
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

LEARNING ENSEMBLED DYNAMIC BAYESIAN NETWORKS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

SCOTT HELLMAN
Norman, Oklahoma

2012

LEARNING ENSEMBLED DYNAMIC BAYESIAN NETWORKS

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern (Chair)

Dr. Dean F. Hougen

Dr. Andrew H. Fagg

Dr. Ming Xue

c©Copyright by SCOTT HELLMAN 2012
All Rights Reserved.

Acknowledgments

I am no meteorologist, and this thesis deals extensively with meteorological

domains. David John Gagne II was my very patient source for answers to all

things meteorological, and also provided ample help with the SSEF dataset used

in Chapter 4. Branden Katona was also a source of help for meteorological con-

fusion. Thanks to both, as their help was instrumental in generating meaningful

empirical results.

Similarly, thanks to John Williams and Dave Ahijevych at the National Cen-

ter for Atmospheric Research (NCAR) for providing the Reflectivity dataset

used in Chapter 5, and for their help in working with the dataset and interpret-

ing the results.

The process of writing this thesis was greatly aided by the distraction of

terrible jokes, which Bradley Pirtle was kind enough to provide during the long

evenings in the lab. And on a similar note, thanks to Joshua Southerland for

the lunchtime conversations that gave me a reprieve from writing. Thanks to

Tristin Forbus for his encouragement, and for his remarkable tolerance of my

rambling 2 am emails.

And finally, thanks to my advisor, Amy McGovern, for her guidance and

support throughout the process of researching and writing this thesis.

This material is based upon work supported by the National Science Foun-

dation under Grant No. EPS-0919466.

iv

Some of the data for this project was provided by the Federal Aviation

Administration (FAA). Opinions, interpretations, conclusions, and recommen-

dations are those of the authors and are not necessarily endorsed by the United

States Government.

v

Table of Contents

Acknowledgments iv

List Of Tables vii

List Of Figures viii

Abstract x

1 Introduction 1

2 Background 3
2.1 Notation . 3
2.2 Bayesian Networks . 3
2.3 Dynamic Bayesian Networks . 8
2.4 Linear Gaussian Networks . 12
2.5 Ensembles . 20

3 Ensembled Dynamic Bayesian Networks 24
3.1 Prediction Using Ensembles of Dynamic

Bayesian Networks . 24
3.2 Variable Importance . 27
3.3 Edge Counts . 30

4 Improving Storm Scale Ensemble Rainfall Forecasts 31
4.1 Rainfall Prediction . 34
4.2 Variable Importance . 41
4.3 Edge Frequency Analysis . 41

5 Reflectivity, Vertically Integrated Liquid, and Echo Top Pre-
diction 44
5.1 Reflectivity Prediction . 46
5.2 Variable Importance and Edge Counts 55
5.3 Vertically Integrated Liquid . 56
5.4 Echo Top . 62

6 Conclusions and Future Work 66

Reference List 70

vi

List Of Tables

2.1 Probability distribution for p(Wet|Sprinkler, Rain, Season, Slippery).
From Pearl (2000) . 5

3.1 A portion of the Sprinkler training data. 29
3.2 Sprinkler data with Season permuted. 29

4.1 The model variables sampled from the SSEF runs. Adapted from
Gagne II (2012) . 33

4.2 Top 10 variable importance scores for the SSEF data. 10%, 50%,
and 90% refer to the percentile. 42

5.1 The variables in the Reflectivity dataset. (Forecast Hour 1) indi-
cates that the value is the previous hour’s forecast for the present
hour’s value. (Forecast) indicates that the variable has three val-
ues in the dataset, corresponding to forecast hour 1, forecast hour
2, and forecast hour 3. 45

5.2 Extra variables provided to the dynamic networks, in addition to
the current and previous hour’s values for all variables in Table
5.1. Maximum Reflectivity (1 hour old) is the true label for the
previous timestep. 46

5.3 Top 10 Variable Importance scores for the static Reflectivity do-
main. 56

5.4 Top 10 Variable Importance scores for the dynamic Reflectivity
domain. 57

5.5 Top 10 Variable Importance scores for VIL prediction. 61
5.6 Top 10 Variable Importance scores for echo top prediction. . . . 65

vii

List Of Figures

2.1 A Bayesian Network for the Slippery domain (Pearl 2000). Fig-
ure from Utz (2010) . 6

2.2 Example skeleton and final graphs, demonstrating hybrid struc-
ture learning. The final network does not necessarily contain all
edges in the skeleton, but will never contain edges that are not in
the skeleton. 7

2.3 An example Dynamic Bayesian Network. Figure 2.3(a) shows
a slice of the DBN, while Figure 2.3(b) shows the slice unrolled
over n timesteps. Rain at time 0 is the prior probability of rain.
Adapted from Russell and Norvig (2003). 10

2.4 An example linear Gaussian, showing N(x;µx + 2(y − µy), 1) as
the observed value y varies. 11

2.5 An example Linear Gaussian Network with values µA = 1, µB =
2, µC = 0, σA = 2, σB = 1, σC = 1, wAC = −0.5, and wBC = 2. 13

2.6 Example of a Multinet versus a traditional Bayesian Network.
Example adapted from Geiger and Heckerman (1996). 22

3.1 An ensemble of size 3 with 4 attributes per model. The possible
attributes are A,B,C,D,E, and Z. Z is the target variable and so
is in every ensemble. 25

4.1 Map showing locations and density of sampled datapoints in the
SSEF dataset. In this thesis, we focus on grid 2 (Adapted from
Gagne II (2012)). 32

4.2 RMSE for the SSEF domain without weighted prediction. Lines
correspond to models used per ensemble. Shaded area represents
standard error. 36

4.3 RMSE for the SSEF domain at various parameter settings with
least-squares weighted prediction. 37

4.4 RMSE for the SSEF domain at various parameter settings with
least-squares weighted prediction. Lines are attribute counts. . . 38

4.5 Maps of SSEF prediction, EDBN prediction, and observed rainfall
at 25 May 2010 0100 UTC. EDBN was trained on the middle
third of the US. 40

4.6 Edge graph of a subset of the attributes in SSEF. Edge thickness
indicates how often a pair of edges appeared in the ensemble, with
the thinnest being edges that occurred 90% of the time and thicker
edges occurring more frequently. 43

viii

5.1 RMSE for the static Reflectivity domain without least-squares
weighted prediction. Shaded area represents standard error. . . 48

5.2 RMSE for the static Reflectivity domain at various parameter
settings with least-squares weigted prediction. 49

5.3 RMSE for the static Reflectivity domain at various parameter
settings with least-squares weigted prediction. Lines are attribute
counts. 50

5.4 RMSE for the dynamic Reflectivity domain at various parameter
settings without least-squares weighted prediction. 51

5.5 RMSE for the dynamic Reflectivity domain at various parameter
settings with least-squares weighted prediction. 52

5.6 RMSE for the dynamic Reflectivity domain at various parameter
settings with least-squares weigted prediction. Lines are attribute
counts. 53

5.7 Edge graph of a subset of the attributes in the static Reflectivity.
Edge thickness indicates how often a pair of edges appeared in the
ensemble, with the thinnest being edges that occurred 90% of the
time and thicker edges occurring more frequently. 58

5.8 Edge graph of a subset of the attributes the dynamic Reflectivity
domain. 59

5.9 RMSE for VIL prediction. 61
5.10 Edge graph of a subset of the attributes used in VIL prediction. . 62
5.11 RMSE for echo top prediction. 63
5.12 Edge graph of a subset of the attributes used for echo top prediction. 64

ix

Abstract

We introduce Ensembled Dynamic Bayesian Networks (EDBN), an ensemble

approach to learning salient dependence relationships and to predicting values

for continuous temporal data. By training individual Bayesian networks on both

a subset of the data (bagging) and a subset of the attributes in the data (ran-

domization), EDBN produces models for continuous domains that can be used

to identify important variables in a dataset and to identify relationships between

those variables. We use linear Gaussian distributions within our ensembles, al-

lowing EDBN to handle continuous data while providing efficient network-level

inference. By ensembling these networks, we are able to represent nonlinear

relationships. EDBN can also be used to explore the properties of a domain,

both by counting how frequently two variables are found to be dependent upon

one another when creating networks, and by estimating the importance of each

variable for prediction.

We empirically demonstrate the effectiveness of EDBN on two meteorological

domains. The first is the Storm Scale Ensemble Forecast (SSEF), which contains

multiple meteorological model forecasts. We show that EDBN can be used to

combine these forecasts, resulting in rainfall prediction that is better than the

mean prediction. In the second domain, we demonstrate EDBN’s utility for

storm prediction, with empirical results showing that EDBN achieves better

prediction results than the model prediction and persistence prediction.

x

Chapter 1

Introduction

Random Forests, introduced by Breiman (2001), have been shown to perform

well in a variety of settings, such as genetics (Diaz-Uriarte and Alvarez de An-

dres 2006), astrophysics (Albert et al. 2008), and land use classification (Chan

and Paelinckx 2008). Recently, the Random Forest methodology has been suc-

cessfully applied to decision trees that are not traditional C4.5 trees (Supinie

et al. 2009; McGovern et al. 2010) and to discrete Bayesian Networks (Utz 2010).

Inspired by this success, this thesis develops ensembles of Bayesian Networks

that can handle continuous, temporal data, and that can be used to investigate

the dependence relationships that exist within a domain. Because a major bene-

fit of a Bayesian Network is its human-readability, and ensembles are inherently

difficult for humans to interpret, we also provide techniques for analyzing the

importance of variables within a domain and for analyzing common structural

features in the ensemble. We empirically demonstrate the effectiveness of our

Ensembled Dynamic Bayesian Networks (EDBN) on two real-world meteoro-

logical domains.

In Chapter 2, we provide the necessary background for the development

of EDBN, including an overview of Bayesian Networks, Linear Gaussian Net-

works, and the key features of Random Forests. Chapter 3 describes the details

of EDBN and develops an approach to prediction that allows EDBN to predict

1

nonlinear relationships. Chapters 4 and 5 present empirical results on two me-

teorological domains. Chapter 4 focuses on the Storm Scale Ensemble Forecast

data, where we use EDBN to combine individual meteorological model fore-

casts into a final forecast. Chapter 5 presents results for a storm prediction

task, comprised of reflectivity prediction, vertically integrated liquid prediction,

and echo top prediction. We demonstrate that EDBN performs well in both

of these domains. Finally, Chapter 6 contains concluding remarks as well as

avenues for future work.

2

Chapter 2

Background

2.1 Notation

We use capital letters to refer to random variables or sets of random variables,

such as A or X. We use bold to distinguish vectors and matrices from scalars,

and for a random variable A, A denotes a vector of values sampled from A,

while a denotes a single value sampled from A. We refer to the unconditional

mean of A as µA, and to the standard deviation of A as σA. For a set of random

variables X, ΣX denotes the covariance of X. For any vector or matrix, Ai

refers to the i-th value or row in the vector or matrix. ||A|| represents the

Euclidean norm of the vector A.

We represent a Gaussian distribution with mean µ and standard deviation

σ as N(µ, σ). The value of the Gaussian distribution with mean µ and standard

deviation σ at a point x is represented by N(x;µ, σ).

2.2 Bayesian Networks

Bayesian Networks provide a compact representation of a joint probability dis-

tribution as a directed acyclic graph (DAG) (Pearl 1988, 2000). Each vertex in

the graph corresponds to a random variable, and each edge in the graph corre-

sponds to a dependence relationship between two variables. Each vertex has a

3

corresponding local probability distribution associated with it. If the structure

of the network is specified by a domain expert, or if the structure is learned from

data under certain assumptions, edges can represent either causal relationships

or correlations (Pearl 2000). However, in general, if a structure is learned from

data, then edges only represent correlation.

To illustrate why Bayesian Networks are useful, consider the Slippery do-

main, from Pearl (2000). This domain contains five discrete random variables

related to (and including) the slipperiness of the ground. The full conditional

probability table is shown in Table 2.1, which shows the probability of the sur-

face being slippery for every possible value of the other variables. Even for this

small domain, the CPT is large (32 rows). In contrast, the Bayesian Network for

the Slippery domain (Figure 2.1) contains a total of 18 rows across all vertices.

However, compression is only one benefit of Bayesian Networks. Both the

underlying structure of a Bayesian Network and the parameters for the con-

ditional probability distributions at each vertex can be learned from training

data. Learning the structure of a Bayesian Network can help uncover important

relationships within a dataset, and with learned parameters, Bayesian Networks

can be used for prediction. However, finding the optimal structure for a dataset

is NP-complete, forcing the use of heuristics (Chickering 1996).

We describe structure learning next. We postpone the discussion on param-

eter learning until Section 2.4, as the details of parameter learning depend on

the type of probability distribution used at the vertices.

There are two main approaches to structure learning. The first approach is

search and score, which searches through the set of possible structures and scores

them according to some metric, eventually choosing the highest scoring model

found during the search (Heckerman et al. 1995; Geiger and Heckerman 1994;

4

P(Wet) Sprinkler Rain Season Slippery
1.00 On Yes Su Yes
0.99 On Yes Su No
1.00 On Yes Sp Yes
0.97 On Yes Sp No
1.00 On Yes Fa Yes
0.99 On Yes Fa No
1.00 On Yes W Yes
0.96 On Yes W No
0.99 On No Su Yes
0.58 On No Su No
0.99 On No Sp Yes
0.58 On No Sp No
0.99 On No Fa Yes
0.56 On No Fa No
1.00 On No W Yes
0.51 On No W No
0.94 Off Yes Su Yes
0.17 Off Yes Su No
0.93 Off Yes Sp Yes
0.13 Off Yes Sp No
0.93 Off Yes Fa Yes
0.13 Off Yes Fa No
0.94 Off Yes W Yes
0.13 Off Yes W No
0.25 Off No Su Yes
0.00 Off No Su No
0.26 Off No Sp Yes
0.00 Off No Sp No
0.27 Off No Fa Yes
0.00 Off No Fa No
0.25 Off No W Yes
0.00 Off No W No

Table 2.1: Probability distribution for p(Wet|Sprinkler, Rain, Season, Slippery).
From Pearl (2000)

5

Season

Pavement
Wet

RainSprinkler

Slippery

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W

Figure 2.1: Example Bayesian network for Slippery dataset
13

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W

Figure 2.1: Example Bayesian network for Slippery dataset
13

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W

Figure 2.1: Example Bayesian network for Slippery dataset
13

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W

Figure 2.1: Example Bayesian network for Slippery dataset
13

P(Wet) Sprinkler Rain

.99 On Yes

.80 On No

.30 Off Yes

.01 Off No

P(Slippery) Wet

.67 Yes

.02 No

P(Rain) Season

.04 Su

.37 Sp

.21 Fa

.35 W

P(Season)

.25 Su

.25 Sp

.25 Fa

.25 W

P(Sprinkler) Season

.33 Su

.20 Sp

.21 Fa

.03 W

Figure 2.1: Example Bayesian network for Slippery dataset
13

Figure 2.1: A Bayesian Network for the Slippery domain (Pearl 2000). Figure

from Utz (2010)

6

A

C

B

(a) Skeleton graph

A

C

B

(b) Final network

Figure 2.2: Example skeleton and final graphs, demonstrating hybrid structure

learning. The final network does not necessarily contain all edges in the skeleton,

but will never contain edges that are not in the skeleton.

Cooper and Dietterich 1992). The second approach is constraint identification,

which uses statistical independence tests to identify edges to place in the final

graph (Cheng et al. 2002; Spirtes et al. 2001; Pearl 2000). In this thesis, we

use a hybrid constraint and search based approach (Tsamardinos et al. 2006;

Fast et al. 2008). Such approaches build a skeleton network that is refined

with local search to generate the final network. Figure 2.2 shows a skeleton

network and the resulting final network. The skeleton network contains edges

between all vertices that cannot be shown to be conditionally independent at

an α confidence level (that is, that given our statistical testing assumptions, we

have an α chance of two vertices being conditionally independent when our test

results show that they are not conditionally independent). α is a user-defined

parameter.

During structure learning, the order in which the conditional independence

tests are performed affects the structure of the skeleton. This is because we not

only have to test every pair of verticies, but also every possible conditioning set,

7

that is, set of other variables to condition the two vertices on. To order our

tests, we use the Fast Adjacency Search (FAS) algorithm (Spirtes et al. 2001).

FAS generates a skeleton by iteratively looking for edges to remove for larger

and larger conditioning sets, until no larger sets are available. Algorithm 2.1

describes the details of FAS.

Once we have generated our skeleton network, which may contain both di-

rected and undirected edges, we need to transform it into our final network. We

use the hill-climbing approach used by Fast (2009). To generate a DAG, we

use hill-climbing in the space of possible network structures to identify a locally

optimal network structure. At each step of the search, the moves are: remove

an edge in the final graph, add an edge that is in the skeleton to the final graph,

or reverse an edge in the final graph if the corresponding edge in the skeleton

is undirected. The search continues until no moves result in a higher scoring

network. As the details of scoring a network depend on the distributions used

in the network, we discuss the scoring used in this thesis in Section 2.4.

Prediction using Bayesian Networks, also referred to as inference, is NP-hard

in the general case (Cooper 1990). Methods for approximate inference include

belief propagation (Pearl 1988), likelihood weighting (Fung and Chang 1989;

Shachter and Peot 1989), and Gibbs sampling (Geman and Geman 1984). We

describe how we perform inference with our networks in Section 2.4.

2.3 Dynamic Bayesian Networks

Temporal data has unique characteristics that can be modeled with a Bayesian

Network. A Bayesian Network that includes temporal variables is known as a

Dynamic Bayesian Network (DBN) (Dean and Kanazawa 1989). To faithfully

8

Algorithm 2.1: Fast Adjacency Search (FAS) (Spirtes et al. 2001). This
description of FAS is adapted from Fast (2009)

Input: D = Data, V = Variables, α = Confidence Level
Output: Skeleton Graph
//P contains dependent pairs of variables

P ← ∅
C ← Empty graph over V
//Begin by assuming everything is mutually dependent

for v1, v2 ∈ V do
P ← P ∪ {(v1, v2)}
Add edge (v1,v2) to C

end
//n is the size of the candidate conditioning sets

n← 0
while |P | > 0 do

for (v1, v2) ∈ P do
//Get neighbors of v1, excluding v2

adj ← Adjacencies(C, v1)\v2

////If there are fewer adjacent vertices than our

conditiong set size, then we have exhausted all tests

for this pair

if |adj| < n then
P ← P\{(v1, v2)}

end
//Check all possible conditioning sets

for S ⊂ adj s.t. |S| = n do
pV al← Conditional Independence Test (v1, v2, S,D)
if pV al > α then

// (v1 ⊥⊥ v2|S)
Remove edge between v1 and v2 in C
P ← P\{(v1, v2)}

end

end
n← n+ 1

end

end
return C

9

Rain t=0 Rain t=1

Umbrella t=1

(a) DBN Slice

Rain t=0 Rain t=1 Rain t=2

Umbrella t=1

. . .

Umbrella t=2

Rain t=n

Umbrella t=n

(b) Unrolled DBN

Figure 2.3: An example Dynamic Bayesian Network. Figure 2.3(a) shows a

slice of the DBN, while Figure 2.3(b) shows the slice unrolled over n timesteps.

Rain at time 0 is the prior probability of rain. Adapted from Russell and Norvig

(2003).

represent the true underlying joint probability distribution, a DBN requires an

nth-order Markov assumption to be made about the data, meaning that the

current state has edges to at most the n previous states. A slice of a DBN

is shown in Figure 2.3(a). By replicating the slice for each timestep under

consideration (referred to as unrolling the DBN), a DBN can be used to find

P (Xt|Yτ :t), where 1 ≤ τ ≤ t and the subscript indicates the timestep(s) under

consideration (Figure 2.3(b)). Through unrolling, a DBN can be used to predict

the value of a temporal variable, even if that variable is never directly observed.

Many common algorithms, including Kalman filters and Hidden Markov Models,

can be represented as DBNs (Ghahramani 1998).

DBNs have been extended to continuous-time as well (Nodelman et al. 2002).

However, in this thesis, we only consider discrete-time DBNs with a 1st order

Markov assumption and full knowledge of the previous timestep.

10

−5

0

5

−5−4−3−2−1012345

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Y

Linear Gaussian Distribution

X

f(
X

 |
Y

)

Figure 2.4: An example linear Gaussian, showing N(x;µx + 2(y−µy), 1) as the

observed value y varies.

11

2.4 Linear Gaussian Networks

Many domains feature continuous variables. For instance, consider rainfall pre-

diction. We are interested in the amount of rainfall, and are provided informa-

tion such as the temperature, wind speed, and dew point. None of these values

are discrete, and so cannot be directly used in conventional discrete Bayesian

Network. Fortunately, there are many ways to represent continuous probabil-

ity distributions in a Bayesian Network. Linear Gaussian Networks (LGNs)

are Bayesian Networks that use linear Gaussian distributions (Figure 2.4) to

represent the conditional probability distributions of the vertices (Geiger and

Heckerman 1994). Another approach for continuous variables is representing lo-

cal probability distributions as Gaussian mixture models (Friedman et al. 1998).

Another possible approach is to use kernel density estimation to estimate the

probability distribution, which requires storing all training data (Hofmann and

Tresp 1995; Pérez et al. 2009). Friedman and Nachman (2000) use Gaussian

process priors in Bayesian networks, which requires specifying a family of prior

covariances in order to learn a network.

LGNs are only capable of representing linear relationships. However, they

feature tractable exact inference and, when ensembled, the ensemble can be

viewed as a mixture of Gaussians. As we will discuss in Section 3.1, this allows

for our ensembles to handle nonlinear relationships. Additionally, LGNs can

be extended to create Dynamic Linear Gaussian Networks (Grzegorczyk and

Husmeier 2009). For these reasons, we use Linear Gaussian Networks in this

thesis.

12

A
μ=1 σ=2

C
μ=0 σ=1

-0.5

B
μ=2 σ=1

2

Figure 2.5: An example Linear Gaussian Network with values µA = 1, µB = 2,

µC = 0, σA = 2, σB = 1, σC = 1, wAC = −0.5, and wBC = 2.

Linear Gaussians provide a way of representing conditional distributions for

continuous variables. If the pdf of a random variable A with parents X is a

linear Gaussian, then given the values x of its parents the pdf takes the form

N

µA +

|X|∑
i=1

wi(xi − µXi
), σA

where w is a vector of weights. That is, a linear Gaussian is a univariate

Gaussian with a set standard deviation and a mean that is a linear combination

of an unconditional mean and the values sampled from the parent vertices.

To see how linear Gaussians can be used within a Bayesian Network, consider

the LGN A → C ← B (Figure 2.5). The following describes the conditional

probability distributions of the three vertices:

A ∼ N(µA, σA)

B ∼ N(µB, σB)

C ∼ N(µC + wAC(a− µA) + wBC(b− µB), σC)

13

where wAC is the weight of the edge between A and C. We learn the values for

µ, σ, and w during parameter estimation. The details of parameter estimation

appear later in this section.

As mentioned in Section 2.2, we generate a skeleton graph during structure

learning. To create such a skeleton graph, we need to be able to test the con-

ditional independence of two nodes in the graph. More specifically, we want

to test whether or not the correlation between two continuous variables A and

B given a third set of variables X is statistically significant when given N in-

dependent and identically distributed (i.i.d.) samples. To do this, we use the

Fisher z-transformation of the partial correlation coefficient ρAB·X. The partial

correlation coefficient is only useful for identifying independent variables when

we assume that the variables were generated by a multivariate Gaussian (Baba

et al. 2004). Since we are working within the framework of LGNs, we accept

this assumption.

To compute ρAB·X we use linear least squares regression to find wA and wB

such that both

||XwA −A||2

and

||XwB −B||2

are minimized. From these weights, we can find the residuals,

rA = XwA −A,

rB = XwB −B,

14

which indicate how much variance in the data for A and B cannot be accounted

for by the linear effects of X. These residuals allow us to compute the partial

correlation coefficient as follows:

ρAB·X =

N
N∑
i=1

rAirBi −
N∑
i=1

rAi
N∑
i=1

rBi√
N

N∑
i=1

r2
Ai

(
N∑
i=1

rBi

)2
√
N

(
N∑
i=1

rAi

)2 N∑
i=1

r2
Bi

(2.1)

ρAB·X indicates the strength and direction of the linear relationship between

A and B after removing the effects of X, and when combined with the Fisher

z-transformation:

z(ρAB·X) =
1

2
ln

(
1 +

1 + ρAB·X
1− ρAB·X

)
(2.2)

can be treated as a z-score for determining statistical significance (Fisher 1915).

Given the skeleton graph, we need to be able to score potential networks in

order to perform hill-climbing. We make the assumption that the underlying

structure of our data is multivariate normal so that we can use Bayesian metric

for Gaussian Networks having score equivalence (BGe) as our score (Geiger and

Heckerman 1994).

BGe is a metric calculated from the likelihood of a LGN given the training

data D. Given a LGN with structure S, our goal is to calculate p(BS|D), and

we can utilize Bayes’ Theorem to see that the likelihood of a network given a

dataset is

p(BS|D) =
p(BS)p(D|BS)

p(D)
. (2.3)

We note that for a given training set, p(D) is constant, and so we ignore

it in our calculations. p(BS) is our prior probability for the structure of our

network, and is specified by the user.

To compute p(D|BS), we must specify the following prior knowledge. µ0 is

the prior mean, and indicates our prior beliefs about the average values for the

15

variables in the dataset. T0 is the prior precision matrix (the precision matrix

is the inverse of the covariance matrix). This provides our prior knowledge of

the covariance of the variables in the dataset. µ0 and T0 are weighted by the

user’s confidence in their values, which we refer to as the equivalent sample size.

The equivalent sample size for µ0 is denoted ν, and the equivalent sample size

for T0 is denoted α.

We also define our posterior precision T1 as:

T1 = T0 + Σ̄ +
νm

ν +m
(µ0 − x̄)(µ0 − x̄)> (2.4)

where x̄ denotes the sample mean, Σ̄ denotes the sample covariance, and m

denotes the number of samples in D.

Given the above, the probability of the data given a complete LGN BSC
is:

p(D|BSC
) = (2π)−nm/2

(
ν

ν +m

)n/2
c(n, α)

c(n, α + 1)
|T0|α/2|T1|−(α+1)/2 (2.5)

where a complete LGN is a LGN with an edge between every vertex and c(n, α)

is defined as:

c(n, α) =

(
2αn/2πn(n−1)/4

n∏
i=1

Γ

(
α + 1− i

2

))−1

(2.6)

Equation 2.5 is very closely related to the multivariate t-distribution, and

arises because the sampling distribution of a single datapoint given a LGN

follows the multivariate t-distribution (Geiger and Heckerman 1994).

Given p(D|BSC
), the probability of the data given an arbitrary LGN is:

p(D|BS) =
N∏
i=1

p(DxiΠi |BsC)

p(DΠi |BSC
)

(2.7)

where DxiΠi is the data corresponding to the random variable xi and the parents

of xi in BS, and DΠi is the data corresponding to the parents of xi in BS.

16

Combing equation 2.3 with our knowledge that p(D) is constant, we define the

BGe score for a LGN with structure S as

BGe(BS) = p(BS)p(D|BS) (2.8)

Assessing meaningful priors in large domains is difficult, and so in this thesis

we use uninformative priors. We use a uniform prior for p(BS). We let α equal

the number of attributes in the network, and ν equal 1. These are the minimum

meaningful values for α and ν. We let µ0 be a zero vector and T0 be the identity

matrix.

Once we have the structure of our network, we still need to estimate the

parameters for the linear Gaussians at each vertex. Parameter estimation of

LGNs is done by linear least-squares regression (Bøttcher 2004). Given a net-

work structure and a set of training data, we traverse the graph in topological

order. For each vertex visited, the effects of all parent vertices are subtracted

out via least-squares regression, and then the mean and variance are computed

from the residuals.

Assume that we are given training data in the form of a vector A and a

matrix X containing N i.i.d. samples from a joint probability distribution over

A and X. The variables in X are the topological parents of A. Since we are

traversing in topological order, we already know µP for all P ∈ X.

To find our parameters, we first find X′ such that

X′ = X−

µX

...

µX

 ,

that is, such that X′ contains the values of X with the parent means subtracted

out. We then augment X′ with a constant column to allow for a constant factor

in our regression.

17

We can then compute the edge weights for this node by linear least squares

regression, minimizing:

||X′w −A||2,

where w contains the edge weights, and the weight on the constant factor is µA,

the unconditional mean of A.

Once we know the edge weights and the mean of A, we can compute the

variance of A. To do so, we compute the error vector E = X′w −A. Given E,

the variance σ2
A is

σ2
A =

N∑
i=1

(Ei − µA)2

N
.

By performing this estimation across the whole network in topological order,

we can estimate the parameters for every vertex in the network.

With both the structure and the parameters, we are able to perform inference

to predict values given a test example. As mention in Section 2.2, exact inference

is hard in the general case. Fortunately, exact inference in LGNs is tractable,

because a LGN is a multivariate Gaussian distribution (Shachter and Kenley

1989).

Shachter and Kenley (1989) first described the conversion from a LGN to

a covariance representation. Our description here more closely follows the de-

scription provided by Heckerman et al. (1995). Given a topological ordering of

the nodes in BS, we can find the precision matrix for BS through a recursive

formula (the precision matrix is the inverse of the covariance matrix). Let vi

correspond to the variance of the ith node in the topological ordering, and bi,j

correspond to the weight on the edge between nodes i and j (with a weight

of 0 if no edge exists). Let W (i) denote the i × i upper left sub matrix of

18

the precision matrix W and bi denote the row vector (b1,i, · · · , bi−1,i). We can

recursively construct W with the following formula:

W (i) =

 W (i− 1) +
b>
i bi

vi
−b>

i

vi

−bi

vi

1
vi

 , (2.9)

where W (1) = 1
v1

. We can then find our covariance matrix Σ by inverting W.

The elements of the mean vector µ in our covariance representation are the

means of the corresponding nodes in the network.

To perform inference, we need to be able to marginalize over random vari-

ables that we are not interested in, and to condition on evidence variables.

Once we have our network in covariance form, we are able to marginalize and

condition easily. Marginalizing a Gaussian involves dropping the corresponding

elements from the mean vector and the corresponding rows and columns from

the covariance matrix. More precisely, given a vector X = (X1X2) such that

(X1X2) ∼ N(µ,Σ) where

µ =

µ1

µ2

and

Σ =

Σ11 Σ12

Σ21 Σ22

 ,

marginalizing over the set of random variables X2 results in a Gaussian distri-

bution of the form:

N(µ1,Σ11), (2.10)

Similarly, conditioning a Gaussian distribution also results in a Gaussian

distribution. Given the same µ, Σ, and X2 as above, conditioning N(µ,Σ) on

X2 results in a distribution

N(µX1|X2 ,ΣX1|X2)

19

where

µX1|X2 = m(X2) = µ1 + Σ12Σ22
−1(X2 − µ2) (2.11)

and

ΣX1|X2 = Σ11 −Σ12Σ22
−1Σ21. (2.12)

With the ability to marginalize and condition, and given a set of target

variables V, a set of variables to ignore Z, and a set of evidence X, we are

able to perform inference. Inference requires conditioning the network on X

and then marginalizing over Z, which then leaves only the variables in V in the

network. Since marginalization just removes elements from the mean vector,

the expected value of V is m(X)V , which are the corresponding elements in the

conditioned mean vector. The fact that we never use the values of Z during

inference means that LGNs are capable of making predictions even when some

data are missing.

2.5 Ensembles

Ensembles have proven to be a powerful method in machine learning (Diet-

terich 2000). By training many models and combining their predictions (for

instance, by averaging), this ensemble prediction will be more accurate than

any of the individual ensemble components, assuming the individual compo-

nents are better predictors than a random predictor (Dietterich 2000). More

sophisticated approaches aim to reduce the correlation between the errors of in-

dividual components. For example, boosting creates an ensemble by iteratively

training individual models, reweighting the training data after each iteration to

focus more heavily on examples that were predicted incorrectly by the previous

model (Freund and Schapire 1995).

20

Breiman (2001) introduced Random Forests, which trains ensembles of de-

cision trees using both bagging and randomization. Bagging alters the training

data for each component by sampling new training sets from the original train-

ing set with replacement (Breiman 1996). The bagged training set is the same

size as the original training set, but contains duplicates of some examples and is

missing others. The examples that are not contained in the resampled training

set are called “out-of-bag.” These out-of-bag examples can provide a validation

set at the component level. Bagging ensures that each individual component is

trained on a slightly different set of data.

In contrast to both bagging and boosting, randomization does not alter the

training set for different components. Instead, randomization involves train-

ing each component on a subset of the available features (Breiman 2001). The

number of features to use per component is a parameter. The class feature is

included in all components. The benefit of randomization is that it forces differ-

ent networks to focus on different relationships within the domain, by providing

each network with a different subset of the variables within the domain.

These approaches have been applied to Bayesian Networks. Liu et al. (2007)

present an approach for combining bagging and Bayesian Networks, but their

method ultimately results in a single network. Boosting has been applied to net-

works with a Näıve Bayes structure (that is, networks where the only edges are

from the class variable to the other variables) (Jing et al. 2008). Taking inspira-

tion from Random Forests, Utz (2010) combined bagging and randomization to

learn ensembles of discrete Bayesian networks. In this thesis, we also combine

bagging and randomization for learning ensembles of Bayesian Networks. Our

approach differs from Utz (2010) in that we model dynamic continuous variables

in our networks.

21

BadgeClothes

Label

(a) Full Network

BadgeClothes

Label

(b) Label=Worker

BadgeClothes

Label

(c) Label=Visitor or Spy

Figure 2.6: Example of a Multinet versus a traditional Bayesian Network. Ex-

ample adapted from Geiger and Heckerman (1996).

22

The Bayesian Multinet provides a different approach to creating ensembles

of Bayesian Networks (Geiger and Heckerman 1996). In contrast to conventional

ensembles, Multinets (Figure 2.6) learn a single network for different partitions

of the class label, such that each network corresponds to a disjoint subset of the

possible class values. To better illustrate the effect of this partitioning, consider

a domain in which we want to identify whether someone is a spy, worker, or

visitor, based on their clothing and whether or not they have a badge. Figure

2.6(a) shows a traditional Bayesian Network for this domain. Figures 2.6(b) and

2.6(c) form a multinet for this domain. If the value of Label is Worker, then

2.6(b) is the network used, and if the value of Label is either Spy or Visitor,

2.6(c) is the network used. In the multinet, we can see that the relationship

between badge and clothing only exists for workers, a fact which is hidden in

the full network.

Unlike a conventional ensemble, multinets have a natural probabilistic in-

terpretation, as the whole multinet corresponds to a single joint probability

distribution, and they can find different dependence relations between variables

for different class values. Multinets have been extended to handle temporal data

(Bilmes 2000).

23

Chapter 3

Ensembled Dynamic Bayesian Networks

A Linear Gaussian Network can only represent linear relationships. Further-

more, as discussed in Chapter 2, ensembling can improve predictive strength.

In this chapter, we show that by combining LGNs with ensembling, we can

create an ensemble of dynamic LGNs that is capable of representing nonlinear

relationships.

Similar to Utz (2010), we draw inspiration from Random Forests and improve

EDBN’s performance by using bagging and randomization (Breiman 2001). We

construct the individual LGNs of our ensemble in the manner described in

Section 2.4. The main issue we consider in this chapter is how to use EDBN for

prediction.

3.1 Prediction Using Ensembles of Dynamic

Bayesian Networks

Given an ensemble of LGNs, how do we combine individual predictions in such a

way that we can represent nonlinear relationships? One approach to combining

24

A

B Z

C E

B

Z

D

A

C Z

E

Figure 3.1: An ensemble of size 3 with 4 attributes per model. The possible

attributes are A,B,C,D,E, and Z. Z is the target variable and so is in every

ensemble.

predictions is to take the weighted average of the component predictions. For

EDBN, this would result in a predicted value v such that

v =

k∑
i=1

wimi(x)

k∑
i=1

wi

(3.1)

where wi represents the weight given to the i-th model and mi comes from

Equation (2.11). However, this is a linear combination of the component pre-

dictions, which are also linear. Thus, only linear relationships can be accurately

predicted using Equation (3.1).

In order to represent nonlinear relationships, we need a nonlinear weighting.

A key insight is that, since each component of our ensemble is a multivariate

Gaussian, our whole ensemble is a Gaussian mixture model (GMM).

A conventional GMM with M components has a probability density function

(pdf) of the form

f(x) =
M∑
i=1

πiN(x;µi,Σi)

25

where µi and Σi are the mean and covariance of the i-th Gaussian in the model,

and πi is the weight of the i-th Gaussian in the model. These weights must

satisfy
M∑
i=1

πi = 1

in order for f(x) to be a pdf.

Unlike a conventional GMM, EDBN does not have individual weights for its

networks. So the pdf of an EDBN is

f(x) =
1

M

M∑
i=1

N(x|x ∈ Bi;µi,Σi)

where (x|x ∈ Bi) refers to the subset of the random variables in the i-th network.

This pdf is equivalent to the pdf of a randomized GMM with uniform weighting

on its components.

Given that our ensemble is a GMM, we can utilize Gaussian Mixture Regres-

sion (GMR) (Sung 2004). GMR is similar to Equation (3.1), but each prediction

is weighted by the likelihood of that network given the test example. As the

likelihood is Gaussian, we have a nonlinear weighting, and are able to represent

nonlinear relationships.

More specifically, to perform regression we first need to find component

weights wi of the form:

wi(x) =
πiN(x;µix,Σix)
k∑
j=1

πjN(x;µjx,Σjx)

(3.2)

In the case of our networks, the weights πi are uniform.

Combining Equation (2.11) with Equation (3.2), the predicted value v of a

subset of random variables X1 given a set of evidence X2 = x using Gaussian

mixture regression is

v = E[X1|X2 = x] =
k∑
i=1

wi(x)mi(x) (3.3)

26

Because Equation (3.2) relies on evaluating the underlying pdf of a network,

we anticipate that it will interact poorly with randomization. If a network is

a poor predictor for a given test example, the network may still evaluate to

a high likelihood because of the removal of variables by randomization. To fix

this problem, we learn weights for each network in our ensemble by least-squares

regression. Given a vector of true target values t and a matrix of each network’s

predictions for every training example V, we find our weights ω by minimizing

||Vω − t||2

These weights differ from those used in GMR in that these weights are not

normalized.

To perform regression with our new weights, we augment Equation (3.3)

with the new linear regression weights as follows

v =
k∑
i=1

wi(x)mi(x)ωi (3.4)

That is, we weight our predictions by both the least-squares regression weights

and the conventional GMR weights.

For temporal data, Equations (3.3) and (3.4) can still be used. We unroll

the ensemble by unrolling each individual network.

In the next two chapters, we investigate whether prediction using Equation

(3.3) or (3.4) performs better.

3.2 Variable Importance

In addition to introducing Random Forests, Breiman (2001) described how to

use Random Forests to compute the importance of different variables for predic-

tion. This variable importance is computed by first evaluating each component

27

on its out of bag data, getting the RMSE of the true data (RMSEtrue). We

then permute the values of variable A across the out of bag examples and recom-

pute the RMSE on this permuted data (RMSEA). We then define the variable

importance score I to be

IA = RMSEtrue −RMSEA. (3.5)

This procedure is performed for all variables A of interest. Higher variable

importance scores indicate that a variable is highly important in prediction.

Similarly, lower scores indicate that a variable is not as important in prediction.

As an example of the permutation step, Table 3.1 shows a portion a dataset

inspired by the Sprinkler domain. Table 3.2 shows the same dataset with the

Season variable permuted.

Breiman and Cutler (2012) provides a procedure for testing the significance

of variable importance scores. This is done by converting the importance score

of a variable into a z-score,

zA =
IA

σ̄A/
√
nA

(3.6)

where σ̄A is the standard deviation of the importance scores for variable A, and

nA is the number of networks containing variable A. That is, the denominator

is the standard error of IA. Assuming that the networks are independent of

one another, we can treat zA as a typical z-score and perform hypothesis tests.

However, Strobl and Zeileis (2008) show that the power of this test procedure

decreases as the size of the out-of-bag set increases. Strobl et al. (2008) provide

a test procedure that remedies this problem, but is designed specifically for

decision trees and discrete variables. Fortunately, Strobl and Zeileis (2008) also

show that the power can be increased by increasing the number of networks,

28

Wet Sprinkler Rain Season Slippery
Yes On Yes Sp Yes
Yes Off Yes Su No
Yes On Yes Sp Yes
Yes Off Yes Fa Yes
Yes On Yes W No
No Off No Sp No
No On No Su No
No Off Yes Fa No
No Off No W Yes
No Off No Su No
No On No Su No
No Off No Su No
No Off No W No
No Off No Fa No

Table 3.1: A portion of the Sprinkler training data.

Wet Sprinkler Rain Season Slippery
Yes On Yes Fa Yes
Yes Off Yes Sp No
Yes On Yes Fa Yes
Yes Off Yes Sp Yes
Yes On Yes W No
No Off No Fa No
No On No Su No
No Off Yes Su No
No Off No Su Yes
No Off No Sp No
No On No Su No
No Off No Su No
No Off No W No
No Off No W No

Table 3.2: Sprinkler data with Season permuted.

29

thereby decreasing the standard error. For this reason, in this thesis, we use a

large number of networks for our variable importance significance testing.

We note that variable importance is performed on a network-by-network

basis, and does not involve the entire ensemble. For this reason, even if we are

predicting using weights learned from least squares regression (Equation 3.4),

our networks are independent for variable importance calculations, and we can

use this test procedure without violating its independence assumption.

3.3 Edge Counts

A benefit of Bayesian Networks is that they provide a human-readable model

that can provide insights into the underlying structure of a dataset. However,

ensembling and randomization make it harder to ascertain any underlying struc-

ture in the data. To compensate for this, we can take advantage of the large

number of networks EDBN generates to analyze how often certain edges appear.

The technique we use was first proposed by Utz (2010). Using all of the net-

works generated in an ensemble, we evaluate the importance of a relationship

between two variables A and B by computing the edge frequency

eAB =
fAB
nAB

(3.7)

where fAB is the number of edges between A and B in the ensemble and nAB

is the number of networks in the ensemble that contain both A and B. Given

e for all pairs of variables in the ensemble, we can construct an edge frequency

graph that contains all variables in the ensemble and contains an edge from A

to B if eAB is greater than a user-defined threshold.

30

Chapter 4

Improving Storm Scale Ensemble Rainfall

Forecasts

Rain is a common meteorological event, but it is also challenging to predict due

to the nonlinear spatial and temporal nature of rainfall and the large number

of factors that can affect it (Ebert 2001; Bremnes 2004). The consequences

of rainfall can range from inconvenience to destructive flash flooding, and im-

proving our ability to accurately forecast rainfall would help prevent the more

disastrous outcomes and help plan around the more annoying outcomes. In this

chapter, we investigate EDBN’s ability to improve upon Storm Scale Ensemble

Forecast (SSEF) rainfall predictions.

The SSEF dataset consists of quantile values for the outputs of variables of

different meteorological models. The SSEF data is provided by the Center for

the Analysis and Prediction of Storms (CAPS) (Xue et al. 2011; Kong et al.

2011). The dataset that we use in this chapter comes from Gagne II (2012).

A map showing where data were sampled from is shown in Figure 4.1. Table

4.1 lists the meteorological variables in the SSEF dataset. As in Gagne II (2012),

this dataset is built from the outputs of 14 meteorological models. The variables

that come directly from the component models have three values within the

SSEF data: the 10th, 50th, and 90th percentile value of the member outputs.

Percentiles are used to provide a more nuanced view of the distribution of the

31

Figure 4.1: Map showing locations and density of sampled datapoints in the
SSEF dataset. In this thesis, we focus on grid 2 (Adapted from Gagne II (2012)).

32

Variable Notes
1-hour accumulated precipitation Rainfall
Composite reflectivity
2 m dew point temperature Temperature at which condensation

would occur
1-hour maximum reflectivity
Mean sea level pressure
Surface-based Convective Available
Potential Energy (CAPE)

Indicator of atmospheric instability

Surface-based Convective Inhibition
(CIN)

Indicator of atmospheric stability

Precipitable water Amount of water vapor in a column
of air

2 m air temperature
700 mb temperature
700 mb east-west wind
700 mb north-south wind
700 mb height
500 mb north-south wind
1-hour max upward vertical velocity Maximum downward wind speed
1-hour max downward vertical ve-
locity

Maximum upward wind speed

Table 4.1: The model variables sampled from the SSEF runs. Adapted from
Gagne II (2012)

33

data than the mean and variance would give, while still reducing the total

number of variables compared to using the raw model.

4.1 Rainfall Prediction

Our goal is to predict the true amount of rainfall given the SSEF forecast.

We aim to improve upon the raw SSEF forecast for rainfall by intelligently

combining the individual forecasts with EDBN. The SSEF data ranges from

May 3rd 2010 to June 18th 2010, except for weekends. The model outputs are

at a 4km grid spacing. We focus on the forecast for the central plains of the

US, due to the prevalence of rainfall events occurring there.

Due to the large amount of data in the SSEF dataset, we train each individ-

ual network on a small, random portion of the data, the size of which we vary

in our experiments. We also vary the number of attributes in each network, up

to 10 variables per network, as well as the number of models in the ensemble,

from 1 to 200. To discover whether Gaussian Mixture Regression (Equation

(3.3)) or Gaussian Mixture Regression with learned weights (Equation (3.4))

performs better, we perform prediction using both. For learning weights with

least-squares regression, we perform regression on one tenth of the total training

set. The significance cutoff for dependence testing during structure learning, α,

was set to 0.05.

We compare our EDBN results to a mean predictor that guesses the mean

rainfall amount. We evaluate model performance using root mean squared error

(RMSE). All experiments were executed 30 times. Each run left 10 days out

(chosen randomly) as a test set and trained on the other 24 days.

34

Results for prediction without learned weights are shown in Figure 4.2. En-

sembles of size 1 perform poorly, and their performance degrades as the number

of attributes increases. We hypothesize this is because the single LGN is trying

to represent non-linear relationships, but when given only a few attributes, is

not able to do much more than guess the mean. As the number of attributes

increases, a LGN is capable of representing more complex linear relationships,

which fail to properly fit the non-linear nature of the SSEF dataset. The dif-

ference between the other ensemble sizes is much less stark, and all follow a

general trend of improved performance that levels off as the number of attribute

increases. Increasing the number of training examples given to each network

greatly impacts the performance of ensembles of size 1, and slightly improves

the performance of other ensembles sizes.

Results for prediction with learned weights are shown in Figures 4.3 and

4.4 (Figure 4.4 places the model count on the x-axis and plots each attribute

count as a line, to better illustrate performance at different attribute counts).

Ensembles of size 1 perform comparably to the non-weighted results, which is

expected since weighting does nothing if there is only one model. Performance

degrades across all ensemble sizes greater than 1 as the number of attributes is

increased. This is due to overfitting in the weight learning step. We hypothesize

that models of size 2 perform best because their lack of complexity reduces

the ability for the weights to overfit. For larger ensemble sizes, in particular

200, increasing the number of training examples given to each network hurts

performance. This agrees with our hypothesis that our best performance occurs

when we ensemble many weak models.

As our results indicate that overfitting is an issue with the least-squares

weighting, we hypothesize that an approach that includes regularization, such

35

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(c) 2000 Training Examples per Network

Figure 4.2: RMSE for the SSEF domain without weighted prediction. Lines

correspond to models used per ensemble. Shaded area represents standard error.

36

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

1
25

50
100

200
Mean

EDBN Performance: Rainfall Prediction

(c) 2000 Training Examples per Network

Figure 4.3: RMSE for the SSEF domain at various parameter settings with

least-squares weighted prediction.

37

1 25 50 100 200
Models per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

2
3
4

6
8

10
Mean

EDBN Performance: Rainfall Prediction

(a) 100 Training Examples per Network

1 25 50 100 200
Models per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

2
3
4

6
8

10
Mean

EDBN Performance: Rainfall Prediction

(b) 1000 Training Examples per Network

1 25 50 100 200
Models per Network

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

R
M

S
E

2
3
4

6
8

10
Mean

EDBN Performance: Rainfall Prediction

(c) 2000 Training Examples per Network

Figure 4.4: RMSE for the SSEF domain at various parameter settings with

least-squares weighted prediction. Lines are attribute counts.

38

as ridge regression, would reduce the overfitting (Hoerl and Kennard 1970). We

discuss regularization further in our future work (Chapter 6)

We compare EDBN across all parameter settings to the mean predictor.

However, we face a multiple comparisons problem because we have 90 distinct

parameter settings for both prediction methods. Aiming for a 5% confidence

level, we use Bonferroni correction, resulting in a much lower α = 0.05/90 =

0.00056. Significant parameter settings are marked in Figures 4.2, 4.3, and 4.4

with diamonds. Using a two-sample one-tailed t-test, we find that only weighted

prediction with 200 models, 2 attributes, 100 training examples performs sig-

nificantly better than the mean predictor.

We compare our best weighted parameter setting (200 models, 2 attributes,

100 examples) to our best unweighted predictor (200 models, 10 attributes, 1000

training examples) using a two-sample one-tailed t-test with α = 0.00056 and

find that they are not significantly different (p = 0.02).

We therefore conclude that, for this domain, weighted predictions can per-

form significantly better than guessing the mean when many weak LGNs are

ensembled, and that we can draw no conclusions about the relative performance

of unweighted prediction.

Similar to Gagne II (2012) we perform a case study using data from May 25,

2010 at 0100 UTC. Figure 4.5 shows the EDBN forecast across along with the

median SSEF forecast and the true observed precipitation. The EDBN forecast

underestimates the rainfall in the southern plains, and overestimates the rainfall

in the northern plains. EDBN also estimates large areas of very slight rainfall,

which is an effect that Gagne II (2012) notes in his regression work and resolves

by combining regression with a classification algorithm to determine whether or

not the regression model applies to a given location.

39

Figure 4.5: Maps of SSEF prediction, EDBN prediction, and observed rainfall

at 25 May 2010 0100 UTC. EDBN was trained on the middle third of the US.

40

4.2 Variable Importance

The variable importance results for the SSEF data are shown in Table 4.2.

We sort by z-score rather than raw score, so scores should be interpreted as

a measure of confidence that the variable impacts predictive abilities, rather

than as a measure of how much a variable impacts predictive abilities. The top

five variables are downward vertical velocity, composite reflectivity, maximum

reflectivity, surface-based convective available potential energy, longitude, and

accumulated precipitation. These results indicate that EDBN is using the atmo-

spheric ingredients for storms to predict rainfall. The accumulated precipitation

forecast is in the top ten variables, but EDBN is using the 90th percentile value

for it, indicating that EDBN is compensating for low SSEF precipitation fore-

casts. Our variable importance results are similar to those reported by Gagne II

(2012) for random forests.

4.3 Edge Frequency Analysis

We visualize the edge frequency graphically by creating a network that contains

edges between all variables that were connected more than a user specified

percentage of the time. Figure 4.6 shows such a network for a subset of the

SSEF variables drawn from Table 4.2, with edges between variables that were

connected more than 90% of the time. We can quickly see that edges are

common in this domain, as even at a 90% threshold many edges remain in the

edge graph. Of particular note is that longitude is not frequently connected

to any of the other variables, despite appearing in the variable importance

analysis, and that surface-based Convective Available Potential Energy (CAPE)

is only connected to rain. Other than CAPE and downward vertical velocity,

41

Variable z-score

Downward Vertical Velocity 10% 21.4

Composite Reflectivity 90% 20.3

Maximum Reflectivity 90% 19.8

Upward Vertical Velocity 90% 16.0

Downward Vertical Velocity 50% 14.1

Surface-Based CAPE 90% 10.8

Longitude 10.0

Composite Reflectivity 50% 9.7

Accumulated Precipitation 90% 9.6

Downward Vertical Velocity 90% 8.8

Table 4.2: Top 10 variable importance scores for the SSEF data. 10%, 50%,

and 90% refer to the percentile.

42

Rain

Down Vertical Velocity 10

Maximum Refl. 90

Up Vertical Velocity 90

Down Vertical Velocity 50

Surface-based CAPE 90

Down Vertical Velocity 90

Composite Refl. 90

Longitude

Composite Refl. 50

Accumulated Precip 90

Figure 4.6: Edge graph of a subset of the attributes in SSEF. Edge thickness

indicates how often a pair of edges appeared in the ensemble, with the thinnest

being edges that occurred 90% of the time and thicker edges occurring more

frequently.

accumulated precipitation and rain are connected to the same variables, as we

would expect given that accumulated precipitation is the forecast value for rain.

43

Chapter 5

Reflectivity, Vertically Integrated Liquid, and

Echo Top Prediction

Severe storms bring with them the threat of economic loss as well as the loss of

human life. From 1995 to 2000, an average of 70 people were killed each year due

to lightning or hail, and the average annual economic loss due to lightning and

hail was $976 million (Pielke Jr and Carbone 2002). Our ability to understand

and predict storms is of great importance in reducing these numbers. In this

chapter, we focus on EDBN’s ability to predict reflectivity, and also investigate

EDBN’s ability to predict two other meteorological values: vertically integrated

liquid (VIL) and echo top. VIL is a measure of the total amount of liquid in a

column of air, and echo top is the highest altitude with a reflectivity of 18 dBZ

or higher.

The Reflectivity domain focuses on the prediction of composite reflectivity

based on a number of meteorological forecasts. In this domain, we have access

to the predictions and true reflectivity of the previous timestep, so we are able

to use the dynamic aspect of EDBN. Table 5.1 shows the full set of variables

in the Reflectivity domain. Some additional fields are added for the dynamic

networks, corresponding to true values from the previous timestep for a small

number of measurements. These additional fields are shown in Table 5.2. The

Reflectivity data are hourly and covers the Continental United States from June

44

Variable Notes
Latitude
Longitude

Upward Long-Wave Radiation Flux
(Forecast)

Measure of infrared radiation from
surface reaching top of the atmo-
sphere

Surface Temperature (Forecast)

Sensible Heat Net Flux (Forecast)
Heat transfered from surface to at-
mosphere by convection

Relative Humidity (Forecast)

Precipitable Water (Forecast)
Amount of water vapor in a column
of air

Surface Pressure (Forecast)

Latent Heat Net Flux (Forecast)
Heat transfered from surface to at-
mosphere by evaporation

Planetary Boundary Layer Heigh
(Forecast)

Height at which atmosphere is not
directly affected by surface changes

Vertical Velocity (Forecast) Upward or downward wind speed
Downward Short-Wave Radiation
Flux (Forecast) Incoming solar radiation

Dew Point Temperature (Forecast)
Temperature at which condensation
would occur

Convective Inhibition (CIN) (Fore-
cast) Indicator of atmospheric stability
Convective Available Potential En-
ergy (CAPE) (Forecast) Indicator of atmospheric instability
1-Hour Accumulated Precipitation
(Forecast) Rainfall
Wind Speed (Forecast Hour 1)

Table 5.1: The variables in the Reflectivity dataset. (Forecast Hour 1) indicates

that the value is the previous hour’s forecast for the present hour’s value. (Fore-

cast) indicates that the variable has three values in the dataset, corresponding

to forecast hour 1, forecast hour 2, and forecast hour 3.

45

Maximum Reflectivity (3 hours old)

Maximum Reflectivity (2 hours old)

Maximum Reflectivity (1 hour old)

Maximum Reflectivity (1 hour old, motion adjusted)

MCS grid

MCS CI 20km

MCS CI grid plsmns1

Table 5.2: Extra variables provided to the dynamic networks, in addition to the

current and previous hour’s values for all variables in Table 5.1. Maximum

Reflectivity (1 hour old) is the true label for the previous timestep.

1st, 2011 to August 31, 2011. Model forecasts were sampled every 0.007 degrees

latitude and 0.007 degrees longitude.

Reflectivity that is greater than 0 dBZ is a rare occurrence within this

dataset. Approximately 95% of the Reflectivity data have reflectivity less than

or equal to 0, so we undersample these cases to achieve a rate of 80%. Due to

the large amount of data (approximately 50 million cases), we create our final

dataset of 250,000 examples via random sampling.

5.1 Reflectivity Prediction

For this domain, it is reasonable to expect knowledge of the true values from

the previous timestep before predicting the next timestep, and so we use our

networks to predict P (Xt|Yt ∪ Yt−1 ∪Xt−1).

As in the experiments in Chapter 4, we vary the number of examples used

to train each network, the number of attributes per network, and the size of

46

the ensembles, with 30 runs for each parameter setting. We again compare

Equations (3.3) and (3.4).

We compare our results to the mean predictor, which predicts the mean

reflectivity value, and the model reflectivity forecast, which predicts the forecast

reflectivity. For our dynamic networks, we also compare to the persistence

prediction, which predicts the previous timestep’s reflectivity.

Figure 5.1 shows the results for EDBN on the static Reflectivity domain

without least-squares weighting, and Figures 5.2 and 5.3 show the results for

weighted prediction (Figure 5.3 places the model count on the x-axis and plots

each attribute count as a line, to better illustrate performance at different at-

tribute counts). Figures 5.4, 5.5, and 5.6 show the unweighted and weighted

prediction results on the dynamic domain. As attribute counts are increased,

the performance of weighted prediction degrades, while the performance of un-

weighted prediction improves. Surprisingly, without least-squares regression,

single networks perform comparably to ensembles in this domain, both for static

prediction and dynamic prediction. Combined with the fact that weighted pre-

dictions do much better, this indicates that Gaussian Mixture Regression by

itself is not enough to model the nonlinear aspects of this domain.

As in Chapter 4, we use a one-tailed two-sample t-test with α = 0.00056 for

our statistical tests.

In the static domain figures (Figures 5.1, 5.2, and 5.3), parameter settings

that are significantly better than the model predictions are marked with a trian-

gle, and parameter settings that are significantly better than the mean predictor

are marked with a diamond. We find that almost all settings are significantly

better than the model predictions. The settings that are not significantly better

all occur at 10 attributes per network, indicating that performance is hurt when

47

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.1: RMSE for the static Reflectivity domain without least-squares

weighted prediction. Shaded area represents standard error.

48

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

8

9

10

11

12

13

14

15

R
M

S
E

1

25

50

100

200

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.2: RMSE for the static Reflectivity domain at various parameter set-

tings with least-squares weigted prediction.

49

1 25 50 100 200
Models per Network

7

8

9

10

11

12

13

14

15

R
M

S
E

2

3

4

6

8

10

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(a) 100 Training Examples per Network

1 25 50 100 200
Models per Network

7

8

9

10

11

12

13

14

15

R
M

S
E

2

3

4

6

8

10

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(b) 1000 Training Examples per Network

1 25 50 100 200
Models per Network

7

8

9

10

11

12

13

14

15

R
M

S
E

2

3

4

6

8

10

Mean

Model

EDBN Performance: Static Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.3: RMSE for the static Reflectivity domain at various parameter set-

tings with least-squares weigted prediction. Lines are attribute counts.

50

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.4: RMSE for the dynamic Reflectivity domain at various parameter

settings without least-squares weighted prediction.

51

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(a) 100 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(b) 1000 Training Examples per Network

2 3 4 6 8 10
Attributes per Network

4

6

8

10

12

14

R
M

S
E

1
25
50

100
200
Mean

Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.5: RMSE for the dynamic Reflectivity domain at various parameter

settings with least-squares weighted prediction.

52

1 25 50 100 200
Models per Network

4

6

8

10

12

14

R
M

S
E

2
3
4

6
8
10

Mean
Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(a) 100 Training Examples per Network

1 25 50 100 200
Models per Network

4

6

8

10

12

14

R
M

S
E

2
3
4

6
8
10

Mean
Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(b) 1000 Training Examples per Network

1 25 50 100 200
Models per Network

4

6

8

10

12

14

R
M

S
E

2
3
4

6
8
10

Mean
Persistence
Model

EDBN Performance: Dynamic Reflectivity Prediction

(c) 2000 Training Examples per Network

Figure 5.6: RMSE for the dynamic Reflectivity domain at various parameter

settings with least-squares weigted prediction. Lines are attribute counts.

53

EDBN attempts to represent complex relationships. Similar results are seen

when we compare to the mean predictor. For unweighted predictions, EDBN

does not perform significantly better than the mean predictor only at one model

or at low attribute counts. For weighted predictions, the behavior of one model

is the same, and non-significant results only occur large attribute counts. This

agrees with our hypothesis from Chapter 4 that increasing attribute counts leads

to overfitting when using weighted prediction.

We compare our best unweighted parameter setting (10 attributes, 50 mod-

els, and 2000 training examples) to our best weighted parameter setting (2

attributes, 200 models, and 2000 training examples) using a one-tailed two-

sample t-test and find that the weighted prediction performs significantly better

(p = 3× 10−11).

In the dynamic domain figures (Figures 5.4, 5.5, 5.6), parameter settings

that are significantly better than the model predictions are marked with a tri-

angle, and parameter settings that are significantly better than the persistence

prediction are marked with a diamond. For unweighted prediction, we find that

all parameter settings perform significantly better than the model prediction.

We also find that EDBN only performs significantly better than the persistence

prediction at higher attribute counts. For weighted prediction, we find that at

model counts higher than 25, all attribute counts higher than 3 do not per-

form significantly better than either the model prediction or the persistence

prediction. However, performance at 2 attributes is significantly better than

the persistence prediction at high model counts. This reinforces our hypothesis

that EDBN with weighted prediction overfits as model complexity increases and

indicates that some form of regularization is needed.

54

We compare our best unweighted parameter setting (10 attributes, 1 model,

and 2000 training examples) to our best weighted parameter setting (2 at-

tributes, 200 models, and 1000 training examples) using a one-tailed two-sample

t-test and find that the weighted prediction performs significantly better (p =

2× 10−8).

From these results, we conclude that for both the static and dynamic ver-

sion of the Reflectivity domain, EDBN performs well. Both the weighted and

unweighted predictions can perform better than the model predictions and per-

sistence predictions, but weighted prediction is the superior approach despite

the problematic overfitting.

5.2 Variable Importance and Edge Counts

We report the variable importance scores for networks of 10 attributes and 2000

samples, due to this parameter setting’s effectiveness at non-weighted predic-

tion. The top variables for static prediction are shown in Table 5.3. As we would

expect, the forecast reflectivity is among the top variables, as is precipitable

water. Similarly, the dynamic results (Table 5.4) are dominated by reflectivity.

The only non-reflectivity variable is upward long-wave radiation flux, which is

also found in the top scores for static prediction. This information, combined

with our above prediction results, verifies our natural expectation that knowl-

edge of previous reflectivity and reflectivity forecasts is important for predicting

current reflectivity.

The edge graphs for static and dynamic reflectivity prediction are shown in

Figures 5.7 and 5.8. As with our results in Chapter 4, these edge graphs are

55

Variable z-score

Composite Reflectivity (Forecast Hour 1) 24.0

Composite Reflectivity (Forecast Hour 3) 21.9

Upward Long-Wave Radiation Flux (Forecast Hour 1) 20.7

Composite Reflectivity (Forecast Hour 2) 20.0

Upward Long-Wave Radiation Flux (Forecast Hour 3) 16.2

Upward Long-Wave Radiation Flux (Forecast Hour 2) 16.0

Precipitable Water (Forecast Hour 1) 14.7

Wind Speed (Forecast Hour 1) 11.8

Precipitable Water (Forecast Hour 2) 11.6

Precipitable Water (Forecast Hour 3) 11.2

Table 5.3: Top 10 Variable Importance scores for the static Reflectivity domain.

almost complete. In both graphs, the observed reflectivity is fully connected to

the rest of the graph.

5.3 Vertically Integrated Liquid

In addition to the Reflectivity dataset, we also have observed Vertically Inte-

grated Liquid (VIL) values for the same time period. Since EDBN performs

well at reflectivity prediction, we anticipate that it will perform well at VIL

prediction as well, and at similar parameter settings.

We colocated the VIL values with the Reflectivity examples by nearest neigh-

bor. We ran a limited set of experiments to verify that EDBN performs well in

a similar domain to Reflectivity, and to investigate how the variable importance

56

Variable z-score

Motion Adjusted Reflectivity (1 Hour Old) (Previous) 27.9

True Reflectivity (2 Hours Old) 23.1

True Reflectivity (1 Hours Old) 20.0

Composite Reflectivity (Forecast Hour 2) 14.6

Composite Reflectivity (Forecast Hour 1) 13.7

True Reflectivity (3 Hours Old) 12.9

Upward Long-Wave Radiation Flux (Forecast Hour 1) 12.9

Composite Reflectivity (Forecast Hour 4) 12.4

Composite Reflectivity (Forecast Hour 3) 11.8

Upward Long-Wave Radiation Flux (Forecast Hour 2) 11.7

Table 5.4: Top 10 Variable Importance scores for the dynamic Reflectivity do-

main.

57

Observed Refl.

Composite Refl. 1

Composite Refl. 3

Up Long-Wave Rad. Flux 1

Composite Refl. 2

Up Long-Wave Rad. Flux 3

Up Long-Wave Rad. Flux 2

Precipitable Water 1

Precipitable Water 2Wind Speed 1

Figure 5.7: Edge graph of a subset of the attributes in the static Reflectivity.

Edge thickness indicates how often a pair of edges appeared in the ensemble,

with the thinnest being edges that occurred 90% of the time and thicker edges

occurring more frequently.

58

Observed Refl.

Motion Adjusted Refl. 1 (Previous)

2 Hour Old Observed Refl.

1 Hour Old Observed Refl.4 Hour Old Observed Refl.

Composite Refl. 2

Up Long-Wave Rad. Flux 1

Composite Refl. 3 (Previous)

Composite Refl. 3

Composite Refl. 1

Figure 5.8: Edge graph of a subset of the attributes the dynamic Reflectivity

domain.

59

and edge graphs compare to those for Reflectivity. We do not vary training set

size in these experiments, and instead fix it to 2000 examples.

Results for VIL prediction are shown in Figure 5.9. The best results occur

at 4 attributes per network with 200 networks, using weighted prediction. As

in our other results, overfitting can be seen in the weighted predictions as the

attribute count increases. Similar to our unweighted reflectivity results, the

difference between 1 model and 200 models is slight.

As both unweighted and weighted prediction achieve similar best perfor-

mance, we do not compare unweighted and weighted predictions to each other.

This gives 24 parameter settings, so we correct our α from 0.05 to 0.021. In Fig-

ure 5.9, diamonds indicate parameter settings that perform significantly better

than the mean predictor. We find that only one parameter setting performs

significantly better than the mean predictor: 200 models with 4 attributes per

model. From this we conclude that EDBN performs better than the mean pre-

dictor for VIL. However, our results also indicate that VIL prediction using the

Reflectivity dataset is difficult, as only one parameter setting does significantly

better and 1 model ensembles and 200 models ensembles perform comparably.

The variable importance results for VIL prediction are shown in Table 5.5.

All three values of precipitable water are present, which we would expect since

VIL measures the amount of liquid in a column of air and precipitable water

measures the amount of water vapor in a column of air. As in the reflectivity

experiments, composite reflectivity and upward long-wave radiation flux are

present. In light of the edge graph for VIL (Figure 5.10), upward long-wave

radiation in particular appears to be important. In the edge graph, it is the

only vertex that is connected to VIL, indicating that the relationship of the

other variables to VIL is more indirect.

60

2 3 4 6 8 10
Attributes per Network

1.5

1.6

1.7

1.8

1.9

2.0

R
M

S
E

1 200 Mean

EDBN Performance: VIL Prediction

(a) Unweighted Prediction

2 3 4 6 8 10
Attributes per Network

1.5

1.6

1.7

1.8

1.9

2.0

R
M

S
E

1 200 Mean

EDBN Performance: VIL Prediction

(b) Weighted Prediction

Figure 5.9: RMSE for VIL prediction.

Variable z-score

Upward Long-Wave Radiation Flux (Forecast Hour 2) 8.67

Upward Long-Wave Radiation Flux (Forecast Hour 1) 7.31

Composite Reflectivity (Forecast Hour 3) 6.71

Composite Reflectivity (Forecast Hour 1) 6.66

Upward Long-Wave Radiation Flux (Forecast Hour 3) 6.32

Composite Reflectivity (Forecast Hour 2) 5.58

Precipitable Water (Forecast Hour 2) 4.30

Precipitable Water (Forecast Hour 1) 4.21

Precipitable Water (Forecast Hour 3) 4.02

Surface Pressure (Forecast Hour 1) 3.61

Table 5.5: Top 10 Variable Importance scores for VIL prediction.

61

VILUp Long-Wave Rad. Flux 2

Up Long-Wave Rad. Flux 3

Up Long-Wave Rad. Flux 1

Composite Refl. 3

Composite Refl. 1

Composite Refl. 2

Precipitable Water 2

Precipitable Water 1

Figure 5.10: Edge graph of a subset of the attributes used in VIL prediction.

5.4 Echo Top

Finally, we also have observed echo top measurements for the time period of

the Reflectivity dataset. As before, we anticipate that EDBN will perform well

at echo top prediction. Data preparation and experimental design is the same

as in Section 5.3.

Results for echo top prediction are shown in Figure 5.11. Overfitting is once

again present in the weighted predictions, and the difference between weighted

and unweighted predictions is minimal for both weighted and unweighted predic-

tions. We follow the test procedure from Section 5.3, and we indicate significant

parameter settings with a diamond in Figure 5.11. However, we find that all

62

2 3 4 6 8 10
Attributes per Network

6000

6500

7000

7500

8000

R
M

S
E

1 200 Mean

EDBN Performance: Echo Top Prediction

(a) Unweighted Prediction

2 3 4 6 8 10
Attributes per Network

6000

6500

7000

7500

8000

R
M

S
E

1 200 Mean

EDBN Performance: Echo Top Prediction

(b) Weighted Prediction

Figure 5.11: RMSE for echo top prediction.

parameter settings, EDBN does not perform significantly better than the mean

predictor. As with VIL prediction, we conclude that echo top prediction using

the Reflectivity dataset is a difficult proposition.

Despite the poor predictive performance, we can still use EDBN to inves-

tigate how echo tops prediction compares to reflectivity and VIL prediction.

The variable importance results are shown in Table 5.6. Once again, composite

reflectivity, precipitable water, and upward long-wave radiation are all present.

The edge graph is shown in Figure 5.12. Similar to VIL, echo top is only directly

connected to the upward long-wave radiation flux vertices. Also of note is that

convective inhibition and longitude are both absent from the reflectivity and

VIL results, but present here, and in the edge graph they are connected only

to each other. This indicates that they have a direct, definite, but weak impact

on echo top prediction. Direct because they do not appear in the reflectivity

and VIL results, definite because they are among the top variable importance

scores for echo top, and weak because at the 90% threshold there is no edge

from either convective inhibition or longitude to echo top in the edge graph.

63

Composite Refl. 2

Up Long-Wave Rad. Flux 3

Up Long-Wave Rad. Flux 3

Up Long-Wave Rad. Flux 3

Composite Refl. 3

Precipitable Water 2

Composite Refl. 1

EchoTop

Convective Inhibition 3

Longitude

Figure 5.12: Edge graph of a subset of the attributes used for echo top prediction.

64

Variable z-score

Upward Long-Wave Radiation Flux (Forecast Hour 3) 16.2

Upward Long-Wave Radiation Flux (Forecast Hour 2) 15.1

Upward Long-Wave Radiation Flux (Forecast Hour 1) 14.4

Composite Reflectivity (Forecast Hour 2) 12.9

Composite Reflectivity (Forecast Hour 3) 12.5

Composite Reflectivity (Forecast Hour 1) 10.7

Longitude 9.0

Convective Inhibition (Forecast Hour 3) 6.3

Precipitable Water (Forecast Hour 2) 5.6

Precipitable Water (Forecast Hour 3) 5.3

Table 5.6: Top 10 Variable Importance scores for echo top prediction.

65

Chapter 6

Conclusions and Future Work

We introduced Ensembled Dynamic Bayesian Networks, an approach that allows

for the prediction of continuous random variables, the discovery of important re-

lationships in a dataset, and the discovery of important variables for prediction.

We have empirically shown that EDBN, in combination with learned weights on

the individual network predictions, performs well on two real-world meteorolog-

ical domains. We have also demonstrated that through variable importance and

edge graphs, EDBN provides insights into the dependence relationships within

a domain. EDBN is able to predict rainfall better than the mean predictor,

and is able to predict reflectivity better than the model predictions, the mean

predictor, and the persistence predictor. Our results indicate that EDBN is ca-

pable of performing well in large domains featuring many variables and complex

relationships between those variables.

Our current approach features learned weights that are prone to overfitting.

As discussed in the results, regularization is a likely solution to this problem

(Breiman 1998). Instead of using linear least-squares regression to learn our

weights, we could use ridge regression (Hoerl and Kennard 1970), LASSO re-

gression (Tibshirani 1994), or some other regularized method. These approaches

include extra terms when learning weights which penalize complex models. This

penalization helps to prevent overfitting to the training data.

66

As we have shown, EDBN handles continuous data with nonlinear relation-

ships well, but has no way of working with discrete random variables. Utz (2010)

demonstrated that discrete Bayesian Networks can be ensembled effectively, and

so a natural extension of EDBN would be to allow for hybrid networks. Hy-

brid networks are Bayesian Networks that contain both discrete and continuous

variables. However, this would come at the expense of more difficult structure

learning, parameter learning, and inference.

The fact that EDBNs are Gaussian Mixture Models suggests that expectation-

maximization (EM) could be used to learn the parameters of an EDBN. This

could eliminate the need for least-squares regression on the whole ensemble.

Preliminary work indicates that EM performs well on small datasets, but over-

fits on more complex domains. We hypothesize that this could be overcome by

learning ensembles of EDBNs trained with EM. Since EM learns all parameters

for an ensemble simultaneously, the individual networks become dependent on

one another. Ensembles of EM EDBNs would result in a top-level ensemble

that consists of independent models.

In this work, we performed structure learning by finding a skeleton with the

Fast Adjacency Search and then using hill-climbing to find a locally optimal

network that matched the skeleton. Many other structure learning algorithms

exist, and it would be interesting to see the effect of using other structure

learning techniques on the performance of EDBN. In preliminary work, we im-

plemented the Max-Min Hill Climbing algorithm (MMHC) (Tsamardinos et al.

2006), which resulted in worse prediction performance. While we did not per-

form full experiments, and thus cannot claim that FAS is better than MMHC for

EDBN, these results do indicate that the specific structure learning algorithm

can have a meaningful impact on prediction performance.

67

Finally, EDBN could be extended to include spatial information and rela-

tional information. Both domains discussed in this thesis implicitly included

spatial and relational information that we ignored. For example, we would

expect that the amount of rainfall in one location would be useful knowledge

for predicting the rainfall at a nearby location. Bayesian Networks have been

applied to spatial domains before (e.g., Dereszynski and Dietterich 2011), and

such an approach could be extended into an ensemble of networks. Knowledge

of relations, such as whether a storm is nearby another storm, is also useful.

Bayesian Networks that are capable of representing relationships have been de-

veloped (e.g., Maier et al. 2010; Jaeger 1997), and could also be ensembled in

the much same way that EDBN is.

68

Reference List

Albert, J., E. Aliu, H. Anderhub, P. Antoranz, A. Armada, M. Asensio, C. Baix-
eras, J. Barrio, H. Bartko, D. Bastieri, J. Becker, W. Bednarek, K. Berger,
C. Bigongiari, A. Biland, R. Bock, P. Bordas, V. Bosch-Ramon, T. Bretz,
I. Britvitch, M. Camara, E. Carmona, A. Chilingarian, S. Ciprini, J. Coarasa,
S. Commichau, J. Contreras, J. Cortina, M. Costado, V. Curtef, V. Danielyan,
F. Dazzi, A. D. Angelis, C. Delgado, R. de los Reyes, B. D. Lotto, E. Domingo-
Santamara, D. Dorner, M. Doro, M. Errando, M. Fagiolini, D. Ferenc,
E. Fernndez, R. Firpo, J. Flix, M. Fonseca, L. Font, M. Fuchs, N. Galante,
R. Garca-Lpez, M. Garczarczyk, M. Gaug, M. Giller, F. Goebel, D. Hakobyan,
M. Hayashida, T. Hengstebeck, A. Herrero, D. Hhne, J. Hose, S. Huber,
C. Hsu, P. Jacon, T. Jogler, R. Kosyra, D. Kranich, R. Kritzer, A. Laille,
E. Lindfors, S. Lombardi, F. Longo, J. Lpez, M. Lpez, E. Lorenz, P. Majum-
dar, G. Maneva, K. Mannheim, M. Mariotti, M. Martnez, D. Mazin, C. Merck,
M. Meucci, M. Meyer, J. Miranda, R. Mirzoyan, S. Mizobuchi, A. Moralejo,
D. Nieto, K. Nilsson, J. Ninkovic, E. Oa-Wilhelmi, N. Otte, I. Oya, M. Pan-
niello, R. Paoletti, J. Paredes, M. Pasanen, D. Pascoli, F. Pauss, R. Pegna,
M. Persic, L. Peruzzo, A. Piccioli, N. Puchades, E. Prandini, A. Raymers,
W. Rhode, M. Rib, J. Rico, M. Rissi, A. Robert, S. Rgamer, A. Sag-
gion, T. Saito, A. Snchez, P. Sartori, V. Scalzotto, V. Scapin, R. Schmitt,
T. Schweizer, M. Shayduk, K. Shinozaki, S. Shore, N. Sidro, A. Sillanp,
D. Sobczynska, F. Spanier, A. Stamerra, L. Stark, L. Takalo, P. Temnikov,
D. Tescaro, M. Teshima, D. Torres, N. Turini, H. Vankov, A. Venturini, V. Vi-
tale, R. Wagner, T. Wibig, W. Wittek, F. Zandanel, R. Zanin, and J. Za-
patero, 2008: Implementation of the random forest method for the imaging
atmospheric cherenkov telescope MAGIC. Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment , 588, 424 – 432.

Baba, K., R. Shibata, and M. Sibuya, 2004: Partial correlation and condi-
tional correlation as measures of conditional independence. Australian and
New Zealand Journal of Statistics , 46, 657–664.

Bilmes, J., 2000: Dynamic Bayesian multinets. Proceedings of the 16th Confer-
ence on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, UAI ’00, 38–45.

Bøttcher, S. G., 2004: Learning Bayesian Networks with Mixed Variables . Ph.D.
thesis, AALBORG University.

Breiman, L., 1996: Bagging predictors. Machine Learning , 24, 123–140.

69

—, 1998: Bias-variance, regularization, instability and stabilization. Neural Net-
works and Machine Learning , 27–560.

—, 2001: Random forests. Machine Learning , 45, 5–32.

Breiman, L. and A. Cutler, 2012: Random forests - classification manual.
URL http://www.math.usu.edu/ adele/forests/

Bremnes, J. B., 2004: Probabilistic forecasts of precipitation in terms of quan-
tiles using NWP model output. Monthly Weather Review , 132, 338–347.

Chan, J. C.-W. and D. Paelinckx, 2008: Evaluation of random forest and ad-
aboost tree-based ensemble classification and spectral band selection for eco-
tope mapping using airborne hyperspectral imagery. Remote Sensing of En-
vironment , 112, 2999 – 3011.

Cheng, J., R. Greiner, J. Kelly, D. Bell, and W. Liu, 2002: Learning Bayesian
networks from data: an information-theory based approach. Artificial Intel-
ligence, 137, 43–90.

Chickering, D. M., 1996: Learning Bayesian networks is NP-complete. Learning
from Data: Artificial Intelligence and Statistics V , Springer-Verlag, 121–130.

Cooper, G. F., 1990: The computational complexity of probabilistic inference
using Bayesian belief networks. Artificial Intelligence, 42, 393 – 405.

Cooper, G. F. and T. Dietterich, 1992: A Bayesian method for the induction of
probabilistic networks from data. Machine Learning , 309–347.

Dean, T. and K. Kanazawa, 1989: A model for reasoning about persistence and
causation. Computational Intelligence, 5, 142–150.

Dereszynski, E. W. and T. G. Dietterich, 2011: Spatiotemporal models for data-
anomaly detection in dynamic environmental monitoring campaigns. ACM
Transactions Sensor Networks , 8, 3:1–3:36.

Diaz-Uriarte, R. and S. Alvarez de Andres, 2006: Gene selection and classifica-
tion of microarray data using random forest. BMC Bioinformatics , 7, 3.

Dietterich, T. G., 2000: Ensemble methods in machine learning. International
Workshop on Multiple Classifier Systems , Springer-Verlag, 1–15.

Ebert, E., 2001: Ability of a poor man’s ensemble to predict the probability
and distribution of precipitation. Monthly Weather Review , 129, 2461–2480.

Fast, A., 2009: Learning the Structure of Bayesian Networks with Constraint
Satisfaction. Ph.D. thesis, University of Massachusetts Amherst.

70

Fast, A., M. Hay, and D. Jensen, 2008: Statistical power analysis for improved
learning Bayesian network structure.

Fisher, R. A., 1915: Frequency distribution of the values of the correlation
coefficient in samples from an indefinitely large population. Biometrika, 10,
507–521.

Freund, Y. and R. E. Schapire, 1995: A decision-theoretic generalization of
on-line learning and an application to boosting.

Friedman, N., M. Goldszmidt, and T. J. Lee, 1998: Bayesian network classifica-
tion with continuous attributes: Getting the best of both discretization and
parametric fitting. In Proceedings of the International Conference on Machine
Learning , Morgan Kaufmann, 179–187.

Friedman, N. and I. Nachman, 2000: Gaussian process networks. Proceedings
of the Sixteenth conference on Uncertainty in Artificial Intelligence, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, UAI’00, 211–219.

Fung, R. M. and K.-C. Chang, 1989: Weighing and integrating evidence for
stochastic simulation in Bayesian networks. Proceedings of the Fifth Annual
Conference on Uncertainty in Artificial Intelligence, North-Holland Publish-
ing Co., Amsterdam, The Netherlands, The Netherlands, UAI ’89, 209–220.

Gagne II, D. J., 2012: Machine Learning Enhancement of Storm Scale Ensemble
Precipitation Forecasts . Master’s thesis, University of Oklahoma.

Geiger, D. and D. Heckerman, 1994: Learning gaussian networks. Proceedings of
the Tenth international conference on Uncertainty in Artificial Intelligence,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, UAI’94, 235–
243.

—, 1996: Knowledge representation and inference in similarity networks and
Bayesian multinets. Artificial Intelligence, 82, 45 – 74.

Geman, S. and D. Geman, 1984: Readings in computer vision: issues, prob-
lems, principles, and paradigms. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, chapter Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images, 564–584.

Ghahramani, Z., 1998: Learning dynamic Bayesian networks. Adaptive Process-
ing of Sequences and Data Structures , Springer-Verlag, 168–197.

Grzegorczyk, M. and D. Husmeier, 2009: Non-stationary continuous dynamic
Bayesian networks. Advances in Neural Information Processing Systems 22 ,
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta,
eds., 682–690.

71

Heckerman, D., D. Geiger, and D. M. Chickering, 1995: Learning Bayesian net-
works: The combination of knowledge and statistical data. Machine Learning ,
197–243.

Hoerl, A. E. and R. W. Kennard, 1970: Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics , 12, 55–67.

Hofmann, R. and V. Tresp, 1995: Discovering structure in continuous variables
using Bayesian networks. Advances in Neural Information Processing Systems
8 , MIT Press, 500–506.

Jaeger, M., 1997: Relational Bayesian networks. Morgan Kaufmann, 266–273.

Jing, Y., V. Pavlović, and J. M. Rehg, 2008: Boosted Bayesian network classi-
fiers. Machine Learning , 73, 155–184.

Kong, F., M. Xue, K. W. Thomas, Y. Wang, K. Brewster, X. Wang, J. Gao, S. J.
Weiss, J. S. Kain, and J. Du, 2011: CAPS multi-model storm-scale ensemble
forecast for the NOAA HWT 2010 spring experiment. 24th Conference on
Weather Forecasting/20th Conference Numerical Weather Prediction Seattle,
WA, American Meteorological Society, PAPER 457.

Liu, F., F. Tian, and Q. Zhu, 2007: Ensembling Bayesian network structure
learning on limited data. CIKM ’07: Proceedings of the sixteenth ACM confer-
ence on information and knowledge management , Association of Computing
Machinary, New York, NY, USA, 927–930.

Maier, M., B. Taylor, H. Oktay, and D. Jensen, 2010: Learning causal models
of relational domains.

McGovern, A., D. John Gagne, II, N. Troutman, R. A. Brown, J. Basara, and
J. K. Williams, 2010: Understanding severe weather processes through spa-
tiotemporal relational random forests. Proceedings of the NASA Conference
on Intelligent Data Understanding , CIDU.

Nodelman, U., C. Shelton, and D. Koller, 2002: Continuous time Bayesian net-
works. Proceedings of the Eighteenth Conference on Uncertainty in Artificial
Intelligence (UAI), 378–387.

Pearl, J., 1988: Probabilistic reasoning in intelligent systems: networks of plau-
sible inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

—, 2000: Causality. Models, Reasoning, and Inference. Cambridge University
Press.

Pérez, A., P. Larraòaga, and I. Inza, 2009: Bayesian classifiers based on kernel
density estimation: Flexible classifiers. International Journal of Approximate
Reasoning , 50, 341–362.

72

Pielke Jr, R. and R. E. Carbone, 2002: Weather impacts, forecasts and policy:
An integrated perspective. Bulletin of the American Meteorological Society ,
393–403.

Russell, S. and P. Norvig, 2003: Artificial Intelligence: A Modern Approach,
Prentice-Hall, Englewood Cliffs, NJ, chapter Probabilistic Reasoning over
Time. 2nd edition edition, 537–583.

Shachter, R. and C. Kenley, 1989: Gaussian influence diagrams. Management
Science, 35, 527–550.

Shachter, R. D. and M. Peot, 1989: Simulation approaches to general probabilis-
tic inference on belief networks. Proceedings of the Fifth Annual Conference
on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc.,
UAI ’89, 209–220.

Spirtes, P., C. Glymour, and R. Scheines, 2001: Causation, Prediction, and
Search. The MIT Press, Cambridge, MA, USA, second edition.

Strobl, C., A.-L. Boulesteix, T. Kneib, T. Augistin, and A. Zeileis, 2008: Condi-
tional variable importance for random forests. Technical report, Department
of Statistics, University of Munich.

Strobl, C. and A. Zeileis, 2008: Danger, high power! - exploring the statistical
properties of a test for random forest variable importance. Technical report,
Department of Statistics, University of Munich.

Sung, H., 2004: Gaussian Mixture Regression and Classification. Ph.D. thesis,
Rice University.

Supinie, T., A. Mcgovern, J. Williams, and J. Abernethy, 2009: Spatiotemporal
relational random forests. Proceedings of the 2009 IEEE International Con-
ference on Data Mining (ICDM) workshop on Spatiotemporal Data Mining..

Tibshirani, R., 1994: Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society, Series B , 58, 267–288.

Tsamardinos, I., L. Brown, and C. Aliferis, 2006: The max-min hill-climbing
Bayesian network structure learning algorithm. Machine Learning , Kluwer
Academic Publishers, Hingham, MA, USA, volume 65, 31–78.

Utz, C., 2010: Learning Ensembles of Bayesian Network Structures Using Ran-
dom Forest Techniques . Master’s thesis, University of Oklahoma.

Xue, M., F. Kong, K. W. Thomas, Y. Wang, K. Brewster, J. Gao, X. Wang, S. J.
Weiss, A. J. Clark, J. S. Kain, M. C. Coniglio, J. Du, L. Jensen, and Y. H.

73

Kuo, 2011: CAPS realtime storm scale ensemble and high resolution fore-
casts for the NOAA hazardous weather testbed 2010 spring experiment. 24th
Conference on Weather Forecasting/20th Conference on Numerical Weather
Prediction Seattle, WA, American Meteorological Society, PAPER 9A.2.

74

