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ABSTRACT 
 
A pervasive mobile computing environment is typically composed of multiple fixed and 

mobile entities that interact autonomously with each other with very little central 

control. Many of these interactions may occur between entities that have not interacted 

with each other previously. Conventional security models are inadequate for regulating 

access to data and services, especially when the identities of a dynamic and growing 

community of entities are not known in advance. In order to cope with this drawback, 

entities may rely on context data to make security and trust decisions. However, risk is 

introduced in this process due to the variability and uncertainty of context information. 

Moreover, by the time the decisions are made, the context data may have already 

changed and, in which case, the security decisions could become invalid.  

With this in mind, our goal is to develop mechanisms or models, to aid trust 

decision-making by an entity or agent (the truster), when the consequences of its 

decisions depend on context information from other agents (the trustees). To achieve 

this, in this dissertation, we have developed ContextTrust a framework to not only 

compute the risk associated with a context variable, but also to derive a trust measure 

for context data producing agents.  To compute the context data risk, ContextTrust uses 

Monte Carlo based method to model the behavior of a context variable. Moreover, 

ContextTrust makes use of time series classifiers and other simple statistical measures 

to derive an entity trust value. 

We conducted empirical analyses to evaluate the performance of ContextTrust 

using two real life data sets. The evaluation results show that ContextTrust can be 

effective in helping entities render security decisions.  
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Chapter 1.  INTRODUCTION 

1.1 Problem Statement 

The distinguishing characteristic of pervasive mobile environments is the 

wireless communication medium. This communication vehicle is used to transport data 

amongst mobile users and static computer systems. In today’s busy, technology 

dominating and communication intensive business environments, wireless computing 

offer numerous possibilities. For example, mobile users can not only browse and use 

information from the World Wide Web and access different services based on their 

current locations, but also obtain real time information with the advent of RFID tags 

[Want, 06] and sensor networks [Chong, 03]. In addition, users (or their system 

representation such as agents, programs or objects) can enter or leave the system and 

interact with each other with minimal efforts [Mostefaoui, 04]. In this new evolving 

pervasive scenario, the amount of data available along with context-aware services to 

access such data must be protected from malicious or accidental abuse in order to avoid 

harmful consequences. 

In the last decades we have seen a transformation from an industrial society to 

an information society. We have seen tremendous growth in the areas of 

telecommunications and, especially, mobile communications. As such, information, 

which now has become one of the most important resources of our society, plays a vital 

role in the day-to-day life of many people. Moreover, as research and technology 

improve, it is now possible for mobile users to access information from multiple sources 

anywhere at any time. However, this information must be protected from malicious or 

accidental abuse in order to avoid harmful consequences. It is for this reason that the 
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provision of security services for the pervasive ad-hoc computing environments is 

crucial for the adoption and use of mobile technologies. In a pervasive mobile 

computing environment, context-aware services are required to be non-intrusive and 

easily adaptable to a changing environment or context [Hulsebosch, 05] , as they can be 

deployed at and referenced by multiple types of static and mobile units (PDAs, laptops, 

servers, etc…). A [security] context is defined as “a set of information collected from 

an entity (user or application) and that is relevant to a task or to the security 

infrastructure of it” [Mostefaoui, 04]. In addition, these services need to include and 

build the notion of trust (risk) since many interactions and collaborations may take 

place amongst entities that are alien or unknown to one another. This trust measure 

calculated by the services is then used to grant or deny access to a particular piece of 

data. Nowadays, the concept of trust (risk) is used in applications such as: 

• Commercial systems: In these systems, buyers need to make sure (trust) that 

sellers will deliver the agreed items. Moreover, sellers need to trust that 

buyers will actually pay for services [Ryutev, 05]. Finally sellers and buyers 

use recommendations (assertion claims) made by others to improve the 

quality of the goods provided. 

• Location-based systems: In these applications, service access policies are 

designed to restrict or allow access to data based on the current or future 

position of an accessing entity. For example, access to battlefield 

information by a platoon leader depends on whether or not he is line-of-sight 

of his company commander. As the platoon leader moves away from the 

company commander, access to information become more restricted as the 
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risk of battle and capture increases.   

• Coalition-based systems. In these systems, ad-hoc groups of mobile and 

fixed stations can be established at any given moment in order to provide 

solutions to a series of problems. For instance, in a natural disaster, several 

governmental and non-profit organizations may converge to the trouble site 

in order to provide logistical and relief services. In this case, trust must be 

built and refined rapidly amongst these organizations as the situation on the 

ground develops. 

However, traditional security implementations such as access control lists 

(ACL) [Swift, 02] and role base access controls (RBAC) ([Neumann, 01], [Park, 04]) 

are ill equipped to handle security operations that include the user or service context. 

This is due to fact that the characteristics of the mobile and pervasive environments 

affect the conventional functioning of a security implementation by introducing a new 

series of issues. For instance, in a conventional environment, there is a central 

infrastructure that not only keeps references and serves as storage of all permission 

information for every user and service in the system, but also makes all security related 

decisions. However, in a pervasive environment, it would be unfeasible to keep a 

reference to every entity since there could be a great number of them at any given time. 

Moreover, these entities could not only enter and leave the system, but also interact 

(collaborate) with one another at any time. In addition, traditional security 

implementations are ill equipped to handle security operations that include the user or 

service context because the definition of policies and enforcement of security policies 

do not incorporate the dynamic nature of context variables, such as location, network 
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status, and connection type. Furthermore, such dynamic nature introduces uncertainty, 

as it is not possible in all cases to capture all the necessary context knowledge to make a 

reliable security decision. Moreover, once the security decision has been made, current 

security models do not establish a time line procedure to revaluate the security decision 

to account for context data changes (i.e. the security decision would stand firm 

regardless of future changes in the context data). Also, by failing to predict future 

values in the context data over a time period (horizon), current security models are 

unable not only to run what-if scenarios (to aid them in the security decision making 

process), but also to anticipate situations where the security decision become invalid 

due to the change in context data. Therefore, in order to determine a potential negative 

impact that the dynamicity of context data may have on security decisions, it becomes 

necessary to introduce risk measures into the security implementation. 

The above observations motivate us to revisit to revisit the problem of access 

controls, trust and risk in the pervasive ad-hoc environment. As such, we need to 

identify the issues that a security system, which depends on context information to 

render a security decision, must address. 

Before describing the new security issues that arises in pervasive mobile 

environments, we adopt the following two concepts that will help us understand the 

issues and systems described in this paper: 

 
Trust 
 

According [Jøsang, 04] Trust is defined as “the extent to which one entity is 

willing to depend on another entity in a given situation with a feeling of relative 

security, even though negative consequences are possible.” 
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Risk 
 

The word “risk” refers to situations in which it is possible but not certain that 

some undesirable event will occur. In everyday usage, ‘risk’ is often used 

synonymously with ‘probability’ of an unwanted event that may or may not occur 

[Hansson, 07]. 

1.2 Security Implementation Issues 

In the pervasive ad-hoc environment, the uncertainty and variability of context 

information raises new issues that must be cope with by a security implementation that 

relies on such data to render a security decision. In the following, those issues are 

discussed. 

1.2.1 Invalid Context Data Claims 

In the pervasive ad-hoc environment users can access services, which are 

dynamically customized according to their contextual data (i.e. location, identity, etc.). 

For example, a soldier could request battlefield information, which is personalized 

according to his current geographical position and rank.  As he moves about in the field, 

this information is updated according to his new location. Furthermore, his rank (or 

identity) will restrict the type and amount of data he can see.  However, a malicious 

entity could make bogus claims about some of its context information in order get 

access to a service. For instance, a traveler can override a GPRS/GSM receiver in order 

to produce invalid location claims with the aim of disrupting an emergency service (like 

911) at a particular location. Furthermore, a commercial truck equipped with a GPS 

receiver (which is used for tracking) can be seized and its GPS receiver tampered with 
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in order to generate false location and identity claims allowing the theft of its cargo or 

generating disruptions or delays at a shipping or production point.   

1.2.2 Inclusion of Context Data History 

As users operate and interact in the pervasive environment, their context 

variables (e.g. location, velocity, network connectivity, etc.) may change with time.  

This change introduces uncertainty. For instance, in a location based service, a user 

reports his/her current location at different times (to, t1, t2…) in order to access 

information of interest; however, since there may be delays (due to, for instance, 

network connectivity or atmospheric noise) between the time the user sends the location 

information and the time the location service receives it, the user may have moved to a 

different position. The question that arises is whether this new location is still valid for 

the service access (permission) being requested (evaluated). In this case, the location 

service can use the user reported location history to not only predict future locations, 

but more importantly to measure the degree of change (volatility) of the context variable 

(location) in order to arrive at a more accurate security decision. For example, if the 

network connectivity of user changes sporadically, the security implementation of a 

system may decide to deny access or change the access type to a critical object since 

there may not be a guarantee that the object would be read or updated correctly due to 

connection issues. 

1.2.3 Risk Evaluation Based on Context Data 

Due to the dynamicity of the context risk factors (variables) in the pervasive ad-

hoc environment, a model to measure the risk incurred when evaluating a security 
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policy must be developed. This means that, given a series of context variables (in a time 

series form), the model should produce a series of estimates to measure the risk and the 

likely loss incurred if access is granted erroneously. 

1.2.4 Evaluation Horizon 

Since user context variables may change in an uncertain way, context based 

security policies must establish time windows where permissions in the policy are valid 

(after being acquired) before doing a policy revaluation.  For instance, a soldier 

accessing information about friendly units in the vicinity of his current location 

becomes a casualty and his equipment falls in enemy hands. If the system security 

implementation does not enforce a time window for security policy reevaluation (which 

requires the soldier’s identity and password), enemy forces could either continue 

accessing the information or do some signal intelligence. 

1.2.5 Stress & What-If Analysis  

Due to the nature of the pervasive ad-hoc environment, it is not always possible 

to have up-to-date context information when evaluating a security policy. It then 

becomes necessary to use a simulation framework where context risk factors (variables) 

can be modified in order to measure the risk (degree of trust) of an access control policy 

under different situations. Moreover, what-if & stress analysis can be used not only to 

predict future scenarios but also to reproduce past situations.  For instance, if the 

location and velocity history for a traveling user is stored, a security implementation 

could predict – using the variability (or volatility) of the stored data - the possible 

locations of the user and come up with a more suitable security decision. 
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1.3 Research Objective 

A key part in the implementation of a security strategy in a pervasive ad-hoc 

environment is to understand the complexity, variation and integrity of the data to be 

protected, in addition, the dynamic environment under which users and applications 

operate.  This dynamicity along with the inner nature of the pervasive environment 

introduces uncertainty as not only an entity may interact with other unknown entities, 

but also it could access services and data based on its contextual information, which 

may not be complete or fully reliable. This uncertainty demands that risk or trust 

measures for the context data be developed in order to arrive at a more accurate security 

decision. The objective of this research is to develop a context-based trust security 

framework for the pervasive ad-hoc environment. 

In order to achieve this goal, the following subtasks need to be completed.  

1. Design a system architecture that supports a context-based trust security in 

the pervasive ad-hoc environment.  

2. Determine the following in order to facilitate the inclusion of context data 

history in the security model: 

a. Provide definitions for different context risk factors along with 

examples to measure them. 

b. Give context data time series definition and operators. 

c. Establish the number of items to keep in the history. 

3. Develop a new access control grammar to either describe or expand a 

security policy using context risk factors. 

4. Develop not only risk and trust measures but also algorithms for security 
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policy evaluation. 

5. Define a method to mitigate the impact of invalid context data claims. 

6. Define a framework that allows not only back-testing analysis, but also 

assessing the accuracy of the model. 

7. Construct of a prototype for the system and conduct performance evaluation 

studies using the developed prototype. 

1.3.1 Models for Trust and Risk 

The question regarding whether adequate models of risk and trust can be 

designed is still open at the present time [Jøsang, 04]. However, in many expert risk 

evaluation schemes, risk is measured by describing the relationship between the 

expected losses that can be caused by a risky event and to the probability of this event. 

Moreover, to the best of our knowledge only one of the current research systems 

explicitly takes the risk factor into account [Jøsang, 04]. Furthermore, in most trust 

systems (i.e. [Patel, 05]) the user must explicitly handle the relationship between risk 

and trust. That is, risk and trust assessments depend only on user (entity) interactions 

and do not include the costs for such transactions. Furthermore, transaction-cost models 

do not take into account relevant context variables, which may greatly affect the risk of 

a transaction. 

In the pervasive environment, the outcome of many transactions may depend on 

context factors and due to the uncertainty and dynamicity of the context data risk and 

cost may increase. Since risk and costs are involved, we could reach out to research and 

developments done in the finance industry to measure them. In this financial setting, 

risk is measured by “degree of uncertainty of future net returns” [RMG, 96]. Moreover, 
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risk is classified based on the source of the underlying uncertainty [RMG, 96]. For 

instance, Credit Risk measures the potential loss because of the inability of an entity to 

meet its obligations. Another classification is Market Risk, which takes in the 

uncertainty of future earnings resulting from changes in market conditions, (e.g., prices 

of assets, interest rates). Furthermore, over the last few years measures of Market Risk 

have become synonymous with the term Value-at-Risk (VaR) [RMG, 96].  By using a 

Market Risk model we could then try to measure the uncertainty and changes in context 

risk factors such as location, identity, velocity, network/power resources, time, 

suspicion level, user intention, usage history/patterns, etc. 

1.3.2 Dissertation Overview 

This dissertation address many issues associated with the design of a context-

based trust and risk security framework for a pervasive ah-hoc environment. The 

approach taken in this work is to adapt and use the Value-at-Risk (VaR) methodology in 

order to give an appropriate measure of risk using contextual information with the aim 

of providing, supporting, enhancing and reasoning about access controls. In this 

approach, access control policies are expanded with given thresholds for different risk 

and trust measures and context risk factors. Moreover, this framework can be used to 

provide feedback to users when requests are granted or denied. In addition, this 

approach could allow us to decrease the risk posed by fraudulent generation of context 

data, and yield a way to reproduce or simulate the dynamics or volatility of such data 

[Hulsebosch, 05]. Finally, this framework relies heavily on history of context data in 

order to yield a more accurate risk measure. 

The rest of this dissertation is organized as follows. Chapter 2 provides a 
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through description of current research work in the area trust and context based security. 

In addition, it also provides an introduction of database security concepts, risk measures 

and time series classification. Chapter 3 proposes a trust based security framework that 

includes context data for the pervasive ad-hoc environment. Chapter 4 provides a 

description of the risk model used for security decisions. Chapter 5 offers a full 

explanation of entity the trust model used in this system (ContextTrust). Chapter 6 

provides some numerical and performance analysis for ContextTrust. Finally, Chapter 7 

postulates some conclusions and future work. 
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Chapter 2. LITERATURE REVIEW 

In this chapter, a review of relevant literature is presented. First, database security 

concepts are introduced and then followed by a description of relevant context and trust 

based security systems. It continues with a description of ways to model variables. 

Finally, an introduction to time series classification is offered. 

2.1 Database Security Concepts 

As mentioned in chapter 1, the goal of this research in the introduction of a 

context and trust based security framework for the pervasive ad-hoc environment.  In 

order to achieve this goal we need to examine the different aspects of information 

security. This section introduces the concept of data security, access rights, 

authorization and the different security models found in the literature. 

 
Information Security 
 

Information security is concerned with ensuring privacy, secrecy, integrity and 

availability of the produced and stored data. This is often discussed in terms of the need 

to restrict access to information in data repositories and is called access control. 

 
Access Rights 
 

Access rights are premises used to either allow or prevent users (or processes 

running on behalf of them) from executing a particular operation over an object (file, 

table, method, etc.) [Dittrich, 94].  Access controls are defined based on a security 

policy, which is a set of rules used to manage, protect and distribute sensitive data 

[Pernul, 94]. In general, security policies are stated in terms of security subjects and 
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security objects. Security subjects can be classified into three categories: 1) users or 

processes running on behalf of users; 2) roles, which are abstract users that reflect 

organizational or functional positions in a particular environment; and 3) security 

domains or nested sets of subjects used to define general control policies [Dittrich, 95]. 

Security objects can be classified as objects (tables, attributes, services, etc…) and 

protection domains (set of objects) used to define more abstract protection objects.  

 
Authorization 
 

An authorization scheme describes the methodologies used to grant, deny and 

delegate access to data among security subjects. In addition, it stipulates the steps to 

follow to resolve access control conflicts when they arise [Essmayr, 95]. Basically, 

authorization allows us to know which requests are permitted and which ones are not. 

To better describe the authorization mechanism of a system, the following concepts are 

introduced ([Dittrich, 94a], [Dittrich, 95]): 

a) Authorization Paradigm: Authorizations to an object can be set and/or 

revoked by either the object’s owner or the system administrator. In the former 

case (ownership paradigm) access to an object are based on the owner’s 

judgment. In the latter case (centralized administration), a central authority, 

which delegates access to objects, enforces securities policies. 

b) Kinds of Authorization: Authorization schemes can be described as positive, 

negative or mixed systems. A positive scheme means that the system only gives 

permissions, whereas in a negative model, the system only specifies 

prohibitions. A mixed paradigm includes permissions and prohibitions and 

requires a set of established rules to resolve conflicts. 
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c) Transmitted Authorization: Systems implement different mechanisms that 

not only allow the assignment of default access rights to new objects but also to 

permit security administrators the propagation of permissions and prohibitions 

assigned to security subjects.  

 
Discretionary Access Controls (DAC) 
 

The Telecom Glossary1 defines Discretionary Access Controls (DAC) as "A 

means of restricting access to objects based on the identity and need-to-know of users 

and/or groups to which the object belongs. Controls are discretionary in the sense that 

a subject with certain access permission is capable of passing that permission (directly 

or indirectly) to any other subject."  Formally a DAC is defined as follows [Pernul, 94]: 

Given a set of objects O (entities to be protected), a set of subjects S, a set of access 

operations T and a set of privileges P (content-based access rules), a tuple <o, s, t, p, an, 

g, op> is defined to decide if an operation t to a subject s is allowed (an = +) or denied 

(an = -) for the object o within the range defined by predicate p. The component g is the 

grantor of the authorization and op indicates if s could grant t to other users. 

Most systems supporting DAC store access rules in an access control matrix. 

The rows of this matrix represent subjects; the columns denote the objects and the 

intersections specify the access types (permissions or prohibitions) that subjects have 

over the corresponding objects [Dittrich, 94a]. However, in many cases, the set of 

access rights is not complete, that is not all the intersections in the access control matrix 

are specified. Consequently, there may be some subject requests for which neither a 

prohibition nor permission was granted. Hence a closure assumption is necessary 

                                                
1 http://www.atis.org/ 
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[Dittrich, 95]: 

• Closed world assumption: a request is forbidden unless an appropriate 

permission exists. 

• Open world assumption: a request is allowed unless an appropriate 

prohibition exists. 

 
Mandatory Access Controls (MAC) 
 

According to [Pernul, 94], Mandatory Access Controls are concerned with the 

flow of information within a system in addition to enforcing access control to 

information. They require security levels (labels) to be assigned to objects and subjects.  

A label for an object is called classification and a label for a subject is called clearance.  

A label consists of two components: a level from a hierarchical list of sensitivity levels 

or access classes (e.g. Secret > Confidential, Unclassified) and a member of a non-

hierarchical set of categories representing classes of object types (e.g. Development, 

Research Production). Clearance and classification levels are totally ordered, thus, the 

resulting labels are partially ordered. That is, for label c1 to dominate a label c2, c1’s 

level must be greater than or equal to that of c2 and categories of c1 must contain all 

those of c2. For example, c1 = (Secret, [NATO, ARMY]) and c2 = (confidential, 

[ARMY]) then c1>c2, since the sensitivity level of c1 is greater than c2’s (Secret > 

Confidential) and c1’s categories encompasses the ones for c2. 

One of the most widely known mandatory access controls models is called 

multilevel security which is based on the work done by Bell and LaPadula [Bell, 73] 

and is formalized in two basic rules [Pernul, 94]: 

• Subject s can read an object o if Clearance(s) ≥ Classification(o) 
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• Subject s can write on an object o if Clearance (s) ≥ Classification (o) 

Among other designs we could mention is the Biba model [Biba, 77] where, 

besides protecting information from unauthorized flow, also protects the information 

from authorized change by imposing strict integrity constraints. In addition to the Biba 

model, the Dion model [Dion, 81] combines the principles of secrecy of the Bell and 

LaPadula model with the integrity constraint policy from the Biba model without 

providing discretionary access controls. 

 
Role Based Access Controls (RBAC) 
 

The main motivation for a Role Based Access Control (RBAC) system is the 

capability to define security policies tailored to any operation within an organization 

structure rather than to low level data objects as is done in traditional DAC and MAC 

systems [Zhang, 03]. The conventional RBAC model consists of four basic components 

[Ferraiolo, 01]:  

1. A set of users (Users): A user is a person or automated agent to which the 

system manages access to resources. 

2. A set of roles (Roles): A role is job function or title that defines an authority 

level.  

3. A set of permissions (Permissions): A permission refers to an access mode 

that can be exercised on a resource.. 

4. A set of sessions (Sessions): A session is a mapping that relates a user to one 

or multiple roles. In each session, a user can request activation of some of 

the roles he/she is authorized to assume. Depending on the RBAC 

implementation, the system may restrict the number of roles that a user can 
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activate in a given session. 

5. User Assignment: It refers to the roles a user belongs to. 

6. Permission Assignment: It refers to the permissions associated with a role. 

In an RBAC system, a security request is decided according to the user and 

permission assignments [Zhang, 03]. Besides the six core components of an RBAC 

implementation, Figure 2-1 depicts the Role Hierarchy function (denoted by ≥) allows 

permission inheritance among roles. That is, for two roles r1 and r2, if r1 ≥ r2, then all 

permissions in r2 are also permissions of r1and all users in r1 are also users of r2 

[Ferraiolo, 01]. Finally, the constraint function allows separation of duty (static and 

dynamic), which place limits in the role user assignment to and role activation. 

 

 

Figure 2-1 Role Based Access Control Components with Hierarchical Roles 
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Trust Management Systems 
 

According to [Carbone, 03], a global computing environment is composed of 

entities that not only are autonomous, decentralized, mobile and dynamically 

configurable but also capable of operating under partial information. Moreover, 

traditional security frameworks are not suitable for this type of environment because 

they become rigid, weak and difficult to administer due to the following [Dimmock, 

05]: 

1. The great and diverse number of entities that can be present at any given 

moment, 

2. An entity's possible new modes of operations. For instance an entity can be 

either disconnected from, partially or fully connected to a central network. 

3. The nature of interactions where in many cases entities unknown to each 

other collaborate in order to complete a given task.   

As such, Trust Management Systems have been proposed to address these 

challenges. These systems are designed to include the human notion of trust in order to 

promote interactions amongst entities while evaluating risks in situations where partial 

information is available [Cahill, 03]. In addition, a Trust Management System (TMS) 

may implement the concept of recommendation (i.e. a user’s opinion about other) to 

construct and refine the trust in an entity. It must also be noted that trust in a TMS is not 

always symmetric. That is if a user Alice trusts Bob, it does not necessarily imply that 

Bob trusts Alice [Dimmock, 05]. Moreover, trust is context dependent, specifically if 

Alice trusts Bob as a doctor; it does not mean that Alice trusts Bob as a car dealer. 

Finally, A TMS build up the necessary structures to track and adjust trust data based on 
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time, as the trust of an entity may vary (increase or decrease) through multiple 

interactions. 

Usually, an entity in a TMS has two components that are used to compute trust 

and render a security decision. The “trust engine” component updates trust information 

based on evidence (observations and recommendations), whereas the “risk engine” 

handles the security requests and provides feedback to the trust engine [Carbone, 03].  

2.2 Context & Trust Security Systems 

In this section we review the state-of-the art context and trust based security 

systems. They are classified into three major categories: 

1. Context Based Security Systems: this category covers systems that use 

context information in order to render a security decision. 

2. Expanded Role Based Access Control (RBAC) Based Security Systems. 

This category covers those systems that expand and enhance the RBAC 

model with context and trust predicates. 

3. Trust and Risk Security Systems: this category covers those systems that 

implement trust and risk measures.  

At the end of this section, performance parameters for the reviewed context and 

trust security techniques are introduced. Finally, we present guidelines to select an 

appropriate security system according to the types of application and environment. 

2.2.1 Context Based Systems 

This section reviews systems that concentrate on improving data security by 

relying on context data to render a security decision. 
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Managing Context Information in Mobile Devices  
 

According to [Korpipää, 03], in order to manipulate and become fully aware of 

context information, mobile systems must generate reliable records in the presence of 

uncertain and changing data from multiple sources. The framework described in this 

work defines methods for acquiring and processing context information in order to 

provide applications with reliable data.  In order to achieve such a goal, the framework 

defines four functional entities: 

1. Context Manager: a context manager not only stores context information, 

but also delivers notifications to clients about changes in the stored 

information. 

2. Resource Server: a resource server retrieves information from multiple 

context data sources and posts it to the context manager. 

3. Context Recognition Service: the main function of a context recognition 

service is to create higher-level contextual information from multiple context 

data observations in order for it to be shared by multiple applications. 

4. Applications: in this framework, applications are the users of context data 

which is obtained from the context manager by either a notifications or 

direct queries. 

Furthermore, the framework describes a context by using the following 

properties.  

1. Context Type: the [hierarchical] category for a context; 

2. Context Value: the semantic value for the context type; 

3. Confidence: the degree of uncertainty of context value. 
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4. Source: the description of the context provider; 

5. Timestamp: the time at which the context occurred; 

6. Attributes: additional details for the context that is not described in the 

previous properties. 

Finally, higher-level contexts are constructed by linking a context type to a 

recognition service, which performs classification from an input context set type. The 

latter is an entity to be notified of changes of the variables to be monitored. As part of 

the implementation, this framework uses Bayesian reasoning to classify and generate 

higher-level contexts.  

This model provides a programming interface to handle imprecise information 

from multiple sources while checking the trustworthiness of the input context data. 

However, no implementation for data authorization is given; this responsibility is to be 

fulfilled by the application level. 

 
Context-Based Security Policies with Contextual Graphs  
 

According to [Mostefaoui, 04], a security context is defined as “a set of 

information collected from the user’s application environments that is relevant to the 

security infrastructure of both the user and the application.” Many types of context 

information can be defined including user’s identity, interaction history with a service, 

location, preferences, type of request service, request time and date, sensitivity of data 

exchanged, cryptographic protocols, state of network and unit resources (CPU, 

bandwidth etc.). In order to formalize a security policy, contextual graphs are proposed. 

A contextual graph (CxG for short) is based on the concept of decision trees in which 

there are no decision nodes but only “chance” nodes where a contextual element is 
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analyzed to select the corresponding path. A CxG is an acyclic graph with unique input 

and output that allows a representation of a given problem (or operational processes) by 

taking into account the working environment.. A node in the graph can be a security 

action, a contextual node or a recombination node. A security action is an executable 

method that aims at enforcing the policy at a given point of the CxG. Contextual and 

recombination nodes represent a security node. The former corresponds to the explicit 

instantiation of the contextual element, i.e., role of a requesting user. A contextual node 

represented by Cm where m is the number of exclusive (choice) branches corresponding 

to known practices.  A recombination node Rn corresponds to the end of the 

instantiation of a contextual element once the action on the branch is accomplished, for 

example R3 in Figure 2-2. 

 

Figure 2-2 An example of a Contextual Graph-Based Security Policy [Brezillon, 04] 

 
The model represents a good theoretical approach to modeling context-based 
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policies since it not only provides understandable representations of security 

mechanisms, but also allows a security administrator to add and remove security paths. 

However, the model does not define ways to include trust, especially since it assumes 

there are no invalid context data claims when evaluating a policy. Although not defined 

in the model, either by adding or removing security paths and determining the outcome 

as security breaches occur, we could build stress tests. Finally, there is no 

implementation of this model and no provision for the use of historical or past 

experience context data in applications of security. 

 
Context Owners, Brokers, Sources and Service Providers 
 

A model provides access control for services using context information while 

keeping the anonymity of the accessing users is presented in [Hulsebosch, 05]. The 

system architecture defines four entities: Context owner (CO), context provider (CP), 

Context broker (CB) and Context Aware Service Provider (CASP). The context owner 

is the mobile user who owns the context data. The context provider makes sure that the 

context data of a CO is distributed according to the CO’s policy and also provides 

context management (indexing, querying, etc.). The context broker provides services 

publishing mechanisms to CPs and service discovery mechanisms to service providers. 

The context aware service provider provides services to a user.  The authentication for 

this Context Aware Access Control (CSAC) is based on verifying whether or not the 

situational context claimed by the subject is valid. For privacy purposes, the identity of 

the CO is decoupled from its context information. As such two types of security tickets 

(tokens) for authentication are required: the Context Ticket and the Context Granting 

Ticket. The CO and CB know both the tickets. The Context Ticket is issued by the CB 
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to the CO and contains a pseudonym that the CB uses to link the CO to its CP. The 

Context Granting Ticket is issued by the CB and instantiates the association between 

the CO and its CP. Only the mediator CB has access to the Context Granting Ticket. 

The CB uses this ticket to create new Context Tickets when the CO decides to use other 

context-controlled services. The CASP only knows the Context Ticket and uses it for 

communication with the CB.  

The model described above does not require complex static mechanisms like 

PKI (Public Key Infrastructure) or user/password information, while allowing setting 

complex control policies based on reference context data. However, several drawbacks 

can be identified. The system requires an infrastructure for the collection, management, 

interpretation, and controlled release of context information and no provision for it is 

given. Moreover, since security depends solely on context information, the level of 

security may not be as high as traditional solutions.  Furthermore, no time rate is 

suggested to keep and refresh context data.  The system relies on context providers to 

supply context data; however, the system does not present a mechanism to handle or 

detect invalid context claims by such providers, especially when the context owner 

plays the provider role. Finally, the system is in an early stage and has neither a method 

for what-if analysis nor a mechanism to include context data history in the evaluation of 

security. 

 
Context-Enhanced Mobile Services for the Web 
 

In [Debaty, 05] a framework to integrate the physical environment with the 

World Wide Web is presented. The approach establishes a network of Web presences 

for physical components.  Any person, device or location can be described as a web 
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presence (or software object). This object contains the most up-to-date information 

about its assigned physical item and presents such data for use by other entities. In this 

approach, context is defined as “any information that can be used to characterize the 

situation of an entity, with an entity being a person, place or object that is relevant to the 

interaction between a user and an application” [Debaty, 05]. Moreover, the framework 

classifies the context information according to: Where: The location of an entity, When: 

Event time, Who: Identity of the user and of those around him/her, What: The objects 

near the user and the kind of actions the user can taken on demand How: How are those 

entities organized? 

In addition, the physical world is considered to be a dynamic set of interrelated 

physical entities. Each entity can be described by its type, identity, and physical 

attributes. Moreover, each entity has relationships with other entities. The relationships 

are characterized by an extensible set of properties, such as “Contains”, 

“isContainedIn”, “isNextTo” and “isCarriedBy”. Finally, relationships have inner meta-

data such as creation time, expiry time and relative coordinates with respect to a subject. 

A Web presence being a virtual representation of a physical entity is formed by 

a set of modules. Each module delivers a user interface and an API for local/remote 

programmatic access. XML is used as a standard to expose and exchange information 

about a Web presence. The system uses a directory model in order to not only store but 

also manage the Web presence relationships.  In addition, an observer and 

autobiographer module is used to capture and save environment changes. This 

information allows users and objects to learn and reason about the physical 

environment. Finally an indexer module used to gather the meta-data about other 
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entities is included to support Web presence functions. 

The system described above enables and facilitates the development and 

deployment of context-enhanced applications that contain World Wide Web resources 

in order to enhance a user’s experience. However, the system does not implement any 

module to enforce security over objects (Web presence) and services.  

2.2.2 Expanded RBAC Based Security Systems 

In this section, systems that improve data security by expanded the RBAC 

model with context predicates are described. 

 
Generalized Role Based Access Controls (GRBAC) 
 

According to [Moyer, 00], the traditional RBAC model can be extended by 

applying the concept of roles to both objects (e.g. files, tables, resources, etc.) and 

environmental variables. Thus, in a GRBAC system, three types of role types can be 

described: 

1. Subject roles: in GRBAC, a subject role is semantically equivalent to the 

traditional RBAC user role.  

2. Environment roles: environment roles expand security policies by adding 

constraints or control on context variables. 

3. Object roles: an object role allows the classification of objects according to 

their properties, thus allowing the specification of access control on the 

object role instead of each low-level object item. 

In a traditional RBAC system, if a user wants to access a particular object, the 

user must activate a role that is authorized to access the requested object. However, in 
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GRBAC, the authorization algorithm is more complex. Not only the user must activate 

the proper role to access the object, but also there must be an environment role activated 

in the system that allows the operation the user wants to do with the object. Formally in 

a GRBAC implementation, for a subject s to access an object o, s must have some 

subject role Rs, such that: 

1. There exists some object role Ro that contains o; 

2. There exists some system environment role Re, that is currently active; and 

3. Re allows the requested operation t on the object role Ro. 

By allowing the definition of environment and object roles, the GRBAC 

framework can be a powerful model to be used in the specification of security policies 

in a computationally rich environment.  However, since there can be a great number of 

environment roles, the system may become difficult to administer. Moreover, there 

must be always an environment role in order to arrive at a security decision. This 

implies that the system must collect enough context data to determine whether a given 

environment role is active. In addition, GRBAC does not provide ways to use context 

data history or to counter invalid context claims. The system depends on trusted 

mechanisms capable of generating events based on various system state changes. 

Finally, the model does not define any means to perform what-if analysis. 

 
Role Based Access Control in Ambient Spaces 
 

A description of a distributed, location-dependent and multi-layered RBAC 

grammar for Ambient and Remote Spaces (a.k.a. ubiquitous environments) is presented 

in [Wedde, 04].  Each access right is described as a pair (<role>, <unit>) where 

subjects (users) are assigned to a role in a unit or organizational entity (e.g. department, 
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group, etc.). Each unit is under the control of a special type of unit denoted as 

authorization sphere. A local authorization team sets the rules of roles for the 

authorization sphere using five access predicates defined as:  

1. Basic rules (cando): used to enable or deny access rights; 

2. Derivation rules (dercando): used to derive relationships between access 

rights; 

3. Decision rules (decide): used to confirm with the user if an access right is 

granted;  

4. Deduction rules (do): used to deduce an access right based on the validity of 

other predicates;  

5. Grant rules (grant): used to resolve conflicts arising from dercando and do 

rules.  

Due to the assumed spatial context assumed, the model makes use of 

hierarchical trusts levels (top secret, secret, etc.), locations (Europe, France, Paris, etc.), 

and security levels (public key, RSA, RSA1024, etc.). As such, the five access control 

predicates mentioned above can be augmented with the following assertions: 

1. Predicates that model the trust level of a host (login, storage, location, etc.); 

2. Predicates that model the security of the communication channel 

(encryption, key exchanged, authentication, etc.); and 

3. Predicates that model the application security (execution, application trusted, 

application level).   
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For instance, the rule  

cando(OU, s, o, +r) ← login (s, h) & location (h, OU) & storage (o, ho)  & 

 channel_level (OU, h, ho, secured) 

 
states that in the OU authorization sphere a subject s, logged in a host h (located 

at OU) can access (read) an object o  (stored at host ho),  so long as the communication 

channel between h and ho is secured. 

The above framework specifies a grammar to describe access based on context 

information and location. The grammar can be easily extended to include host power 

resource information as well as connection mode (weak, strong, etc.). With some 

additional complexity, the model could describe restrictions of movement for a given 

object. However, the grammar does not include predicates to take into account the 

variability of context data or any related data history. Finally, this work does not define 

predicates to define what-if scenarios. 

 
Dynamic Role Based Access Controls (DRBAC) 
 

According to [Zhang, 03] and [Zhang, 04], the proliferation of small and smart 

devices has enabled the transformations of regular physical spaces into intelligent 

spaces. The model extends the RBAC model while dynamically adjusting role and 

permission assignments based on context data.  As such, the new dynamic RBAC 

(DRBAC) has the following components:  

1. USERS: entities whose access is being controlled; 

2. ROLES: job functions that define the authority and responsibility for a user; 

3. PERMS: an approval or denial to access one or more resources;  



 

 
 

30 

4. ENVS: a set of context information in the system;  

5. SESSIONS: a session is a set of interactions between entities;   

6. UA: a mapping that assigns a role to a user and along with context data, it 

aids in determining the role to be activated, and  

7. PA: the mapping between permissions and a role.  

A central authority (CA) maintains the overall role hierarchy and, when a user 

enters the system, a base set of roles is assigned to him/her based on his/her capabilities.  

The CA assigns a context agent to the user, which monitors his/her environment and 

dynamically changes the active role. In addition, each resource maintains a set of 

permission hierarchies for each potential role that wants to access it. State machines 

maintain the role subset for each user and the permission subset for each role. Each state 

machine consists of state variables and events. The context agent (loaded at the 

requesting unit) collects context information and generates predefined events to trigger 

transitions in the state machine.  

As in other research efforts, this model extends the current static role based 

access control with dynamic data in order to provide context aware security. However, 

the model does not provide a way to invalidate erroneous context claims; so it is 

possible that even though the active roles of a user change, he/she still can access 

resources with permissions already acquired. In addition, the model requires context 

agents to be loaded in the units, which may limit the type of units that can participate in 

the system as it will require those hosts to have enough resources to load and run the 

agents. Finally, there is no provision for the inclusion of past activity history in order to 

derive a more accurate security decision. 
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2.2.3 Trust Based Systems 

 In this section, we review the current work in trust based security systems. 

These trust models are adjusted using the user’s context or preference data in order to 

arrive at a security decision. 

 
Building Trust in Decentralized Peer-to-Peer Electronic Communities 
 

The model in [Xiong, 02] describes a trust management system that relies on 

reputations in order to quantify and compare the degree of trust trustworthiness of peers 

in a decentralized peer-to-peer environment.  In this system a satisfactory interaction is 

defined to have a value of 1 and a complaint to have a value of 0. The trust metric is 

defined as follows: 

 

T (u, t) =
S(u,v, t)•Cr(v, t)

v∈P,v≠u
∑

I(u,v, t)
v∈P,v≠u
∑

 

where 

• P is a set of peers in the P2P system; 

• u and v are peers in the system, that is  u, v ε P; 

• S(u,v,t) is the degree of satisfaction that u has with v until the tth transaction; 

• T(u,t) is u’s trust value evaluated by other peers until the tth transaction; 

• Cr(v,t) is the balance factor for filtering feedback from v; 

• I(u,v,t) is the number of interactions that u has with v up to the tth transaction. 

 
T(u,t) is the ratio of cumulative weighted satisfaction that u receives with respect 

to the total number of interactions that u has within the P2P system. Moreover, the term 
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S(u,v,t) •  Cr(v,t) is approximated by I(u,v,t) - C(v,t) •  T(v,t), where C(v,t) denotes the 

level of complains that v files against u. Therefore, the trust metric T(u,t) becomes 

 

T (u, t) =1−
C(u,v, t)•T (v, t)

v∈P,v≠u
∑

I(u,v, t)
v∈P,v≠u
∑

 

 
It is readily seen that the higher the value of T(u,t) is, the more trustworthy u is. 

Moreover it uses other users’ trusts T(v,t) as a balancing factor, that is, the higher T(v,t), 

the more reliable the level of complaints. In addition, PeerTrust defines the 

trustworthiness decision criterion as follows: 

If I(u,t) > C1 and T(u,t) > C2, then u is trustworthy. C1 and C2 are system defined 

thresholds, where C1 defines the minimum number of interactions required and C2 

defines the minimum trust value that an entity must have in order for it to be considered 

trustworthy.  

Due to the simplicity of the trust metric T(u,t), this model can be easily applied 

to mobile systems while providing a good mechanism for measuring the trustworthiness 

of entities using either direct experiences or recommendations. However, the system 

requires a minimum number of interactions to derive an adequate trust value. This may 

present a disadvantage for new users and entities that reenter the system after a long 

time. Moreover, the system equally weights the feedback from other users when 

evaluating trust instead of giving the most recent feedback a higher weight. Finally, the 

system does not use any context data to calculate or refine the trust measure.  
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A Reputation-Based Trust Model for Peer-to-Peer EC-Communities 
 

The model in [Xiong, 03] expands the system described in [Xiong, 02] in order 

to increase the trustworthiness of an entity by including the following factors in the trust 

calculation: 

 
• Credibility of Feedback: the model uses credibility weighted peer feedback 

when calculating the trust metric in order to mitigate the impact of malicious 

(false) statements about a peer. 

• Transaction Context Factor:  when aggregating feedbacks for a peer’s 

transactions the size of such transactions is an important context that needs 

to be incorporated in the trust metric to weight the feedback for each 

transaction. In this case, large (big) transactions weight more in the trust 

metric calculation than small transactions do. 

• Community Context Factor: in a particular peer-to-peer community, the use 

of recent transaction history can be used to evaluate the consistent behavior 

of a peer. 

As such the model in [Xiong, 02] is expanded as follows: 

 

T (u) =α *
S(u, i)*Cr(p(u, i))*TF(u, i)

i=1

I (u)

∑
I(u)

+β *CF(u)  

 
where 

• I(u) denote the total number of transactions performed by peer u during a 

given period. 



 

 
 

34 

• p(u,i) denotes the other participating peer in peer u’s ith transaction. 

• Cr(p(u,i)) denotes the credibility of the feedback submitted by p(u,i). 

• TF(u,i) denotes the transaction context factor for peer u’s ith transaction. 

• CF(u) is the community context factor for peer during the given period. 

• α and β are weight factors for the transaction and community context part of 

the equation. 

According to the requirements of a peer community, the above parameters can 

be modified to model a particular requirement. For instance, by making α =1, β = 0 and 

TF(u,i) = D(u,i), the cost in dollars of a transaction, the size of a transaction becomes 

part of the trust metric calculation. In addition, a peer community could encourage more 

feedback by its peers by providing a small increase in the trust of a peer whenever 

he/she provides feedback to others. This may be achieved by making CF(u) the ratio of 

the total amount of feedback (or F(u)) over the total number of transactions (I(u)). 

This model improves the system on [Xion, 02] by checking for the credibility of 

the feedback (recommendations) given by different peers. However, this system suffers 

from the same weaknesses of the previous model. 

 
Engineering Trust Base Collaborations 
 

The work done in [English, 04] does not present a true trust model. Rather, it 

describes the characteristics of what a trust/risk model should have in order to allow 

trust base collaborations. It starts by denoting that in the global computing environment, 

entities are required to make their own security decisions often enough with incomplete 

knowledge of the environment. These entities then develop concepts of trust and risk 

when interacting with other entities. Users use this trust as a way for managing risk and 
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learning from past interactions in order to reduce incorrect data or service exposure. As 

such, it is necessary for a model of trust to allow comparisons in order to express “less 

risk” or “more risk” in a security domain. 

In a trust model, a decision maker decides the outcome of a request from an 

entity (requester) by reasoning about the trustworthiness of the requester (trust 

evaluation) and the risk of the interaction (risk evaluation).  There are two alternatives 

to view the relationship between trust and risk. The first choice is to consider risk 

“driving” trust, that is, in a situation s and an action a which entail a level of risk r, how 

trustworthy an entity should be to be allowed to enter s and execute a. On the other 

hand, trust can “drive” risk. In this case, for a situation s and an action a along with an 

entity p, how much risk the system is willing to accept by allowing p to enter situation s 

and carry out a. Wherever the cost benefits are quantifiable, the latter alternative gives 

us a better measure of the risks involved. The decision maker is required to have the 

ability to associate an entity with a risk profile, which can be described, by the 

combination of the risks of individual outcomes of an interaction. As information 

becomes more available, the risk profiles for the entity should be reevaluated so that 

given a new risk value, a new profile may be selected for the entity.  

In order to compare two risk values, a “≤” operator needs to be defined. If two 

trust values, t1 and t2, with risk profiles, r1 and r2, respectively, such that t1 ≤ t2 then r1 

represents more risk than r2. Since both profiles may have been evaluated with a 

different or incomplete set of information, a notion of uncertainty needs to be included 

in the model to better characterize the collaborating entities. Trust values can be 

mapped to a probability distribution of costs to represent the likely cost of each value. 
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Each trust value can be considered equally likely. Thus, trust calculating the maximum 

costs/benefits for each outcome trust evaluation can be performed. Finally, to introduce 

uncertainty, a trust value range can be mapped to a cost interval. The size of the interval 

represents the uncertainty value. 

The model describes the key aspects of what risk model should have in order to 

support trust base cooperation in an environment with incomplete knowledge. However, 

the framework does not make any reference to what-if analysis when either predicting 

future scenarios or refining risk profiles. 

 
Trust of Ubiquitous, Transparent Collaboration 
 

A model based on user recommendations to control both the flow of information 

as well as defining its access is provided in [Shand, 04]. In addition, the model allows 

the definition of complex policies by ordering user recommendations according to the 

data content. Users and data may be associated with categories, each of which has a 

trust value, and each item (users or data) may have one or more associated 

recommendations. The model then combines the recommendations in order to 

determine the importance of an item with respect to the category. Categories are 

analogous to roles in the RBAC model and they are used to restrict the dissemination of 

information amongst users (principals). A category has a list of privileges associated 

with it; users use these privileges to distribute information. The trust assessment of an 

entity is a mapping from an action category pair (category id, list of privileges/actions) 

to a primitive trust value. In addition, a category can extend another one (hierarchical 

relationship) and extensions can be grouped into category-bands. Such bands facilitate 

the exchange of information and allow user’s privileges to be intuitively assigned.  
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In this framework, recommendations associate one permission with another and 

participants compute their trust in the information by combining their own trust 

assumptions with others’ recommendations [Shand, 04]. The set of permissions P 

linked by recommendations can be classified as follows:  

• Actor permissions A are used to identify people; 

• Category permissions C are used to represent a category memberships; 

• Data Entry permissions D are used to refer to application data; 

• Action permissions PA are used to represent operations over data; 

• {Link}, initially empty, is the set of all actor category associations; 

• Link permissions PL = {Link} x {A U C} are used to recommend an actors 

associated with a category. 

Recommendations are combined transitively to determine effective trust value 

discounted according to the permissions the recommender hold.  In this framework, 

actors, categories and data entries are treated as permissions in order to have a 

homogeneous structure for privilege assignment and information flow restrictions. For 

instance, {Rec(Michael,trade,t1)}Max denotes that “Max recommends that Michael be a 

member of category ‘trade’ with trust t1”.  If a user trusts Max to be a member of 

“trade,” then Michael will be considered too. Moreover, if the same user recommends 

that “trade” be allowed to read data from category “commerce” then the trust will be 

transferred and Michael will be allowed to read data from commerce as well.  A trust 

value consists of a (belief, disbelief) pair, with (belief + disbelief ≤ 1). Trust values can 

be ordered according to trustworthiness. That is, if b1and b2 denote belief values and d1 

and d2 disbelief values, a primary order can be established by defining (b1, d1) ≤ (b2, 
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d2) iff (b1 ≤ b2) and (d2 ≤ d1).  A second ordering is also given by (b1, d1) ₪ (b2, d2) 

iff (b1 ≤ b2) and (d1 ≤ d2).    

Two recommendations are combined through the ⊗ operator. This operator is 

used to merge two trust estimates (b1, d1) and (b2, d2) by dividing the latter by a factor k, 

which represents the maximum value between the normalized b2, d2 values and 1.  

Formally,  
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Transitive recommendations are united through the use of a policy function. A 

policy function Polx(T,y,z) is the degree to which user x believes y should hold 

permission z if everyone else’s trust assignments are given in T. Let dx(y, z) summarize 

x’s recommendations, with dx(y, z) = t if there is a recommendation {Rec(y,z,t)}x, and 0 

otherwise (newer recommendations are supposed to supersede older ones), that is, two 

recommendations are transitively merged as follows: 

• For those recommendations where x associates y with p, and p with z; that is,

T (x, y, p)⊗T (x, p, z)
p∈P
  

and 

• For those recommendations where x gives p permission z and p recommends 

y for z; that is,
Pp

zypTzpxT
∈

⊗ ),,(),,(  

Therefore, the policy Polx(T,y,z) is defined as 

Polx (T, y, z) =⊕ dx (y, z)∪ T (x, y, p)⊗T (x, p, z)
p∈P
 ∪ T (x, p, z)⊗T (p, y, z)

p∈P
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The ⊕ operator is defined as a way to combine a series of recommendations by 

averaging their belief and disbelief components [Shand, 04].  That is, the risk of an 

operation is the sum of all risks of all the possible outcomes of that operation, where the 

risk of an outcome is a function of the likelihood and impact of that outcome.  

This model organizes principals (users) based on categories much like role-

based access control does.  Belief-disbelief pairs specify uncertainty of trust values, and 

thus, policies can be constructed with the use of the ⊗ operator. However, since the new 

recommendations supersede the older ones, no history is used when constructing trust 

values. Policies are stored locally in the mobile devices; so they must be refreshed 

periodically in order to minimize a potential security breach since permissions may be 

granted because of stale data.  Moreover, the model does not define trust in terms of 

context data, but on interactions, and it does not offer mechanisms to validate invalid or 

outdated recommendations. 

 
TrustBAC 
 

The implementation of the traditional RBAC model in an open decentralized 

system (e.g. a pervasive environment) is not an acceptable solution. The implementation 

is not satisfactory because the environment is dynamic and because, in most cases, the 

user population is unknown. In [Chakraborty, 06], the researchers propose TrustBAC as 

an extension of the traditional RBAC where a multi-level trust scheme is defined to 

allow the creation of trust levels that are mapped to roles (unlike the conventional 

RBAC model where users are mapped to roles). In TrustBAC the trust level of a user 

can be computed not only by using their credentials, but also from the results of past 

interactions and recommendations. As the trust level of a user changes, the roles they 
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can have also change. 

Formally, TrustBAC defines a trust relation between two entities, A and B, as 

follows: 

A→
c
B"

#
$

%
&
'
t

= AEB
c , AKB

c , φ RB
c() *+  

 where c
BA E represents the experience of A with regard to B in context (session) 

c; c
BA K denotes A’s knowledge about B and 

c
BRϕ represents the cumulative effect of all 

recommendations that A receives about B. All these three factors are expressed as 

numerical values in the range [-1, 1] and {ұ}. A negative value denotes a trust-negative 

type for the entity, whereas a positive value indicates a trust-positive type. A zero value 

indicates a trust-neutral type and Ұ indicates that there is insufficient information to 

calculate a trust value. Table 2-1 shows the formulae used to calculate the user 

experience, understanding and recommendations for a trust relation.  To calculate the 

experience with regard to another entity, user A keeps a record of all events occurring 

during a time interval. Each event k has an associated a value vk between -10 and 10 to 

express negative, neutral (0 value) and positive experiences. For each interval j there are 

n events. Finally, for each of the n, there is a non-negative weight wi which is used to 

make the final calculation of c
BA E . 

A’s understanding about B, c
BA K  is defined by two parts: a direct knowledge (d) 

and an indirect knowledge (r), where d and r take values between [-1, 1] or Ұ expressing 

A’s direct and recommended knowledge about B. wd and wr are the corresponding no-

negative weight factors. 

The recommendation
c
BRϕ is computed by normalizing the recommendation 
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scores. A recommendation score is simply the multiplication of the recommender’s trust 

value by the actual recommendation values, where, for n recommenders, 
N
tjAT , and Vj are 

the trust and the recommendation values for the jth recommender. 

Since two trusters may come up with different trust values for a given trustee, 

TrustBAC defines the operator ⊗ to normalize the trust relationship, that is,  

 

Table 2-1 TrustBAC Relation Definition 
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( ) ( )tcN
t

c BAWBA ⎯→⎯⊗=⎯→⎯  where W is a weight vector of the form [WE, 

WK, WR] - experience, knowledge, recommendation - such that WE+WK+WR=1 and WE, 

WK, WR ∈ [0,1]. Thus, the trust value of an entity B from A perspective and denoted as 

v A c!→! B( )t
N

is formulated as follows: ( ) c
BR

c
BAK

c
BAE

N
t

c RWKWEWBAv ϕ⋅+⋅+⋅=⎯→⎯  

When the value of ( )Ntc BAv ⎯→⎯ falls in the range [-1, 0], it implies the entity is 

distrusted. If the value is 0 there is neither trust nor distrust, whereas when it falls in the 

range (0, 1], the entity is trusted. A value of Ұ is to indicate that the trust is undefined. 

This framework allows the activation (deactivation) of roles by users according 

to their trust values. Most importantly, each event is weighted to calculate the final 

experience value during a time interval. The system does not specify how to capture 

those events and it is up to a particular system implementation to specify not only the 

event weights, but also the recommendation and knowledge (direct, indirect) values. 

The system does not use context information to expand the RBAC model to refine the 

entities trust measures. 

 
The SECURE Project 
 

According to [Cahill, 03] and [Carbone, 03] the Secure Environments for 

Collaboration among Ubiquitous Roaming Entities (SECURE) seeks to create a 

framework to reason about trust and risk as well as to deploy verifiable security 

policies. In SECURE, risk analysis is done by decomposing a trust-mediated action (or 

interaction) into possible outcomes. Each outcome is given a cost-PDF (probability 

density function) which represents the range of possible benefits and costs that may be 

incurred should each outcome comes about. Therefore, when an interaction from an 
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entity p takes place, the SECURE risk evaluator reviews the possible cost-PDFs for the 

different outcomes while at the same time the SECURE trust calculator provides 

information (denoted as t) that determines the risk’s likelihood based on the identity of 

p. Furthermore, the risk evaluator uses t to select the appropriate cost-PDFs. Finally, the 

SECURE request analyzer combines all the cost-PDFs and decides which action should 

be taken. 

Each trust decision is based on evidence gathered from personal observations 

and recommendations from third parties. Personal observations are recordings of 

outcomes of interactions, which are evaluated against the expected (correct) behavior to 

produce experiences, the values of which are given in terms of gain or loss. The trust 

model in [Carbone, 03] focuses on the set Γ of trust values representing the degree of 

trusts. Γ has two orderings ≤ and ς, such that (Γ, ≤) is a complete lattice and (Γ, ς) is a 

complete partial order. The ordering ≤ tells us which one of the two given trust values is 

of higher level, whereas ς represents that a particular trust value might contain more 

information than another. The model assumes that not all entities have information 

about each other. Therefore two elements ≤⊥ and ς⊥ are defined to represent complete 

distrust and unknown trust value (no evidence of trust or distrust), respectively.  

[Carbone, 03] further defines a technique to build the triple (Γ,≤,ς) starting with 

a complete lattice, (D, ≤), while taking into account the set of intervals of type [d0,d1] 

over D. The ordering ς is considered the “width,” which represents the degree of 

uncertainty. The pair ([0,100], ≤,), the intervals of which are subintervals of [0,100], is 

an example of a lattice over percentage numbers. The interval [40, 60] could represent 

the trust that an entity e has in entity z, with uncertainty 60 – 40 = 20. Formally, given a 
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set of entities P and the set Γ, the trust information function can be defined as: 

m:P→P→Γ, where the function m applied to e applied to z is the trust value 

Γ∈ m(e)(z)  expressing e’s trust in z; that is, entities’ trust in each other can be modeled 

as a function that associates to each pair of entities a trust value Γ∈t  [Nielsen, 03]. 

Furthermore, every subject (user, principal) has a local policy that expresses how it 

computes trust information. The model implements delegation, which means that an 

entity can refer to another entity’s trust information.  

When an entity e makes a request for interaction, the request is passed to the 

request analyzer, which gathers the information about e from three sources: the entity 

recognition component, the trust calculator, and the risk evaluator. As such, the entity 

recognition verifies that entity e is recognized; then, the request analyzer requests a trust 

calculation from the trust calculator. The risk evaluator considers the possible cost-PDF 

and uses the trust calculation to select the appropriate one. Finally, the request analyzer 

combines all the information gathered and renders a decision about e’s request.  

SECURE defines a complete trust cycle from gathering evidence about entities 

to computing trust in order to render a decision when two entities interact. In SECURE, 

an explicit cost-benefit analysis is used to determine how much trust is required to 

offset the risk [Dimmock, 04]. Moreover, the system allows delegation; so one entity 

can compute the trust on behalf of another entity.  In addition, trust calculations and 

evidence can be stored to be used by other entities (as recommendations) and as part of 

the entity recognition. However, the model only takes into account one context risk 

factor (identity) to render a security decision. Moreover, the model does not present a 

way to do a what-if analysis on this context factor. Finally, the model does not include 
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mechanisms to counter invalid claims (identity and recommendations). 

 
The Extended OASIS Project 
 

The OASIS model [Bacon, 02] is a role-based access control implementation 

that allows the definition of conditions for roles activation and the permission such roles 

can acquire in a security policy. In this model, an authorization rule specifies the roles a 

principal must hold and environmental constraints that must be satisfied for a privilege 

to be exercised. A role activation rule denotes the prerequisite conditions and 

constraints that a principal must satisfy in order to enter a role.  

To allow trust and cost/benefit computations to be included within policy rules, 

OASIS environmental predicates are extended to include SECURE [Cahill, 03] rules 

and thus, allow a policy author to reason about the trust and cost data per-outcome 

basis, instead of relying on a simple risk metrics value. To allow trust and cost benefit 

computations in OASIS, three main predicates are defined as follows: 

• Trust retrieval:  - trust (principal, context, value?*) – used to get trust values 

for a particular principal under a particular context (or action).  

• Cost retrieval:  - cost (action, outcome, cost?*) - used to retrieve the cost for 

a particular outcome.   

• Risk thresholding:  defined BNF predicates to determine if a trust value is 

adequate for a particular outcome cost. 

This model allows the specification of trust values on context risk factors (trust 

contexts) in order to expand access control definitions. In addition, the system allows 

the inclusion of discounted inputs from multiple parties in order to build new trust 

                                                
* Denotes an output parameter 
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values. The inclusion of SECURE in OASIS represents an attempt to unify trust 

reasoning into access control. However, the system has not been fully validated for the 

pervasive computing environment. In addition, the model does not present a mechanism 

to perform what-if analysis on context factors in order to predict future scenarios.  At 

the time the work proposed in [Dimmock, 04] was published, the use of context data 

history in the evolution of both trust and risk measures, was in an early phase. 

 
Trust Enhanced Security for Mobile Agents 
 

According to [Lin, 05] a model that takes into account the trust dynamics of past 

experiences including opinions (intentions or beliefs) is presented.  As such, a trust 

model TM = (E, R, OP) is defined where E represents the entities in the system, R trust 

relations amongst entities, and OP operations for managements of trust relations. There 

are several types of trust relations, for instance:  

• Authentication Trust:  belief on the legitimacy of the keys held by an entity 

in the system; 

• Execution Trust:  risk of the incorrect execution of the agent in a mobile 

host; 

• Mobile Code Trust:  belief in the maliciousness of the mobile code that has 

been deployed in a host; 

• Direct Trust: trust of one entity that holds in another entity with respect to a 

given context; 

• Recommended Trust: capacity of an entity to decide whether another entity 

is reliable in the given trust class and in its honesty for recommending other 

entities; 
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• Derived Trust: trust relationship derived from other atomic trust 

relationships. 

Furthermore, a trust relationship of the form (P, Q, C, T, D, t, v, p, n) can be 

defined to denote that entity P trusts entity Q with regard to trust class C (the model 

defines authentication, execution, code as trust classes) with trust type T (direct, 

recommended, derived) in time duration t. D denotes the set of domains (a domain is a 

group of entities that obey the same security policies), v defines the trust value 

(expressed as an opinion), p denotes the number of positive experiences and n the 

negative experiences.  

An opinion consists of belief (b), disbelief (d), and uncertainty (u) values, where  

b = p
p+ n+ k

,d = n
p+ n+ k

,u = k
p+ n+ k

, for u ≠ 0,k ≥1, b+ d +u( ) ≤1 

 

In this model, trust operations include trust evaluation, evidence mapping, trust 

combination, and trust comparison. An entity collects opinions about other entities 

either via a recommendation algorithm or through internal trust analysis.  The system 

requires that each entity collect its own positive and negative evidence about others 

with the use of counters. With the collected evidence, the truster can obtain an opinion 

value. A trust-security manager defines trust management services in order to provide 

trust decisions and dynamically update the trust relationships.  

This model focuses on building trust (relationships) amongst interacting agents 

by keeping minimal and historical information based on past experiences (positive and 

negatives). The relationships are based on only the three trust classes; however they do 

not include any user context information.  Moreover, the model does not offer 
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mechanisms to check the updates with respect to the three trust classes after an 

interaction since it assumes that each entity has the capability to do such a check. 

 
Autonomic Trust Prediction 
 

According to [Capra, 06], the realm of pervasive computing calls for new 

autonomic and lightweight trust in order to minimize not only user intervention, but also 

the overhead imposed on the mobile devices themselves. As such, a system grounded 

on the Kalman filter theory [Kalman, 60] is proposed to derive a trust model that uses a 

set of observations (i.e., direct experiences) to predict the state of the system.  

 The Kalman filter is a set of recursive equations that provide a way to estimate 

the current state of a dynamic system, starting from observations that contain random 

errors. For instance, a Kalman filter of one dimension is represented by a vector x  Є Rn  

(n = 1) and modeled by the equation: 

,...2,1,1 =+=+ tVxx ttt  

In this case, the state of the system at time t+1 depends on the state of the 

system at time t and a random process noise Vt. In addition, the current system 

observation yt is expressed in terms of the system’s current state and a random 

measurement noise Wt, that is: yt = xt +Wt, t =1,2,...  Assuming that not only process 

and measurement noises (Vt, Wt) are uncorrelated and normally distributed, the Kalman 

filter provides a prediction algorithm of the following form: 
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with Ω0 = E[(y0 − x0)2] (the variance of the distribution) and Qt, and Rt the time 
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dependent covariances of Vt, and Wt, respectively.  

Given the system observation yt at time t and the prediction xt computed after the 

(t−1)th observation, the next best estimate of the state of the system is equal to the 

previous state plus a term that is proportional to the distance between the last 

observation and the prediction. Intuitively, the higher the value of Rt, the lower the 

impact of the observation in computing the next estimate. The higher the value of the 

process noise Qt, the higher the importance of the latest observation.  

To apply the Kalman filter in a trust model for the pervasive system, the 

following is assumed: for any given service s offered in the system, there are many 

different providers that a client may contact regardless of time and location. Each 

provider advertises service s promising a certain quality of service, which is represented 

in terms of attribute/value pairs ),( viai . In order for a client to trust a provider, it can 

use the Kalman filter to predict the discrepancy between the provider’s advertised 

attribute values and the client’s measurements. Therefore, it is possible to model a 

client’s trust in terms of these discrepancies so that trust decreases as a result of high 

discrepancies, and vice versa. Formally, ],1[ niai ∈ , denotes the attributes that 

constitute the specification of a certain category of services. The term ti Bap ],[  denotes 

the value of the attribute ia  promised by server B for interaction t, and ti Aam ],[  

expresses the value of the attribute ia  measured by client A for interaction t; the state of 

the system for service s at time t can be described by ],,...,,[, 21 nttt
s
t

ns
t xxxxx =ℜ∈ with 
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where from the client’s perspective, each attribute ia  is assigned to one of these two 

categories: (a) Increasing Utility (the higher the measured value of the attribute, the 

higher the utility experienced by the client, i.e. bandwidth); and (b) Decreasing Utility 

(the higher the measured value of the attribute, the lower the utility, i.e. service time).   

The server trustworthiness can then be described by state variable

]1,0[,1,],...,,[, 21 ∈−==ℜ∈ ititit
T

nttt
s
t

ns
t lxlwithlllll . The higher the discrepancy the 

lower the experienced trust and vice versa. The basic Kalman filter can now be used to 

predict how much the user’s experience of a service will deviate from what the service 

provider has promised (
s
tx 1+ ) and, consequently, how much the server can be considered 

trustworthy (
s
tl 1+ ). It should be noted that at the beginning (time t = 0) a client chooses a 

service provider based on his/her natural trust mindset.  

The Kalman filter is particularly appealing to pervasive systems as it is very 

lightweight, both in terms of memory requirements (only vector Xt) and computational 

load (the recursive Kalman equations can be efficiently computed). Moreover, it makes 

predictions based on an arbitrary long history of interactions (the discrepancies between 

the predictions and the real values are used to train a Kalman filter to assess the 

trustworthiness of an entity). That is, the more frequently two entities interact, the faster 

the filter stabilizes and thus reducing the distance between prediction and actual state of 
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the system. Finally, the model enables what-if analysis as the white Gaussian noises Rt 

and Qt can be used to model the degree of importance to the latest observation. 

However, the system does not define trust in term of user context data, but as the 

measured quality of specific attributes of a service provider. Since it uses the latest 

observation, the filter may take some time to stabilize when a client does not interact 

enough times with a service provider. 

 
TRAVOS 
 

According to [Patel, 05] and [Teacy, 06], TRAVOS provides an entity (truster) 

with two methods for assessing the trustworthiness of another entity (trustee) in a given 

context. First, the truster makes an assessment based on its direct interactions with the 

trustee. Second, the truster may assess reliability based on the reputation of the trustee. 

When two entities r (truster) and e (trustee) interact, the outcome of their 

interaction is considered successful by the truster if the trustee fulfills its obligations.  

The (binary) outcome O is said to be 1 when e fulfills its contract and 0 otherwise. The 

set of outcomes from time 1 to t is denoted as Ot where {t: t ∈ Ζ, a set of integers t>0}. 

In addition, each entity in TRAVOS keeps a history of the outcome of its interactions. 

Formally, the interaction history between r and e can be denoted by the tuple Rt = (mt, 

nt), where mt denotes the number of successful interactions and nt the number of 

unsuccessful interactions. Furthermore, if the tendency of a trustee to fulfill its 

obligations is governed by its behavior, then such behavior can be specified by the 

probability P that this trustee will fulfill its commitments.  Therefore if B ∈ [0,1] 

denotes the trustee behavior with respect to the truster, then B = P(O = 1), provided that 

r has complete information about e. However, complete information cannot be assumed 
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at all times, so the best it can be done is to get the expected value (E) of B [Patel, 05].  

As such, TRAVOS adopts a probabilistic approach to model the trust that a truster has 

over a trustee as the expected value of B.  The trust level T at a time t is defined as 

follows: T = E[B | Ot]. In order to determine the expected value, TRAVOS uses the 

beta family of probability density functions (PDFs) to model the distribution of B as 

follows:  
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In order to adapt the equation above to calculate the value of T based on the 

interaction outcomes recorded by truster r, the values of α and β must be determined. 

TRAVOS assumes that prior to observing any outcome, all values for B have the same 

expectation, that is α = β = 1; therefore at the time t of assessment: α= mt+1 and β= 

nt+1. Thus T = E [B | α, β] = α / (α + β). 

However, T does not differentiate between cases when a truster does not have 

adequate information about a trustee. Therefore, a measure of confidence Y is defined to 

be the probability that the actual value of B lies within an acceptable margin of error ε 

about T.  In other words, B should lie between (T - ε) and (T + ε); therefore Y is defined 

as:  

Y =
(X)α−1(1− X)β−1 dX

T−ε

T+ε
∫

Uα−1(1−U)β−1
0

1
∫ dU

 

In certain circumstances an entity can ask opinions from others in order to 

improve the information about another entity. Formally, the true opinion of an entity p 
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about e at time t is denoted as the tuple Rp
t = (mp

t, np
t). The reported opinion p about e is 

denoted as R’p
t = (m’p

t, n’p
t). The distinction is necessary because p may not report 

accurately for self-interest reasons. Assuming that the opinions reported by any entity p 

about other entities are independent, a truster r can form an opinion about e, given k 

recommenders as follows: 

∑ ∑
= =

+=+===
k
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i
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0 0

11',' βα  

However, the equations above hold under two conditions:   

1. Common Behavior: the behavior of the trustee must be independent of the 

identity of the truster and 

2. Truth Telling: the reputation provider must report its observations accurately 

and truthfully.  

Unfortunately, these conditions do not always hold since the entity providing the 

opinion could act maliciously towards several other entities. Therefore, in order to 

assess the reliability of an opinion provider, TRAVOS calculates the probability that an 

entity will provide an accurate opinion based on its past opinions and later observed 

interactions (made by the truster after it has acquired an opinion) with the trustees for 

which opinions were given.  

In order to estimate the probability of accuracy, given the opinion R’p
t = (m’p

t, 

n’p
t). and denoting Tp’ as the trust calculated using R’p

t, TRAVOS calculates the 

probability that such trust reflects the trustee behavior towards the truster, that is, Tp’ = 

B. This probability is denoted as rr,p- the accuracy of p according to r. Since all possible 

values of Tp’ are infinite, TRAVOS splits all possible values for R’p
t into bins; for each 

bin the number of successes (Csuccess) and failures (Cfail) are recorded (αo= Csuccess +1 and 
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βo = Cfail +1). For each bin bino, the probability that the true value of B lies within the 

range of expected values belonging to that bin is calculated. The probability ρr,p is 

calculated as follows: 

ρr,p =
(X)α

o−1(1− X)β
o−1 dX

max(bino )

max(bino )
∫

Uαo−1(1−U)β
o−1

0

1
∫ dU

 

By computing this probability an entity tries to guarantee that opinions from 

inaccurate entities are not given equal weighting to those from accurate entities [Patel, 

05]. 

TRAVOS provides a mechanism for assessing the trustworthiness of entities 

using either direct experiences or recommendations. Moreover, TRAVOS not only 

calculates the probability that there will not be unsafe effects from an interaction, but 

also can be used to handle inaccurate opinions expressed by reputation entities.  

However, at the moment of publication, TRAVOS does not remove old experiences 

when calculating trust, which may be an unsafe assumption, since entities may change 

their behavior over time. The model does not take into account any user context data to 

compute a more accurate trust value. 

 
Sociotechnical Architecture for Online Privacy 
 

According to [Dawn, 05], users are able to change their privacy preferences 

according to context. As users have more control over situations and data, the more 

trusting they become when engaging in on-line activity. However, missing from this 

model of trust is the strong effect of user control and contributions from multiple 

stakeholders. This model extends the trust model in [McKnight, 02] with new constructs 

consisting of stakeholder interventions to foster trust. This architecture defines a series 
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of cooperating agents and a Web privacy ontology architecture, which incorporates 

legal, ethical and standard regulations, in order to increase the user’s trust in the 

platform. The Web privacy ontology not only facilitates the integration of information 

exchange services, but also allows users to save their preferences as ontologies, which 

aids in the expression of intentions. Furthermore, external agents are defined to allow 

interactions with services and to allow interventions by foreign entities (trusted third 

party agents). Agents executed in a user system, such as the personal context agent, 

maintain contextual information to provide contextualized contract negotiation and 

transactional interaction with sites. This agent has independent user-preference 

induction and context-sensitive text-mining modules to analyze feedback from other 

agents and changes in user context. A user context contains a set of beliefs about the 

current situation, including privacy preference beliefs and trusting beliefs about an 

entity. Finally, the arbitrator agent uses service regulations and user preferences to 

determine whether or not a privacy contract can be established with the accessed 

service. 

Due to the use of ontologies, the research described above illustrates the need 

for historical context data in order to give a better picture of trust in a security system. 

In addition, ontologies allow reasoning about the permissions and preferences for a 

user. However, the system does penalize the user for new contexts (preferences) 

because the system must learn and develop higher-quality semantics and reasoning with 

human intervention.  In addition, the system is tailored to Web environments and 

requires powerful hosts in order to run the internal agents and collect the ontological 

information. The current implementation focuses on a user interface to support privacy 
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tasks such as those during contract negotiation, user preference population, filling out 

forms, and surfing. This makes the system difficult to implement in pervasive mobile 

environments, as user intervention may not be feasible for all cases.  The trust model 

does not include contextual risk factors present in a mobile environment such as 

location, network status and power resources. Finally, this work mentions neither 

methods to handle unfounded claims nor ways to create what-if scenarios. 

 
B-trust 
 

According to [Quercia, 06] a trust framework for a pervasive environment 

should specify the following characteristics: 

• Be distributed 

• Be lightweight 

• Support entity anonymity 

• Use minimal bandwidth for data transmission 

• Robust to common attacks 

• Support trust evolution 

• Use both positive and negative recommendations 

• Base trust calculation in context, subjectiveness, and time 

• Integrate the trust metric with a decision making process  

• Be expressive and tractable 

B-trust supports anonymity by using false pseudonym for each entity (using 

distributed blind threshold signature [Juang, 03]). In B-trust, an n-level metric measure 

is used to allow the definition of trust levels, which are employed as a way to define the 

trustworthiness of an entity. For example, with four levels (n = 4), a possible 



 

 
 

57 

classification is can given as follows: level-1 means ‘very untrustworthy’, level-2 means 

‘untrustworthy’, level-3 means ‘trustworthy’, and level-4 means ‘very trustworthy’.  

The authors in [Quercia, 06] argue that a model whose trust measures are purely 

continuous (i.e. from -1 to 1) introduce unnecessary overhead when computing 

confidence values for a particular trust value.  In B-trust a counter is incremented at the 

corresponding interval where the trust value has happened to fall.  Since there is a 

counter for each level, a confidence level can be computed for each interval. Initially, 

the system assigns low confidence values to all entities uniformly. 

In B-trust, trust calculation is done using two evaluations. The first evaluation is 

based on direct experiences (past interactions). The second is based on 

recommendations. These to evaluations are then combined to make a decision and 

determine to which trust level in the metric falls into, thereby incrementing the 

corresponding the counter. Direct trust is evaluated by creating a tuple that describes the 

distribution of the trust the system has for the requesting entity. The trust is based on the 

context in which the request is made as well as the previous interactions.  A confidence 

level and variance are also calculated over this tuple to determine the reliability of the 

direct trust calculation. The recommended trust is done in a similar way. A tuple is 

created based not only on the request context, but also on the probability that a 

recommender has a trust level of one of the discrete levels outlined in the n-level metric. 

The tuple for recommenders then also becomes distributed over the different levels and 

a confidence level can be calculated on their recommendations. These two trusts 

measures are then combined as part of a weighted average. Again, a confidence level 

can be calculated for the overall trust value. 
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Each trust value also evolves over time. As time progresses, a formula is used to 

push the confidence values towards the initial values (bootstrapping levels). When the 

confidence values decayed at the point of initial levels, the system deletes clears the 

counters and start the computation all over again. 

 
Trust Networks on the Semantic Web 
 

The work in [Golbeck, 03] describes the applicability of social network (“Web 

of Trust”) analysis to the semantic Web in order to compute and infer trust relationships 

in the network. This analysis is based on studies in social networks that state that any 

two people in the world are separated only by a small number of acquaintances (a 

“small word” phenomenon or network).  

The nature of the semantic Web is of a large graph where resources (or objects) 

are connected by predicates (properties). Thus, by treating a “Person” as a node and the 

“knows” or “trust” relationship as an edge, a graph can emerge when two “Persons” 

know or trust each other. Moreover, using a graph model, transitive relationships can be 

established. For instance, if person A does not know another person B, but some friends 

of A know B, then A is “close” to knowing B in some sense (or context). By weighting 

the edges of the graph with some measure of trust, it is possible to infer how much A 

should trust B based on A’s friends. The system defines nine (9) levels (or ontology 

properties) to specify trust between two people. These levels are defined as follows: 1. 

Distrusts absolutely, 2. distrusts highly, 3. distrust moderately, 4. distrusts slightly, 5. 

trusts neutrally, 6. trusts slightly, 7. trusts moderately, 8. trusts highly, and 9. trusts 

absolutely. These levels of trust can be applied in general or limited to a specific factor 

or topic. 
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Using the trust levels (weights) assigned to the graph edges, several trust 

calculations can be made over the network as follows: 

1. Maximum and minimum capacity paths: in this case trust follows the 

standard rules of network capacity paths, where the amount of trust a source 

can give a sink is limited by the smallest edge weight along a given path. 

2. Maximum and minimum length paths: since there may be multiple trust 

paths between to two nodes in a graph, it is useful to know lengths of those 

paths with the aim of doing a better trust path selection. 

3. Weighted average:  the system defines the formula to represent the 

recommended trust for between to nodes i and s as follows: 
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where i has n neighbors with paths to s. A recursive algorithm implements 

the above metric in order to calculate trust between any two nodes in the 

network. However, when there is an edge between i and s, the system does 

not compute the trust average, since direct trust is always better measure 

than transitive trust. 

This system illustrates a method for creating a trust network as well as a metric 

for finding trust between to nodes in the network. At the moment of publication of this 

research, the trust average metric was considered a proof-of-concept. However, the 

system assumes that each person sets the trust measures about the persons he/she knows 

in a subjective manner. Finally, the trust metric suggested does not take into account 
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past trust measures to compute or further refine new trust values. 

 
Relationship between Trust and Risk 
 

According to [Jøsang, 04], risk and trust are tools for making decisions in 

uncertain an environment. Risk is calculated using numerical information from the 

transaction (or collaboration) context. Using classical gambling theory, the expected 

monetary value EV of an investment I can be expressed as EV = IpG, where p is the 

probability of an expected outcome and G is the gain factor on I. However, in many 

situations utility is not the same as monetary value. That is, to express the personal 

preference of a user, the expected utility EU denoted as EU= pu(IG) a is introduced. 

The function u is a non-linear function of the monetary value, that according to 

traditional EU theory, the shape of which determines the risk attitude. As such, when 

u(IG)<IG there is a risk aversion behavior (i.e. the user is no willing to invest or enter in 

a transaction because his/her monetary gain is less that than the expected monetary 

value EV); when u(IG)>IG there is a risk seeking behavior and when u(IG)=IG there is 

risk neutrality. 

Knowing that in a transaction there are two possible outcomes, a gain factor (for 

a successful transaction) Gs ∈ [0,∞] and a loss factor (for a failed transaction) Gf ∈ [-

1,0] are defined. That is, a gain on an investment can be arbitrarily large and the loss 

can be at most equal to the investment. Therefore, the expected gain EG of an 

investment can be denoted as EG=p(Gs) + (1-p)Gf. In addition to the expected gain, a 

user also takes into account how much he/she stands to lose when deciding to enter a 

transaction. Specifically, the higher the probability of success, the higher the fraction of 

the capital the user is willing to put at risk. If C represents the capital, and Fc ∈ [0,1] is 
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the fraction of capital C then the amount to invest FcCI = . Normally, Fc moves in the 

same direction as Gs for a fixed p. Similarly Fc varies like p for a fixed Gs. 

Mathematically it can be described by the function: Fc(p,Gs)=pλ/Gs  where λ ∈ [1,∞] is 

factor that influences the transaction gain Gs on the fraction of the total capital that a 

user is willing to risk. 

Apart from the utility function, λ denotes the contextual component of a user’s 

risk attitude. That is a low λ value indicates a risk taking behavior, whereas a high λ 

denotes a risk aversion. Since risk attitudes are relative to each user, there can be 

multiple surfaces generated by the function Fc(p,Gs)=pλ/Gs , therefore a particular 

transaction will be represented by a point in a given 3D surface with coordinates (Gs, p, 

Fc).  That is for all combinations of Gs, p and Fc, points underneath the surface D can be 

trusted, whereas points above the surface are distrusted (reliability trust). 

Moreover, for a same values of Gs and Fc, and a given cutoff probability pD over 

D, the decision trust T ∈ [-1,1] is defined as follows: 
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The decision trust if defined by its three extreme points (0,-1), (pD,0), and (1,1). 

In addition, the decision trust is must depend on a distance δ between the current 

probability and the cutoff probability, that is, δ = p - pD. A positive decision trust says 

that the user x originating the transaction can be relied upon.  A zero value means that 

the relaying party is undecided as to whether she trusts x. A negative decision 

correspond to x cannot be relied upon in the given transaction.  
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Evaluating Computational Trust Systems 
 

According to [Bryce, 05], modern trust systems tend to be evidence based, in 

which an entity’s decision to trust another is related to facts available using observation 

of action outcomes and recommendations. Moreover, due to their complexity, there is a 

need to develop methodologies to fully analyze a trust system, from the computation of 

an entity’s trust value to establishing confidence in the credentials of requesting entities 

and calculating the risk of permitting or refusing a requested action.  Each methodology 

should answer two questions:  

1) The Question of Security: How good the framework is at automating the 

decision making process and how likely is to take the right decision. 

2) The Question of Trust: How does the computational treatment of trust 

improve the security question 

To answer the first question, a trust security system should have four major 

components. 1) An entity recognition element in order to ascertain the identity of a 

requesting entity. 2) A risk assessment component to attribute a cost to deny or refuse a 

request. 3) A trust attribution module to define a level of risk for an entity (or principal) 

P. 4) Decision element to decide whether a request from P should be allowed.  

Moreover, the strength of the system can be quantified by the triple <ε, ρ, η> 

representing the total number of events to be controlled; the number of false positives 

and the number of false negatives respectively.  The number of correct decisions is 

given by ε- (ρ+ η). It must also be noted that the notion of right decision varies from 

principal to principal. As such, there are two profiles that are used to when determining 

the strength of a decision making process. 1) Principal P’s profile whose decisions 
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define the correct outcome of an action. 2) The community profile made up of messages 

for P from other entities, representing requests, recommendations and evidence. Since 

values of <ε, ρ, η> are only comparable for the same profiles, the metric can be 

redefined as follows: >→< ηρε ,P  where ε is the number of events for profile Pε .  

Finally, the cost of the decision making process can be measure with respect to 

the network (number of messages exchanged for evidence distribution), memory 

(number of items of evidence – observations and recommendations -) and CPU (number 

of instructions to verify an access right). Therefore, if c represents the aggregations of 

the three costs, the security metrics can be extended to >→< cP ,,ηρε . 

To answer the question of trust, trust systems whose trust values encode history 

assume that the best available indicator of a principal expected behavior is its previous 

behavior. These systems achieve stability when every principal has an accurate account 

of the past behavior of all other principals. That is for all εP profiles under evaluation 

the following triple holds <min(ρ), min(η), min(c)>. The authors point out that trust 

stability is hard to achieve since not only there is a lot of information to store and 

exchanged for principals, but also some principals may be faulty and unable or 

unwilling to exchange correct trust values. 

2.2.4 Feature Comparison and Performance Model 

In this section, we not only compare the previously reviewed context and trust 

security techniques using on a set of common features, but also introduce a set of 

metrics to measure the performance and accuracy of the aforementioned security 

mechanisms. 
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Feature Comparison  
 

To compare the techniques in section 2.2.1, 2.2.2 and 2.2.3, we use a common 

framework consisting of the following critical features: 

a) Security Implementation Classification: what security enforcement 

implementation does the system used?  As reviewed in Section 3, three 

categories of security implementation considered are as follows: 

a.1) Context Based: the system relies solely on context information to 

enforce security. Several features are highlighted for these systems: 

 Data Collection: what entity in the system collects context 

information: 

• User:  the user requesting access or implementing a 

security policy collects the relevant context information 

• Third Party: a third party unit (e.g. Context Provider) 

collects the relevant context information 

 Refresh Policy: does the system implements a policy (e.g. time 

interval) to refresh the collected context information? 

 Access Control Specification: does the system define a set of 

predicates or a grammar to specify access control policies? 

a.2) Expanded RBAC Based: the system expands the RBAC framework 

with context variables and predicates. All the systems reviewed in this 

category expand the RBAC system by defining environmental roles 

(conditions) to allow the activation of traditional roles. However, these 
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systems differ in the order in which traditional roles are activated with 

respect to environmental roles: 

 TREV:  A traditional role is activated first, which then checks for 

an activated (by either the system or a trigger) environmental role 

in order to access the requested data or service. 

 EVRL: An activated environmental role (by either the system or a 

trigger) determines the traditional roles that can be activated. 

a.3) Trust and Risk Based: in these systems access to a service or data by 

a user is regulated according to his/her current trust. Several 

distinguishing properties can be stated as follows: 

 Trust Derivation Data: the type of data the system uses to 

calculate trust. Three types of data are considered: 

• Experience Data: the system uses interaction results in 

order to arrive at or refine a trust measure. 

• Context Data: the system uses either environment data or 

user-defined categories to arrive at a trust measure. 

• Ontology Constructs: the system uses or defines 

ontologies to refine a trust measure. 

 Trust Modeling: does the system use a Probabilistic, Stochastic, 

or Mathematical (system defined) framework to model trust? 

 Risk Modeling: does the system calculate risk? There are two 

ways risk can be calculated: 
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• Unspecified: the system specifies the concept of risk but it 

does not define a methodology for calculation. 

• Context Data Based: the system uses context data to 

calculate or model risk. 

• Risk Tolerance: the system calculates how much risk it is 

willing to accept to allow a user to enter into a particular 

interaction. 

 Trust Evolution: does the system allows trust measures to decay 

with time to account for lack of interactions or the effect of 

forgetfulness of the human mind? 

b) Context Data Validation: is context data validated or is it used without 

validation? 

c) Use of Data History: the technique may use historical data in order to arrive 

at a more accurate security decision.  A system can use historical data in one 

of two modes:  

c.1) Full mode: more than one item is used to refine a trust measure or 

security decision. 

c.2) Limited mode: only the most current measure (trust or context data) 

is used to refine a trust measure or security decision. 

d) What-if: the system defines a framework to measure the risk/trust of a 

security policy under different potential situations (e.g. past or future 

scenarios). 
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e) Recommendations: systems that implement trust recommendations can be 

classified using the following features: 

e.1) Validated: the system validates the recommendations or weights 

recommendations with respect to the recommendation source. 

e.2) Normalized: Two entities can come up with different trust values for 

a recommendation. Normalized recommendations define an operator to 

compare two standardized recommendations. 

Based on the above features, Tables 2-2, 2-3 and 2-4 compare the reviewed 

context and trust based security systems. 
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Performance Comparison Model 
 

Each article reviewed in Sections 2.2.1, 2.2.3 and 2.2.3 provides its own 

evaluation criteria. For example, [Xion, 02] represents the trust evolution accuracy by 

measuring how well the trust model helps users in making trust decision. A trust 

evaluation is considered accurate when a trustworthy user is evaluated as trustworthy or 

an untrustworthy user is evaluated as untrustworthy. In [Lin, 05], performance is 

measured according to the number of successful transactions in the presence of a trust 

management system with different number of good and malicious users (agents). In 

[Chakraborty, 06] the performance of the system depends on the number of 

recommendations used to calculate trust as well as the number of roles available that 

can be activated according to a user’s trust. Finally, the experiments presented in 

[Quercia, 06] are geared towards gaining understanding on how the distribution of the 

confidence levels varies under simple and attach scenarios. According to the authors in 

[Quercia, 06], there are two kinds of [collusion] attacks for a trust system that are most 

likely to occur. The first is the bad mouthing collusion attack. In this attack, a collection 

of attackers colludes in that each of them spreads negative recommendations about the 

same benevolent entity. The second type of attack is the ballot stuffing collusion attack. 

Here we have a collection of colluding attackers: some offer services and others 

increase the remaining attackers' reputations as recommenders. The last subset of 

attackers (the good recommenders) sends positive recommendations about those in the 

subset of service providers. Based on the positive opinions, a victim selects the 

providers. They then offer a low quality of service. The victim lowers its trust level in 

the abusing service providers only, whereas it still deems trustworthy the remaining 
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attackers. 

Since most of the evaluation metrics and parameters used in the reviewed 

articles are specific to each one of the reviewed systems, there is no context and trust 

security consensus that would enable users to compare the performance and accuracy of 

different security techniques.  This is a serious problem because, as it stands today users 

evaluation a system need to become aware of the technique’s specific features in order 

to judge the system’s performance and accuracy.  

To enable users to compare the performance and accuracy of different context 

and trust security techniques, since there is no benchmark available, experiments should 

be conducted by varying a standard set of dynamic parameters to study their effects 

based on a set of performance and accuracy metrics, while tuning different system 

parameters.  

 
Accuracy Metrics 
 

• Number (percentage) of accurate interactions 

• Number (percentage) of inaccurate interactions 

• Percentage of correct security decisions with valid context and trust 

information 

• Percentage of correct security decisions with invalid context and trust 

information 

• Percentage of incorrect security decisions with valid context and trust 

information 

• Percentage of incorrect security decisions with invalid context and trust 

information 
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Performance Metrics 
 

• Average trust/risk computation time 

• Average transaction (response) or interaction time 

• Average system throughput 

• Average storage space used by the system to compute trust and risk 

• Average context and trust computation data transmission size  

• Average context and trust computation data transmission time 

• Average time used for trust computation and collection of context data for 

bootstrapping  

• Average entity trust decay time 

 
Dynamic Parameters 
 

• Number of entities – This is number of entities that can interact in the system 

at any given time. This will give users an idea how the system performs as 

the more entities in the system, the more interactions and [possibly] the more 

number of recommendations, which are used to compute the different trust 

and risk measures.  

• Number of malicious entities – This is the number of entities that distribute 

incorrect (invalid) context information or give false recommendations. This 

will allow user to judge how resilient is the techniques against collusion 

attacks  

• Frequency of entity interactions – This will allow users to not only have an 

idea of the system throughput and performance when calculating trust and 

risk measures but also it will aid users in determining the accuracy of the 
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model (risk, trust and probability measures) as the number of entities grow. 

• Number of entities needed to compute trust – This will allow users to 

determine the accuracy of the trust measure when the number of entities 

needed to compute trust (i.e. number of recommenders) varies. 

• Number of context data variables to collect for entity interactions – Besides 

aiding in measuring the system performance and storage requirements, this 

will aid users to determine the complexity of the system implementation, and 

the accuracy of the risk & trust values. 

• Trust and Risk weight factors – This refers to the weight factors used to 

compute a trust measure whose evaluation is done in parts (i.e. Direct trust, 

recommended trust, etc.). This will aid users in finding the best suitable 

weights values to be used when computing trust 

• Amount of context / interaction data to collect for trust computation. This 

will aid users in determining the optimal amount of data history that not only 

for trust-computation but also to minimize resource usage. 

2.3 Modeling of Context Risk Factors Behavior 

In the pervasive ad-hoc environment, context variables of a user may change in 

no predetermine way. For instance, a student moving about a college campus, not only 

go to different class rooms to attend classes based on his/her regular schedule, but also 

may stop at or go to unplanned places (cafeteria, library, restroom). Moreover, he/she 

may decide based on particular circumstances to connect his/her laptop to a power 

supply in order to recharge it. That is, context risk factors follow a stochastic process 

since their values may change over time in an uncertain way.  
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A stochastic process model serves as a risk measurement tool in order to attempt 

to characterize the future change in a process’s value. Essentially, the stochastic process 

uses a statistical distribution to represents the evolution of its values. Moreover, 

stochastic processes are classified as discrete time or continue time [Hull, 99]. The 

former is a process where the value of the variable changes at certain fixed points in 

time. In the latter process, variables not only may change at any time, but also can take 

any value within a given range.  In addition, a stochastic process (denoted as {Yt: t ≥ 

0}) can be further classified as follows [Finch, 04]: 

• Stationary if, for all times (t1< t2 < …< tn) and scalar h> 0, the random n-

vectors ),...,,(
21 nttt YYY and ),...,,(

21 hththt n
YYY +++  are identically distributed; 

that is, time shifts leave joint probabilities unchanged. 

• Gaussian if, for all times (t1< t2 < …< tn), the n-vector ),...,,(
21 nttt YYY is 

multivariate normally distributed [Rose, 02]. 

• Markovian (see section 2.3.1) 

This section introduces several key concepts for continuous variable/time 

stochastic process for context risk factors. 

2.3.1 Markov Property 

A Markov process is a stochastic process where the future value (state) of the 

process depends only on the present state and not on all past states [Papoulis, 84]. The 

Markov property entails that the probability distribution of variable at any future time 

does not depend on the particular ‘path’ followed by the variable in the past [Hull, 99]. 

Formally the Markov property is stated as follows [Finch, 04]: 
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Given an stochastic process {Yt:t≥0} and for all (t1<t2<…< tn),

)|(),...,,|(
1121 −−

≤=≤
nnnn tttttt YyYPYYYyYP ; that is, the future is determined 

only by the present and not the past. 

2.3.2 Continuous Time Stochastic Processes 

Loosely speaking, a continuous stochastic process is a phenomenon that can be 

thought of as evolving in time in a random manner (i.e. location of a particle in a 

physical system, the price of stock in a financial market, mobile phone networks, 

internet traffic, etc.) [Zanten, 07]. Since, context variables may change in a random 

manner with time, we need a continuous time stochastic process to model their 

behavior. As such, in this section we introduce the main characteristics of several 

continuous-time stochastic processes that could help us model the behavior of a context 

variable.  

 
Wiener Processes 
 

A Wiener process is a continuous-time stochastic process denoted Wt for t≥0 

such that the increment (Wt −Ws ) is Gaussian with mean 0 and variance t-s for any 

0≤s<t, and increments for non-overlapping time intervals are independent [Weisstein, 

06]. That is 

1. If (0≤s<t) then (Wt −Ws )~ N(0,t-s), where N(µ, σ2) denotes the Normal 

distribution with expected value µ and variance σ2. 

 
2. If (0≤s<t≤u<v) (i.e., the two intervals [s, t) and [u, v) do not overlap) then 

(Wt −Ws ) and (Wv −Wu )are independent random variables. 
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It follows from the first property that if a variable Wt follows a Wiener process, 

the change ∆Wt during a small period of time ∆t is ΔWt = ε Δt, where ε ~ N(0,1) and 

the variance of ∆Wt is ∆t [Hull, 99]. 

Moreover, if we consider an increase in the value of Wt during a long period of 

time T (denoted as (WT – Wo)), it can be regarded as the sum of the increases in Wt in N 

small ∆t time intervals where 

N =
T
Δt
, thus (Wt −W0) = εi Δt

i=1

N

∑  

and εi  (i=1,2…N) ~ N(0,1) and are independent of each other. Moreover the 

variance of [(WT – Wo)] is N∆t=T [Hull, 99]2. 

 
Table 2-5 shows a simulation of a Wiener process Wt whose initial value was 20 

and with a ∆t = 0.001 (time measured in years). Different random samples would lead 

to different value movements. The final value for Wt is 20.023, which can be regarded 

as a random sample from the distribution of values at the en of 10 time intervals; that is 

at the end of one-hundredth of a year.  

The Wiener process plays an important role both in pure and applied 

mathematics. In pure mathematics, the Wiener process has helped mathematicians to 

deeply understand stochastic calculus and diffusion processes (stochastic differential 

equations). 

 

 

                                                
2 If X ~ N(µx, σx2) and Y ~ N(µy, σy2) are independent normal random variables, then their sum is 
normally distributed with U = X + Y ~ N(µx + µy, σx2+ σy2)  [Grinstead, 97]. 
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Table 2-5 Simulation of a Wiener Process with Wt =20 and ∆t = 0.001 

Wt N(0,1) ∆Wt 
20.000 0.797 0.025 
20.025 0.190 0.006 
20.031 0.323 0.010 
20.041 -0.123 -0.004 
20.038 -0.396 -0.013 
20.025 1.649 0.052 
20.077 0.844 0.027 
20.104 -1.550 -0.049 
20.055 0.302 0.010 
20.064 -1.305 -0.041 
20.023 -0.079 -0.002 

 

In applied mathematics, the Wiener process has been used to model random 

variables, such as volatility in mathematical finance, noise in electronics engineering, 

instruments errors in filtering theory, unknown forces in control theory and particle 

motion under molecular shocks in physics ([Hull, 99], [Hagen, 04]). The advantage of 

the Wiener process is that the Wiener measure is likely the simplest and good measure 

to model infinite-dimensional space (the space of continuous functions), and still it is a 

good model for many natural phenomena [Hagen, 04]. 

 
Generalized Wiener Process 
 

As seen in the previous section, the normal distribution for the basic Wiener 

process has a drift rate (mean) of zero and a variance rate of 1.0. The zero mean 

indicates that the expected value of Wt   at any future time is equal to its current value 

[Hull, 99]. Moreover, the variance of 1 denotes that a change of Wt in a T length time 

interval is equal to T.  

A generalized Wiener process for a variable z can be defined in terms of dWt (a 
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stochastic differential equation) as follows [Hull, 99]: 

dz = adt + bdWt  
where a and b are constants. 

 
The term adt  implies that z has an expected drift rate per unit of time. 

Moreover, if we consider the only the term dz = adt  then it implies that 

dz
dt
= a therefore z = zo + at

 

where zo is the value of z at time zero. The term bdWt is thought of as adding 

noise to the path followed by x. The amount of noise added is b times a Wiener process 

[Hull, 99]. It follows, since a Wiener process has a standard deviation of 1.0, then a b 

times Wiener process has a standard deviation of b. Moreover, in a time interval ∆t, the 

change of value of z, ∆z would be given by [Hull, 99]  

Δz = aΔt + bε Δt,where ε ~ N(0,1)
 

As such, ∆z, denoting the discrete-time version of the model, has a normal 

distribution whose mean is aΔt  and a standard deviation (volatility) of b Δt  (i.e. a 

variance of b2Δt ). 

Table 2-6 shows a simulation of a generalized Wiener process variable z whose 

initial value was 20, ∆t = 0.001, mean (drift) of 0.17 and standard deviation of 0.5.  
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Table 2-6 Simulation of a Generalized Wiener Process with z=20, α=0.17, b=0.5 and ∆t=0.001 

z N(0,1) ∆z 
20.000 -0.869 -0.01357 
19.986 0.460 0.00744 
19.994 0.100 0.00175 
19.996 0.925 0.01480 
20.010 -0.814 -0.01270 
19.998 -0.461 -0.00712 
19.991 1.148 0.01832 
20.009 -0.166 -0.00246 
20.006 -0.459 -0.00709 
19.999 1.806 0.02872 
20.028 -0.573 -0.00889 

 

 

Figure 2-3 Z Values from the Generalized Weiner Process in Table 2-6 

 
Ito Process 
 

An Ito process is a generalized Wiener process where the drift and variance 

parameters are functions that depend directly on the value of z and time t [Hull, 99]. 

Formally, it can be described by the following stochastic differential equation: 
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dz = a(z, t)dt + b(z, t)dWt

 
In a small time interval between t and t + ∆t, the variable changes from z to z + 

∆z, where [Hull, 99]: 

Δz = a(z, t)Δt + b(z, t)ε Δt
 

The equation above assumes that the drift and variance of z remain constant and 

equal to a(z, t) and b(z,t)2 respectively, during the interval [t, t + ∆t]. 

 
Geometric Brownian-Motion 
 

A geometric Brownian motion (or exponential Brownian motion) is a 

continuous-time stochastic process in which the logarithm of the randomly varying 

variable follows a Wiener process [Ross, 03].  That is, a stochastic process St follows a 

geometric Brownian motion when it satisfies the following stochastic differential 

equation: 

dSt = µStdt +σStdWt
 or 

dSt
St

= µdt +σdWt

 
where Wt is a Wiener process and µ (the percentage drift) and σ (the percentage 

volatility) are constants. 

The equation has an analytic solution [Ross, 03]: 

St = So exp µ −
σ 2

2
"

#
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't +σWt
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#
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for an arbitrary initial value S0. Moreover, it can be shown that the random 

variable log St
S0

!

"
#

$

%
& is normally distributed with mean µ −σ
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&
't and variance σ2t, which 
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implies that increments of a geometric Brownian motion variable are normal relative to 

the current value [Ross, 03]. 

Based in the equations above, the time discrete version of the model is  

ΔSt = µStΔt +σStε Δt  

where ∆St is the change in the value of St, in a small time interval a ∆t and ε is a 

random drawing from a standard normal distribution (i.e.ε ~ N(0,1) ). 

Table 2-7 shows a simulation of a geometric Brownian motion variable St, 

whose initial value was 20, ∆t = 0.001, mean (drift) of 0.14 and standard deviation of 

0.20.  

Table 2-7 Simulation of a Geometric Brownian Motion with St=20, µ=0.15, σ=0.2 and ∆t=0.001 

St N(0,1) ∆St 
20.0000 -0.1848 -0.0206 
19.9794 0.7532 0.0980 
20.0774 -0.6654 -0.0817 
19.9957 -0.0594 -0.0047 
19.9910 -0.7562 -0.0928 
19.8982 1.4405 0.1841 
20.0823 2.7820 0.3562 
20.4384 0.8978 0.1189 
20.5573 -0.9626 -0.1223 
20.4351 -1.3457 -0.1711 
20.2640 0.6043 0.0803 
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Figure 2-4 St values from the Geometric Brownian Motion in Table 2-7 

 
Ornstein-Uhlenbeck Process 
 

An Ornstein-Uhlenbeck process is a process that not only is stationary (in 

contrast to the Wiener process), Gaussian and Markovian, but also continuous in 

probability [Finch, 04]. A stochastic process {Yt: t≥0} is continuous in probability if, 

for all u ∈ ℜ+ and ε > 0,  

P(|Yv −Yv |) ≥ ε→ 0 as v→ 0  

An Ornstein-Uhlenbeck process satisfies the following linear stochastic 

differential equation [Finch, 04]: 

dYt = −ρ(Yt −µ)dt +σ dWt
 

where Wt is a Wiener process and ρ, µ and σ are constants.  

A sample Ornstein-Uhlenbeck process (a.k.a. colored noise) over the time 

interval [0,T] can be generated as follows: 
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1. Let N be a large integer 

2. Generate z0, z1,…,zN independent random numbers taken from the standard 

normal distribution. 

3. Define Y0 = c where c could either be the initial condition or (µ + z0) is no 

constant is present. 

4. Define recursively for 1≤n≤N 

Yn = µ +KN (Yn−1 −µ)+ 1−KN
2 zn

where KN = e
−ρT
N

 

 
Table 2-8 shows a simulation of an Ornstein-Uhlenbeck process with Y0=20, T = 

0.001, N = 10, µ = 0.14, σ = 0.2 and ρ =1. 

 
Table 2-8 Simulation of an Ornstein-Uhlenbeck Process with Yo=20, µ=0.14, σ=0.2, T=0.001, ρ=1 and N=10 

Y z 
20.0000 2.3168 
20.0308 0.8957 
20.0415 -0.1079 
20.0379 -0.2286 
20.0327 0.3251 
20.0353 1.4966 
20.0545 -0.1716 
20.0501 0.7216 
20.0583 0.0708 
20.0573 0.4358 
20.0615 -1.7044 
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Figure 2-5 Y values from the Ornstein-Uhlenbeck Process in Table 2-8 

 
CIR Process 
 

The CIR process (a.k.a. squared Bessel process) is a Markov process defined by 

the following stochastic differential equation [Cox, 95]: 

drt = −θ(rt −µ)dt +σ rt dWt

 
where θ, σ and µ are parameters. This process can also be defined as a sum of 

squared Ornstein-Uhlenbeck processes. The process value at time t, i.e. rt follows a non-

central Chi distribution [Stuart, 99].  

 
Logarithmic Random Walk Model 
 

The changes in the value of a variable can be expressed in a variety of forms i.e. 

absolute value change, relative value change, and log value change [RMG, 96]. When a 

value change is defined relative to some initial value, it is known as a return [RMG, 96]. 

Following the RiskMetrics standard, the change in the value of a group of variables 
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(e.g. a set of financial instruments such as equities, commodities, etc.) can be measured 

in terms of continuously compounded returns (log value changes).  

A return random walk model constitutes a risk measurement where forecasts for 

each of the variable’s future value changes - using only their past variations - are 

constructed. This methodology not only models the evolution of returns over time, but 

also the distribution of returns at any point in time.  

Before defining the random walk model we need to introduce the concept of a 

variable return. 

• One-time (single period) value return horizon 
 
Denoting Pt the value of a variable at a time t, the absolute value-change on a 

variable between time t and t-1 (e.g. 1 day) is defined as 

Dt = Pt −Pt−1
 

The relative value-change or percent return, Rt for the same period is 

Rt =
Pt −Pt−1
Pt−1  

If the gross return on a variable is 1 + Rt, the continuously-compounded return 

(log value change), rt, of such variable is defined as: 

( ) ( )1
1

ln1ln −
−

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+= tt

t

t
tt pp

P
P

Rr  

where pt = ln(Pt) or the natural logarithm of Pt. 

Table 2-9 shows an example of proximity values (percentages) between two 

objects (a & b). It is readily seen that all the value changes have the same sign for any 

given time and the similarity of the relative and the log value changes. 
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Table 2-9 Proximity Values Between Two Objects a and b 

Time 
Proximity 

(a/b),Pt 
Absolute 
change 

Relative 
Change 

Log 
Change 

8:09 67.654 -0.078 -0.001152 -0.001152 
8:08 67.732 0.310 0.004598 0.004587 
8:07 67.422 -0.063 -0.000934 -0.000934 
8:06 67.485 -0.119 -0.001760 -0.001762 
8:05 67.604 0.059 0.000873 0.000873 
8:04 67.545 0.096 0.001423 0.001422 
8:03 67.449 -0.219 -0.003236 -0.003242 
8:02 67.668 0.635 0.009473 0.009428 
8:01 67.033 0.350 0.005249 0.005235 
8:00 66.683    

 

• Multiple-time (multi-period) value return horizon 
 
The multiple-time percent returns over the last k time periods can be defined as 

follows: 

In terms of one-time returns, the multiple-time gross return 1 + Rt(k) is given by 

the product of 1-time gross returns. 
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For continuously compounded returns, the multiple-time rt(k) is defines as: 

[ ] 1111 ...)1)...(1)(1(lnln)( +−−−−−
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As seen in the equation above, the multiple-time returns based on continuous 

compounding are simple sums of one-time returns. Moreover, According to [RMG, 96], 

RiskMetrics assumes that the return of a group of N variables is a weighted average of 

continuously compounded returns. That is: 
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rgt ≅ wi
i=1

N

∑ rit
 

where wi represents the variable weights. 

• Random Walk Model for Single Value Risk Factor 
 

RiskMetrics models the dynamics of single-value variables using a random walk 

paradigm [RMG, 96].  

A random walk3 is a formalization of the idea of taking successive steps, each in 

a random direction; that is, it may be thought as being a model for an individual 

walking on a straight line who at each point of time either takes one step to the right 

with probability p or one step to the left with probability 1 − p [Hughes, 96].   

The random walk model can be stated as follows: 

 

ttt

ttt

PP
PP

σεµ

σεµ

+=−

++=

−

−

1

1  

 
where εt ~ N(0,1). The equation above states that at any point in time the current 

value Pt depends on two fixed parameters µ (mean) and σ (standard deviation), the last 

period’s value Pt-1, and a normally distributed random variable εt. 

In order to avoid negative values, it is better to model the log value pt as a 

random walk with normally distributed changes [RMG, 96]. 

 
)1,0(~1 Npp tttt εσεµ ++= −  

therefore 
                                                
3 Random walk models have been applied in several fields. For instance, in economics, a random walk is 
used to model shares prices and other factors. In physics, they are used to represent the random 
movement of molecules in liquids and gases. In psychology, random walks explain the relation between 
the time needed to make a decision and the probability that a certain decision will be made. Finally, in 
wireless networking, they are used to model node movement. 
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)1,0(~1 NePP ttt
t εσεµ+

−=  

 
Given that εt is normally distributed then Pt then follows a log-normal 

distribution [Limpert, 01]. Moreover, contrary to the geometric Brownian motion, the 

assumption that the variance (σ2) of the value changes is a constant can not only be 

relaxed in order to make it vary with time, but also modeled as a function of past 

variances. Thus:  

)1,0(~1 Npp ttttt εεσµ ++= −  

 
RiskMetrics further relaxes the model in equation above by assuming that log 

values have a mean (drift) µ set to zero4  (see [RMG, 96] section 4.3). As such, 

)1,0(~1 Npp ttttt εεσ+= −  

in term of returns  

)1,0(~ Nr tttt εεσ=  

 
In order to not only compute the standard deviation (volatility) σt, but also to 

react faster to sudden changes in data (thus, allowing the latest observations carry the 

highest weight in a variance estimate), an exponential moving average of historical 

observations should be used [RMG, 96]. Therefore, for a given set of T returns, the 

variance can be defined as follows [RMG, 96]: 

 

                                                
4  Since RiskMetrics assumes the standard deviation of returns is usually much higher than the mean, the 
latter is neglected in the model [Pafka, 01]. Moreover, [RMG, 99] shows that return horizon predictions 
(value and sign) for periods of less than three months are not accurate. This occurs because for short 
horizon periods, the volatility is much larger than the expected return; thus, the forecast of the future 
return distribution is dominated by the volatility estimate. In other words, when dealing with short 
horizons, using a zero expected return assumption is as good as any mean estimate that could provide. 
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where the parameter λ (0 < λ <=1) (decay factor) determines the relative 

weights that are applied to the observations (returns) [RMG, 96]. In addition, when 

T→∞ setting the mean (drift) µt and using the geometrics series λ i−1

i=1

∞

∑ =
1

1−λ
the 

above equation can be rewritten as follows: 
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in a recursive manner, the equation becomes 

2
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2
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2
,1 )1( ttt rλλσσ −+= −  

Table 2-10 shows the calculation of the volatility for the proximity data in Table 

2.9. The decay factor λ used was 0.95. The standard deviation (volatility) is equal to 

0.394% (variance is 0.00155%) 

Finally, assuming not only that no-autocorrelation for the data (returns in 

different periods are independent), but also the volatility does not change; then the 

variance of a sum (T time units) is the sum of the variances for independent variables, 

that is [RMG, 96]: 

2
.1

2
. unittimeunittimeT T −− = σσ  
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Table 2-10 Estimating Standard Deviation (Volatility) for Proximity Values with λ=0.95 

Time 
Proximity 

(a/b),Pt 
log 

change σ2
t 

8:09 67.654 -0.00115 0.00115 
8:08 67.732 0.00459 0.00331 
8:07 67.422 -0.00093 0.00278 
8:06 67.485 -0.00176 0.00258 
8:05 67.604 0.00087 0.00237 
8:04 67.545 0.00142 0.00226 
8:03 67.449 -0.00324 0.00204 
8:02 67.668 0.00943 0.00379 
8:01 67.033 0.00523 0.00394 
8:00 66.683   

 

The algorithm to simulate future values for one factor is stated as follows: 

1. Determine the number of scenario trials S and decay factor λ 

2. Compute the 1 time unit volatility from the observed data 

3. Compute the H time horizon volatility as HtH σσ =  

4. For each trial i )1( Ti ≤≤  

1. Simulate Z = φ-1 (X) ~ N(0,1) 

2. Compute the simulated value as )exp(1 ZPP Htt σ−=  where exp(x) = ex 

 
 
Table 2-11 shows 5 simulation trials for a proximity values with Pt= 68 and σt = 

0.394%. 
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Table 2-11 Simulation Trials for a Proximity Value Pt=68, δ=0.394% (τ=10) 

 

 

 

 

 

 

 
 

 
Figure 2-6 Simulated Proximity Values from Table 2-11 

 

2.4 Time Series Classification 

Time series data can be found in many avenues of human endeavor including 

medicine, aerospace, finance, entertainment, and industry [Xi, 06]. The task of time 

series classification is to map a time series to one of specific class. Several algorithms 

have been proposed as found in [Rodriguez, 00], [Geurts, 01],  [Nanopoulos, 01], 

Trial Z Ps 
1 0.41405 68.11102 
2 -1.53471 67.59006 
3 -1.23825 67.66906 
4 -0.76927 67.79421 
5 -0.37158 67.90052 
6 1.58510 68.42601 
7 0.30701 68.08230 
8 1.22780 68.32975 
9 1.54738 68.41584 

10 1.14262 68.30682 
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[Ratanamahatana, 04], [Wu , 04], [Wei, 06], [Xi, 06], [Ding, 08], [Ye, 09], [Ye, 11] and 

[Rakthanmanon, 12]. Most time series data mining algorithms use similarity and or 

distance comparisons at their core, and there is increasing evidence that the classic 

Dynamic Time Warping (DTW) [Müller, 07] measure is the best measure in most 

domains [Ding 08] [Rakthanmanon, 12]. However, space and time requirements are a 

disadvantage as well as it does not yield useful information about why a particular time 

series was assigned to a particular class [Ye, 11].  Conversely, time series shapelets are 

time series subsequences that are accurate representation of a class [Ye, 09]. 

In this section we would give a brief introduction to time series shapelets as well 

as some concepts related to data classification. 

2.4.1 Data Classification 

Given a collection of records (called the training set or training data) where each 

record has a set of attributes, one of which is the class, classification refers to the 

finding of a model that predicts the class as a function of the values of other attributes, 

with the objective that previously unseen records should be assigned a class as 

accurately as possible [Tan, 05]. 

Several models for data classification are used currently ([Tan, 05], [Witten, 

11]). 

• Decision Tree based Methods 

• Rule-based Methods 

• Neural Networks and Memory based reasoning 

• Naïve Bayes and Bayesian Belief Networks 

• Support Vector Machines 
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Figure 2-7 A Sample Training Data [Saleeb, 08] 

 
Figure 2-7 shows an example set of training records that shows the years of 

experience, the rank and whether is a professor is tenured. In this case, the class 

attribute is called Tenured. A classifier is used to build a model for the training data. 

Figure 2-8 shows a how the model is used for classifying unknown objects.  

Using training data, the classifier attempts to find the best class label for a given 

unknown (unseen) data. The accuracy rate of the classifier is the percentage of test set 

samples that are correctly classified by the model. 

Training 
Data 

NAME RANK YEARS TENURED
Mike Assistant Prof 3 no
Mary Assistant Prof 7 yes
Bill Professor 2 yes
Jim Associate Prof 7 yes
Dave Assistant Prof 6 no
Anne Associate Prof 3 no

Classification 
Algorithms 

IF rank = �professor� 
OR years > 6 
THEN tenured = �yes�  

Classifier 
(Model) 
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Figure 2-8 Classifying Unknown Records [Saleeb, 08] 

 
In this dissertation, we will make use of decision trees, which we will briefly 

introduce in the next section 

2.4.2 Decision Trees 

According to [Quinlan, 86], [Murthy, 98], [Rokach, 02] a decision tree is a 

classifier expressed as a recursive partition of the universe of records. The Decision tree 

consists of nodes that form a rooted tree making it a directed tree with a node called 

root that has no incoming edges. All other nodes have exactly one incoming edge. A 

node with outgoing edges is called internal node or test nodes. All other nodes are 

called leaves (also known as terminal nodes or decision nodes). Figure 2-9 shows a tree 

to decide to play or not play based on climate conditions. In this case, outlook is in the 

Classifier 

Testing 
Data 

NAME RANK YEARS TENURED
Tom Assistant Prof 2 no
Merlisa Associate Prof 7 no
George Professor 5 yes
Joseph Assistant Prof 7 yes

Unseen Data 

(Jeff, Professor, 4) 

Tenured? 
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position of the root node. The degrees of the node are attribute values. In this example, 

the child nodes are tests of humidity and windy, leading to the leaf nodes which are the 

actual classifications. This example also includes the corresponding data, also referred 

to as instances. In our example, there are 9 "play" days and 5 "no play" days. In the 

decision tree each internal node splits the set of records into two or more subsets 

according to a certain function of the record attributes values. In the simplest case, each 

test considers a single attribute, such that the set of records is partitioned according to 

the attribute’s value [Rokach, 02].  

The task of constructing a tree from the training set has been called tree induction, 

tree building and tree growing.  Typically the goal is to find the optimal decision tree by 

minimizing the generalization error.  Most existing tree induction systems proceed in a 

greedy top-down fashion, starting with an empty tree and the entire training set, a 

similar algorithm to the following is applied until there are no more splits are possible 

[Murthy, 98], [Quinlan, 86]. 

1. If all the training examples at the current node t belong to class category C, 

create a leaf node with the class C. 

2. Otherwise, score each one of the sets of possible splits S, using a goodness 

measure. 

3. Choose the best split s*, as the test at the current node. 

4. Create, as many child nodes as there are distinct outcomes of s*. Label edges 

between the parent and child nodes with outcomes of s*, and partition the 

training records using s* into the child nodes. 
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Figure 2-9 A Decision Tree [Monk, 13] 

 
5. A child node t is said to be pure if all the training samples at t belong to the 

same class. Repeat the previous steps on all impure child nodes or a stopping 

criteria has been triggered. For instance, 

a. The maximum tree depth has been reached 

b. The number of cases in the terminal node is less than the minimum 

number of cases for parent nodes.  

c. If the node were the split occur, the number of cases in one or more child 

nodes would be less than the minimum number of cases for child nodes. 

d. The best splitting criteria  - information gain - is not greater than a 

certain threshold [Rokach, 02].) 

To build a decision tree, the training data is split into smaller and smaller subsets 
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in a recursive top-down fashion. Starting with all the training records at the root node, at 

each node a split function is evaluated in order to divide the training data into subsets 

accordingly. In most of the cases, the splitting functions are univariate, that is, an 

internal node is split according to the value of a single attribute. Consequently the 

inducer searches for the best attribute upon which to split [Rokach, 02].  When there are 

multiple attributes, the splitting criterion is usually based on linear combination of the 

record attributes [Murthy, 98].  Once the tree has been constructed, tree builder 

algorithms usually try to find a simplified tree in order to optimize for tree height and 

balance as well as increasing the accuracy and error estimation [Frank, 00]. 

In many applications, it is not simply enough to predict the class for a test 

sample. What is needed instead is to give a ranking of the probabilities. That is, a 

correctly calibrated-measure for the true probability that a test record is a member of the 

class of interest [Zadrozny, 01]. For a given class C, a simple way to calculate this 

probability is simply to compute the training frequency. On a leaf node, the probability 

score is measured to be p=k/n, where k is the number of training records of class C that 

fell into the node, and n is total training examples on that node. Finally, classifiers make 

use of Laplacian correction (or Laplace estimator) in order to handle zero probability 

values [Provost, 00]. 

2.4.3 Time Series Shapelets 

Informally, shapelets are time series subsequences, which are in some sense 

maximally representative of a class [Ye, 09].  To formally define a shapelet, we need to 

introduce the following concepts [Ye, 09].  [Ye, 11]: 
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Subsequence. Given a time series T = t1,..ti,.,tm of real values of length m, a 

subsequence S of T is a sampling of length l ≤ m of contiguous positions from T. 

That is, S = tp,..., tp+m−l+1 for1≤ p ≤m− l +1.   

 
Sliding Window: Given a time series T of length m, and a user-defined 

subsequence length of l, the set of all possible subsequences of size l across T is 

defined as: ST
l = {Sp

l of T, for1≤ p ≤m− l +1}  

 
Distance: The distance between two time series (T, R) with the same length - 

denoted as Dist(T, R) - is simply the Euclidian  distance defined as  

Dist(T,R) = d = ti − ri( )2i=1
n

∑  

The distance from a time series T to a subsequence S, denoted as 

SubsequenceDist(T, S) is defined as follows: 

 SubsequenceDist(T, S)  = min(Dist(S, S')), for S' ∈ ST
|S| . 

That is, SubsequenceDist(T, S) is simply the distance between S and its best 

matching location somewhere in T, as shown in Figure 2-10. 

 

 
Figure 2-10 An Illustration of best matching location in a time series T for subsequence S [Ye, 09] 
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Entropy: A time series dataset D consists of two classes, A and B. Given that the 

proportion of objects in class A is p(A) and the proportion of objects in class B 

is p(B), the entropy of D is: I(D) = -p(A)log(p(A)) -p(B)log(p(B)). 

 
Information Gain: Given a certain split strategy sp which divides D into two 

subsets D1 and D2, the entropy before and after splitting is I(D) and Î(D). So the 

information gain (Gain) for this splitting rule is 

Gain(sp) = I(D) - Î(D), 

Gain(sp) = I(D) – (f(D1)I(D1) + f(D2)I(D2)) 

where f(D1), f(D2) are the fraction of objects in D1 and D2 respectively 
 
 
Optimal Split Point (OSP): A time series dataset D consists of two classes, A 

and B. For a shapelet candidate S, we choose some distance threshold dth and 

split D into D1 and D2, such that for every time series object T1,i in D1, 

SubsequenceDist(T1,i, S)<dth and for every time series object T2,i in D2, 

SubsequenceDist(T2,i, S)≥dth. An Optimal Split Point is a distance threshold 

such that 

Gain(S, dOSP(D, S)) ≥ Gain(S, d’th) 

 for any other distance threshold d’th. 

 
Separation Gap of a Split (SGS): The separation gap of a split S is defined as:  

1
D1

SubsequenceDist(x,S)
x∈D1
∑ −

1
D2

SubsequenceDist(y,S)
y∈D2
∑  

 
Shapelet: Given a time series dataset D which consists of two classes, A and B, 

shapelet(D) is a subsequence that, with its corresponding optimal split point, 
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Gain(shapelet(D), dOSP(D, shapelet(D))) ≥ Gain(S, dOSP(D, S)) 

for any other subsequence S. 

 
Table 2-12 Algorithm to Find a Shapelet 

candidates generateCandidates(D, MAXLEN, MINLEN) 
bsf_gain  0 
for each S in candidates 

gainCheckCandidate(D, S) 
if gain > bsf_gain 

bsf_gain  gain 
bsf_shapelet  S  

endIf 
end for 
return bsf_shapelet 

 
 
Table 2-12 shows the template that algorithms that extract a shapelet from a 

time series data set usually follow. In this case, MINLEN and MAXLEN represent the 

minimum and maximum length of the shapelet candidates that can be generated from a 

dataset D.  The function GenerateCandidates computes the entire set of possible 

shapelet candidates; that is, all subsequences of all possible lengths. Finally, the 

function CheckCandidate finds the optimal split point (or split distance) thus dividing 

the time series data set into two subsets which allow the computation of the information 

gain for a given shapelet candidate. In [Muen, 11], for a given candidate shapelet S, the 

split procedure divides the data set D into two disjoint sets D1 and D2 such that 

D1= x : x ∈ D, sdist(S, x) ≤ τ{ } , D2 = x : x ∈ D, sdist(S, x)> τ{ }  where sdist can either 

be: 

1) The Euclidian distance, as stated before.  

2) The normalized Euclidian distance  
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NED(T,R) = d = 1
n

ti − ri( )2i=1
n

∑
 

3) The Dynamic Time Warping distance ([Keogh, 01], [Keogh, 04])    

 
Finally, [Ye, 09], [Ye, 11], [Muen, 11] and [Zakaria, 12] discuss several 

optimizations to the finding of time series shapelets algorithm. 

Figure 2-11 depicts the shapelet extracted from a time series. S can be thought 

of as particularly distinguishing subsection of T. 

 

Figure 2-11 Sample Shapelet [Li, 13] 

 

2.4.4 Shapelets for Classification 

Classifying with a shapelet and its corresponding split point produces a binary 

decision as to whether a time series belongs to a certain class or not, since the algorithm 

can track from what time series the a shapelet came from [Ye, 9]. In [Ye, 11] and 

[Muen, 11], two simple decision tree classifiers based on time series shapelet are 

introduced. In each case, starting from a root node, the decision tree is constructed by 

adding two nodes to the tree after the algorithm finds a best split so far (bsf_gain, 
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bsf_shapelet).  Moreover, not only shapelet classifiers are usually more compact than 

other classification approaches (hence classifying new instances is faster), but also, 

shapelets allow for the detection of shape-based similarity of subsequences [Lines, 12]. 

Given that MINLEN and MAXLEN denotes the minimum and maximum 

shapelet size where MINLEN ≥ 3 and MAXLEN ≤ m, the number of candidate 

shapelets is O(m3); therefore, it is best  to find the best k shapelets (where k is estimated 

using a simple cross-validation approach) and finally, use these shapelets to transform 

data by calculating the distances from a series to each shapelet [Lines, 12]. Table 2-13 

shows pseudo code to find the best k shapelets from a set of time series  

Similarly to the algorithm in Table 2-12, the algorithm to extract the best k 

shapelets also starts by generating all possible candidates of a time series. For each 

candidate, the associated measures (information gain, distances, etc.) are kept. Once all 

candidates of a series have been examined, the candidates are sorted and ‘similar’ 

shapelets are removed. According to [Lines, 12], two shapelets are ‘similar’ if they are 

extracted from the same time series and have any overlapping indices.  Once the 

‘similar’ shapelets have been removed, the algorithm only retains the top k shapelets 

(see merge function) and continues to iterate through until all series have been 

processed. 

[Bagnall, 12] and [Lines, 12] show that shapelets can be used with not only 

decision trees, but also with a different set of classification algorithms. That is achieved 

by using the k shapelets found in the algorithm described previously to transform 

instances of training data into a number of features that can then be treated as a generic 

classification problem. The transformation is described in Table 2-14. 
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Table 2-13 Algorithm to Extract the k Best Shapelets 

kShapelets = ∅ 
for all time series Ti in T do 

shapelets = ∅ 
for l = MIXLEN to MAXLEN do 

Wi,l =generateCandidates(Ti, MIXLEN, MAXLEN) 
 for all subsequence S in Wi,l do 

DS = findDistances(S,Wi,l) 
quality = assessCandidate(S, DS ) 
shapelets.add(S, quality) 

end for 
end for 
sortByQuality(shapelets) 
removeSelfSimilar(shapelets) 
kShapelets = merge(k, kShapelets, shapelets) 

end for 
return kShapelets; 
 

 
Table 2-14 Transformation Process Using Shapelets 

output = ∅ 
for all time series ts in D do 

transformed = ∅ 
for each shaplet s in kShapelets do 

dist = SubsequenceDist (ts, s) 
transf ormed.add(dist) 

 end for 
output.add(transformed) 

end for 
return output 

 
 
Once the k best shapelets have been found, the algorithm loops through each 

instance of time series Ti in the training data, computing the subsequence distance 

between Ti and each of the k best shapelets. The resulting k distances form a new 

record in the transformed data, where each attribute corresponds to the distance from 

each shapelet to the original time series [Lines, 12]. 

Finally, in order to classify an unknown time series U, we compute the distance 

between U and the k best shapelets extracted from the training set. Then using the 
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transformed training data obtained from algorithm in presented in Table 2-14 as main 

input, we could use a well-known classification tree algorithm (i.e. J48 [Hall, 09]) to 

classify the unknown time series using the k-computed distances (J48 can provide also 

with class ranking probabilities) 
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Chapter 3. SECURITY FRAMEWORK 

To address the issues and shortcomings of the systems exposed in the previous two 

chapters, we propose a trust based security framework that includes context data for the 

pervasive ad-hoc environment. In this chapter, we introduced the system architecture 

assumed in this work followed by the definition for some mobile context risk factors. 

3.1 System Architecture 

The pervasive ad-hoc environment assumed in this work (for context-based 

security) is a collection of integrated and cooperating mobile and static components 

interconnected by a series of fixed and wireless networks. In this environment, there are 

not only the typical components of a mobile ad-hoc network (e.g. cellular phones, 

PDAs, mobile computers, etc.), but also a new emerging set of entities such as smart 

rooms, information sensors and smart wearable devices. Each component can be viewed 

as an independent entity in the framework with its own security implementation and 

policies. In addition, an entity can display the following types of autonomy [Essmayr, 

95]: 

• Design autonomy: a component chooses the design, representation and 

semantic of data. 

• Communication autonomy: a component chooses when to communicate with 

another entity and how to respond to a request. 

• Execution autonomy: a component decides when to execute any request by 

any other requesting entity. 
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• Association autonomy: a component decides not only how much data is 

exposed when collaborating with others, but also when to join or leave any 

collaboration group. 

In this pervasive ad-hoc environment, a component providing a service is not 

only capable of querying but also using sensing and computational nodes in order to 

deliver such service to a community of users [Nixon, 04]. Furthermore, the pervasive 

ad-hoc environment exhibits the following characteristics ([Nixon, 04], [Langeheinrich, 

01]): 

1. Ubiquity: The essence of the pervasive and ad-hoc environment is the 

quality of seeming to be everywhere at once.  

2. Invisibility and Sensing: Many components in the infrastructure will be 

imperceptible to the user and will have the ability to measure certain aspects 

of the environment (e.g. temperature, noise, light, position, etc.). 

3. Memory and computing amplification: With not only the potential of a 

massive number of components (computer, sensors, etc.), but also with the 

advent of new software and hardware technologies, it has become easier for 

users to share and use memory and computing (processor) resources in order 

to achieve multiple complex tasks. Many of these devices can potentially 

store, observe and give opinions about many user interactions in multiple 

situations. 

4. Mobility: The pervasive ad-hoc environment can be viewed as a complex 

space made of multiple mobile entities. These entities can range from mobile 

components such as PDAs, laptops and mobile phones to RFID tags. Mobile 



 

 
 

108 

entities can not only communicate with stationary objects, but also establish 

collaboration groups amongst themselves and are free to join or leave them 

at any time. 

5. Trust: With many entities (users and data/service items) in the environment, 

an entity more often than not will interact with others alien to it. Therefore, 

as two any given entities interact; a measure of tolerance (acceptance) is 

developed in order to aid in the delivery and/or use of a service. 

The model shown in Figure 3-1 depicts the system architecture for the pervasive 

ad-hoc environment. Four different entities or main components are found in this 

model: mobile and fixed hosts, sensors and services. Some of the fixed hosts, called 

base stations or Mobile Support Stations (MSS), are augmented with a wireless 

interface to communicate with mobile hosts. Each mobile unit communicates with one 

base station. The area covered by a base station is called a cell, and the process during 

which a mobile host enters a new cell is called hand-off. Within the boundaries of a cell 

broadcast is physically supported [Pitoura, 93]. A mobile host can also be part of an ad-

hoc group. Ad-hoc groups can be established at any moment to enable collaboration and 

information exchange amongst a set of mobile users. In addition, mobile and fixed hosts 

can be part and make use of the services offered by a smart room. A smart room is an 

emerging intelligent environment that brings together computer vision, speech 

recognition, and sensors. Sensors are used to provide units with contextual or 

environmental information (i.e. temperature, noise level, etc.), which may aid the units 

in accessing and using services. 

In the pervasive ad-hoc environment, mobile hosts are portable computers that 



 

 
 

109 

vary in size, processing power, memory, etc. Typically mobile hosts will have limited 

resources compared to theirs desktop counterparts. These limitations may include 

battery power, processing power, volatile memory, disk space, network bandwidth, etc. 

Due to the unreliability of the communication medium as well as limited resources 

available, the mobile host may operate in one of many modes ranging from highly 

connected to disconnected. Moreover, other nodes (fixed and mobile) will be able to 

predict that another is going out of range by monitoring the strength of the signal. 

Amongst the functions that all components play, we distinguish four roles that 

are necessary in this context-based trust security framework: a Context Owner (CO) 

[Hulsebosch, 05], a Context Provider (CP)], a Context Security Analyzer (CSA) and 

Context Accessible Object (CAO). The first two roles are adopted from [Hulsebosch, 

05].  

 

 
Figure 3-1 System Architecture 
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3.1.1 Context Owner (CO) 

A Context Owner role is played by any entity that owns and possibly collects 

context data and decides which, when, where, how and by whom the context data may 

be stored, distributed and processed [Hulsebosch, 05].  For instance, a CO could be an 

agent that visits multiple web sites and collects data such as server response, number of 

links, etc. This agent decides autonomously when to store and release the collected 

information. Another example of a Context Owner can be a fired missile that stores air 

temperature, velocity, GPS location and terrain surveying data when traveling to its 

target. In this architecture, the context owner function can be assigned to any host 

(fixed/mobile) or sensor.  

3.1.2 Context Provider (CP) 

Following [Hulsebosch, 05], an entity playing the Context Provider role not 

only controls the access to the context data according to the CO’s policies and 

restrictions, but also provides means to index, publish and create usage and history 

patterns about the context information. A Context Provider may use ontologies in order 

to reason about any other context related data. For instance, if a user is located at United 

Nations Headquarter, the user’s Context Provider can deduce that he/she is in the city of 

New York.  

The role of Context Provider can be assigned to any Context Owner (user and 

sensors). That is, each CO is responsible for storing and responding to context data 

queries made by other entities. However, in a typical wireless network setting, the most 

powerful nodes (by power availability and internal resources) can also play the role of 

context providers. In such a case, a mobile user will periodically deliver relevant 
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context data to a given set CPs. CPs can broadcast the context information or reply 

directly to queries for context data made by other entities. Moreover, they can deduce 

and store related context data such as signal strength and relative location. Context data 

can be forwarded from one CP to another as users move through the network. 

In an ad-hoc group, there may be one or more units that play the Context 

Provider role. These mobile units should be powerful enough to store and release 

context data on behalf of other users. Similarly, limited mobile units will deliver context 

data to a particular Context Provider in the group. In case a particular Context Provider 

unit is about to go offline, a new Context Provider must be selected and the context data 

must be hand off from the old to the new provider.  

Finally, in a smart room, the Context Provider role can be played directly by the 

sensors located in it and/or by a dedicated fixed station (usually a server).   

3.1.3 Context Accessible Object (CAO) 

Any service or object whose access is controlled by a security implementation 

that may have been expanded with context data constraints is assigned the role of CAO. 

For example, a battlefield map will be a Context Accessible Object because its access 

may depend on the location of the accessing users.  

3.1.4 Context Security Analyzer (CSA) 

An entity playing the Context Security Analyzer takes context information (or 

risk factors) from multiple CPs, and according to a security policy, it either grants or 

denies access to a CAO. Context Security Analyzers must take into account the level of 

trust amongst the different components before rendering a decision.  For instance, in 
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many cases the confidence in the context data coming from a CO or a CP needs to be 

adjusted in order to reflect different degrees of reliability. Moreover, CSAs have context 

factor trained classifiers that allows them to compute the probability of that a context 

factor flows from a specific context provider. 

 Based on the nature of the collaboration between entities, the Context Security 

Analyzer role can be played by a fixed host, a server in a smart room or a base station in 

a typical wireless network setting. In an ad-hoc group, the role can be assigned to a 

powerful mobile device.  

 

 
Figure 3-2 Context Based Security Framework 

 

3.1.5 Context Based Trust Security Framework (CTSF) 

Figure 3-2 illustrates the context based trust security framework. Whenever a 

security request from a principal (accessing entity) arrives (step 1), the CSA reads the 

security policies for the requested CAO and the accessing principal (step 2). 

Furthermore, the CSA may contact one or more CPs in order to get the context data (risk 
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factors) specified in the security policies (step 3). Context providers retrieve the 

requested information and pass it along to the CSA (step 4 and 5). Finally, the CAS 

calculates different risk and trust values, which are used to either, grant or deny the 

access request (step 6).  

3.2 Context Risk Factors 

A context risk factor is a variable that is accessible to an entity and the 

movement (value change) of it may impact the accessibility of an object in a context 

based security system. In other words, a context risk factor is measurable information 

that surrounds a user, which may have an implication in the outcome of a user’s task. 

Usually a context factor may be described as follows: 

• Context type: Category of context or feature 

• Value: Value of context (measured or calculated) 

• Confidence: Describes the uncertainty of the value (i.e. probability) 

• Source: Context value source 

• Timestamp: Latest time the context occurred 

• Attributes: Additional freely defined information 

In the pervasive ad-hoc environment, there are many types of context risk 

factors. Amongst them, for instance, we can easily identify the following: location, 

identity, velocity, direction, network/power resources, time, suspicion level, and user 

intention. In this section, we define some of the context risk factors that can be 

considered in a context based security system as well as sample ways to provide a 

measurement value for such variables.  
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3.2.1 Location 

Location can be referred to as the position in a space where an object is or could 

be [MWD, 13a]. In the mobile computing environment, the accuracy of a particular 

location depends on the signal (i.e. radio) characteristic, response time needed, mobility 

level or speed, network topology and the positioning scheme used.  Many applications 

(e.g. targeting and guidance for rocket and missile systems) require not only horizontal, 

but also vertical positioning along speed, direction and a certain confidence level with 

the location estimate. 

According to [Varshney, 03], an extensive wireless coverage is achieved by 

providing outdoor and indoor coverage to users (fixed / mobile) in a particular 

environment. Moreover, users can be tracked and located according to one or more of 

the following schemes:  

• Satellite based systems.  In a system such as GPS (Global Position System), 

24 satellites broadcast specially coded satellite signals, which are processed 

by receivers to compute position, velocity and time. Mathematically four 

GPS satellite signals are needed to compute exact positions in three 

dimensions [Trimble, 06].  

• Cellular Wireless Networks. In systems such as the PCS (Personal 

Communications Service), GSM (Global System for Mobile 

Communications), a user location does not change provided that he/she does 

not move from a particular area. The location accuracy depends directly on 

the size of the area [Redl, 95]. However, new infrastructures such as 

Enhanced Wireless Services - E911 - can allow network tracking between 
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within 50 to 300 meters of accuracy [FCC, 06]. 

• WLANS, PANS, RFID. Wireless Local Area Networks and Personal Area 

Networks are often used to increase the location accuracy in indoor 

environments [IEEE802, 07]. Radio Frequency Identification can be used to 

increase the location accuracy significantly. For instance, RFID-radars were 

initially developed to versions were specified for 0.5 meter accuracy [RFID, 

06] 

Due to the nature of the pervasive ad-hoc environment, multiple location and 

tracking schemes may be used. Each of these schemes has different degrees of accuracy 

with respect to an entity’s location. To cope with these differences, proximity is a 

common technique used to prove an entity’s location, i.e. whether a particular user is in 

the neighborhood of a trusted reference point [Hulsebosch, 05]. We can define 

proximity as follows: 

Definition 1 Proximity 

Proximity can be defined as the degree of “nearness” between two given 

locations [MWD, 13]. For example, mathematically a measure of proximity can be 

defined as follows: 

Given lx and ly locations for entities x and y, respectively, the proximity P 

between x and y is denoted as 

P(x, y) =100 1− d(lx, ly)
MaxDist

"

#
$

%

&
'  

where:  

• d(lx, ly) is the Euclidian between x and y. 

• MaxDist is the maximum distance in the evaluation area, to allow us to 
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represent the proximity as a percentage value. 

3.2.2 Velocity 

The velocity of an object is simply its speed in a particular direction that 

represents a physical quantity of an object's motion [TPR, 07]. For example, a way to 

measure the average velocity of an entity e moving a distance d (in a straight line) 

during a time interval (Δt) can be described as: 

Ve = d
Δt

 

There are other ways to measure velocity, for instance, in [Wan, 99] velocity is 

characterized in terms of velocity classes. A velocity class is defined as a range of 

velocity. For example, in one class, velocity is measured as the number of moves (e.g. 

cell changes in a cellular network) done during a period of time. More advanced 

velocity classes are described using of the normal distribution to not only model the 

velocity of a user but also to compare the cost of different location and tracking 

schemes. For instance [Jugl, 00] analyzed two different velocity models based on the 

uniform and normal distributions in order to measure the signaling cost when placing a 

call in a cellular network. These models found some insufficiencies that gave rise to a 

new a new velocity probability distribution used for analytical and performance 

calculations. 

3.2.3 Identity 

According to [Clauβ, 05], when an entity interacts with another, it usually 

decides the amount of internal (personal) information to be released depending on the 

trustworthiness (degree of knowledge) of the opposite collaborating entity. In many 
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occasions, an entity stores either fully or partially the identity (represented by set of 

attributes) of another collaborating partner according to the conditions set in a contract. 

When this is the case an Identity Management System (IDM) is used to collect and 

control the release of identity information. For instance, a user buying books over the 

Internet is required by the vendor to give an address and a credit card number in order 

to complete the purchase. However, if the same user is doing her taxes electronically, 

he/she is required to provide the tax agency with additional personal data such as social 

security number or a digital signature. As such, depending on the situation and the 

context, each entity may decide which partial identity (a subset of attributes) is needed 

to represent it when establishing a communication with another entity [Clauβ, 05].  

Many IDM systems support the use of entity pseudonyms in order to group 

different identity attributes and provide a degree of anonymity [Clauβ, 05]. A 

pseudonym can represent an entity or a set of entities (i.e. a company).  An example of a 

pseudonym is a public key certificate, which uses a digital signature to bind together a 

public key with a series of identity attributes (name address, etc.).  A digital signature is 

a method for authenticating digital information analogous implemented using 

techniques from the field of public-key cryptography. In addition to pseudonyms, using 

stronger mechanisms such as Hardware Security Tokens or Biometric features users can 

identified. In the former, a small hardware device generates a token that when combined 

with a user’s Personal Identification Numbers (PIN’s) results in an exclusive, one-time-

use pass-code [AWC, 07]. This code is used to positively identify or authenticate the 

user [AWC, 07]. When a biometric mechanism is used, a user registers with a system 

one or more of his/her physical and behavioral characteristics, which are processed by a 
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numerical algorithm to create a digital representation of the obtained biometric [Jain, 

00]. Examples of these characteristics include fingerprints, eye retinas, facial & 

signature patterns, brain wave fingerprinting, etc. Typical identification methods can be 

classified as follows [GUIDE, 05]: 

• Attribute (Knowledge) Based: Identifiers (not necessarily unique) used by an 

entity to authenticate itself in a particular context, e.g. Driver’s license, 

social security number, home address and low cost RFID (Radio Frequency 

Identification) tags. 

• Credential Based / Soft Crypto Tokens: Username/password or 

certificate/PIN pairs, Security Assertion Markup Language (SAML) 

assertions, Subscriber Identity Module (SIM) card. 

• Biometric Based: Verification of a user’s physical or behavioral 

characteristics. 

• Token Based: A hardware token containing any of the previous identity data. 

In a particular context, an IDM could require one or more of the identification 

methods in order to establish the validity of a claimed identity. As such, each method 

can represent a level of trust for the authenticity of the user’s identity. Table 3-1 

(adopted from [IDABC, 04]) shows the different levels of identity trust agreed to by the 

European governments. Using these levels, we can designate, for example, a value 

range to each of the levels in order to have a numerical representation of the assurance 

level. 

A hypothetical numerical representation of the assurance levels is shown in 

Table 3-2. For example, level 1(minimal assurance) can take values raging from 0 to 25. 
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In this case, zero (0) means no authentication/identification is used or claimed. Levels 2, 

3 and 4 take range values from 25 to 50, 50 to 75 and 75 to 100, respectively. 

Table 3-1 Assurance Levels vs. Identification Method Agreed by the European Governments 

ASSURANCE LEVEL IDENTIFICATION METHOD 
LEVEL 1: MINIMAL ASSURANCE KNOWLEDGE BASED, PIN, PASSWORD 
LEVEL 2: LOW ASSURANCE ONE-TIME PASSWORD5 
LEVEL 3: SUBSTANTIAL ASSURANCE SOFT CRYPTO TOKEN  
LEVEL 4: HIGH ASSURANCE HARD CRYPTO TOKEN, BIOMETRIC 

 

Using a numerical representation for the identity level, a security system could 

reason about permissions and deny or grant access to a resource.  For example, a user 

that has used a biometric identification could see all the content of a classified file, 

while, another user who has used a one-time password could simply see an abstract of 

the same file. 

Table 3-2 Samples of Identity Assurance Level Range Values 

ASSURANCE LEVEL RANGE VALUES 
LEVEL 1 [0, 25) 
LEVEL 2 [25, 50) 
LEVEL 3 [50, 75) 
LEVEL 4 [75, 100) 

 

3.2.4 Battery Power Level 

In the pervasive ad-hoc architecture, mobile and battery-powered devices (e.g. 

PDAs, sensors, laptops, phones, etc.) not only access and use the services of a world 

wide digital infrastructure, but also are considered a great source of data [Krintz, 04].  

However, due to the nature of these devices, energy becomes a limiting resource; as 

such, past research has mainly been centered in the reduction of energy consumption at 

                                                
5 One-time passwords serve the purpose of authentication by providing a unique identification of a user, 
while eliminating the threat of password replays. 
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the hardware [Hillman, 05], operating system [Cai, 05], application/compiler [Krintz, 

04] and network protocol levels [Chatzigiannakis, 04]. Nonetheless, this type of 

research is out of the scope of this work. Instead, we simply need to provide a numerical 

representation for the power level of a device. Thus, we define the power level of a 

device as follows: 

 
Definition 2 Power Level 

Power level is defined as the amount of energy output or battery life available to 

a device in order to keep operating. This availability for example can be represented as 

a percentage number between 0% and 100%, where 0% means no power is available 

and 100% means the device is either fully powered or is operating from a constant 

power supply (e.g. power grid). See Table 3-3 

 
Table 3-3 Power Level vs. Percentage of Energy Output 

POWER LEVEL % OF ENERGY OUTPUT AVAILABLE 
NO POWER 0 

… … 
HALF BATTERY LIFE 50 

… … 
FULLY POWERED / CONSTANT POWER 

SUPPLY 
100 

 

3.2.5 Connection Mode 

Due to the nature of the pervasive ad-hoc environment, it is not always possible 

to establish and maintain a suitable connectivity between entities. This is may occur 

when 1) there is unsuitable channel conditions (e.g. due to noise or jamming), 2) there 

are network restrictions for low probability of detection, interception, and exploitation 
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(LPD/LPI/LPE)6, 3) there is extremely high mobility amongst some entities and, finally 

4) there are not enough power resources [Sterbenz, 02]. As a result, we could expect an 

entity to be operating in one of the following connection modes [Pitoura, 93]: 

• Full connection mode: In the fully connected mode, an entity is continually 

connected to another entity (e.g. to a Mobile Support Station) without 

disruptions and noticeable degradation. 

• Weak connection mode: In this mode, an entity is connected to the rest of 

the network through low bandwidth [Chan, 03]. This mode may occur not 

only when an entity is at the edge of a coverage area but also when the 

communication occurs over a channel that is noisy (i.e. due to bad weather 

conditions), jammed, or has eavesdroppers.  

• Episodic Connection mode: This is a special case of the weak connection 

mode where a node is connected to another node with intermittent 

bandwidth.   That is, there is seldom a complete network path that can route 

traffic from one entity to another entity. 

• Disconnected mode: In this mode, an entity is not communicating with 

others due to 1) an expected failure, 2) it decides to act autonomously or 3) it 

tries to conserve resources. In many occasions, an entity can decide to use a 

trusted proxy to handle its communications while is disconnected. 

A numerical representation for the connection mode can express in terms of the 

transmission bandwidth. Thus, we define the connection rate as follows: 

 
                                                
6 In some military ad-hoc networks there is the need to deny the enemy the ability to detect and exploit 
radio energy using techniques such as covert waveforms, directional transmissions, and reduced 
transmission power [Sterbenz, 02]. 
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Definition 3 Connection Rate 

The Connection rate of an entity can be defined as the proportion of the 

transmission bandwidth used during a certain period of time. For example, 

mathematically it can be defined as follows: 

CR(t) =100 XB(t)
TB

!

"
#

$

%
&

 

where TB is the total available transmission bandwidth and XB the current bandwidth 

used at time t . 

Table 3-4 describes an example of a possible mapping between the connection 

modes and the connection rate ranges. 

 
Table 3-4 Sample Connection Modes vs. Connection Rate Ranges 

CONNECTION MODE CONNECTION RATE 
DISCONNECTED [0, 5) 

EPISODIC  [5, 10) 
WEAK  [10, 60) 
FULL [60, 100] 

 

3.2.6 Honesty Level 

An entity is said be honest when it tells the truth to the best of its knowledge and 

not only does not hide what it knows (about itself and others), but also abstains from 

unfair behavior [MWD, 07]. The outcome of past experiences can then give us the 

degree of honesty (or trust level) of an entity.  For instance, if entity e believes entity m 

is honest, but e later learns that m was dishonest with entity k, then in this case, the 

honesty level of m is 50% (according to e), as there have been two experiences; one in 

which m was honest (with e) and one it which he was dishonest (with k). 



 

 
 

123 

 An example of a simple measure of trust (or honesty) level with respect to an 

entity e can be simply defined as follows: Given N as the total number of events 

(experiences) about e, and P the number of positive experiences with respect to e, then 

the trust level TL of e denoted as TL is defined as the ratio 

TL =100 P
N
!

"
#

$

%
&.  

The equation above captures the notion that trust is built over time by capturing 

the experiences with an entity; however it does not provide ways to measure a trust 

value given the absence of event data. Moreover, if an entity x gives an opinion7 about 

another entity (e.g. entity y) to e, the model above does not allow entity e to asses the 

reliability of such an opinion.  In order to provide a way to address this issue, the 

methodologies described in [Patel, 05] and  [Teacy, 06] can be to provide an entity with 

means for not only measuring the trust of an entity, but also evaluating the reliability of 

opinions given by other entities.  

3.2.7 Channel Level 

The security of communication channels may be characterized by the use of 

encryption, which is usually defined in terms of the encryption algorithm, and the 

encryption-key length [Wedde, 04]. This communication may also demand the 

authentication method as well as any process for key exchange.  In order to categorize 

the security of a channel, we need to take into account not only the type of applications 

being used but also the requirements of the requesting corporation.  For instance, 

communication between two entities can be done in a secured or unsecured manner. 

                                                
7 Opinion is referred to the trust value x has for t 
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Secure communication can be either symmetric, public-key or key-exchange based. 

Symmetric and public-key communication protocols can be further classified by not 

only their key length, but also the encryption algorithm used. Table 3-5 (adopted from 

[Wedde, 04]) describes an example of an encryption/encoding algorithm classification 

strength-value mapping. For example the strength value of an unsecured plain text 

communication could be 1, whereas a communication done through a private channel 

using a 2048 bit encryption key could be considered fully secure and could have 

strength value of 100 (with current state of the art non quantum computing machines, it 

would take about 30 billion years to decode a 2048 bit encrypted data [RSA, 13]. It 

should be noted that encryption algorithms based on integer prime factorization have a 

computational complexity in both NP and co-NP - [Aaronson, 13], [Weisstein, 13] -). 

This classification gives rise to the following definition. 

 
Definition 5 Channel Level 

The channel level of an communication method can be defined as the value (or 

range8) that designates its strength given a tuple of the form <m, t, k, a> where m is the 

communication mode (e.g. secured), t is communication type or protocol (e.g. 

symmetric), k is the authentication-encryption key length (e.g. 128bit) and a is the 

encryption algorithm (e.g. RSA).  

3.2.8 Temperature 

Temperature can be defined as degree of hotness or coldness measured on a 

definite scale [MWD, 10]. In a pervasive ad-hoc environment such as the one in [Gaye, 

03], context information such as temperature, noise level, proximity, pollution level, 
                                                
8 A range is defined so new algorithms can be included in the classification 
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etc. is used create electronic music in real time.  

Table 3-5 Suggested Channel Level Classifications 

 

                                                
9 An overview of cryptographic protocols and algorithms are given in [Schneier, 96] and [Goldreich, 03] 
10 Key Exchange is used in RSA and ELGamal encryption algorithms. 

Mode 
TYPE KEY 

LENGTH 
ALGORITHM9 STRENGTH 

VALUE 

UNSECURED  NO ENCRYPTION [1, 5) 
COMPRESSION [5, 10) 

ENCODING N/A MACBINARY [10, 15) 
APPLEDOUBLE [15, 20) 
BINHEX [25, 30) 
UUENCODE [30, 35) 
MIME / BASE64  [35, 50) 

SECURED SYMMETRIC 56  BIT DES [50, 60) 
 
 
128 BIT 

IDEA [60, 65) 
3DES [65, 70) 
BLOWFISH [70, 75) 
AES [75, 80) 

 
256 BIT 

BLOWFISH256 [80, 84) 
GOST [84, 86) 
RIJNDAEL256  [86, 90) 

448 BIT BLOWFISH448 [90, 100) 
PUBLIC KEY 1024 BIT RSA1024 [70, 80) 

ELGAMAL1024 [70, 80) 
1572-1576 
BIT 

ELGAMAL1572 [80, 85) 
RSA1576 [86, 90) 

 
2048 BIT 

RSA2048 [90, 100) 
ELGAMAL2048 [90, 100) 

KEY 
EXCHANGE10 

 DIFFIE-HELLMAN [55, 60) 

ENCRYPTED KEY 
EXCHANGE 

 
[60, 65) 
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There are three main ways to measure to temperature by means of different 

scales, which include Kelvin, Celsius and Fahrenheit.  The formula for conversion 

between any two of them is shown in Table 3-6 [BPM, 06]. 

 
Table 3-6 Temperature Conversions 

TO FIND FROM FORMULA 
Fahrenheit Celsius °F = (°C × 1.8) + 32 

Celsius Fahrenheit °C = (°F − 32) /1.8 

Kelvin Celsius K = °C + 273.15 

 
 

3.3 Risk Factor Time Series 

Following the definition presented in [Hamilton, 94], a risk factor time series is 

a collection of observations - made by an entity - indexed by the time (and/or date) of 

each observation. An entity collects the risk factor data beginning at a particular time 

(e.g. t = 1) and ending at another (e.g. t = T). Formally, a time series is represented in 

vector form a follows [Hamilton, 94]: 

y1, y2,…, yi,…yT( )T  

where y1 represents the observation made at time 1, yi is the observation made at 

i and yT is the observation made at time T. Entities can represent earlier (before time 1) 

or later observations (after time T) as (y0, y-1, y-2…)T or (yT+1, yT+2 …)T respectively 

[Hamilton, 94]. Adopting the notation from [Hamilton, 94], the observed sample (y1, 

y2,…,yT) could the be viewed as finite segment of doubly infinite sequence denoted as

yt{ }t=−∞
∞ : 



 

 
 

127 

yt{ }t=−∞
∞

= ..., y−1, y0, y1, y2,...yT , yT+1, yT+2,...{ }  (3.1) 

Typically, a time series yt{ }t=−∞
∞ is identified by describing the tth element. For 

instance, a time series in which each element is equal to a constant c, regardless of the 

date of the observation t is written as [Hamilton, 94]: 

yt = c  

An example of a constant time series could be the location of a device in a fixed 

position or for instance the power level of a fully charged device connected to an 

unlimited power supply. 

As is done in basic arithmetic, operators over time series are defined to 

transform one or more time series in to a new time series. In the next section we review 

old and define new time series operators useful in the expansion and definitions of 

context based security policies that include context data history. 

3.3.1 Time Series Operators 

According to [Hamilton, 94], a time series operator transforms one time series 

into a new time series, by accepting as input a sequence such as xt{ }t=−∞
∞ and yielding as 

output a new sequence yt{ }t=−∞
∞ . Each element of yt{ }t=−∞

∞ is described in terms of the 

corresponding elements of xt{ }t=−∞
∞ [Hamilton, 94].  

 
Arithmetic Operators 
 

Based on [Hamilton, 94], for a risk factor time series the multiplication operator 

can be represented as 

yt = βxt  (3.2) 
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where each value of y at a time t is the result of multiplying a scalar β by the 

corresponding value of x at time t. 

Another risk factor time series operator is the addition operator [Hamilton, 94]: 

yt = xt +wt  (3.3) 

where the value of y at time t is the sum of the values that x and w take on for that time. 

Since (3.2) and (3.3) obey the standard rules of algebra, an operation such that, 

given two scalars α and β and two time series xt{ }t=−∞
∞ and wt{ }t=−∞

∞ , a new time series 

yt{ }t=−∞
∞  can be defined as follows [Hamilton, 94]: 

yt =αxt +βwt.   (3.4) 

Arithmetic operators will be useful when for instance we need to combine two 

or more context data time series of the same type (e.g. location) supplied by different 

Context Providers (CP). 

 
Missing Operator 
 

The missing operator, denoted as M, is a Boolean operator that tests if the value 

at a time t for a time series yt{ }t=−∞
∞  has not been defined. That is, this operator checks if 

an observation was made at time t. The M operator is denoted as follows: 

 

M (yt ) =
1 if yt is undefined
0 otherwise
!
"
#

$
%
&

 

 
Percentage Missing Operator 
 

For a context risk factor series is always important to know the degree or 

percentage of missing observations. For instance, we can make part of a security policy, 
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that the percentage of missing observations for a specific risk factor (e.g. location) does 

not exceed a certain threshold. As such, the percentage missing operator (denoted as 

PeM) for a given time series yt{ }t=−∞
∞ and two time points i and j where i < j, t

j yPeM ii is 

defined as follows: 

 PeMi
jyt =

M (yk )
k=i

j

∑
( j − i+1)

  (3.5) 

The PeM amount can give us an indicator of the quality of the data supplied by a 

context provider. 

 
Fill Operators 
 

The backward fill operator, denoted as BF, is a unary operator that for a given 

time series yt{ }t=−∞
∞ , two time points ti and t where ti < t (that is, there are i time steps 

between ti and t) and M(yt) = 0 is defined as follows: 

BFiyt = yt−k = yt ∀k = [1..i] andM (yt ) = 0{ }   (3.6) 

For example, a time series xt{ }t=1
5  representing the power level of a host in the 

time interval [1,5] can be defined as xt{ }t=1
5
= ,, 93, 94, 95( ) . As seen, the first two 

observations (t=1, t=2) are missing. By applying the backward fill operator for times 1 

and 3 (denoted asBF 2x3 ), xt{ }t=1
5  becomes xt{ }t=1

5
= 93,93, 93, 94, 95( ) . 

Similarly, the forward fill operator, denoted as FG, is a unary operator that for a 

given time series yt{ }t=−∞
∞ , two time points t and tj where t > tj and M(yt) = 0 is defined 

as follows: 
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{ }0)(]..1[ ==∀== + ttktt
j yMandjkyyyFF   (3.7) 

For example, a time series pt{ }t=1
5  that presents the proximity of two objects is 

defined in time interval [1,5] pt{ }t=1
5
= (67, 68, 69,, ) . As seen, the last two observations 

(t=4, t=5) are missing. By applying the forward fill operator for time 4 and 5 (denoted 

as 3
2 pFF ) then pt{ }t=1

5  becomes pt{ }t=1
5
= (67, 68.69, 69, 69) . 

These operators are useful to fill missing data in time series supplied by 

different context providers; thus, all elements in a particular time series are never 

missing. 

 
Swap Missing Operator 
 

 Finally, the swap missing operator is defined as follows: given two time series 

xt{ }t=−∞
∞ and wt{ }t=−∞

∞ a time interval −∞ < ti ≤ t j <∞( )  a new time series { }j

i

t
ttty = can be 

defined as follows: 

yt{ }t=ti
t j =

xt if M (xt ) = 0
wt otherwise
!
"
#

$
%
&

 (3.8) 

The swap-missing operator is useful when combining the content of two context 

risk factor time series and thereby reducing the number of missing observations in the 

resulting time series. 

3.3.2 Time Unit for Context Risk Factor Series 

In the pervasive ad-hoc environment not only the collection of time series 

information depends on the capacity (storage and power consumption) of the device 

performing the collection, but also on the type of context risk factor being collected as 
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well as the degree of accuracy required for context data. In this framework, each 

security policy specifies the time unit (e.g. 1 minute) that it expects the time series data 

to be supplied by the context providers. Whenever information cannot be supplied at the 

specified policy rate, this framework will use either the forward or backward fill 

operators in order to make all the context risk factor series of same length. 

3.4 Context Risk Factor Based Security Policies 

Regardless of the security schemes (DAC, RBAC, etc.) used to describe access 

and authorization controls, they can be extended in order to encode all the security 

policies this framework allows. Such policies may contain not only be simple 

comparisons of trust, risk and cost metrics but also expressions to test context risk 

factor time series data.  Security policies can be expanded by expressions from the 

grammar described in Table 3-7. This BNF grammar is based on the grammars found in 

[Sun, 06] and [MATIS, 06].  

 
Table 3-7 BNF for Security Policies 

<syntax>   ::=  { <expression> } 
 
<expression> ::=  

<numeric_expression> 
| <testing_expression> 
| <logical_expression> 
| <literal_expression> 
| <riskfactor_expression> 
| <series_operators> 
| <trust_operators> 
| "(" <expression> ")"  
| "[" <expression> "]"   
|  <expression> ( ("." <expression> )  |  ( "," <expression> ) )   
 
<numeric_expression> :=  <expression> ( "+" | "-" | "*" | "/" ) <expression>  
 
 



 

 
 

132 

<testing_expression> :=  
 <expression> ( ">" | "<" | ">=" | "<=" | "==" | "!=" | “in”) <expression> 
 
<logical_expression> :=  

"!" <expression> 
| <expression> ( "&&" | "||" ) <expression>   
| "true"  
| "false" 
 
<riskfactor_expression> := (<singlevalue_factor> | <timeseries_factor>) 
 
<singlevalue_factor> := ( <proximity_function> || <singleparam_function>) 
 
<proximity_function> := “proximity” “(“ <identifier> “,” <identifier> ”)” 
 
<singleparam_function>  :=  

(“identity” | “velocity” | “connection_rate“ | “power_level” | “trust_level” | 
“channel_level”)  “(“<identifier> ”)” 

 
<timeseries_factor> := (<proximity_series> | <singleparam_series>) 
 
<proximity_series> := “proximity_series” “(“ <identifier> “,” <identifier> ”)” 
 
<singleparam_series> :=  

(“identity_series” | “velocity_series” | “connection_rate_series“ | 
“power_level_series” | “trust_level_series” | “channel_level_series”)  
“(“<identifier> ”)” 

 
<trust_operators> := “trust” ”(“ <identifier> ”,” <identifier> “,” <identifier> ”)” 
 
<series_operators> :=  

(<missing_operator> | <pem_operator>  | <fill_operators> | <swap_operator> | 
 <classify_operator> | <volatily_operator>)  

 
<missing_operator> := “missing” ”(“ <missingop_params>“)” 
 
<missingop_params> :=  

( <timeseries_factor> | <timeseries_factor> “,”<integer_literal>) 
 
<classify_operator > := “classify” ”(“ <timeseries_factor> “)” 
 
<volatily_operator> := “volatily” ”(“ <timeseries_factor>, <numeric_expression>“)” 
 
<pem_operator> := “percentage_missing” ”(“ <pemop_params>“)” 
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<pemop_params> :=  
( <timeseries_factor> |  
  <timeseries_factor> “,”<integer_literal> “,”<integer_literal>) 

 
<fill_operators> := (“forward_fill” | “backward_fill”) ”(“ <fillop_params>“)” 
 
<fillop_params> :=  

( <timeseries_factor> | 
  <timeseries_factor> “,”<integer_literal> “,” <integer_literal> ) 

 
<swap_operator> := “swap_missing” ”(“ <swapop_params>“)” 
 
<swapop_params> :=  

( <timeseries_factor> “,” <timeseries_factor> | 
  <timeseries_factor> “,”<timeseries_factor> “,” <integer_literal> “,” 

<integer_literal> ) 
 
<literal_expression> := ([ “-“ ]) (<integer_literal> | <float_literal>) 
 
<integer_literal> :=  "1..9"  { "0..9" } 
 
<float_literal>  :=  

( <decimal_digits> "." [ <decimal_digits> ] [ <epart> ]  [ < ftype _suffix > ]  )  
|   (  "." <decimal_digits>  [ <epart> ]  [ <ftype _suffix> ]  )  
| ( <decimal_digits>  [ <epart> ]  [ <ftype_suffix> ]  )   
 
<decimal_digits> := "0..9" { "0..9" } 
 
<epart> :=  "e" [ "+" | "-" ] <decimal_digits>  
 
<ftype_suffix> :=  "f" | "d"   
 
<identifier> := "a..z,_,A..Z" {"a..z,A..Z,_,0..9,unicode character over 00C0"} 
 
 

 
• In <testing_expression> production rule, the “in” operator is introduced to 

define an inclusion operator. That is, to test is a single value x is within a 

range or included in a time series expression. 

• The <riskfactor_expression> production rule defines the single value 

context risk factor expressions used in the grammar. It can derive to 
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expressions <singlevalue_factor> and <timeseries_factor>. 

• The <singlevalue_factor> rule refers to a single value for a context risk 

factor. For example, the power level of an entity e at a given time t. This rule 

can derive either a <proximity_function> or a <singleparam_function>. 

• The <proximity_function> rule refers to the “proximity” function, which 

takes two parameters (entity identifiers) and returns the proximity between 

those entities. In addition, the <singleparam_function> production rules 

derives terminal expressions for the context risk factor functions “identity”, 

“velocity” “connection_rate“, “power_level”, “trust_level”, and 

“channel_level”. These functions take one parameter – an entity identifier - 

and return the entity’s identity certainty, connection rate, the power level, 

trust level and connection/channel level, respectively. 

• Unlike the <riskfactor_expression> rule, the <timeseries_factor> 

production defines time series context risk factor expressions in this 

grammar. It can derive expressions <proximity_series> and 

<singleparam_series>. When implemented these two last expressions will 

return time series (available) data for an entity’s context risk factor. 

• The <proximity_series> production refers to the function 

“proximity_series”, which takes two parameters (entity identifiers) and 

returns the available time series proximity data between those entities. The 

<singleparam_series> rule derives terminal single-parameter time series 

functions for the following context risk factors: identity, connection rate, 

power level, trusts level and channel level. These functions are 
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“identity_series”, “velocity_series”, “connection_rate_series“, 

“power_level_series”,  “trust_level_series” and “channel_level_series”.  

• The <series_operator> rule defines the grammar for the time series 

operators previously defined. The productions derived from this rule are: 

<missing_operator>, <pem_operator>, <fill_operators> and 

<swap_operator>. 

• The <missing_operator> production rule defines the overloaded function 

“missing”.  When this function takes only a time series parameter, it returns 

a new time series with zeros or ones representing all missing or present 

observations in the time series. When it takes two parameters, a time series 

ts and an integer t, it tests if the value at a time t for time series ts has been 

defined. 

• The <pem_operator> production rule defines the overloaded function 

“percentage_missing”.  When this function takes only a time series 

parameter, it returns the ratio of missing observations in the time series. 

When it takes three parameters, a time series ts, an integer i, and an integer j, 

it returns the ratio of missing observations in the time series between time i 

and j. 

• The <fill_operators> rule defines the overloaded functions “forward_fill” 

and “backward_fill”. When they take one time series as a parameter they 

return a forward or backward filled time series for all missing gaps in the 

original series. When they take two parameters, a time series ts and an 

integer t, it returns a new time series that has been either forward or 
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backward filled from or at point t. 

• The <swap_operator> rule defines the overloaded “swap_missing” 

function. When it takes two times series X and Y as parameters, it returns a 

modified X time series whose missing points have been replaced with the 

values from Y. Finally when the function takes four parameters, two time 

series X and Y and two integers i and j, it returns a modified time series X 

whose missing points from i to j have been replaced with values from time 

series Y.   

• The <classify_operator> production rule defines the overloaded function 

“classify”.  When it takes a times series X parameter, it returns a tuple that 

contains the classification class and the probability of the estimation. 

• The <volatility_operator> production rule defines the overloaded function 

“volatility”.  When it takes a time series X and a numeric expression as 

parameters, it returns the volatility of the returns X according to the numeric 

expression 

• The <trust_operators> production rule defines the overloaded function 

“trust”.  When it takes two context owners identifiers A and B and context 

factor C identifier as parameters, it returns the trust between that A has for B 

under context factor C. 



 

 
 

137 

Chapter 4.  RISK MODEL 

As presented in chapter two, most of the current security systems do not take into 

account the variability of the context data when either calculating trust measures or 

evaluating a security policy. In this chapter, we describe the model used to determine 

the risk of an access control operation (policy) measured according to the changes of 

risk factors (known henceforth as context variables). 

We start by describing not only a possible scenario in which this research is 

situated but also the key challenges that arise from it. Partial results of this research has 

been published in [Sanchez, 07] and [Sanchez, 08] 

4.1 Scenario 

In 1991 the US Army established the concept of Land Warrior [FAS, 07] in 

order to integrate small arms with high-tech equipment with the aim of increasing the 

lethality, survivability and command and control of soldiers in the battlefield. One of 

the components of this system is the Integrated Helmet Assembly Subsystem (IHAS) 

which is a computer and sensor display mechanism mounted on the soldier's helmet to 

provide him with not only views of computer-generated graphical data, digital maps, 

intelligence information and troop locations but also the capability of transmitting 

information back to commanders. 

As soldiers move about the field they get battle information from their battalion 

commander (i.e. a soldier with the rank of Mayor). In order to minimize leaks, only the 

company commander (i.e. a lieutenant) can receive enemy intelligence after the 

company commander successfully identifies himself and provides an encryption key (in 
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this case, data accessibility is restricted based on the identity and encryption type). 

Moreover, in order to receive such intelligence data, the company commander has to be 

within certain proximity (e.g. between 60 and 80 meters) of the battalion commander 

(again, data accessibility is restricted according to location).  To make sure that all the 

data is delivered the IHAS system must have a minimum of power (e.g. 60%) available 

(in this case, data transfer is based on availability of power resource). Corporal soldiers 

receive updated battle maps according to their proximity of the company commander 

and how fast they move away from him (in this case, data transfer is restricted 

according to velocity). Finally, in order to receive any data, the connection rate between 

any two soldiers needs to be above a specific threshold in order to guarantee that the 

communications are not being jammed (again data transfer is limited to a specific 

connection mode). 

4.2 Challenges 

According to the scenario described in the previous section, following are some 

of the major security challenges that remain to be addressed by an adopted security 

model:  

• Since a soldier receives data according to his position and rank, information 

may be compromised if that soldier falls into the enemy’s hands. In such a 

case, the enemy can make invalid context claims (e.g. position and identity) 

to get data. Therefore, it becomes necessary to adopt a model to correlate 

and validate the information being sent by soldiers.   

• As a soldier moves in the field it is not always possible for his commander to 

have permanent real-time communication with him due to various reasons, 
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such as power constraints, jamming and atmospheric conditions. For 

example, in this situation, the soldier can only report his location 

periodically. As his position changes with time, uncertainty is introduced 

when evaluating and deciding what data he should have access to at a 

particular time. The question that arises is by the time the data reaches the 

soldier, whether such information is still relevant, as he may have moved to 

a new location. In this case, we would like to have a security model that uses 

the soldier’s reported location history to not only predict future locations, but 

more importantly, to measure the degree of change (volatility) of the context 

variable (location) in order to arrive at a more accurate security decision. For 

example, the battalion commander may decide to deny access to battle data 

if the soldier is likely to fall out of [safety] range. 

• Due to the dynamicity of the context variables in the battlefield, the security 

model should use this context data to produce a risk value when it evaluates 

a security request. 

• Since a soldier’s context variables may change in an uncertain way, any 

context based data request should have a time window where it is valid 

(evaluation horizon) before it is revaluated.  For instance, if a soldier 

accessing information about friendly units in his vicinity becomes a prisoner 

and if the system security implementation does not enforce a time window 

for data-request reevaluation, the enemy could either simply continue 

accessing the information or at least do some signal intelligence. 

• War and battles require preparation and training through the use of war 
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games. It then becomes necessary to use a simulation framework where 

context variables can be modified in order to do a what-if analysis measuring 

the risk (degree of trust) of different data requests under diverse situations. 

Moreover, a what-if analysis could also be used not only to predict future 

scenarios but also to reproduce past situations.  

The challenges described above require the security model to be able to 

represent the behavior of context variable data. Furthermore, the model should also take 

into account the time horizon under which a data request is valid. In addition, it should 

make possible the detection of correlations amongst context variables. Finally, the 

model should provide ways to calculate risk measures and provide a framework to 

simulate new or replicate old situations. In this chapter we first present a way to model 

context variables.  We then employ the model to predict future values of a context 

variable and produce a risk measure for evaluating a security policy based on that 

context variable. 

4.3 Modeling Context Variables 

In a pervasive mobile environment, context variables of a user may change in a 

non- predetermined way. For instance, a student moving about a college campus, not 

only goes to different classrooms to attend classes based on his/her regular schedule, but 

also may stop at or go to unplanned places (cafeteria, library, etc.). That is, context 

variables follow a stochastic process since their values may change over time in an 

uncertain way. Using a stochastic process model gives us a measuring tool to 

characterize the future change in a process’ value.  

One stochastic process that can be employed as a measuring tool is the 
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Logarithmic Random Walk Model (section 2.3.2). In this random walk, forecasts for 

each of the context variables’ future value changes - using only its past variations – can 

be constructed. In forecasting changes, we attempt to characterize the risk (impact) that 

such changes have in the evaluation of a security policy. We choose then this model 

because  

1) It gives as a uniform mechanism to model a wide range of context type data. 

2) It describes the evolution of the context variables over time.  

3) It gives us a distribution for the future value changes of a context variable.  

However, before defining the random walk model we need to introduce the 

concepts of a context variable time series and variable return. 

4.3.1 Context Variable Time Series 

As mentioned in Chapter 3, risk factor or context variable time series is a 

collection of observations indexed by the time of each observation. An entity collects 

the context variable data beginning at a particular time (e.g. t=1) and ending at another 

(e.g. t=N). Formally, a context variable time series is represented in a vector form as 

follows [Hamilton, 94] and [RMG, 96]: 

{ } ( )Ni
N
tt PPPPP …… ,,,, 211 ==

 

where P1 represents the observation made at time 1 for a continuous context variable P, 

Pi is the observation made at time i and PN is the observation made at time N. Finally, a 

time series is identified by describing the tth element. For instance, a time series in 

which each element is equal to a constant c (regardless of the observation time) is 

written as [Hamilton, 94]:  

Pt=c 
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4.3.2 One-time (single period) value return horizon 

The change in the value of a variable can be expressed in a variety of forms, 

such as, absolute value change, relative value change, and log value change. When a 

value change is defined relative to some initial value, it is known as a return [RMG, 

96]. That is, the changes over time of a variable’s value can be measured and modeled 

in terms of continuously compounded returns (log value changes). Table 4-1 shows the 

definition of Absolute, Relative and Log value change for a context variable P between 

time t and t-1 (denoted as Pt and Pt-1). Table 4-2 shows an example of a 10 observation 

time series (1 minute time unit) of proximity values (in meters) between two entities 

and their absolute (Abs), relative (Rel) and logarithmic (Log) changes [Korpipää, 03].  

 
Table 4-1 Definitions of Absolute, Relative and Log Changes of a Variable 

Absolute value 
change 

1−−= ttt PPD  

Relative value 
change 

1

1

−

−−
=

t

tt
t P

PPR  

Log value change 
(return) rt = ln 1+ Rt( ) = ln Pt

Pt−1

"

#
$

%

&
'  

€ 

rt = pt − pt−1( )  
where pt = ln(Pt) 

 

4.4 Random Walk Model 

A random walk is a formalization of the idea of taking successive steps, each in 

a random direction. It may be thought of as a model for an individual walking on a 

straight line who, at each point of time, takes one step either to the right or to the left 

with different probabilities [Weisstein, 10].  
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Table 4-2 Examples of Absolute, Relative and Log Changes of a Proximity Variable Time Series Between Two Entities 

t Time Value Abs Rel Log 
1 8:00 66.68       
2 8:01 67.03 0.350 0.0052 0.0052 
3 8:02 67.66 0.635 0.0094 0.0094 
4 8:03 67.44 -0.219 -0.0032 -0.0032 
5 8:04 67.54 0.096 0.0014 0.0014 
6 8:05 67.60 0.059 0.0008 0.0008 
7 8:06 67.48 -0.119 -0.0017 -0.0017 
8 8:07 67.42 -0.063 -0.0009 -0.0009 
9 8:08 67.73 0.310 0.0045 0.0045 
10 8:09 67.65 -0.078 -0.0011 -0.0011 

 

Random walk models have been applied in several fields. For instance, in 

economics, a random walk is used to model shares prices and other factors and in 

wireless networking, they are used to model node movement. 

Formally, a single value random walk model for a context variable can be stated 

as follows:  

€ 

Pt = µ + Pt−1 +σ tεt , εt ~ IIDN(0,1)  (4.1) 

or 

€ 

Pt − Pt−1 = µ +σ tεt , εt ~ IIDN(0,1)  (4.2) 

where IID stands for “identically and independently distributed”, and N(0,1) stands for 

the normal distribution with mean 0 and variance 1. That is, at any point in time the 

current value Pt depends on one fixed parameter µ (mean), one time based parameter σt 

(standard deviation), the last period’s value Pt-1, and a normally distributed random 

variable εt. The assumption that context values are normally distributed is helpful 

because 1) we only need the mean and variance to describe the distribution, 2) the sum 

of multiple normal context variables is also normally distributed, and 3) normality is the 

central assumption of the mathematical theory of errors [Weisstein, 10a]. 
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Since returns not only have more attractive statistical properties than values, but 

also are often preferred to absolute value changes because the latter do not measure 

changes in terms of the given values [RMG, 96] it is better to model the log value pt 

(Table 4-1) as a random walk with normally distributed changes, that is: 

€ 

pt = pt−1 + µ +σ tεt , εt ~ IIDN(0,1)  (4.3) 

Therefore, since we are modeling log changes, the expression for values is 

simply obtained by taking the inverse of the logarithm (ex), that is 

Pt = Pt−1e
µ+σ tεt , εt ~ IIDN(0,1)  (4.4) 

In [RMG, 96] three core assumptions are made. First of all, returns in different 

periods are not auto correlated. Secondly, the variance of the returns (volatility) scales 

with time (it remains constant for different time horizons). Finally, the random walk 

model is relaxed by assuming that log values have a mean µ set to zero (in [RMG, 99], 

it is shown that for short horizon periods, the volatility is much larger than the expected 

return; thus, the forecast of the future return distribution is dominated by the volatility 

estimate. In other words, when dealing with short horizons, using a zero expected return 

assumption is as good as any other mean estimate). Therefore, the model can be 

represented as: 

€ 

pt = pt−1 +σ tεt , εt ~ IIDN(0,1)  (4.5) 

in terms of returns 

€ 

rt =σ tεt , εt ~ IIDN(0,1)   (4.6) 

The standard deviation (volatility) of the value changes (returns) - σt – which we 

assume varies with time can be estimated using an Exponential Moving Average 

(EMA) ([Kenney, 62], [Chou, 75]) of past observations. That is, at any given time t, the 
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variance can be computed as follows: 

σ t
2 =

α i−1 rt−i( )2
i=1

t−1

∑

α i−1

i=1

t−1

∑
 (4.7) 

where the parameter α (0 < α <=1) (smoothing factor) determines the relative weights 

applied to the observations (returns), thus, allowing the latest observations to carry the 

highest weight, while still not discarding older observations entirely in the standard 

deviation estimate. In addition, when K→∞, and using the convergence property of the 

geometrics series 

10
1
1

1

1 <<
−

≅∑
=

− α
α

α
T

i

i  

 equation (4.7) can be rewritten as follows: 

σ t
2 = (1−α) α i−1rt−i

2

i=1

∞

∑  (4.8) 

In a recursive manner, equation (4.8) can be rewritten as: 

σ t
2 = (1−α) α i−1rt−i

2

i=1

∞

∑

= (1−α) rt
2 +αrt−1

2 +α 2rt−2
2 +…( )

= (1−α)rt
2 +α 1−α( ) rt−12 +αrt−22 + rt−3

2( )
=ασ t−1

2 + (1−α)rt
2

 (4.9) 

Table 4-3 shows the calculation of the volatility for the proximity data in Table 4-2. 

The smoothing factor α used is 0.95. The standard deviation (square root of the 

variance) is equal to 0.394% (variance is 0.00155%).  
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Table 4-3 Estimating Standard Deviation (Volatility) for Proximity Values with α=0.95 

T Value  Return σ2
t 

1 66.683     
2 67.033 0.00523 0.00394 
3 67.668 0.00943 0.00379 
4 67.449 -0.00324 0.00204 
5 67.545 0.00142 0.00226 
6 67.604 0.00087 0.00237 
7 67.485 -0.00176 0.00258 
8 67.422 -0.00093 0.00278 
9 67.732 0.00459 0.00331 
10 67.654 -0.00115 0.00115 

 

Equation (4.9) represents one time-unit (e.g. 1 minute) calculation of the 

variance defined over the period t-1 through t, where each t represents one time-unit. 

Therefore, in order to make forecasts for horizons greater than one-time unit, and taking 

the assumption stated previously, the variance estimate of a context variable data return 

for H time units is stated as follows:  

€ 

σ H
2 = Hσ t

2  (4.10) 

The equation above gives a simple way to calculate the volatility of H time units 

(e.g. hour) from the 1 time unit (e.g. minute) volatility. 

4.5 Single Variable Monte Carlo Scenario Generation Algorithm 

Given a time series Pt{ }t=1
N  of N observations for a context variable P, the 

procedure to generate scenarios is to generate standard normal variates and use equation 

(4.4) to produce future values. The algorithm to simulate future values for one variable 

is described in Table 4-4. Table 4-5 shows 5 simulation trials for a proximity value with 

PN=68 meters and σN = 0.394% (N=10).  
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Table 4-4 Scenario Generation Algorithm 

Input: Pt{ }t=1
N  

1. Choose the number of scenario trials T and smoothing factor α 
2. Compute the N-1 log value changes (i.e. returns) from Pt{ }t=1

N . The result of this 

calculation is a time series of returns of the form rt{ }t=2
N   

3. Using rt{ }t=2
N compute the variance series σ

t

2{ }t=2
N

using equation (4.7). Compute the 

volatility (standard deviation) at time t=N, that is 2
NN σσ =   

4. In order to simulate values for the next H time units (evaluation horizon), use 
equation (4.10) to compute the horizon volatility HNH σσ =   

5. Define a time series St{ }t=1
T  to store the context variable simulated values. 

6. For each trial i (1≤ i ≤ T)  
1. Generate or simulate an identically and independently distributed normal value 

Z, that is, Z = ~N(0,1) 
 

2. Compute the ith simulated value Si using equation (4.4) [with µ=0] as follows: 
Si=PN exp(σH•Z) where exp(x) = ex and PN is the value of the context variable at 
time N  

Output: St{ }t=1
T  

 
 

Table 4-5 Scenario Trials For a Proximity Value, where PN=68m, with H=1, σN=0.394% and T=5 

Trial Z~N(0,1)  Si (meters) 
1 0.41405 68.11102 
2 -1.53471 67.59006 
3 1.58510 68.42601 
4 0.30701 68.08230 
5 -0.37158 67.90052 

 
This collection of future values -Si- provides a sampling of the context variable 

distribution from which we can compute a risk measure. 

4.5.1 Security Policies and Risk 

To measure the risk of a context variable, in a context based security policy, the 

following is assumed: 

1. Risk can be measured according to the changes of the context variables (e.g. 
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location, power resource, etc.). 

2. Without loss of generality, the values of a context variable are always 

positive. Moreover, the [log] changes in the context variables can be 

modeled using as a random walk (following a normal distribution).  

3. Initially, each security policy definition includes a smoothing factor α, the 

number of scenario trials T for the Monte Carlo method, an evaluation 

horizon H to determine how long the permissions are valid once they have 

been granted, the time series frequency F (a factor of H) required for 

evaluation and, finally, the number of observations in the time series N. 

4. The following section (4.5.2) describes an example of a simple context 

based security policy with a single context variable. 

4.5.2 Example of a Context Based Security Policy 

In our army scenario, a simple security policy can be stated as follows: a soldier 

can receive the location of his unit members, provided his proximity to the commanding 

officer is no less than 70 meters. The commanding officer requires that the location of 

the soldier be reported every minute (e.g. Table 4-3) (F =1minute), and that the 

volatility (standard deviation) of the data not exceed 0.01. Every minute the policy is 

reevaluated (H = 1). The commanding officer uses a smoothing factor of 0.94 (α = 

0.94) and generates 100 Monte Carlo scenarios (T = 100) before returning a decision.  

At the moment of the policy evaluation the soldier presents the following to the 

commanding officer: 

1. His current position, based on which his proximity is calculated (e.g. 68 

meters). 
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2. His location history (N observations) at the time frequency specified by the 

policy (F). 

4.5.3 Risk 

Before making a decision, the commanding officer computes the difference 

between the Monte Carlo estimate and the soldier’s current proximity; this difference is 

called an error.  Steps 5 and 6 of the algorithm in Table 4-4 are modified as follows: 

 
Table 4-6 Modified Steps 5 and 6 of Monte Carlo scenario generation algorithm in Table 4-4 

5. Define the time series St{ }t=1
T  and Et{ }t=1

T to store the context 
variable simulated values and errors. 
6. For each trial i (1≤ i ≤ T)  

1. Generate or simulate an identically and independently 
distributed normal value   Z, that is, Z = ~N(0,1) 
 

2. Compute the ith simulated value Si using equation (4.4) [with 
µ=0], as follows: 
 
Si=PN exp(σH•Z) where exp(x) = ex and PN is value of the 
context variable at time N.  

3. Ei = Si - PN 
Output: St{ }t=1

T and Et{ }t=1
T  

 
 
Table 4-7 shows the five computed errors for the simulated values in Table 4-5. 

 
Table 4-7 Error Estimation for the Simulation Trials Described in Table 4-5 

Trial Z~N(0,1) Si (meters) Ei 

1 0.41405 68.11102 0.11102 
2 -1.53471 67.59006 -0.40994 
3 1.58510 68.42601 0.42601 
4 0.30701 68.08230 0.08230 
5 -0.37158 67.90052 -0.09948 

 

To measure the risk, we use the percentile function over the values of Et{ }t=1
T

 to 
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determine the value below which a certain percent of Et{ }t=1
T observations fall. That is, 

using the Monte Carlo algorithm, we simulate multiple hypothetical trials for future 

value (and errors) based on the normal random walk model and then calculate the 

maximum error amount (risk) that would be incurred in the estimation for a given 

evaluation horizon H and confidence level (γ). 

Formally, the pth percentile of the Et{ }t=1
T  values is defined as the magnitude that 

exceeds p percent of the values, that is: 

riskP = percentile Et{ }t=1
T , (1−γ )( )  (4.11) 

Mathematically, the pth percentile (denoted by α) of a continuous probability 

distribution, is given by the following formula: 

p = f (r)dx
−∞

α

∫  

where f(r) represents the Probability Density Function (PDF). 

When speaking of percentiles, we often refer to the percentiles of a normal 

distribution [Kim, 01]. Moreover, because of the assumption that context values are 

normally distributed, then the pth percentile becomes 

∫
∞−

−
=

α

π
dxep

x
2

2

2
1

 

Figure 4-1 illustrates the positions of some selected percentiles of the standard 

normal distribution. 
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Figure 4-1 Normal Distribution Standard Deviations and Percentiles [Kemp, 13] 

 

4.5.4 Complexity Analysis 

It can be easily seen that the algorithm in Table 4-6 has a complexity of 

O(N )+O(TN )+O(N logN ) . Steps 2 and 3 (Computing returns and volatility) require 

O(N )  runtime. Step 6 (Computing the scenario trials) takes O(TN ) . Finally computing 

the risk (percentile function) takes O(N logN ) . 

4.5.5 Security Policy Evaluation 

In order to define a context based security policy, under the Random Walk - 

Monte Carlo method framework previously presented, we require the following 

parameters: 

1. Smoothing factor (α) 

2. The number of scenario trials (T) 

3. Evaluation horizon (H) 

4. Time series frequency (F) 
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5. Number of observations required in a context variable time series (N) 

6. The confidence level (γ) to be used for risk evaluation 

7. For each context variable in the policy, a risk (error) tolerance is defined. 

Table 4-8 shows the description of the example Context Based Security Policy 

described in Section 4.5.2. 

 
Table 4-8 A Description of the Context Based Security Policy Described in Section 4.5.2 

Name: Unit member location access policy. 
Description: A soldier can access location of his unit members according to his 
current position and proximity of his commanding officer. 
Entities:  

• so:  Soldier 
• co: Commanding Officer 

Data: 
• LD: Location data 

Context policy parameters: 
• F =  H = 1 minute 
• T = 200 
• y = α = 0.95 
• N = 10 

Pseudo policy definition: 
Access to LD is granted to so iff 

1. proximity(so, co) < 70 meters 
2. volatility (proximity(so,co,N)) <= 0.01 
3. error(proximity(so,co,N)) <=0.6 

Functions: 
• proximity(x,y): returns the proximity between entities x and y 
• proximity(x,y,n): returns a time series with the last n proximity values 

between x and y . 
• volatility(ts): returns the volatility of the time series ts. 
• error(ts): returns the estimation error through a Monte Carlo simulation 

for time series ts. 
 

 
In this table we can see also the minimum and maximum simulated error values 

as well as their standard deviation. 

According to [RMG, 04], the choice of smoothing factor is linked to the 
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evaluation horizon. For security policies, we would prefer to have stable volatility 

estimate is desirable.  Therefore following [RMG, 04] stable volatility estimates can be 

constructed using a smoothing factor that ranges from 0.94 to 0.97. 

Finally, in order to know what confidence level γ to be used in a security policy, 

we could use the following formula described in [RMG, 06]: 

γ =1− 1
T +1

 (4.12) 

where T is the  number of scenario trials specified in the security policy. 

 
Table 4-9 Simulation Results for Proximity Data in Table 4-7 

Proximity Simulation Error Simulated Value 
percentile (risk) 0.415  
Minimum -0.581 67.418 
Maximum 0.7838 68.783 
Std Deviation 0.264 0.2640 
(Pt – risk)  67.585 
(Pt + risk)  68.415 

 

4.6 Expanded Random Walk Model 

In Section 4.4 introduced the concept of a random walk model for a single 

context variable. So for a context security policy in which all the context variables are 

independent of each other, we simply have evaluate the algorithm in Table 4-6 to 

calculate the risk of each context variable separately.  However, in many situations 

context variables are related to each other. Therefore we want to modify our previous 

model in order to take into account the correlation amongst the context variable of a 

security policy.  
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4.6.1 Expanded Example 

Let us expand the scope of the interaction between a soldier and his commander 

in the example given in 4.5.2. In this example, a soldier that moves about in the 

battlefield and dynamically retrieves enemy data from his nearby commander. In order 

to receive intelligence data, a soldier must first identify himself with his company 

commander and his platoon leader (data is restricted according to identity).  The 

intelligence data is delivered provided that the soldier and his commanders (company 

and platoon leader) are within a 25-kilometer radius of a passing ScanEagle [Boeing, 

07] UAV. Moreover, in order to avoid leaks, the platoon leader has to be within 150 

meters of the company commander.  To make sure that all the data is delivered, the 

soldier’s mobile unit must have a minimum of 60% power availability. Finally, in order 

to receive any data, the connection rate amongst the soldiers needs to be above a 

specific threshold to guarantee that the communications are not being jammed (again 

data transfer is limited to a specific connection mode). 

4.6.2 New Challenges 

As the example points out, the security implementation that allows the soldier to 

receive the intelligence data must take into account the variability and correlation of the 

commanders and the UAV location information, the communication connection rate 

and power of his mobile unit. Thus, in order to make a reliable security decision, the 

security system should try to predict how much the different variables (i.e. commanders 

and UAV location, etc.) would change by the time the enemy data is delivered to and 

used by the soldier, since by the time the data is delivered, any of the entities (solider, 

commanders or UAV) may have moved to a new place making the security decision 
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invalid.  Moreover, the security system should be able to detect, tolerate and ignore 

invalid context assertions made by compromised or hostile entities.  Furthermore, the 

security implementation should be able to use a certain amount of data history for each 

of context variables in order to not only predict future values but also to measure the 

degree of change (volatility) of the context variables in order to arrive at a more 

accurate security decision.  In addition, the security system needs to determine the risk 

involved when making a security decision because of the changeability and correlations 

of the context variables.  Finally, due to the dynamic nature of a context variable, each 

security decision should hold only for a certain degree of time. 

As such we need extend our previous work to model the behavior of context 

variables in a security policy using a random walk framework that takes into 

correlations amongst them. Finally, we further extend the previous to include a risk 

measure for the overall change in a policy according to the changes of its constituting 

context variables. 

4.6.3 Random Walk for Multiple Context Variables 

Using equation (4.6), a context-based security policy with M context variables, 

the behavior of the returns of each of the context variables can be described as: 

tMtMtMtttttt rrr ,,,,2,2,2,1,1,1 ...., εσεσεσ ===  

Since the context variables may be related amongst themselves, we have to 

account for their movements relative to one another (that is, the context variables may 

be statistically dependent). Thus, the linear association between each pair of returns 

must be quantified. These movements are captured by pair-wise correlations (ρij). 
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Therefore, the εt’s should come from a multivariate normal (MVN) distribution [Rose, 

02] then: 
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or ε ~ MVN(µG,t,Rt )  

where Rt represents the correlation matrix of (ε1, ε2,… εN) and the mean and variance 

are represented by [RMG, 96]: 
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Moreover, the term 2
ijσ represents the covariance between returns for the context 

variables i and j. We must remember that the covariance of two random variables X and 

Y is defined as: 

)()()()])([(2 YEXEXYEYXE YXXY −=−−= µµσ  

Since E(X)=µx and E(Y)=µy (E is the mathematical expectation), both of which 

are equal to zero according to our model, then the covariance is simply defined as  

σ XY
2 = E(XY )  

Finally, let’s recall that the correlation coefficient of two random variables X 

and Y can be calculated as follows [Mendenhall, 07]: 

YX

XY
XY σσ

σ
ρ

2

=  

where 

€ 

σX  and 

€ 

σY   are the standard deviations of X and Y, respectively. Let’s recall that 

the correlation coefficient has the following properties [Davidian, 07]: 

• ρij scales the information (on association in the covariance) in accordance 
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with the magnitude of variation in each random variable, creating a 

“unitless” measure. 

• ρij = ρji. 

• If σij =σiσj, then ρij = 1. Similarly, if σij = −σiσj, then ρij = −1. 

• ρii is always equal to 1, as random variable is perfectly positively correlated 

with itself. 

• It may be shown that correlations must satisfy −1 ≤ ρij ≤ 1. 

 
Using the Exponential Moving Average (EMA) ([Kenney, 62], [Chou, 75]), an 

expression to estimate the covariance and correlation of context variable log changes 

(returns) can be constructed. As such the covariance formula is defined as [Mendenhall, 

07]: 
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4.6.4 Multiple Variable Scenario Generation Algorithm 

In section 4.5, an algorithm was derived to apply the Monte Carlo method to one 

context variable. For the case of multiple context variables, we need to take into account 

the correlation amongst the context variables when generating future values. Table 4- 

10 describes the modified algorithm [Sanchez, 08]. 

The simulated log R* needs to be computed in such a way that the correlations 

amongst the context variables returns are maintained. For instance, by using the 
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Cholesky factorization [Golub, 96], it can be shown that the formulae to generate the 

simulated returns for three context variables would be as follows: 

 
R1 =σ1Z1,

R2 =σ 2 ρ12Z1 + 1− ρ12
2 Z2( ),
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where 

€ 

σ i  is the volatility (standard deviation) for context variable i,  

€ 

ρij   is the 

correlation between context variables i and j and each Z is a generated IID normal 

value. 

In general, generating correlated variates for M context variables can expressed 

as follows [RMG, 06]:  
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or in matrix form 
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Table 4-10 Scenario Generation Algorithm for Multiple Context Dependent Variables 

Input: V1{ }t=1
N , V2{ }t=1

N … VM{ }t=1
N( )  

1. Choose the number of scenario trials T and smoothing factor α 
2. For each context variable time series i (1≤ i ≤ M)  

2.1 Compute the N-1 returns from Vi,t{ }t=1
N

 The result of this calculation is a time 

series of returns of the form ri,t{ }t=2
N

 

2.2 Using ri,t{ }t=2
N

compute the variance series σ
i,t

2{ }
t=2

N
using equation 4.7 and then 

compute the volatility (standard deviation) at time t=N, that isσ i,N = σ i,N
2  

2.3 Define a time series 

€ 

Si,t{ }t=1
T  to store the context variable simulated values  

2.4 For each trial j (1≤ j ≤ T)  
2.4.1 Compute the simulated log return R* 
2.4.2 Compute the jth simulated value Sj as follows:  

)exp( *RVS i
Nj = where exp(x) = ex and i

NV   is the value of context 
variable i at time N 

Output: 
  

€ 

SG = S1{ }t=1
T , S2{ }t=1

T … SM{ }t=1
T( )  

 
 
The matrix A must satisfy the covariance requirements. By eliminating the 

random vectors R and Z, we have the following: 

T
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Several methods can be used to solve the set of equations for AAT and generate 

correlated variates, for instance, Cholesky Decomposition [Golub, 96], Singular Value 

Decomposition [Golub, 96] and Return Space Decomposition [Benson, 97]. The authors 

in [RMG, 01], [RMG, 06] and [Benson, 97] showed that the matrix A can be expressed 

as follows:  matrix A must satisfy the covariance requirements. By eliminating the 

random vectors R and Z, we have the following: 
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€ 

A =
1

α i

i=1

n

∑

α
1
2r1,1 α

2
2r1,2 α

3
2r1,3…α

n
2r1,n

α
1
2r2,1 α

2
2r2,2 α

3
2r2,3…α

n
2r2,n

… … … …

α
1
2rM ,1 α

2
2rM ,2 α

3
2rM ,3…α

n
2rM ,n

$ 

% 

& 
& 
& 
& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
) 
) 
) 
 

where n=N-1 is the number of log returns, 

€ 

α is the smoothing factor and

€ 

ri, j  is the return 

of context variable i at time j. 

The advantages of using the Return Space Decomposition (RSD) over the 

Cholesky and SVD factorizations can be summarized as follows [RMG,06]: 

• In both, Cholesky and SVD factorizations, the decomposed matrix does not 

easily provide an intuitive understanding of how the future values are generated 

and the change of a single value of a context risk factor requires a new 

decomposition. Finally, the Cholesky factorization requires that the correlation 

matrix be PD (positive definite), and SVD requires PSD (positive semi-definite). 

• Volatilities and correlations do not have to be computed when using Return 

Space Decomposition. 

Table 4-11 describes the modified algorithm for M context dependent variables 

using the Return Space Decomposition: 

4.6.5 Risk 

As explained in section 4.5.3, due to the dynamic nature of context variables, we 

will measure the risk of each context variable (and for a group of context variables) as 

the maximum error amount that is incurred in the estimation of future values (for each 

context variable) during an evaluation horizon for a given confidence level. In this 

framework, to measure the risk of a context variable, the following is assumed: 
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Table 4-11 Scenario Generation Algorithm for Multiple Dependent Context Dependent Variables Using Space Return 
Decomposition 

Input: V1{ }t=1
N , V2{ }t=1

N … VM{ }t=1
N( )  

1. Choose the number of scenario trials T and smoothing factor α 
2.  

2.1 Compute the N-1 returns for each of the M context variables time series
Vi,t{ }t=1

N
  

2.2 Compute the 

€ 

α  weights vector lwv = α1
1
2 ,α2

2
2 ,α3

3
2 ,…,αn

n
2

!

"
#

$

%
&

T

and the 

ssq =1 α i

i=1

n

∑  

3. For each context risk factor time series i (1≤ i ≤ M) 
3.1 Compute the A Matrix, where each 

€ 

aij ,(1≤ i ≤ M,1≤ j ≤ N) = rij ⋅ lmv ⋅ ssq  
where rij is the return of context variable i at time j. 

3.2 Define a time series 

€ 

Si,t{ }t=1
T  to store the context variable simulated values  

3.3 For each j trial  (1≤ j ≤ T)  
3.3.1 Compute an N size vector Z = z1, z2, z3,…, zn( )T , zi ~ IID N(0,1)  

3.3.2 For each context variable k (1≤ k ≤ M), compute HZASLR k ⋅= )(   
where Ak is the row-vector corresponding to context variable k and 
the evaluation horizon H. 

3.3.3 Compute the jth simulated value Sj as follows:  
)exp(, SLRVS i

Nji = where exp(x) = ex and i
NV   is the value for the 

context variable i at time N 2.1 Compute the N-1 returns from Vi,t{ }t=1
N

. 
The result of this calculation is a time series of returns of the form 

€ 

ri,t{ }t= 2
N  

Output: 
  

€ 

SG = S1{ }t=1
T , S2{ }t=1

T … SM{ }t=1
T( )  

 
 

1. Risk can be measured according to the changes of the context variables (e.g. 

location, power resource, etc.). 
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2. Without loss of generality, the values of a context variable are always 

positive. Moreover, the [log] changes in the context variables can be 

modeled using as a random walk (following a normal distribution).  

3. Since the context variables are assumed to follow a normal distribution, an 

important property of the normal distribution is that the sum of normal 

random variables is itself normally distributed.11 

 
To calculate the maximum error amount for each context variable, we need to 

create a set of time seriesE = E1,t{ }t=1
T , E2,t{ }t=1

T
…, Ei,t{ }t=1

T ,… EM ,t{ }t=1
T( ) , where Ei,t{ }t=1

T
 is 

the estimation error series for context variable i and defined as follows: 

Ei,t{ }t=1
T
= Si, j −VN

i  

where i
NV   is the value for the context variable i at time N 

Again, to measure the risk, we use the percentile function to determine the 

proportion of values in the time series Ei,t{ }t=1
T

that a specific magnitude will not be 

exceeded by a specific magnitude. This means that, for a context variable, this measure 

is the maximum error amount (risk) that would be incurred in the estimation during the 

evaluation horizon H for a given confidence level (γ).  

Formally, the pth percentile of the Ei,t{ }t=1
T

 values is defined as the magnitude 

that exceeds p percent of the values, that is: 

riski,P = percentile Ei,t{ }t=1
T , (1−γ )( )

 
 

                                                
11  These random variables must be drawn from a multivariate distribution. 
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4.6.6 Complexity Analysis 

We developed and implementation of space return decomposition as described 

in   Table 4-11 with a complexity of O(MN )+O(MTN )+O(MN logN ) . Step 2 

(Computing returns and lmv) requires O(MN )  runtime. Step 3 (Computing the A 

matrix and the scenario trials) takesO(MTN ) . Finally, computing the risk (percentiles) 

takes O(MN logN ) . 

4.6.7 Security Policies 

In our army scenario of section 4.6.1, a simple security policy can be stated as 

follows: a Soldier can receive the location of his unit members, provided his proximity 

to the company commander (Captain) is no less than 70 meters. Moreover, the 

proximity between the Captain and the soldier’s unit leader Sergeant) needs to be no 

less than 50 meters (The Sergeant and the Soldier are within line of sight of each other).  

The commanding officer requires that the location of the Soldier and the Sergeant be 

reported every minute and that the volatility (standard deviation) of the data not exceed 

0.01. Every minute the policy is reevaluated (H = 1). The commanding officer 

(Captain) uses a smoothing factor of 0.95 (α = 0.95) and generates 100 Monte Carlo 

scenarios (T = 100) before returning a decision. Table 4-12 shows the description of the 

example Context Based Security Policy described above. 
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Table 4-12 An Example of an Expanded of the Context Based Security Policy in Table 4-8 

 

4.6.8 Security Policy Evaluation 

In order to describe a context based security policy, under the Random Walk - 

Monte Carlo method framework presented in Sections 4.6.3, 4.6.4 and 4.6.5, we require 

the following parameters: 

1. Smoothing factor (α) 

2. The number of scenario trials (T) 

3. Evaluation horizon (H) 

4. Time series frequency (F) 

5. Number of observations required in a context variable time series (N) 

Name: Unit member location access policy. 
Description: A soldier can access location of his unit members according 
to his current position and proximity of his commanding officer. 
Entities:  

1) so:  Soldier, 2) co: Commanding Officer,  4) se: Sergeant 3) LD: 
Location data  

Context policy parameters: 
1) H = 1 minute, 2) T = 200, y = α = 0.95, N = 10 

Access to LD is granted to so iff 
4.proximity(so, co) < 70 meters & proximity(co, se) < 50 meters & 

proximity (so, se) < 5meters 
 

5.volatility (proximity(so,co,N)) <= 0.01 & volatility (proximity(co,se,N)) 
<=0.01 

 
6.error(proximity(so,co,N)) <=0.6 

 
Functions: 

• proximity(x,y): returns the proximity between entities x and y 
• proximity(x,y,n): returns a time series with the last n proximity values 

between x and y . 
• volatility(ts): returns the volatility of the time series ts 
• error(ts): returns the estimation error through a Monte Carlo 

simulation for time series ts. 
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6. The confidence level (γ) to be used for risk evaluation 

7. For each context variable in the policy, a risk (error) tolerance should be 

defined. 

The following steps are used to evaluate the policy: 

1. A soldier so sends a request to his commanding officer co for the location of 

his unit members. 

2. The co retrieves the locally stored security policy, reads it and determines 

which context variables (i.e. proximity) are necessary for the evaluation of 

the policy 

3. The co sends a request asking both the so and the se for their proximity 

information. Such a request contains: 

a. The context variable to be gathered (e.g. proximity) 

b. The number of past observations (N) in the context variable time 

series.  

4. Upon receiving the requests both the so and se return the required time series 

information to the co. 

5. The co runs the modified Monte Carlo algorithm (Table 4-11) to calculate 

the 1-minute volatility. It then calculates the risk of the context variables 

(proximity) with the specified confidence level (y) using the percentile 

function. 

6. Once the data is computed the co determines if access to the data LD can be 

granted for the next 1 minute (H = 1) before the policy needs to be 

revaluated. 
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Chapter 5. TRUST MODEL 

For a pervasive mobile computing environment, context data (e.g. location, network 

status, available power, etc.) is often used as way to control access to a set of services or 

information. These context-aware security services are required to be non-intrusive and 

easily adaptable to a changing environment or context [Hulsebosch, 05], as they can be 

deployed at and referenced by multiple types of static and mobile units (PDAs, laptops, 

servers, etc.). Unfortunately, traditional security implementations such as access control 

lists (ACL) [Swift, 02] and role base access controls (RBAC) ([Newmann, 01], [Park, 

04]) cannot be easily adapted to the pervasive environment as they are ill equipped to 

handle security operations that include the user or service context. This is due to not 

only the highly dynamic number of entities in the system (it would not only be 

unfeasible to keep a reference to every entity since) at any given time, but also 

traditional security implementations cannot cope with the variability and uncertainty of 

the context variables. 

To address the aforementioned drawbacks, current access controls systems for 

pervasive mobile environments are often implemented with the notion of trust 

[Chakraborty, 06]. Trust is then used to provide a form of control that allows an entity 

to reason about the reliability of others [Teacy, 06]. More specifically, trust can be used 

to account for uncertainty about the motivation and capabilities of other entities to 

perform actions as agreed [Patel, 05]. 

Trust for an entity is often built up over time by accumulating personal 

experience with it. Keeping track of an entity’s behavior history allows other entities to 

judge how this trustee entity would perform in a given situation. Moreover, when direct 
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experience (behavior) for a particular entity is either limited or unavailable, some trust 

systems (i.e. [Shand, 04], [Chakraborty, 06], [Teacy, 06]) implement ways to ask other 

entities about their experiences with the former entity. This collective opinion of others 

regarding a particular entity is known as a recommendation. Recommendations are used 

to help assess the trustworthiness of an entity. However, in these current trust systems, 

trust and recommendations values are computed using only the outcomes 

(positive/negative) of the interacting entities and failed to take into account the dynamic 

nature of context information used to reach either a particular outcome or security 

decision.  By ignoring the variability, uncertainty and reliability of the context data, 

these systems failed to account the risk (or negative impact) of a security decision. 

The above observations motivate us to revisit the problem of access controls, 

trust and risk in pervasive mobile environments. In Chapter 4 ([Sanchez, 07] and 

[Sanchez, 08]) have allowed us to define a framework to evaluate a context security 

policy by computing the risk of context variables according to their changes. In this 

chapter, we expand that previous work by introducing a multi-level trust framework 

(ContextTrust) in which trust for an entity is computed using not only on the results past 

interactions, but also on the recommendations given by other entities and the quality of 

the provided context data. 

Before introducing the details of ContextTrust, let’s review some concepts and 

definitions that will be used later in this chapter 

5.1 Definitions 

In order to define a trust model, it is important to define the concepts of trust and 

risk. 
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• Trust: Trust is defined as “the extent to which one entity is willing to depend 

on another entity in a given situation with a feeling of relative security, even 

though negative consequences are possible” [Jøsang, 04]. Under 

ContextTrust, a number between -1 and 1 represents an entity’s trust level. In 

addition, trust is not symmetrical, that is, if an entity A trusts another entity 

B, it does not mean that B trusts A. Finally, ContextTrust assumes that trust 

is not transitive, that is, if A trusts B and B trusts C, it does not necessarily 

means that A trusts C. 

• Risk: The word “risk” refers to situations in which it is possible but not 

certain that some undesirable event will occur. In everyday usage, ‘risk’ is 

often used synonymously with ‘probability’ of an unwanted event, which 

may or may not occur [Hansson, 07]. In ContextTrust risk is defined in terms 

of a risk function. To measure the risk of a context factor (or context 

variable), we use the percentile function to determine the maximum error 

amount (risk) that would be incurred in the estimation during the evaluation 

horizon H for a given confidence level (γ).  

5.2 ContextTrust 

In section 3.1.5, we illustrated the steps that are taken whenever a security 

interaction between two entities occurs.  

1. A security request from a principal (accessing entity) arrives (Step 1) to a 

Context Security Analyzer (CSA). 

2. The CSA reads the security policies for the requested Context Security 
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Object (CAO) and the accessing Principal. 

3. The CSA may contact one or more Context Providers (CPs) to get the 

requested context data (risk factors) time series specified in the security 

policy.  

4. Context Providers retrieve the requested context information. 

5. Context Providers pass the retrieved context information as well as their 

trust values with respect to the Principal to the CSA. 

6. The CAS calculates different trust and risk values to either grant or deny the 

access request. 

Under ContextTrust whenever a security interaction occurs, the trust between 

the CAS and the Principal is modified.  Therefore, following the syntax in 

[Chakraborty, 06], ContextTrust defines a trust relation between two entities A and B 

for a time window Wt as follows:  

A→ B( )Wt = ADB, AEB, ϕ RB"# $%  

where 

• 

€ 

A DB represents the trust between the entities A and B based on the context 

data provided by B (or on behalf of B) to A. 

• 

€ 

A EB represents the trust derived from the experience or interactions between 

A and B. 

• 

€ 

ϕRB represents the cumulative effect of all recommendations that A receives 

about B. 

We assume that the value of a trust relation is expressed in terms of a numerical 

value in the range[−1,1]∪ ψ{ } . A negative value is used to indicate distrust, whereas a 
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positive value denotes trustworthiness. A value of 0 (zero) indicates trust-neutrality. To 

indicate a lack of value due to insufficient information we use the special symbol ψ . In 

many ad-hoc networks a trust level below 0.5 is considered untrustworthy [Velloso, 08]. 

5.2.1 Computing the Data Trust Component 

Given an N size time series

€ 

Vi,t
C{ }t=1

N
 of values for a context factor C, we model 

data trust component (for C) in terms of the classification accuracy and the percentage 

of missing elements in

€ 

Vi,t
C{ }t=1

N
. That is, ContextTrust rewards with more trust a time 

series with higher classification probability and low degree of missing observations 

(higher degree of quality).  

Formally, the data trust component denoted as C
BA D (without loss of generality, 

the letter C was added as a superscript to the original notation) is calculated as follows: 

 

ADB
C = βC 1−

2 fmiss Vi,t
C{ }t=1

N( )
i=1

M

∑
M

#

$
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%
%
%
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'
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2 1−PETA

i Vi,t
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Equation 5-1 Data Trust Component 

where 

• M is the number of context providers for context variable C values. 

• 

€ 

Vi,t
C{ }t=1

N
is the N size times series values for context variable C supplied by 

context provider i. 

• fmiss Vi,t
C{ }t=1

N( ) is a function that returns the percentage of missing points in  
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€ 

Vi,t
C{ }t=1

N
 (section 3.3.1.2) 

• PETA
i Vi,t

C{ }t=1
N( ) is the probability that A correctly classifies the time series

€ 

Vi,t
C{ }t=1

N
provided by context provider i on behalf of B [sections 2.4.2 and 

2.4.4]. 

• The factors βC and ϒC  are user defined weights to indicate the level of 

relevance that entity A – in the calculation of C
BA D - gives to not only the 

percentage of missing points, but also the probably that A classifies correctly 

the time series provided by B. βC and ϒC are positive values such that

βC +ϒC ≤1and whose values are initially set to 0.5 to reflect equal 

relevance. However, for a context security policy the proper values for 

βC and ϒC  would depend not only on previous experimentation 

(simulation), but also on the context variable type and the physical 

environment (i.e. building, military setting, etc.) in which security policy 

being evaluated. 

The term 

1−
2 1−PETA

i Vi,t
C{ }t=1

N( )
i=1

M

∑
M

#

$

%
%
%
%

&

'

(
(
(
(

 

shows that the higher the classification probability, the more trust is given. The factor of 

2 in this term gives us a trust range from [-1, 1] instead of [0, 1]. Finally, the term 
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indicates that the higher the number of missing points a context variable time series has, 

the less trust A should have for B since the quality of the data supplied by the context 

providers is not as high. Again, note the factor of 2, which increases the range to [-1, 1] 

from [0, 1]. 

5.2.2 Computing the Experience Trust Component 

We model experience in terms of the number of events (positive and negative) 

during a specific window encountered by a truster A regarding a trustee B when 

assessing the risk for context variable C. 

Before introducing the formula for computing the experience component, we 

need to define the concept of a positive (negative) experience for a context variable C. 

 
Positive Experience for a Context Variable C 
 

Let’s recall our random walk model  

St+H =Vt ⋅e
σ t+H ⋅εt( ) , εt+H ~ IIDN(0,1)  

That is, at any point in time, we simulate the future value St+H of a context 

variable C based on one time based parameter σt+H (standard deviation), the last 

period’s value Vt, and a normally distributed random variable εt+H. Thus, using the 

modified Monte Carlo algorithm in  (Chapter 4) to generate multiple simulated future 

values, we can calculate the maximum error (riskv) (see section 4.5.3) amount that 

would be incurred in the estimation of V’s future value during an evaluation horizon H 
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for a given confidence level (γ).  As a result, we expect the [real] future value Vt+H to be 

within the range [Vt - riskv, Vt + riskv].  Therefore, we shall say that for a context 

variable C, it is a positive experience occurs when  

 
Vt+H ∈ Vt − riskv,Vt + riskv[ ]  

 
Formula Description 
 

ContextTrust incorporates the calculated risk (Chapter 4, [Sanchez, 07], 

[Sanchez, 08]) of a context variable C into a trust measure by rewarding with more trust 

whenever a positive experience occurs. That is, trust is increased when the [actual] 

future value of a context variable C does not exceed the risk in our prediction. 

Inversely, whenever our prediction is incorrect, ContextTrust decreases the trust amount 

for the interacting entities.  Formally, the experience component trust between entity A 

and B for a context variable C, during a time window W (denoted as WC
BA E
, ) is 

calculated as follows: 
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Equation 5-2 Experience Trust Component 

 
where 

• W is a time window for which positive and negative experience data are 

stored 

• 

€ 

PA ,B
C is the number of positive experiences during W between entities A and 
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B for context variable C 

• 

€ 

NA ,B
C is the number of negative experiences during W between entities A and 

B for context variable C 

• is the [actual] value of context variable C for the ith interaction 

•  is the risk for context variable C calculated at the time of the ith 

interaction  

As we can see, WC
BA E
, is based on both two main terms: successful and 

unsuccessful [past] interactions. The first term 
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denotes the trust amount that is awarded according to the calculated risk. Whenever, the 

calculated risk is less; that is our prediction 

€ 

Vi
C − riski

C( ) is more accurate the more trust 

is awarded. If 

€ 

PA ,B
C  is 0 then the whole first term is set to 0 

The second term  
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denotes the trust amount that is subtracted whenever a negative experience occurs. In 

the first term (successful interaction term), the more accurate is, the more trust is given. 

As seen in the formula negative experiences with low risk are penalized with a smaller 

decrease trust amounts. That is, we want to make sure that a negative interaction with 

€ 

Vi
C

€ 

riski
C
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low risk should decrease the trust by a smaller factor. If 

€ 

NA ,B
C  is 0 then the whole second 

term is set to 0. 

5.2.3 Computing the Recommendation Component 

The recommendation component trust is evaluated not only on the basis of the 

time series correlations supplied by the context providers of a context variable C, but 

also in the accuracy of classification. That is, ContextTrust rewards with more trust 

highly correlated data and penalize uncorrelated data. For instance, if two context 

providers supplied uncorrelated data, the trust for the recommendation should decrease, 

as it is possible that either or both of the context providers are supplying inaccurate data 

for C. Under ContextTrust, truster A uses the both trust values it has on the 

recommenders (C context providers) and the trust values the recommenders have on the 

trustee entity B to weight the actual correlations. 

Formally, the recommendation component for a context variable C -

€ 

ϕRB
C  - 

whose values are supplied on behalf of entity B by M context providers, is computed as 

follows: 

1) If entity A has local time series information about entity B for context 

variable C, then 

φ RB
c =αC
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C ⋅τ i,B

C ⋅ Ρ Xi,A
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Equation 5-3 Recommendation Trust Component with Local Information 
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2) If entity A does not have  (does not store) local time series information about 

entity B for context variable C, then, we need to examine two cases 

according to the number of recommenders (M): 

i. If M=1 (call this recommender Z) then 

C
BRϕ = The time decayed trust A has for Z about context C -

t
ZAv ,  (see 

section 5.2.4) 

ii. If M > 1 then C
BRϕ  defined as: 

φ RB
c =

Xi, j
C +1
2

!

"
#

$

%
&⋅

τ A,i
C +τ A, j

C

2

!

"
#

$

%
&⋅

τ i,B
C +τ j,B

C

2

!

"
#

$

%
&⋅ fδ τ A,i

C ,τ A, j
C ,τ i,B

C ,τ j,B
C( )

j=i+1

M

∑
i=1

M−1

∑

Mδ

 

Equation 5-4 Recommendation Trust Component without Local Information 

 
where 

• M is the number of context providers or recommenders for context variable 

C  

• PETA
i Vi,t

C{ }t=1
N( ) is the probability that A correctly classifies the time series

€ 

Vi,t
C{ }t=1

N
provided by context provide i on behalf of B [sections 2.4.2 and 

2.4.4]. 

• The factors αC and βC are defined weights to indicate the level of relevance 

A – in the calculation of C
BRϕ . Finally, αC and βC are positive values and 

αC + βC ≤1 

• C
jiX , represents the uncertainty of the recommendation about context C for 
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entities i, j. Under ContextTrust this uncertainty is expressed as ρi, j
α , that is, 

the correlation of the time series returns given by providers i and j about 

context variable C. 

• ( )C
AiX ,Ρ  is a function defines as follows 

Ρ Xi,A
C( ) = Xi,A

C if Xi,A
C ≥ 0

ε otherwise

#
$
%

&%

'
(
%

)%  

ɛ represents a tiny value defined by A to make sure ( )C
AiX ,Ρ  is always great 

or equal to zero. Thus avoiding two negative high correlation values 

generate a high positive value.
   

 

• α is a system defined smoothing factor used to calculate the volatility (and 

correlations) of context variable time series 

• C
iA,τ  and C

jA,τ  are the trust values entity A has for recommenders i and j, 

respectively for context factor C 

• C
Bi,τ  and 

€ 

τ j,B
C  are the trust values recommenders i and j have for entity B for 

context factor C 

• ( )kxxf 1δ  
is a delta function which defined as follows:  

fδ x1xk( ) =
0 if ∃xi (i =1...k) xi ≤ τmin and τmin > 0
1 otherwise
#
$
%

&
'
(  

The delta function   

€ 

fδ x1xk( )  can take up to k trust values and allows 

ContextTrust to decide which correlation values are included in the 

calculation of

€ 

ϕRB
C . That is, ContextTrust decides (based on a threshold) 

which context providers have enough trust to be included in the trust 
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computation.  

• 

€ 

τmin  is the system (or policy) defined minimum acceptable threshold used to 

include a recommendation in the computation of   

€ 

ϕRB
C  

• 

€ 

Mδ is the number of times 

€ 

fδ τA ,i
C ,τA , j

C ,τ i,B
C ,τ j ,B

C( ) is equal to 1. If 

€ 

Mδ  is 0 then 

C
BRϕ  becomes undefined. 

When there is more than one recommender and no local context information, the 

term, 

Xi, j
C +1
2

!

"
##

$

%
&&⋅

τ A,i
C +τ A, j

C

2

!

"
##

$

%
&&⋅

τ i,B
C +τ j,B

C

2

!

"
##

$

%
&&  

allows ContextTrust to weigh the correlation values by the average trust entity A has 

over the two context providers i and j and the average trust the context providers have 

over B. The lower trust amongst A, B, i and j, the lower the trust estimate. 

5.2.4 Computation of the Trust Value 

Once the trust components have been calculated, we need to compute the over 

all trust an entity A has for entity B for context factor C during a time window. The 

over all trust is simply computed as the weighted sum of the component trust values. 

Formally, context trust defines C
BA,τ  as follows: 

τ A,B
C =W  (A→

C
B)Wt

=WD ⋅ ADB
C +WE ⋅ AEB

C +WR ⋅ ϕ RB
C  

where W is a weight vector of the form W = [WD, WE, WR] - data, experience, 

recommendation - such that 

€ 

WD +WE +WR =1 and

€ 

WD,WE ,WR ∈ [0,1]. These weights 

represent the level of importance entity A gives to each of the context trust component 

values in the computation of the overall trust value. 
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The value for a normalized trust relationship allows us to revise the terms trust 

and distrust as follows [Teacy, 06]: 

τ A,B
C =

[−1,0)⇒ it is distrust
0⇒ it is neutral
(0,1]⇒ it is trust
ψ⇒ undecided

#

$
%
%

&
%
%

 

That is, when the value of C
BA,τ falls in the range [-1, 0] it implies the entity B is 

distrusted. If the value is 0 there is neither trust nor distrust, whereas when it falls in the 

range (0, 1] the entity B is trusted. A value of Ұ is to indicate the trust is undefined. 

Finally, adapting from [Teacy, 06] and due to effects such as forgetfulness of the 

human mind, the decay of trust over time is captured by the following expression. 

vt+Δt = vt ⋅e− v
t ⋅Δt( )

2 k

 

Equation 5-5 Trust Decay Over Time 

where 

• ttv Δ+

 is (without loss of generality the superscript c is omitted) the trust 

value C
BA,τ  between entity A, B for context C at time t +Δt . 

• tv  is the trust value C
BA,τ  between entity A, B for context C at time t (i.e. 

current time) 

• k is the time effect factor for that entity has for context C. 
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Chapter 6. PERFORMANCE ANALYSIS 

This chapter presents the results of our simulation of the major components of 

ContexTtrust presented in Chapters 4, 5. 

We initially present how different data mining classifiers contribute to the trust 

calculation.  We then follow a performance analysis of the risk calculation done in 

ContextTrust. 

6.1 Shapelets and classifiers 

Following [Lines, 12], our first objective is to analyze how using different 

classifiers contribute to trust calculation.  In our experiment, we use two real life data 

sets, GeoLife ([Zhang, 10]) and Intel Lab Data ([Bodik, 04]). The former is a GPS 

trajectory dataset was collected by Microsoft Research Asia GeoLife project for 182 

users in a period of over three years (from April 2007 to August 2012).. This dataset is 

described by a sequence of time-stamped points, each of which contains latitude 

longitude and altitude information. These trajectories were recorded using different 

GPS devices with a variety of sampling rates (i.e. every 1~5 second).  Guided by 

[Zheng, 12] and using visual inspection of the data, we picked 4 users who move in a 

similar direction and chose about 5000 data points, by sampling every minute, which 

correspond to more than 80 minutes worth observations in one day (1250 points per 

user). The aim is to try to classify and predict the identity of a user through the analysis 

of their location (proximity) time series.  

The Intel Lab Data is collection of measurements from 54 sensors deployed at 

the Intel Berkeley Research lab [Tennenhouse, 04]. The time-stamped data was 



 

 
 

181 

collected using Mica2Dot sensors [Crossbow, 13], which recorded topology humidity, 

temperature, light and voltage values once every 31 seconds between February 28th and 

April 5th of 2004. By sampling this dataset every minute, we chose one-hour worth of 

temperature observations for 4 different sensors - 7,8,9,10  (see Figure 6-1) and restrict 

to 1250 data entries per sensor.  We chose those sensors because of the proximity to 

each other.  

 To run our experiments, we used a quad core Intel Core I7 MacBook Pro with 

16G of RAM. We followed [Benson, 97] to determine the recommended time series 

size for risk computation. In this case we chose 30, 100, 200, 300, 400, and 500 data 

points. Moreover, in order to find the best K time series shapelets, we used the code 

provided by [Lines, 12] and modified it to better exploit several computing cores. We 

restricted the maximum length of the extracted shapelets to be less than 100 points. 

Finally, we also use also the Weka data mining software [Hall, 09] for the different 

classifiers implementations (we use the default Weka classifier settings, except for 

Random Forests in which case we use 100 trees) 

6.1.1 GeoLife Data 

In this experiment, we used the GeoLife (GL) data to measure the classification 

accuracy using 8 different classifiers. Table 6-1 shows the average percentage 

classification accuracy and standard deviation for J48, C4.5, 1-NN, Naive Bayes (NB), 

a Bayesian Network (BN), Random Forest (RF), Rotation Forest (RoF) and a Support 

Vector Machine (SVM), using N/2 shapelets where N is the time series size. We chose 

N/2 to not only avoid introducing bias into the results, but also be consistent across all 

sub-data sets. 
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Figure 6-1 Intel Lab Data Sensor Location [Bodick, 04] 

 
After trying with different shapelet sizes (i.e. 10, 15, 20, 40, 50, N/2), we concur 

with the results presented in [Lines, 12] and determined that using N/2 shapelets give us 

the best classification accuracy. Table 6-2 shows the algorithm used to create Table 6-1. 

As shown, we loop 10 times and extract from the original GeoLife data 6 sub-datasets 

with 40 time series each (10 per user). The time series sizes in each sub-dataset are 30, 

100, 200, 300, 400 and 500 respectively.  Once the data has been extracted we proceed 

to compute the K best shapelets (ComputeShapelets) restricting the size of each 

shapelets to be less than 100 points. Next we calculate the classification accuracy using 

the different classifiers (CalculateClassificationAccuracy). Finally, we average the 

average the accuracy amongst the 10 runs. 
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Table 6-1 Percentage Accuracy and Standard Deviation for 8 Classifiers Constructed with N/2 Shapelets  

Data J48 C4.5 1-NN 
Naive 
Bayes 

Bayes 
Net 

Random 
Forest 

Rotation 
Forest SVM 

GL-30 
39.16 
±2.94 

27.50 
±4.41 

42.80 
±7.85 

33.00 
±2.95 

43.30 
±3.64 

41.60 
±4.53 

36.60 
±5.22 

41.60 
±6.25 

GL-100 
30.50 
±4.15 

31.25 
±3.83 

29.25 
±2.88 

35.50 
±8.01 

37.50 
±8.55 

45.15 
±4.81 

33.75 
±4.60 

40.00 
±6.10 

GL-200 
38.30 
±4.60 

35.00 
±5.45 

31.66 
±5.14 

34.17 
±6.06 

37.50 
±7.86 

42.50 
±5.16 

32.50 
±6.83 

38.50 
±6.30 

GL-300 
50.00 
±4.55 

45.83 
±3.05 

49.16 
±3.34 

36.20 
±5.56 

46.67 
±7.66 

50.83 
±4.38 

47.50 
±6.38 

37.61 
±6.12 

GL-400 
58.33 
±4.82 

49.17 
±2.41 

42.50 
±4.36 

37.50 
±6.89 

41.67 
±7.53 

53.32 
±5.78 

50.03 
±7.78 

38.33 
±5.82 

GL-500 
65.83 
±5.19 

51.00 
±2.82 

41.66 
±3.53 

37.50 
±7.24 

41.67 
±8.49 

72.05 
±4.78 

53.33 
±7.78 

42.50 
±5.94 

 
 
It can be readily seen in Table 6-1, that tree classifiers (J48, C4.5, Random 

Forest and Rotation Forest) offer the best classification accuracy. Moreover, as the 

length of the time series increases, the better classification accuracy is achieved, with 

Random Forest improving the most overall, specially as we achieved similar accuracy 

measures as the work presented in [Ye, 09]. Table 6-3 details one tailed paired t-tests 

using a cutoff α of 0.05 between Random Forest and J48, C4.5, 1-NN, Naive Bayes, 

Bayes Net and SVM classifiers for the GL-300, GL-400 and GL-500 sub-datasets in 

order to reject the null hypothesis stating “The Random Forest classifier performs the 

same as the J48, C4.5, 1-NN, Naive Bayes, Bayes Net and SVM classifiers”. Since we 

want to keep the experiment wise error rate to α=0.05, we use a Bonferroni adjustment 

[Jensen, 00] and divide α by the number of comparisons we make (in our case 6). That 

is, for any one comparison to be considered significant, the obtained p-value would 

have to be less than 0.00833 - and not 0.05.  The significant values are bolded in Table 

6-3. 
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Table 6-2 Algorithm to Compute Data in Table 6-1 

Input: GeoLife (GL) data 
T=0 
For I = 1 to 10 

For S in (30, 100, 200, 300, 400, 500) 
K= S/2 
Extract from GL a sub-dataset GL-S for users 1 through 4 from time T to T+S 
S-GLS = ComputeShapelets(GL-S, K) 
For C in (C4.5, 1-NN, NB, BN, RF, RoF, SVM) 

accuracy = CalculateClassificationAccuracy(C, S-GLS) 
results[S][C][I] = accuracy 

T+=500 
For S in (30, 100, 200, 300, 400, 500) 

For C in (C4.5, 1-NN, NB, BN, RF, RoF, SVM) 
m.average [S][C] =SUM(results[S][C]) / 10.0 
m.stdev[S][C] = STDEV(results[S][C]) 

Output: m_average, m_stdev 
 
 

Table 6-3 One Tailed Paired T-Tests (α<0.05) Between Random Forest and J48, C4.5, 1-NN, Naïve Bayes, 
Bayes-Net and SVM classifiers using the GL-300, GL-400 and GL-500 sub-datasets 

Data J48 C4.5 1-NN Naive Bayes Bayes Net SVM 

GL-300 0.0126 0.0272 0.0016 0.0246 0.0242 0.0054 

GL-400 0.0168 0.0129 0.0145 0.0162 0.0123 0.0243 

GL-500 0.0004 0.0078 0.0010 0.0136 0.0065 0.0232 

 

As we can see, as not only the number of shapelets but also the time series size 

increase, we can obtain very promising classification results when we use a random 

forest classifier. 

Table 6-4 shows the average time in seconds to find the best N/2 shapelets from 

the GeoLife sub-data sets (ComputeShapelets function).  
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Table 6-4 Average Time to Find N/2 Shapelets 

Data Time (secs) 
GL-30 1.22 
GL-100 49.47 
GL-200 65.91 
GL-300 276.73 
GL-400 690.53 
GL-500 1270.58 

 
 

One of the main motivations behind our work using shapelets for time series 

classification is to produce classification decisions that are interpretable. As such, 

Figure 6.2 shows a sample path for user 1 using the GL-30 sub-dataset.  We convert 

each Latitude-Longitude coordinate by calculating the arc-length distance [Weisstein, 

13b] to a reference point.  As seen, the general areas where the best and matching and 

non-matching shapelets occur are shown.  Because the GL-30 sub-dataset has the 

smallest time series of all, we found both a matching and non-matching shapelets in the 

same time series. When this occurs, our classification accuracy decreases. Figures 6-3 

and 6-4 illustrate the six best matching and nonmatching shapelets extracted from GL-

30. It is important to notice that the non-matching shapelets were recovered by 

extracting the shapelets with the minimum information gain and separation gaps 

(Section 2.4.3).  

Similarly, Figure 6-5 illustrates two GL-100 sub-dataset sample paths for user 1 

and 3. In this case, one of the best K matching shapelets comes from User 1. In the 

same manner one of the non-matching shapelet (least information gain) comes from 

user 3. Figures 6-6 and 6-7 illustrate the six best matching and nonmatching shapelets 

extracted from GL-100. 
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Figure 6-2 GL-30 Sample Path for User 1 and its Shapelet Matching and Non-Matching Areas 

 

 
Figure 6-3 An Illustration of the Six Best Matching Shapelets Extracted From GL-30 
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Figure 6-4 An Illustration of the Six Non-Matching Shapelets Extracted From GL-30 

 
 

 
Figure 6-5 GL-100 Sample Paths for User 1 and 3 and their Shapelet Matching and Non-Matching Areas 
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Figure 6-6 An Illustration of the Six Best Shapelets Extracted From GL-100 

 

 

Figure 6-7 An Illustration of the Six Best Non-Matching Shapelets Extracted From GL-100 

 
Using 10 different test datasets, we computed the average ContextTrust 

classifier data trust (Equation 1 with ) for 8 classifiers (see Figure 6-

8) using the trained shapelets in GL-100.  To create each test set, we drew at random 10 

time series of size 100 from the original GeoLife data, from to users 1 through 4.   

βC = 0 and ϒC =1
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Figure 6-8 Average Percentage Data Trust for 8 Classifiers Contribution using GL-100  

 
The purpose of this experiment was to estimate how accurately our time series 

shapelet classification algorithm performs in a possible real scenario (using a trained 

classifier to classify previously unseen records). Table 6-5 details one tailed pair t-tests 

using a cutoff α of 0.05 between random forest and the remaining classifiers using 

Figure 6-8 data in order to reject the null hypothesis stating “The mean percentage data 

trust between random forest and the remaining classifiers is the same.” Using a 

Bonferroni adjustment we divide α by the number of comparisons made (in this case 7). 

That is, for any one comparison to be considered significant, the obtained p-value 

would have to be less than 0.00714. As seen, there is not any statistical difference. 

However, we believe that we may get higher classification trust values, if we use bigger 

trained shapelet datasets (i.e. GL-300, GL-400) use a better testing procedure and 

remove the restriction to have the shapelet size less than 100 data point since that would 

allow us to better capture the time series features of in the training dataset.  
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Table 6-5 Two Tailed Paired T-Tests (α<0.05) Between Random Forest and NN, Naïve Bayes, Bayes-Net, 
Rotation Forest and SVM classifiers for data in Figure 6-8 

J48 C45 1NN Naïve Bayes Bayes Net Rotation Forest SVM 
0.0369 0.0369 0.0218 0.0172 0.0240 0.0277 0.0243 

 

6.1.2 Intel Lab Data 

As done for the GeoLab data in the previous section, we use the Intel Lab data 

(ILD) to measure the classification accuracy for J48, C4.5, 1-NN, Naive Bayes, 

Bayesian Network, Random Forest, Rotation Forest and a Support Vector Machine 

classifiers using N/2 shapelets. Following a similar procedure as shown in Table 6-2, 

Table 6-6 shows the algorithm used to create the data in Table 6-7. Each ILD sub-

dataset has 40 time series  (10 per sensor) and the time series sizes in each sub-dataset 

are 30, 100, 200, 300, 400 and 500 respectively. 

As in Table 6-1, Table 6-7 shows that as the length of the time series increases, 

the better classification accuracy is achieved. 

 
Table 6-6 Algorithm to Compute Data in Table 6-5 

Input: Intel Lab Data (ILD) 
T=0 
For I = 1 to 10 

For S in (30, 100, 200, 300, 400, 500) 
K= S/2 
Extract from ILD a sub-data set ILD-S for sensors 7 through 10 from time T to T+S 
S-ILD = ComputeShapelets(ILD-S, K) 
For C in (C4.5, 1-NN, NB, BN, RF, RoF, SVM) 

accuracy = CalculateClassificationAccuracy(C, S-ILD) 
results[S][C] += accuracy 

T+=500 
For S in (30, 100, 200, 300, 400, 500) 

For C in (C4.5, 1-NN, NB, BN, RF, RoF, SVM) 
m.average [S][C] =SUM(results[S][C]) / 10.0 
m.stdev[S][C] = STDEV(results[S][C]) 

Output: m.average, m.stdev 
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Table 6-7 Percentage accuracy for 8 classifiers constructed with N/2 shapelets for ILD data 

Data J48 C4.5 1-NN 
Naive 
Bayes 

Bayes 
Net 

Random 
Forest 

Rotation 
Forest SVM 

ILD-30 
36.60 
±3.93 

41.60 
±4.90 

20.84 
±5.92 

34.17 
±8.13 

38.33 
±4.92 

40.00 
±4.60 

35.00 
±5.65 

33.33 
±3.91 

ILD-100 
47.50 
±6.98 

47.50 
±6.62 

35.84 
±4.13 

31.60 
±6.30 

40.00 
±7.21 

43.33 
±6.50 

41.67 
±7.30 

30.00 
±9.31 

ILD-200 
41.60 
±7.07 

41.60 
±7.41 

30.00 
±7.67 

33.30 
±11.97 

41.60 
±8.14 

37.50 
±8.61 

48.34 
±8.94 

26.66 
±10.70 

ILD-300 
42.50 
±8.29 

45.84 
±8.85 

33.34 
±7.57 

28.30 
±10.01 

39.17 
±7.24 

43.33 
±9.50 

42.50 
±10.19 

25.83 
±11.54 

ILD-400 
46.66 
±7.67 

43.30 
±8.97 

25.83 
±8.85 

23.33 
±11.46 

41.30 
±9.09 

46.66 
±8.89 

37.50 
±11.87 

22.50 
±9.82 

ILD-500 
41.67 
±8.62 

45.80 
±9.45 

25.01 
±10.60 

27.50 
±12.73 

39.17 
±11.91 

50.83 
±9.79 

40.83 
±10.28 

24.16 
±10.84 

 
 

Table 6-8 One Tailed Paired T-Tests (α<0.05) Between Random Forest and J48, C4.5, 1-NN, Naïve Bayes, 
Bayes-Net and SVM classifiers using the ILD-300, ILD-400 and ILD-500 sub-datasets 

Data J48 C4.5 1-NN Naive 
Bayes Bayes Net SVM 

ILD-300 0.0343 0.0943 0.0053 0.0176 0.0215 0.0172 

ILD-400 0.0893 0.0437 0.0016 0.0162 0.0123 0.0243 

ILD-500 0.0438 0.0862 0.0246 0.0136 0.0065 0.0232 

 

Table 6-8 details one tailed paired t-tests using a cutoff α of 0.05 between 

random forest and J48, C4.5, 1-NN, Naive Bayes, Bayes Net and SVM classifiers for 

the ILD-300, ILD-400 and ILD-500 sub-datasets in order to reject the null hypothesis 

stating “The Random Forest classifier performs the same as the J48, C4.5, 1-NN, Naive 

Bayes, Bayes Net and SVM classifiers. Again, using a Bonferroni, we divide α by 6  

(the number of comparisons we make). That is, for any one comparison to be 

considered significant, the obtained p-value would have to be less than 0.00833.  The 

significant values are bolded in Table 6-8. As we can see there is no statistical 

difference between random forest and the rest of the classifiers (except for Bayes Net). 

Therefore for the Intel Lab Data, any classifier would give us the same level of 

accuracy. We believe this occur because there are missing and truncated entries in the 
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original Intel Lab data. The missing data entries occurred because sensor performance 

degraded as the power of their batteries drained [Bodik, 04]. 

In like manner, Figure 6.9 illustrates two sample readings for sensors 8 and 9 

from ILD-30 and the general areas where the best matching and non-matching shapelets 

occur.  Figures 6-10 and 6-11 illustrate the six best matching and nonmatching shapelets 

extracted from ILD-30. Likewise, Figure 6-12 illustrates two sample readings from 

ILD-100 for sensors 8 and 10 along with the general areas where the best matching and 

non-matching shapelets occur. Figures 6-13 and 6-14 illustrate the six best matching 

and nonmatching shapelets extracted from ILD -100. 

 

 

Figure 6-9 ILD-30 Sample Temperature Readings from Sensors 8 And 9 and Their Shapelet Matching and 
Non-Matching Areas 
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Figure 6-10 An Illustration of the Six Best Shapelets Extracted From ILD-30 

 
Figure 6-11 An Illustration of the Six Best Non-Matching Shapelets Extracted from ILD-30 
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Figure 6-12 ILD-100 Sample Temperature Readings from Sensors 8 And 10 and their Shapelet Matching and 

Non-Matching Areas 

 

 
Figure 6-13 An Illustration of the Six Best Shapelets Extracted From ILD-100 
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Figure 6-14 An Illustration of the Six Best Non-Matching Shapelets Extracted From ILD-100 

 
We computed ContextTrust classifier data trust (Equation 1 with parameters 

) for 8 different classifiers (see Figure 6-15) using the trained 

shapelets in ILD-100.  We created 10 different datasets; each one containing 10 time 

series of 100 data points each. Each time series was drawn at random from the readings 

of sensors 7 through 10 from the original Intel Lab Data.   

 
 

 
Figure 6-15 Average Percentage Data Trust Contribution for 8 Classifiers Using the IDL-100 

βC = 0 and ϒC =1
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The purpose of this experiment was to estimate how accurately our time series 

shapelet classification algorithm performs while classifying previously unseen 

temperature time series. Table 6-10 details one tailed paired t-tests using a cutoff α of 

0.05 between random forest and the remaining classifiers using the data from Figure 6-

15 in order to reject the null hypothesis stating “The mean percentage data trust between 

random forest and the remaining classifiers is the same.” Using a Bonferroni adjustment 

and divide α by the number of comparisons we make (in this case 7). That is, for any 

one comparison to be considered significant, the obtained p-value would have to be less 

than 0.00714. As seen, there is not any statistical difference.  

 

Table 6-9 One Tailed Paired T-Tests (α<0.05) Between Random Forest and NN, Naïve Bayes, Bayes-Net, 
Rotation Forest and SVM classifiers for data in Figure 6-15 

J48 C45 1NN Naïve Bayes Bayes Net Rotation Forest SVM 
0.0890 0.0890 0.0222 0.0152 0.0216 0.0289 0.0150 

 

6.2 Risk Calculation 

To analyze the performance of ContextTrust, when running on a host a Context 

Security Analyzer (see section 3.1.4), we measure the memory usage and risk 

calculation time. In this scenario there are four agents  (context owners – see section 

3.1.1) submitting their time series (one per agent) for risk calculation. Using the 

GeoLife data, we sampled four time series with 500 data points each. 

For this simulation, we used a quad core Intel Core I7 MacBook Pro, with 16G 

of RAM; however, we not only restricted the execution of the risk engines to use one 

thread but also limit the amount of memory used in the overall process to 512 mega 
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bytes in order to better simulate the performance of the risk calculation in a mobile host. 

We also pre-generated 10000 random numbers using a Mersenne twister pseudo 

random number generator [Matsumoto, 98] in order to make the results reproducible. 

6.2.1 Independent Factors 

We implemented the algorithm in section 4.5 and varied the number of scenario 

trials. We kept constant the smoothing factor (0.94), confidence level (0.95) parameters 

since they don’t affect the overall execution of the algorithm. Figure 6-16 shows the 

running time in milliseconds using 1000, 2000, 3000, 4000, 5000, and 10000 scenario 

trials. Similarly, Figure 6-17 shows the memory (Heap and Non-Heap) usage in 

kilobytes for the same scenario runs as Figure 6-16. Finally, Figure 6-18 shows the 

average accuracy of the risk calculation using a 2 percent margin of error for 1000, 

2000, 3000, 4000, 5000, and 10000 scenario trials over 1,5, 10,15, 20 time units 

evaluation horizons. The averages were computed by trying to predict future proximity 

values repeating the process 50 times per scenario trial and evaluation horizon. As seen 

the random walk model in section 4.4 models reasonable well the GeoLife data. 
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Figure 6-16 Execution Time in Milliseconds for Independent Factors Engine with Different Scenario Trials 

 
 

 

Figure 6-17 Memory Usage in KB for Independent Factors Engine With Different Scenario Trials 
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Figure 6-18 Average of Risk Calculation Accuracy Using Different Scenario Trials Over Five Different 

Evaluation Horizons 

 

6.2.2 Dependent Factors 

We implemented the algorithm in section 4.6.5 and in a similar manner; we 

varied the number of scenario trials while keeping constant the smoothing factor (0.94), 

and confidence level (0.95). We are able to keep both parameters constant since they 

don’t affect the overall execution of the algorithm. 

Figure 6-19 shows the running time in milliseconds for 1000, 2000, 3000, 4000, 

5000, and 10000 scenario trials. Similarly, Figure 6-20 shows the memory usage in 

kilobytes for the same scenario runs. 
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Figure 6-19 Execution Time in Milliseconds for Dependent Factors Engine with Different Scenario Trials 

 

 
Figure 6-20 Memory Usage in KB For Dependent Factors Engine with Different Scenario Trials 
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evolution in 50 units of time. At each unit of time a trust calculation is performed 

(section 5.2.4).  We use a random forest classifier over and 1 to 4 recommenders using 

the GeoLife data. Each recommendation is the original time series “disturbed” by a 

small amount to simulate the difference in measurements for each recommender. 

 

 
Figure 6-21 Trust Evolution of an Entity Using up to Four Recommenders Over 50 Time Units Using a 

Random Forest Classifier 

 
As we can see, with one recommender the trust measure tends to be steady. This 

is because the disturbances to the recommended series were small. As expected, the 

more random disturbances in the recommended time series the more miss-

classifications and negative events (that is risk calculations do not meet an error 

threshold) occur. Ultimately we are interested in exploring how sensitive ContextTrust 

is when computing trust values in with multiple recommenders. As seen in Figure 6-21 

the more different the recommendations, the less trust is awarded. This may lead to 
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issuing false recommendations. ContextTrust is designed in such a way that 

recommendations are trust weighted. That is, recommenders with low trust values do 

not contribute as much in the overall trust computation as high trust recommenders. 

However, ContextTrust may be still vulnerable bad-mouthing attack, as the system does 

not perform shape discord or anomaly detection (see [Wei, 06b]) on the recommended 

time series in order prune colluding series.  

ContextTrust may need to be enhanced in order to handle some forms of Sybil 

attacks [Douceur, 02] and newcomer attacks [Zeckhauser, 00]. In a Sybil attack, a 

malicious entity may create faked time series records in order to pretend to be another 

one. In the newcomer attack, a malicious agent removes its bad history by registering as 

a new user. The defense against the Sybil attack and newcomer attack usually relies on 

authentication schemes [Yu, 06]. By using time series classifiers for entity 

authentication, ContextTrust attempts lessen the effects of both attacks, since such 

classifiers would be trained for a specific entity data. 

Although not explicit, ContextTrust can easily adapted to handle Conflicting 

Behavior Attack [Wang, 10]. In this attack a malicious entity can impair other entities 

recommendation trust by performing differently to different contexts. For example, the 

attacker may always behave well to one group of users and behave poorly to another 

group. In order to handle such attacks, ContextTrust can be expanded so that when a 

recommendation is issued by a recommender entity, the system may ask other agents 

about the recommendations, the recommender entity has issued previously with regard 

to other [related] context variables.  

Finally, by introducing Equation 5.5, ContextTrust may protect against on-off 
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attacks [Perrone, 06]. An on-off attack means a malicious entity behaves well and badly 

alternatively. To defend against such attack, an entity can manipulate the time effect 

factor in Equation 5.5 to force other entities rebuild up the trust when they cease to 

interact for a predetermined amount of time. 

 

Figure 6-22 Trust Evolution of an Entity with 1 To 4 Recommenders over 50 Time Units Using A Random 
Forest Classifier and up to 40 Percent of Invalid Recommendations  

 
Figure 6-22 shows the trust evolution for an entity over 50 time units using 

random forest classifier with and 1 to 4 recommenders using the GeoLife data. In this 

experiment up to 40 percent recommendations are invalid. That is, up to 40 percent of 

the data points in a recommendation time series are “disturbed” by a large random 

percent amount in order to simulate invalid/malicious recommendations.  As expected, 

the more disturbed recommendations the less trust the entity gets.  This is due to the fact 
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that not only the random forest classifiers yield low probabilities of classifications for 

the recommended time series, but also, the volatilities of the recommend time series are 

higher and the random walk model does not predict future values accurately.  
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Chapter 7. CONCLUSIONS AND FUTURE WORK 

Having described a mechanism for assessing risk and trust, the purpose of this chapter 

is to outline both what we have achieved, and what questions remain unanswered. In 

doing so, we first give an overview of what we have discussed so far. Then we present a 

view of the contributions we have made and discuss the system limitations. Finally, we 

discuss possible future work. 

7.1 Dissertation Summary 

Risk and trust are prevalent concepts in our current society.  This is particularly true in 

situations in which one entity needs to rely on information from another –perhaps– 

previously unseen entity. With ever increasing number of information sources, modern 

collaboration systems must not only assemble a set of disparate information systems 

into a coherently interoperating whole, but also make sure that the interactions amongst 

different entities participating in the system are secure. Moreover, these collaboration 

systems must take into account not only the environment in which few fixed 

infrastructure nodes exist, but also that access to information depends on some context 

information (i.e. location, velocity, etc.). Because of the lack of fixed infrastructures, 

the ever increasing number of users and the variability of context data, it is 

unreasonable to expect that every entity in a collaboration environment stores not only a 

reference (identity) to but also relevant context data relating to any other entity it may 

interact with. It is for these reasons that traditional security implementations are poorly 

equipped to handle security operations that include context-based access.  

In response to that, we have developed a risk and trust assessment mechanism 
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that could be employed by entities in pervasive ad-hoc computing environments, in 

which contextual information is used to not only control access a resource but also 

compute the trustworthiness of the accessing entity. In particular, this mechanism use 

time series of context information in order to assess the risk emanating from the change 

in the context data and derive trust measures for the entities that produce it. 

Before addressing these goals, in Chapter 2 we reviewed existing methods in the 

literature for solving these and similar problems. In addition, we briefly introduced 

ways of modeling context using stochastic processes in order to be used as a risk 

measurement tools. Moreover, we introduce data mining related concepts about time 

series classifications. Chapter 3 defined a context based security framework that can be 

used in a pervasive ad-hoc environment. Building on this, Chapter 4 introduced the 

Random Walk model used to determine the risk of a context variable and its application 

in the design security policies. Finally, in order to calculate trust, Chapter 5 introduced a 

framework to allow entities to reason about the reliability of others. We called this 

framework ContexTrust.  

7.2 Research Contributions 

The main contributions of this dissertation stem from the specification of a 

general framework for modeling risk and trust, and the development of ContexTtrust. 

Together, these show how, an entity can not only asses the risk of a context variable 

based on its changes, but also evaluate the trustworthiness of other entities it interacts 

with. Moreover, because ContextTrust uses simple statistical methods and trained 

classifiers in order to derive trust measurements, it makes it suitable to run on mobile 

devices. Furthermore, using of a random walk model for risk assessment gives us a 
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principled mathematical foundation to represent the behavior of a context variable. In 

addition, we introduced a method called space return decomposition to evaluate a 

context-based security policy that takes into account the relatedness (i.e. correlation) of 

context variables. Finally, the use of time series classification methods allows entities to 

reason about the truthfulness of the data being evaluated.   

As part of our general framework (Chapter 3), we specified a set of guidelines 

for modeling context based security policies.  In addition, ContextTrust implements 

simple measures to compare data from different sources (recommenders) in cases where 

there is a need to verify the reliability of a context risk factor. This is especially 

important when a number of sources provide inaccurate information. Moreover, by 

using time series classifier along with recommenders ContextTrust provides a possible 

solution to the problem of whitewashing, in which entities with a poor reputation 

attempt to improve their standing by assuming a new identity.  Finally, we provide 

exploratory analysis of time series shapelets when they are used, as conduits for not 

only entity identification but also trust computation.  

7.3 Limitations 

There are still some open issues for which we do not provide a solution. In 

particular, ContextTrust assumes that entities are able to obtain reliably the latest values 

of a context time series in order to compute experience trust. In some cases, it may be 

desirable to relax this assumption and allow agents to enter their own values to indicate 

a positive or negative experience. 

In addition, ContextTrust neither gives any guidelines for setting risk 

computation parameters (i.e. smoothing factor, confidence levels), nor initial trust and 
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weight factor values for entity trust calculation. Moreover, ContextTrust assumes all 

context factors can be model using logarithmic random walk model, which may not 

always be accurate.  Finally, ContextTrust does not identify a secure mechanism to 

deliver time series classifiers updates from the host(s) that train the classifiers to the 

hosts that use them. 

7.4 Future Work 

In addition to the limitations mentioned above, there are a number of methods in 

which our mechanisms and their application could be improved in order to better aid the 

security decision-making in a pervasive ad-hoc system. In particular, we identify the 

following in which further significant research is warranted. 

Initially, using probability predicates to improve trust assessment could enhance 

ContexTrust.  For instance, we could introduce concepts from Beta reputation system 

[Jøsang, 02], Kalman filters [Kalman, 60] or Bayesian analysis (i.e. [Teacy, 06b] and 

[Yuan, 06]). In addition, ContexTrust could allow users to incorporate values (or 

overrides) that either replace or enhance the computation of the experience trust (that is, 

users can assign a subjective importance to risk events.  

 One assumption that we have made in ContexTrust is that the behavior of 

entities does not change over time. For many practical applications, this is an unsafe 

assumption, since it is possible that some entities collude with each other in order to 

enhance their reputation or gain access to information.  Therefore, ContextTrust can be 

enhanced with the use of algorithms that can learn the behavior of entities (see [Tran, 

04]). Another assumption that we made is that entities always have an appropriate 

amount of information to perform a risk calculation. Therefore, more investigation is 



 

 
 

209 

necessary in the use of fast bootstrapping models to generate initial context data points 

to better deal with “cold” start entities (see [Jamali, 09]). 

Finally, we need more studies related to the performance and energy resource 

consumption of the different ContextTrust algorithms in mobile units. This acquires 

more importance as time series classification is a very expensive operation (i.e. cross 

validation is usually used to find the optimal shapelet size during shapelet discovery). 

7.5 Conclusions 

Risk and trust are increasingly important in computer science because of the 

current trend toward large-scale, pervasive, open, and cloud-based systems. In this 

dissertation, we initially considered the use of ContextTrust is a small military 

environment in which there was substantial user input in the form of context security 

policies. However, for other settings, we may need more autonomous agents that are be 

able to assess the riskiness and trustworthiness of others and make decisions based on 

those assessments appropriately.  These agents must be able to handle situation in which 

they come across comes across other entities that they have not interacted with before. 

In this case agents would be expected to make reasonable decisions based on the data 

available. 

A lot of work remains to be done. Hopefully this dissertation opens a set of new 

avenues of research in the areas of database security and data mining. 
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