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Abstract—We introduce and validate Spatiotemporal Re-
lational Random Forests, which are random forests created
with spatiotemporal relational probability trees. We build
on the documented success of random forests by bringing
spatiotemporal capabilities to the trees, enabling them to
identify critical spatial, temporal, and spatiotemporal features
in the data. We validate our results on simulated data and real-
world convectively-induced turbulence data from a commercial
airline flying in the continental United States.

Keywords-Spatiotemporal data mining, Relational learning,
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I. INTRODUCTION

The contribution of this paper is the introduction of
spatiotemporal relational random forests (SRRFs). These are
random forests that directly handle spatiotemporal relational
data. Random forests as introduced by Breiman [1] use the
standard C4.5 decision trees [2] to create the individual trees,
with random sampling of data and splitting attributes. SRRFs
use spatiotemporal relational probability trees [3], which
are relational probability trees [4] that handle spatially and
temporally varying relational data.

This work is motivated by two real-world domains where
space and time are critical to effective understanding and
classification. The first domain is predicting convectively
induced turbulence (CIT) for aviation in North America.
CIT refers to turbulence generated from thunderstorms as
opposed to clear air turbulence or mountain wave turbulence.
Empirical data and modelling studies suggest that thun-
derstorms generate nearby turbulence on a short temporal
scale. Gravity waves and outflow winds may also produce
turbulence much farther away over a longer time scale [5],
[6], [7]. The second motivating domain is tornadoes and
severe thunderstorms. In both domains, attributes of the
weather vary over space and time and these spatiotemporal
relationships are critical for understanding and predicting
the evolution of the domain. In this paper, we apply SRRFs
to the turbulence domain but in separate work by some of
the authors [3], we are applying both SRPTs and SRRFs to
simulated tornadic storms.

Meteorologists study such data using high-level features
and the relationships between these features. For example,
in predicting CIT, the distance to the nearest thunderstorm
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and the intensity and relative altitude of that storm are
critical, along with other environmental features [6], [8]. By
focusing on the relational nature of the data, we maintain the
ability to reason both about attributes and about the critical
spatiotemporal relationships among the features themselves.

Random forests have been successful in a variety of
applications (e.g., [9], [10], [11], [12]) and are well ana-
lyzed and understood (e.g., [13], [14]). Prior work in the
turbulence domain demonstrated that random forests were
a promising approach [8], [15]. The SRRF approach differs
from many other methods in spatiotemporal analysis and
pattern discovery. One of the biggest differences is that we
use relational data, which enables us to find spatiotemporal
patterns at the object and relationship level. For example,
we can identify patterns involving the temporal changes in
spatial relationships such as two objects moving past each
other. Temporal relational data mining is a new area [3],
[16], [17] and the spatial component is relatively unexplored.
Another difference between our approach and other non-
relational spatiotemporal data mining methods such as [18],
[19], [20], [21], [22] is the focus on human-readable models.

II. APPROACH

Standard random forests are constructed by creating k
C4.5 trees, each of which is trained on a different subset
of the data and with a random subset of attributes at each
node. Each subset of the data is created by sampling a set
of size n with replacement from the original training set
of size n. For Spatiotemporal Relational Random Forests,
we use Spatiotemporal Relational Probability Trees (SRPTs)
[3]. SRPTs are probability estimation trees designed for
spatiotemporal relational data. They are an extension of
the Relational Probability Trees [4], which were designed
for static relational data. Probability estimation trees are
decision trees with probabilities at the leaf nodes.

The training data for SRPTs and SRRFs are represented
as a spatiotemporal attributed graph. The schema for our
data is shown in Figure 1. Objects are represented by
vertices in the graph and relations by edges. Both objects
and relations can have attributes associated with them. The
object types in our turbulence data are: aircraft, regions of
vertically integrated liquid (VIL), and regions of “rain”,
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Figure 1. Schema for the turbulence data. Objects are represented with
elipses and relations with lines and rectangles. Temporal attributes are
italicized.
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“convection” (thunderstorms), and ‘“hail” derived from a
composite radar reflectivity mosaic. Each of these can be
“nearby” or “containing” one another. The attributes on all
objects and relations except for the aircraft are temporal.
The aircraft has static attributes and the goal is to predict
the “turbulence label” attribute.

SRPTs are built using the standard greedy decision tree
approach with the chi-squared statistical test used to score
new nodes. As with the trees for standard random forests,
SRPTs are not pruned. At each decision node, an SRPT
asks a question about the spatiotemporal relational graph.
The questions cover a variety of spatial, temporal, and
spatiotemporal changes in the graph. Example questions
include “does a convective region exist nearby the aircraft?”
and “is there a hail region with area > 10 km? within 10
km of the aircraft?” The full set of question types can be
found in [3].

Because the search space for the set of possible questions
at each node is so large, the SRPTs are constructed by
stochastically sampling the set of all possible distinctions.
The number of samples is controlled through a user-specified
parameter. Although higher numbers of samples yield better
trees, the computational effort extracts a price in the training
time of the trees. This sampling parameter is similar to the
parameter in random forests that controls the number of
attributes examined by C4.5 for each node in a tree and
we treat it as such. We empirically examine the effect of
this parameter.

III. CONVECTIVELY INDUCED TURBULENCE

Pilots’ ability to avoid turbulence during flight affects the
comfort and safety of millions of airline passengers annually.
Of all weather-related commercial aircraft incidents, 65%
can be attributed to turbulence encounters, and major carriers

UA 757 flights on 4/8/2004

Figure 2. The geographical distribution of automated EDR measurements
from United Airlines 757 aircraft over a 24-hour period.

estimate that they receive hundreds of injury claims and
pay out “tens of millions” of dollars per year [23]. Among
the different types of turbulence, turbulence in and around
thunderstorms, which is termed convectively-induced turbu-
lence (CIT), may be responsible for over 60% of turbulence-
related aircraft accidents [24].

Mechanisms for the generation and propagation of CIT
are not currently well-understood by researchers. CIT is
commonly thought to be related to the proximity (vertical
and horizontal) to convection and to its intensity, depth and
extent, but is also known to propagate through gravity waves
that may break above or away from the storm [25]. This
may also be produced by anvil winds interacting with the
surrounding environment [7]. Due to these uncertainties,
Federal Aviation Administration (FAA) guidelines require
aircraft to circumnavigate thunderstorms by wide margins
both horizontally and vertically to mitigate the risk of
encountering dangerous turbulence, making large regions
of airspace unavailable to aircraft on days of widespread
convection.

An active area of research and development is the en-
hancement of the FAA’s clear-air turbulence forecast (Graph-
ical Turbulence Guidance; [23]) with in-cloud turbulence
detection and near-cloud turbulence diagnosis capabilities
[26], [15]. As part of this effort, random forests have been
used to evaluate the potential predictive value of numerical
weather prediction (NWP) model and observation data and
to develop an empirical model for producing high-resolution,
rapid-update, 3D probabilistic assessments of light, mod-
erate, and severe turbulence. This approach relies heavily
on using automated in situ turbulence measurements from
commercial aircraft to develop and calibrate the model. De-
spite some success using this approach, it is expected that an
improved methodology for the analysis and exploitation of
spatiotemporal relationships between turbulence and storm
characteristics and environmental features could provide
improved CIT prediction.

The high temporal and spatial resolution of in situ aircraft
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Figure 3. Distribution of binned 1-minute median (lower bar) and peak, i.e.

95th percentile, (upper bar) EDR (e%) values measured by United Airlines
Boeing 757 aircraft over a three month time period. The open circles
are estimates based on an assumed lognormal distribution with parameters
derived from an operational NWP model [27]. The difference may reflect
the ability of commercial air carriers to successfully avoid turbulence. Taken
from [23].

measurements of eddy dissipation rate (EDR, a measure
of turbulence), made every minute by some commercial
aircraft, make them good “truth” data for developing and
evaluating CIT prediction algorithms. Figure 2 shows the ge-
ographical distribution of EDR reports from United Airlines
over a 24-hour period. Elevated turbulence is a rare phe-
nomenon, however [23], and aircraft reports do not provide
representative sampling of the atmosphere. Figure 3 shows
the distribution of EDR measurements and a theoretical
distribution based on an analysis of numerical weather pre-
diction model output. The measured frequency of elevated
turbulence is lower than the theoretical estimate, presumably
because aircraft are able to use available forecasts and
pilot report information to avoid some turbulence. Thus,
these turbulence measurements likely represent primarily
unexpected turbulence encounters, making the prediction
problem even more challenging. The United EDR reports
consist of both a peak EDR and median EDR measured
over a one-minute time period, binned into one of seven
intensity bins that may be roughly characterized as repre-
senting null, light, light-to-moderate, moderate, moderate-to-
severe, severe, and extreme turbulence, respectively. For this
initial study, we consider the binary classification problem
of predicting whether turbulence is moderate-or-greater (bin
4 or higher). We use EDR measurements from a three month
period over the summer of 2007.

IV. DATA SETS

The BlobWorld is a simulated data set with spatiotem-
poral characteristics that we use as a test case. The world
consists of agents of two types randomly distributed on
a grid and a central agent whose type is unknown. The
grid and the number of agents are parameterized. For these
results, we used a 5 by 5 grid with 5 agents. All agents are
assigned a “type” attribute when they are created and all
agents have a “happiness” attribute, the value of which is
dependent on the inverse square of its distance from agents
of the same type. The central agent moves pseudo-randomly
on the grid, with a bias toward agents of its type, and updates
its happiness at each time step. The task of the random
forest is to determine the type of the central agent given
the spatiotemporal behavior of this agent with respect to
the other agents of known type. This is a difficult task but
particularly well suited to spatiotemporal models.

The turbulence data described above may be resampled
in multiple ways for use in the SRRFs: by distribution of
turbulence intensities, geographically, and by proximity to
convection. The overwhelming number of “no turbulence”
data points in the full data set would cause the algorithm to
achieve a 99% accuracy rate by exclusively predicting “no
turbulence.” In order to make a valid predictor for a rare
phenomenon, we rebalanced the data set to retain roughly
3% of the “no turbulence” EDR data points. To eliminate
other sources of turbulence, we used only data points within
the continental U.S. (CONUS), above 15000 ft in altitude,
and within 40 nautical miles of convection.

The graphs used a combination of meteorological vari-
ables collocated with the in sifu aircraft measurements
along with NWP model-based convective available potential
energy (CAPE), convective inhibition (CIN), Richardson
number, temperature, and composite radar reflectivity data
and radar-derived vertically-integrated liquid (VIL). The
“aircraft” object was given the attributes as shown in Fig-
ure 1. The “rain,” “convection,” “hail,” and “VIL” objects
were constructed from the composite reflectivity data by
the application of a simple threshold. “Rain” objects are
connected areas of radar reflectivity above 20 dBZ, likewise
“convection” objects above 40 dBZ, “hail” objects above 60
dBZ, and “VIL” above 3.5. The threshold values were chosen
because they are simple rules of thumb for categorizing
radar echoes. After applying the thresholds and retrieving
connected areas within 40 nautical miles, the attributes given
in Figure 1 were computed.

V. PRELIMINARY RESULTS

A. BlobWorld

We use BlobWorld to examine the effect of the main forest
parameters on the performance of the forest. We varied the
number of trees in the forest and the distinction sampling
rate. Forests of 10, 50, and 100 trees were used along
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Figure 4. Average AUC for BlobWorld as a function of sample size and
number of trees in the forest.

with sampling rates of 10, 100, 500, 1000, 2500, 5000,
and 10000 samples per tree node. For comparison, we also
examined the performance of an individual SRPT, varying
only the number of samples. Each combination of these
parameters was run 30 times and the area under the Receiver
Operating Characteristic (ROC) curve (AUC) was computed
and averaged over all the runs.

Figure 4 shows the results of varying the number of trees
in the forest and the number of samples for each tree. As
expected, performance of the forest and SRPT improves
as the number of samples used to grow the tree increases.
However, performance for all three forest sizes asymptotes
as the number of samples reaches approximately 1000. This
is to be expected, and similar behavior was observed for
standard random forests. [1].

Figure 4 also shows that the performance increases as a
function of the number of trees in the forest but that the gain
asymptotes as the forest gets larger and larger. We used a
single-tail paired #-test to compare the performance across
sets of parameters and we corrected the p-values using a
Bonferroni adjustment [28] to obtain an effective p-value
of 0.01. We compared the performance of forests of 10
and 100 trees and of the SRPT against the 100 tree forest.
The difference for both sets of comparisons is statistically
significant at all levels of sampling.

Figure 4 visually shows that the the two parameters (forest
size and sampling) both have an effect on performance,
which we verified statistically using an ANOVA test. As the
table shows, not only do the two individual parameters show
a statistically significant effect on the performance of the
algorithm, but there is a significant interaction effect between
the parameters. This is to be expected since the sampling
size improves the quality of the trees and the number of

Factor | Blob  Turbulence
Forest Size 0 0
Number of Samples 0 0
Forest Size X Samples 0 0.63

Table I
ANOVA P-VALUES FOR SIGNIFICANCE OF PARAMETER EFFECTS ON
THE SIZE OF THE FOREST AND THE NUMBER OF SAMPLES USED TO
BUILD THE TREES. STATISTICALLY SIGNIFICANT RESULTS ARE BOLDED.
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Figure 5. Average AUC for the subset of turbulence data over 30 runs as
a function of sample size and number of trees in the forest.

trees improves the size of the ensemble. We repeated the
ANOVA test for the performance of the individual SRPTs for
the number of samples and it was also statistically significant
(p = 0), which verifies the hypothesis that the performance of
the SRPTs improves as a function of the number of samples.

B. Turbulence

Our initial turbulence experiments used only a few vari-
ables and relations, all centered on the aircraft. The results
were not as promising as we would have liked so we exam-
ined the data and added additional meteorological variables,
an improved graph structure, including “contains” relations
and additional relationships between all objects (as opposed
to just those that centered on the aircraft), and we resampled
the data set to be more balanced. Because processing of
this data had not been completed by the time of final paper
submission, we ran the tests on 8 days of training data and
8 days of test data. This yielded 117 training graphs and
236 testing graphs. We varied the forest size from 10, 50,
and 100 and varied the sampling rates from 10, 100, 500,
and 1000. We also used sampling rates of 2500 and 5000
for the 10-tree forests and the SRPTs but could not do so
for the 500 and 100 tree forests due to time constraints.

Figure 5 shows the average AUC across 30 runs of the
SRREF on the turbulence data. The best performance is 0.68
with 10-tree forests at a sampling rate of 2500, which is



very promising. We theorize that the performance would be
better with higher numbers of trees and we are working on
these results currently. The unexpected jump in performance
at the highest levels of sampling is most likely due to the
difficulty of the problem. At lower levels of sampling, the
individual trees are unable to identify high quality concepts.

As with the BlobWorld results, higher sample sizes and
higher numbers of trees appear to have a positive effect
on the performance of the forest. We verified this effect
using the ANOVA test but, because ANOVA requires a full
matrix, we could only verify this up to 1000 samples. The
results of this test are given in Table I. We found that
both the sample size and the size of the forests have a
statistically significant effect, though in the turbulence world,
there is no statistically significant interaction between the
two parameters. This result was unexpected because it does
not correlate with the behavior of the BlobWorld results. We
theorize it is because of the low scores on the turbulence data
up to sampling sizes of 1000 and we expect that the addition
of the 50 and 100 tree forests at higher sampling values will
change this result.

We also compared the results of the forests with the per-
formance of a single SRPT. This comparison is also shown
in Figure 5. Using the Bonferroni adjusted p-value described
above and a single-tailed paired z-test, the performance of
the SRPT and the SRRF are statistically different for all
levels of sampling for the 10, 50 and 100 tree forests. This
performance includes the higher sampling values for the 10-
tree forest and the SRPT. We also compared the performance
of the 10 tree and 100 tree forests, repeating the same single-
tailed paired ¢-test with the Bonferroni adjusted p-value. The
test indicates that they are statistically significant for all
levels of sampling, meaning the performance of the 100 tree
forest is statistically better than the performance of the 10
tree forest.

Although the initial performance of the SRRFs on the
turbulence data was not as strong as on the BlobWorld data,
we believe the primary issues are lack of training data and
too few samples to produce a tree of reasonable quality.
Due to the size of the data, it takes a significant amount
of time to pre-process and we were not able to process
the entire three months of turbulence data in time for the
final publication of the paper. We expect that the results will
improve significantly with this final data and with additional
sampling and we are continuing this work.

VI. CONCLUSIONS

We have introduced Spatiotemporal Relational Random
Forests, a novel approach to random forests that enable the
forests to work with complex spatial and temporal relational
data sets. We demonstrated that the random forests are
a viable approach on the simulated BlobWorld data. We
focused on only a single real-world application domain but
we believe the applicability of this approach will be broad

and we are exploring a wide variety of additional real-world
applications in related work.

Our goal is to refine the SRRF model and incorporate
it into a CIT prediction algorithm designed to enhance
the FAA’s Graphical Turbulence Guidance capability. An
important consideration will be making the algorithm effi-
cient, which will require additional parameter exploration
and identification of the best parameters for predicting
CIT. Although we hand-picked meteorological variables for
inclusion in the SRRF in the current results, random forests
can be used to analyze the importance of various attributes
and variables. We are in the process of implementing this
importance analysis and expect that it will improve our abil-
ity to simplify the model by reducing the number of required
input variables, which will improve SRRF performance and
increase the applicability of the method.

One problem with decision tree approaches applied to
real-world data sets is the known brittleness of the tree-
based solutions [29]. Brittleness is defined as changes in
the tree with little to no parameter variation in the learning
algorithm. When applying these approaches to real-world
domains, domain scientists often are wary to trust the
answers of a such an approach. By moving to random
forests, the overall stability of the algorithm is improved as
well as the quality of the predictions. Although the ability
to analyze individual trees is diminished as the size of the
forest grows, approaches such as the importance analysis
increase the utility for domain scientists. In turn, this will
increase the applicability of the approach.

Another application for our future work is to expand the
prediction of turbulence from only CIT to other forms of
turbulence, such as clear air turbulence, which is expected
to be related to proximity to the jet stream and other
upper-level fronts and atmospheric features. Another path
we are exploring is to apply the SRRF to the thunderstorm
domain in order to better predict tornadoes. SRPTs have
been applied to a data set of several hundred simulated
thunderstorms with the goal of understanding the cause of
the more severe storms [3]. This work was promising but
the brittleness of the trees has proven problematic and we
believe the random forests will address these issues.
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