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Abstract—We introduce Ensembled Continuous Bayesian
Networks (ECBN), an ensemble approach to learning salient
dependence relationships and to predicting values for continu-
ous data. By training individual Bayesian networks on both a
subset of the data (bagging) and a subset of the attributes in the
data (randomization), ECBN produces models for continuous
domains that can be used to identify important variables in a
dataset and to identify relationships between those variables.
We use linear Gaussian distributions within our ensembles,
providing efficient network-level inference. By ensembling these
networks, we are able to represent nonlinear relationships.
We empirically demonstrate that ECBN outperforms the me-
teorological forecast on a rainfall prediction task across the
United States, and performs comparably to results reported
for Random Forests.

1. INTRODUCTION

We introduce Ensembled Continuous Bayesian Networks
(ECBN), an ensemble approach for prediction of continuous
variables using Bayesian networks. This work is motivated
by our research in several earth-science domains, including
tornadoes, drought, and floods [1]. We work with domain
scientists who want to improve the prediction of such tasks
while also increasing their understanding of the domain. The
ECBN method aims to fit both of these goals.

Bayes nets are graphical models that represent the joint
probability distribution of a dataset in a compact way. This is
done by identifying conditional independencies in the data.
By ensembling such networks, we aim to increase predictive
strength compared to a single network’s abilities.

We apply ECBN to the task of improving the prediction
of rainfall across the United States. We use the 2010 Storm
Scale Ensemble Forecast (SSEF) data from the Center for
the Analysis and Prediction of Storms (CAPS) [2] [3]. In
particular, we use the forecasts of 14 meteorological models
within the SSEF to predict the actual rainfall. By further
refining these model outputs using machine learning tech-
niques, we can account for disagreement between models
and reduce the bias in the final prediction.

ECBN provides a novel and powerful prediction method
that gracefully handles missing values and that allows do-
main scientists to analyze how continuous variables within
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the domain interact. We empirically demonstrate that ECBN
performs well at rainfall prediction, and demonstrate how
ECBN can be used to investigate the predictive importance
of SSEF variables and the dependence relationships between
those variables.

II. RELATED WORK

Conventional Bayesian Networks have proven useful in
meteorological domains. Cofino et al. apply Bayes nets
to rainfall prediction in the Iberian peninsula, treating the
amount of rainfall at a given location as a single vertex in
their network [4]. Similar work has been done for temper-
ature prediction over a geographical area [5]. Additionally,
Kennet et al. use Bayes nets to predict sea breezes based off
of various meteorological readings [6].

For continuous networks, Linear Gaussian Networks
(LGNs) provide a method for representing continuous proba-
bility distributions within a Bayes net [7]. Further extensions
of Bayes nets to continuous variables have been developed,
such as representing local probability distributions as Gaus-
sian mixture models [8]. Another possible approach is to
use kernel density estimation to estimate the probability
distribution, which requires storing all training data [9] [10].

Feng et al. present an approach for combining bagging,
an ensemble method for randomly sampling data to train on,
and Bayesian Networks, but their method ultimately results
in a single network [11]. Boosting, an ensemble approach
that iteratively trains models on weighted training data, has
been applied to networks with a Naive Bayes structure. [12].
And Utz combined bagging and randomization, which trains
each model on a subset of variables, to learn ensembles
of discrete Bayesian networks [13]. Our approach differs
from the above in that we model continuous variables in
our networks.

Another approach to ensembling Bayesian Networks is the
Bayesian Multinet [14]. Multinets learn a single network for
different partitions of the class label, such that each network
corresponds to a disjoint subset of the possible class values.
In contrast, conventional ensembling represents every class
value within every network.
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Figure 1.  An example Bayesian Network. This network is a Linear
Gaussian Network with values pa = 1, up = 2, po = 0, 04 = 2,
op =1, oc = 1, wAC = —0.5, and wpc = 2.

III. ENSEMBLED CONTINUOUS BAYESIAN NETWORKS

What follows is a brief description of our methodology.
For a more thorough explanation, see Hellman [15].

A. Notation

We use capital letters to refer to random variables or
sets of random variables, such as A or X. We use bold
to distinguish vectors and matrices from scalars, and for a
random variable A, A denotes a vector of values sampled
from A, while a denotes a single value sampled from A.
We refer to the unconditional mean of A as pi4, and to the
standard deviation of A as o 4. For a set of random variables
X, ¥x denotes the covariance of X. For any vector or
matrix, A; refers to the ¢-th value or row in the vector or
matrix.

We represent a Gaussian distribution with mean p and
standard deviation o as N(u, o). The value of the Gaussian
distribution with mean y and standard deviation o at a point
x is represented by N (x; u,0).

B. Linear Gaussian Networks

Bayesian Networks represent a joint probability distribu-
tion as a directed acyclic graph (DAG) [16]. Each vertex
in the graph corresponds to a random variable, and each
edge in the graph corresponds to a dependence relationship
between two variables. Both the underlying structure of a
Bayes net and the parameters for the conditional probability
distributions at each vertex can be learned from training
data. Learning the structure of a Bayes net can help uncover
important relationships within a dataset, and with learned
parameters, Bayes nets be used for prediction.

Since we are interested in continuous data, we use Linear
Gaussian Networks (LGNSs) in our ensembles [7]. In a LGN,
each vertex represents a univariate Gaussian distribution
with a set standard deviation and a mean that is a linear
combination of an unconditional mean and the values sam-
pled from the parent vertices.

For example, given a LGN of the foorm A — C < B
(Figure 1), the following describes the conditional probabil-
ity distributions of the three vertices

A~ N(pa,o4)
B~ N(up,oB)
C ~ N(uc +wac(a— pa) +wpc(b— pup),oc)

where w4¢ is the weight of the edge between A and C.

Finding the optimal Bayesian Network structure for a
dataset is NP-complete [17]. This forces the use of heuris-
tics, of which there are two main approaches. The first
approach is search and score, which searches through the
set of possible structures and scores them according to
some metric, eventually choosing the highest scoring model
found during the search (e.g. [18]). The second approach
is constraint identification, which uses statistical indepen-
dence tests to identify edges to place in the final graph
(e.g. [19]). To learn the structure of our LGNs, we use a
hybrid constraint and search based approach (e.g. [20]). Such
approaches build a skeleton network that is refined with local
search to generate the final network. The skeleton network
contains edges between all vertices that cannot be shown to
be conditionally independent at an « confidence level.

During the constraint identification phase, the order in
which the conditional independence tests are performed
affects the structure of the skeleton. To order our tests,
we use the Fast Adjacency Search algorithm [21]. For
our conditional independence tests, we use the Fisher z-
transformation of the partial correlation coefficient.

After generating a skeleton, we create our final network
by using hill-climbing to orient and select edges. At each
step of the search, our moves are: remove an edge in the final
graph, add an edge that is in the skeleton to the final graph,
or reverse an edge in the final graph if the corresponding
edge in the skeleton is undirected. The search continues
until no moves result in a higher scoring network. We make
the assumption that the underlying structure of our data
is multivariate normal so that we can use BGe to score
our networks [7]. We expect to violate this assumption on
most datasets, and rely on ensembling to increase predictive
strength.

The BGe score of a network with structure S (denoted
Bs) is

BGe(Bs) = p(Bs)p(D|Bs) (D

which, for a given dataset, is proportional to the likelihood
of the network given the training data. We use a uniform
prior for our prior probability p(Bg).



Figure 2. An ensemble of size 3 with 4 attributes per model. The possible
attributes are A,B,C,D,E, and Z. Z is the target variable and is in every
ensemble.

Once we have the structure of our network, we still need
to estimate the parameters (mean, variance, and weights) for
the linear Gaussians at each vertex. Parameter estimation of
LGNS is done by linear least-squares regression [22]. Given
a network structure and a set of training data, we traverse the
graph in topological order. For each vertex visited, the effects
of all parent vertices are subtracted out via least-squares
regression, and then the mean and variance are computed
from the residuals.

With both the structure and the parameters, we are able to
perform inference to predict values given a test example. In
general, exact inference in Bayesian networks is hard [23].
Fortunately, exact inference in LGN is tractable, because a
LGN is a multivariate Gaussian distribution [24].

C. Ensembled Continuous Bayesian Networks

A single LGN can only represent linear relationships.
Ensembling can be used to increase the robustness and
predictive strength as well as to represent non-linear rela-
tionships. Our approach, Ensembled Continuous Bayesian
Networks, is an ensemble of LGNs that can model non-
linear relationships. Similar to Utz, we draw inspiration from
Random Forests and improve ECBN’s performance by using
bagging and randomization [13] [25].

Bagging increases diversity in an ensemble by providing
a slightly different data set for each ensemble member. Each
member is trained on a bootstrap resampled set of data drawn
from the original training data. Randomization also increases
ensemble diversity by limiting the subset of variables used
by each model. ECBNs guarantee that the class variable is
in each component. Figure 2 shows a small ensemble built
with randomization. Combining bagging and randomization
creates more inter-model variance than conventional ensem-
ble learning, allowing for a more effective ensemble [25].

Given an ensemble of LGNs, how do we combine in-
dividual predictions in such a way that we can represent
nonlinear relationships? Each LGN can only represent linear
relationships, so a conventional linear combination of the
predictions will not help. A key insight is that, since each
component of our ensemble is a multivariate Gaussian, our
whole ensemble is a Gaussian mixture model (GMM).

Given that our ensemble is a GMM, we can utilize
Gaussian Mixture Regression (GMR) [26]. GMR is similar

to the aforementioned linear combination of the network
predictions, but each prediction is weighted by the likelihood
of that network given the test example. As the likelihood is
nonlinear, we have a nonlinear weighting, and are able to
represent nonlinear relationships.

More specifically, to perform regression we first need to
find component weights w; of the form:

i IN (X fhizy Dix
o) = NG e, B

k
Zl WjN(X; ,ujx, ij)
J:

2)

In the case of our networks, the weights 7; are uniform.

The predicted value v of a subset of random variables
X given a set of evidence X2 = x using Gaussian mixture
regression is

k
v=FEX1|X2=x] = Zwi(x)mi(x) 3)

where m;(x) is the mean vector of the i-th network condi-
tioned on x.

Because Equation 2 relies on evaluating the underlying
pdf of a network, it interacts poorly with randomization. If
a network is a poor predictor for a given test example, the
network may still evaluate to a high likelihood because of the
removal of variables by randomization. To fix this problem,
we learn weights for each network in our ensemble by ridge
regression [27]. Gven a vector of true target values t and
a matrix of each network’s predictions for every training
example V, we find our weights w by minimizing

[Vew — ]| + || Tx||?

where || - || denotes the Euclidean norm and T' is a user-
defined parameter. These weights differ from those used in
GMR in that these weights are not normalized.

To perform regression with our new weights, we augment
Equation 3 with the new ridge regression weights as follows

k
v= wi(x)mi(x)w; 4)
i=1

That is, we weight our predictions by both the ridge regres-
sion weights and the conventional GMR weights.

IV. EMPIRICAL RESULTS

The Storm Scale Ensemble Forecast (SSEF) dataset con-
sists of quantile values for the outputs of variables of 14
different meteorological models. Table I lists the meteo-
rological variables in the SSEF dataset. The variables that
come directly from the component models have three values
within the SSEF data: The 5th, 50th, and 95th percentile
value of the member outputs. The raw SSEF forecast is the
mean rainfall forecast across all 14 models. This data comes
from Gagne et al., where it was used for rainfall prediction
using various machine learning models [28].
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Figure 3. RMSE on the rainfall prediction task. Each line corresponds
to the number of attributes kept during randomization. The raw SSEF
RMSE is shown for comparison. Shaded area represents standard error.
Diamonds indicate a statistically significant improvement over the raw
SSEF performance.

1-hour accumulated precipitation
Composite reflectivity

2 m dew point temperature

1-hour maximum reflectivity

Mean sea level pressure

Surface-based Convective Available Potential Energy
Surface-based Convective Inhibition
Precipitable water

2 m air temperature

700 mv temperature

700 mb east-west wind

700 mb north-south wind

700 mb height

500 mv north-south wind

1-hour max upward vertical velocity
I-hour max downward vertical velocity

Table T
THE MODEL VARIABLES SAMPLED FROM THE SSEF RUNS. FROM [28]

Our goal is to predict the error in the hourly rainfall
forecast at a given timestep. By subtracting the predicted
error from the forecast, we can use ECBN to improve the
SSEF forecast. We focus on the forecast for the central plains
of the US from May 3rd 2010 to June 18th 2010. The model
outputs are at a 4km grid spacing.

A. SSEF Prediction

We compare our ECBN results to the RMSE of the raw
SSEF forecast. All experiments were run 30 times. Each run
left 10 days out (chosen randomly) as a test set and trained

on the other 24 days.

Each network was trained on 2000 training examples
(selected with bagging). This allows for quick training of
each individual network while still allowing the ensemble to
be trained on the whole dataset. Ridge regression weights
were learned using 10% of the total training set, selected
randomly.

We varied both the attributes per model and the size
of the ensemble. The significance cutoff for dependence
testing during structure learning (o) was set to 0.05. We
used a uniform structure prior for structure learning, and
uninformative priors for the prior mean and covariance
used during the BGe calculation. For ridge regression, we
used I' = 0.11I, where I is the identity matrix. This value
was determined by preliminary experiments performed with
ensembles of 100 models.

RMSE results are shown in Figure 3. We compare
ECBN'’s performance at every parameter setting to the raw
SSEF performance. However, as we are performing 45 tests,
we face a multiple comparisons problem. Aiming for a 5%
confidence level, we use Bonferroni correction, resulting
in a much lower @« = 0.05/45 = 0.0011. Using a one-
tailed t-test, we find that two parameter settings perform
significantly better than the raw SSEF prediction (3 attributes
and 100 models as well as 4 attributes and 50 models). From
these results, we conclude that ECBN performs best when
a number of simple models are combined, although the fact
that ensembles of size 200 never performed significantly
better than the raw SSEF prediction indicates that our choice
of I' is insufficient to prevent overfitting as the number of
models increases.

On the SSEF rainfall prediction task, Gagne et al. report
regression performance similar to ECBN’s performance us-
ing Random Forests (6.62 RMSE with 100 trees across all
forecast hours, whereas ECBN with 3 attributes and 100
models achieves an RMSE of 6.57) [28].

We perform a case study using data from May 20, 2010
at 0000 UTC. We first use a Random Forest trained to
estimate the probability of rainfall to determine what areas
are likely to receive rainfall, and then use ECBN to estimate
the amount of rainfall in these areas (see Gagne et al [28]
for a more detailed description of this process). For the case
study, we use 3 attributes and 100 networks. Figure 4 shows
the ECBN forecast across along with the raw SSEF forecast
and the true observed precipitation. Compared to the raw
SSEF forecast, the ECBN forecast overestimates the amount
of rainfall in the western portion of the central plains, but
detects rainfall in Missouri and Southeastern Oklahoma that
the raw forecast misses.

B. Variable Importance

We can also use ECBN to explore the relationships within
the SSEF dataset by computing variable importance, which
allows for analysis of which variables impact predictive
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Figure 4. Maps of raw SSEF prediction, ECBN prediction, and observed
rainfall at 20 May 2010 0000 UTC. Grayed regions represent areas that
ECBN was not trained on.

strength [25]. Variable importance is computed by evaluating
each component on its out of bag data, and then permuting
the values of one variable across the out of bag examples. We
recompute RMSE using this permuted data. The difference
between the permuted RMSE and the true RMSE is the
variable importance score. This procedure is repeated for
all variables. Higher variable importance scores indicate
that a variable is highly important in prediction. Similarly,
lower scores indicate that a variable is not as important in
prediction.

Variable
Max downward vertical velocity 5% | 12.6
Accumulated precipitation 50% | 12.5
Precipitable water 5% | 9.9
Radar quality index | 9.8
Precipitable water 50% | 9.0
Max downward vertical velocity 50% | 8.8
Surface-based CIN 5% | 8.4
Accumulated precipitation 5% | 8.4
Surface-based CAPE 95% | 7.9
Composite reflectivity 50% | 7.3

Z-Score

Table 11
ALL SIGNIFICANT VARIABLE IMPORTANCE SCORES FOR THE SSEF
DATA. 5%, 50%, AND 95% REFER TO THE PERCENTILE.

The variable importance results for the SSEF data are
shown in Table II. We compute the z-score for each attribute
by averaging each score across 1000 networks and dividing
by the standard error. We report the top 10 variables in
Table II. These significant variables include precipitable
water, CAPE, CIN, and reflectivity, indicating that ECBN
is using the atmospheric ingredients for storms to predict
rainfall. Accumulated precipitation is the SSEF forecast for
rainfall, and so its appearance as a significantly important
variable is expected. Our top variable importance results
differ from those reported by Gagne et al. for Random
Forests [28], where the most important variables included
East-West windspeed, North-South windspeed, temperature,
and mean sea-level pressure. This indicates that, while both
random forests and ECBN can perform well in the SSEF
domain, they utilize different information within the domain
when predicting rainfall.

V. CONCLUSION AND FUTURE WORK

We introduced Ensembled Continuous Bayesian Net-
works, an approach that allows for prediction of continuous
random variables and the discovery of important variables
for prediction. We have empirically shown on the SSEF data
that ECBN performs better than the raw SSEF prediction
for rainfall prediction, achieving results comparable to those
reported by Gagne et al. for Random Forests [28]. In other
work, we have applied ECBN to reflectivity prediction,
achieving better results than both climatology predictions
and the raw reflectivity forecast [15].

Temporal data is common, and the ability to use ECBN
to model temporal relationships would be useful. Dynamic
Bayesian Networks, that is, Bayes nets for temporal data, are
well studied. In particular, the BGe score of Linear Gaussian
Networks can also be used to score dynamic LGNs [29].
ECBN is able to incorporate dynamic networks into the
ensemble.

ECBN could be further extended by the use of hybrid



networks within the ensemble, and by learning network pa-
rameters with expectation-maximization. Additionally, part
of ECBN’s predictive strength comes from the differences
between individual components in the ensemble. However,
we also learn weights across the whole ensemble using ridge
regression, which means that the predictions of each compo-
nent are not actually independent of the other models in the
ensemble. Having all component predictions be independent
of one another would be ideal, but the weighting is necessary
for ECBN to achieve reasonable accuracies. To compensate,
we could create ensembles of ECBNs, which would allow
for each ECBN to predict independently of the other ECBN's
in the ensemble while still retaining the benefits of learning
individual network weights across a single ECBN.
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