Ly, ). We choose the distinction
that has the highest likelihood ratio.

2.2 Evaluating an SPT

Once an SPT has been trained, it can be used to predict an event over an entire gridded
spatial area. Each point is evaluated independently and the results are combined. When
combining local pdfs into a global pdf, overlapping values from nearby local pdfs are
added together. Figure 3 shows an example of this process for a very small SPT. The
resulting global distribution is then normalized to create a true pdf. This is described
in Algorithm 3

2.3 SPT Forests

Although a single SPT can be a powerful spatial predictor, our past work and much
of the recent work in machine learning, demonstrate that an ensemble of models is
more powerful than any single model. For this work, we ensemble a set of SPTs into
an SPT forest. If there was insufficient training data, we could ensure diversity in



Algorithm 2: findBestSplit

Input: D = Processed data, m = minimum node size, r = distinction sampling
rate

Output: Best distinction found given parameters, otherwise ()

best < (;

fori:=1...rdo
split <— generate random split;
value < likelihood ratio test value for split;
rdata <— examples in D that meet split criteria;
Idata <— examples in D that fail split criteria;
if value > best and size of rdata and ldata > m then
best < split;
end
end
return best

Algorithm 3: GeneratePDF
Input: B = Gridded spatial domain, T = An SPT
QOutput: Returns a pdf over B
PDF < [B.height][B.width];

for Every point p in B do
leafPDF < T.dropDownTree(p,B);
add values of leafPDF to PDF centered at p;
end
normalize PDF;
return PDF

the forest by following the bootstrap randomization approach used by Random Forests
Breiman (2001). However, given the number of training games available online for
computer Go, we chose to train each tree in the forest on a different subset of games.
Given the diversity across players, this yielded a sufficiently diverse forest for effective
prediction. Another approach we have explored was to train each tree on games from
an individual player but it was not more powerful than simply training on different sets
of games.

To evaluate an SPT forest, the board is evaluated by each tree in the forest. These
pdfs are added together and the result is normalized to provide the forest’s pdf.

3 Empirical Results and Analysis

We empirically evaluated SPTs in computer Go using two measures. The first mea-
sured the kth-move performance and the second assessed the performance of Fuego?

2http://fuego.sourceforge.net/



# of object: Edge <=0
in window size 3

0.07 0.07 0.06
0.07 0.07 0.06
0.06 0.07 0.06

0.03 0.03 0.05
0.03 0.03 0.05
0.03 0.03 0.05

Null: 0.41 Null: 0.71
Count: 718 Count: 182

Figure 3: A snapshot of the pdf creation process. The leaf pdf values are added
onto the board at the focus point. Lighter blue is higher probability, gray indicates no
probability assigned yet.

Enzenberger and Miiller (2009), a top computer Go player, both with and without the
advice provided to UCT search by the SPTs. We used Fuego version 0.4.1.

Kth-move measures the ability to predict expert moves. An SPT produces a ranked
list of potential moves and we identify where in this ranked list of moves the actual
expert move falls. For example, if the expert move was the fifth move, then it was
within the top 5 moves. From this, we can ask a more general question: “Given multiple
test examples, how often is the expert’s move within the top k moves?” By varying k,
and computing the percentage of the time the expert move is within the top-k moves
across all test examples, we can analyze results and compare to published results from
state-of-the-art methods that predict expert moves Stern, Herbrich, and Graepel (2006).
The motivation behind the kth-move measure is that, in Go, there is not necessarily
only one correct move in a given situation. When integrating the advice from SPT into
a UCT based player, how often the expert move is correctly labeled as the top move
is less important than the fuzzier concept of ranking the expert move within some top
number of moves, which enables the UCT player to efficiently reduce the search space.
Kth move data for each forest was gathered over 30 full Go games, selected randomly
from 671 testing games.

In the Fuego integration experiments, we use a forest of SPTs to give advice to
the Fuego UCT player. Fuego uses this advice to bias its UCT rollouts towards better
moves. This is done using a theoretically-motivated additive modification to the UCT
formula Rosin (2010). To test the performance of the player with the SPT advice, we
play 1000 games against GnuGo version 3.6 level 10°. Each game uses 10,000 rollouts
per move.

Our training data consists of 19 x 19 games drawn from the KGS Go Server* where
both players are ranked at least 6 dan and the game lasts at least 70 moves. Dan

3http://www.gnu.org/software/gnugo/
“http://www.gokgs.com/
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Figure 4: Percent of the time that the expert move is correctly predicted by the top 1,
5, 10 and 20th ranked moves as a function of the maximum tree depth d. Shaded area
represents standard deviation.

indicates the level of skill possessed by the Go player. Expert players are ranked into
nine dan grades, with players of higher dan possessing greater skill. By focusing on
only the top players, we expect the moves to be more consistent. By including only
games that last 70 moves or longer, we ensure that our data consists of full games.

3.1 Parameter sensitivity

Our first experiments analyzed the impact of the parameter choices on the performance
of the SPT. We measured the SPT’s ability to correctly predict the expert move within
the first move, the top 5, the top 10, and the top 20 moves. Figures 4, 5, 6, and 7 show
the results of this measure as a function of the four main parameters of the SPT and
Figure 8 shows the results of varying the number of training observations. All of the
experiments were run with the same parameters, except for the one being varied. For
the parameter not being varied, the choices were: | = 3, m = 30, d = 10, » = 300, and
300 observations. These observations were drawn randomly from 781 training games.
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Figure 5: Percent of the time that the expert move is correctly predicted by the top 1, 5,
10 and 20th ranked moves as a function of the minimum number of instances required
at a leaf m.

We examined the performance of forests of sizes 1, 5, 10, and 20.

As the tree depth is increased (Figure 4), the SPT is better able to predict the expert
moves. The performance quickly levels out around depth 10, most likely in an interac-
tion with the minimum node size m and the number of training observations available.
Figure 5 shows the same results as a function of the minimum number of instances re-
quired in each leaf node. Here we see a clear decrease in performance as the minimum
size is increased because the tree is unable to fully grow. As expected, the sampling
rate improves the performance of the tree (Figure 6). Performance asymptotes around
200 samples. The performance as a function of the size of the leaf node (Figure 7)
peaks with leaf nodes of 3-5 and then shows a clear decrease as the size of the pdf
increases. Finally, the performance as a function of the number of training examples
quickly increases but levels off very quickly at around 1000 examples. These results
show a clear robustness to parameter selection.

We compare our kth-move results to those provided by Stern, Herbrich, and Grae-
pel (2006). Because we are using different sets of expert Go moves, the results are not
directly comparable but they are illuminating. His system was able to correctly predict
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the expert move 34% of the time, within the top 5 moves 66% of the time, within the top
10 moves 76% of the time, and within the top 20 moves 86% of the time. We are able
to achieve improved performance and with a fraction of the necessary training data. In
particular, we trained on only 300 board positions while they train on approximately
45,000,000 positions.

3.2 Fuego integration and testing

Given the relative insensitivity to the SPT parameters, we used the same parameter set
described above for our comparison against Fuego. We trained 30 SPTs and the forests
of varying sizes were created by randomly selecting trees from these 30.

We compared our model to the collection of heuristic Go players provided by the
Fuego framework. These models use hard-coded domain knowledge to perform static
evaluation of the board. Because the SPT is also providing a fast static evaluation
approach, we chose to compare to methods used by Fuego to provide knowledge. For
this task, we cannot compare to a search-based player because it cannot provide quick
guidance to a UCT player.

10
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Figure 9 shows the kth-move curves for SPT forests of size 1, 5, and 10, as well as
random and the best two Fuego heuristic players. From this, we see that even a single
SPT outperforms the best heuristic players. Furthermore, we see that a forest of 5 trees
performs noticeably better than a single tree. Increasing the forest size beyond 5 does
not appear to greatly affect the performance.

The kth-move graphs indicate that the SPTs can predict expert moves well. To
assess whether SPT can be used to effectively guide UCT search, we integrated the
forests into Fuego and compared the results against GnuGo level 10. Table 10 summa-
rizes the results. Unmodified Fuego won approximately 68.5% of games, Fuego using
a single SPT won 73.6% of games, and Fuego using a forest of 5 SPTs won 74.2% of
games. These results are all significant at a p-value of 0.01, which means that SPTs
were able to significantly improve the performance of Fuego.

11
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4 Discussion and conclusion

We have introduced a new model for predicting events in spatial domains, the Spatial
Probability Tree. We have applied SPT forests to the problem of predicting expert
moves in Go. We demonstrated that SPTs achieve improved expert move prediction
compared to other state-of-the-art algorithms Stern, Herbrich, and Graepel (2006) and
further demonstrated that SPTs enable Fuego, one of the top computer Go players, to
significantly improve its performance.

One of the downsides of integrating knowledge into a UCT player is that it slows
down the search process. Although the evaluation of the SPTs is very efficient, eval-
uating hundreds of thousands of moves within a game adds to the complexity of any
system. We are investigating how to best add a limited set of knowledge for timed
competitions.

The problem of spatial prediction is a common one. Although we applied the SPT
only to computer Go, we are investigating the application to several very different
domains. As part of this work, we have added distinctions based on landscape metrics

12
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Figure 9: Kth move comparison against Fuego heuristics.

Turner (2005). Although these distinctions did not improve the performance of SPT on
computer Go, we believe they will enable SPT to be more widely applicable.
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