
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

REAL-TIME GESTURE RECOGNITION WITH MINI DRONES

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

TANER B. DAVIS
Norman, Oklahoma

2018

REAL-TIME GESTURE RECOGNITION WITH MINI DRONES

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern, Chair

Dr. Deborah Trytten

Dr. Andrew Fagg

© Copyright by TANER B. DAVIS 2018
All Rights Reserved.

Acknowledgements

I’d like to thank Dr. Amy McGovern for serving as my committee chair, my life

advisor, and my strength and reason for moving to this topic from a previous

research project we had worked on. This project reignited my drive for working

in the computer science field. I had such a blast working on it as it afforded

me the ability to ask someone if I could ”collect your hands real quick.” So

thanks to my frequent hand models: Ryan Lagerquist, Carmen Chilson, Khaled

Nimer, Will Booker, Azadeh Gilanpour, Amanda Burke, David Harrison, Eli

Jergensen, Kate Avery, and William McGovern-Fagg. Your hands carried this

project to where it is today, so give yourself a hand and know your hand had a

great hand in all of this. :)

A special thank you to Tabatha Dickinson for helping me slog through and

trim the literal tens of thousands of raw photos, and then sort them by person,

gesture, and environment. I would have cried having to do it alone, so I’m glad

we could cry together.

iv

Table of Contents

Acknowledgements iv

List Of Tables vi

List Of Figures vii

Abstract xi

1 Introduction 1

2 Background 3
2.1 Artificial Neural Networks . 3
2.2 Convolutional Neural Nets . 7
2.3 Finding Regions of Interest with R-CNNs 9
2.4 Fast RCNN . 15
2.5 Single Shot Detectors . 18
2.6 MobileNets V2 and Inception V2 19
2.7 Mambo Mini-Drones . 22
2.8 Gestures . 31

3 GIFT Data Set 35
3.1 Data in Numbers . 43

4 Experimental Design 46

5 Results 49

6 Conclusions and Future Work 57

Reference List 60

v

List Of Tables

3.1 Apparent Skin Color Representation in the GIFT dataset. . . . 45
3.2 Environment Representation in GIFT Dataset. 45

4.1 The four agents trained on the GIFT data set. The cross-sections
define the names by which the agents are known. “Clear” agents
are trained on gestures in a well-lit room. “All” agents are trained
on all data, including outside images and high-contrast images. . 47

5.1 Gestures not identified at three meters from drone. U = Up, D
= Down, L = Land, P = Peace. 51

5.2 Gestures not identified at five meters from drone. U = Up, D =
Down, L = Land, P = Peace. 52

5.3 Gestures not identified at seven meters from drone. U = Up, D
= Down, L = Land, P = Peace. 53

vi

List Of Figures

2.1 A single layered artificial neural network. 4
2.2 Dissection of a Neuron. Adapted from (Russell and Norvig 2016) 6
2.3 ANN architecture vs CNN architecture. The main difference is

the CNN’s introduction of convolutional calculations and pool-
ing between successive layers. Top image from Karpathy 2016,
bottom image from Deshpande 2016. 8

2.4 CNN Filter moving across an input. Filter W1, the red square,
at each depth is multiplied against the input, the blue square,
creating a new matrix. This matrix then has every cell summed
together. The equation for this is oj = b1 +

∑2
k=0 xk+j · wk. The

filters from W1 multiplied over the inputs and then summed are
-1, -1 and 1 respectively. The three values are summed with the
bias, b1 which is 0, and stored in the output matrix, the green
highlighted cell. Here, −1 + −1 + 1 + 0 = −1. Image from
Karpathy 2016. 10

2.5 Here, with a stride of 2 from Figure 2.4, the filters are then
multiplied against a new set of input, 2 units to the right of the
previous filter. Image from Karpathy 2016. 11

2.6 Max pooling input of 4x4 with a filter of 2x2 and a stride length
of 2. The red square is the initial filter position. The green square
is the filter’s first stride moving two cells to the right. The yellow
is the second stride, where, having met the edge of the matrix,
the filter moves two cells downward and relocates to the left edge
of the matrix. The Blue square is the final stride. The max value
of each stride in order is 6, 8, 3, and 4. The results for the output
matrix are in the order of the strides. Image from Karpathy 2016. 12

2.7 RCNN works by generating proposals on an image, running CNN
on the proposals to create feature maps, and then classify each
region. Image from Girshick et al. 2013. 12

2.8 Each proposal’s CNN pass the feature map to a SVM for clas-
sification, as well as suggests new values of the bound box on
the proposal to better classify the proposal. Example: proposal
contains a face, but only half of a face. The bounding box could
be moved or the size changed to better contain the face. Image
from Girshick et al. 2013. 14

vii

2.9 Complete segmentation on an indoor scene. Each color on the
output image (right) identifies a different component such as a
face, a shirt, a nametag, or a book from the imput image (left).
Image from Felzenszwalb and Huttenlocher 2004. 15

2.10 Segmentation (top row) into detection and hierarchy creation
(bottom row). Image from Uijlings et al. 2013. 16

2.11 Improvement to RCNN by feeding the image to the CNN, find
the proposals among the feature map, and scale the proposals
into squares for a fully connect layer. Image from Girshick 2015. 17

2.12 Faster-RCNN removes the selective search and instead learns the
proposals as well as classifications. Image from Ren et al. 2015. 17

2.13 SSD creates multiple feature maps of varying sizes. The 8x8 finer
map finds the cat in two of the bounding boxes, while the 4x4
larger map finds the dog using the same, scaled bounding boxes
relative to the feature map dimensions. Image from Liu et al. 2016. 19

2.14 The architecture of MobileNets. The innovative addition to ob-
ject detection is the use of depthwise separable convolutions and
pointwise convolutions. The table’s top row is the first convo-
lution on the raw image. The output of the first convolution is
the input for the next row below in the table. “dw” in the table
stands for depthwise. Table from Howard et al. 2017. 20

2.15 MobileNetsV2 architecture. t is the expansion rate, c is the num-
ber of input channels, n is number of times the block is repeated,
and s is the stride length. Table from Sandler et al. 2018. 21

2.16 The naive architecture (top) of the Inception network, followed
by the introduction of 1x1 convolutions (bottom) to make the
large filters less computationally expensive. Image from Szegedy
et al. 2015. 23

2.17 The entire Inception/GoogLeNet architecture. Image from Szegedy
et al. 2015. 24

2.18 Inception V2 module replaced a 5x5 filter with two 3x3 filters as
they were less computationally expensive. Image from Szegedy
et al. 2015. 25

2.19 Inception V2 module replaced an nxn filter with a 1xn and nx1
filter. From Figure 2.18, n=3 here. Image from Szegedy et al.
2015. 26

2.20 Inception V2 replaced the two ending 3x3 filters in Figure 2.18
with a 1x3 and 3x1 next to each other, rather than in sequence.
Image from Szegedy et al. 2015. 27

2.21 Complete architecture of Inception V2. Figures 2.18, 2.19, and
2.20 from this paper are from their figures 5, 6, and 7 from their
paper in the architecture table. Image from Szegedy et al. 2015. 28

viii

2.22 The Parrot Mambo Fly drone used in this thesis. Here, it has
the added camera attachment. 29

2.23 Pyparrot python script that streams the raw TCP feed from the
Mambo camera. 30

2.24 Taxonomy of Gestures for Gesture Detection from (Kaâniche
2009). The GIFT dataset consists entirely of static gestures. . . 32

2.25 A correctly labeled, bounded “down” gesture. 33
2.26 A frame with two classified gestures. The protocol would inter-

pret this frame as a terminating frame since “land” is a termi-
nation action and is always be considered first for safety rather
than the higher percentage “peace” gesture. 34

3.1 The mini-drone camera attachment, both separated and installed
on the mini-drone. 36

3.2 Gestures from top to bottom: “up”, “down”, “peace”, and “land”. 37
3.3 Two “up” gestures: one with no harsh light and a clear back-

ground, and one with a brightly lit projector screen. 38
3.4 Both individuals are giving the “down” sign: one prominently up

front, and one in the background near their pocket. 38
3.5 A “peace” gesture given with a high contrast background and a

noisy environment with furniture and lighting. 39
3.6 An “up” gesture coming from the chest to the sky. Both images

were weighted equally as an “up” gesture during training. 39
3.7 Up gestures in three common environments: well-lit (top-left),

direct sunlight (top-right), and high-contrast (bottom). 40
3.8 “Up” gesture in LabelImg application with associated PascalVOC

xml file. Program by (Tzutalin 2015). 41
3.9 Each volunteer (A through W) gave the corresponding gestures

in different environments. 42
3.10 Female and Male breakdown with relation to the GIFT data set.

Genders were determined by appearance. 43
3.11 Each Volunteer’s individual contribution with their associated

observed gender. A is female, and B is male, for example. 44

5.1 Box Classification Losses of the four agents on the GIFT training
data. MobileNets should be trained to report a consistent clas-
sification loss of 2, and Inception should be trained to report a
consistent classification loss of 0.05. 52

5.2 Box Localization Losses of the four agents on the GIFT training
data. A low localization loss means the agent identified a gesture
whose bounding box was close to the truth’s bounding box. . . . 53

5.3 Total Losses of the agents trained on the GIFT dataset. 54

ix

5.4 Region Proposal Network Localization Losses of both Inception-
Net agents. 54

5.5 Region Proposal Network Objectness Losses of both InceptionNet
agents. 55

5.6 The 23 volunteers (labeled A to W) were split into 10 different
sets for the two-sample t-test. Every volunteer appeared in every
split, and only appeared once in the test, validation, or training
set. Each split was made to be close to 80% training, 10% val-
idation, and 10% test. The volunteers’ letters not appearing in
a row’s test or validation column are in the training set for that
split. 55

5.7 The average contingency tables for the ten InceptionNet and Mo-
bileNet agents on the splits from Figure 5.6. 56

5.8 This figure shows the average amount of gesture bounding boxes
that shared at least one pixel with the truth bounding box of
an image during the 10-fold cross validation tests. The gesture
guessed is not considered in this table. Only the intersection of
the predicted gesture’s bounding box and the truth bounding box
is considered. If no gesture was guessed for an image, then no
bounding box was proposed. 56

x

Abstract

Drones are being used worldwide to perform many functions - medical deliver-

ies, video recording, and surveying to name a few. Their growing presence is

paralleled by the growing world of Machine Learning (ML). This thesis presents

a synthesis of machine and machine learning to create reactive agents in the

form of mini-drones. Two prominent companies, DJI and Amazon, are patent-

ing and selling drones that recognize hand gestures, but do not release their

methods on how they made their intelligent drones. Deep learning and con-

volutional networks are used to train agents that control mini-drones based on

hand gestures. This thesis details the process from collecting data to deploy-

ing an agent. Real-time gesture recognition agents are deployed in connection

with a mini-drone that detects four gestures: a pointer finger pointing up as

well as down, two fingers in a ”peace” v-shape sign, and a flat, upward facing

palm. The dependency of environment in which training data is selected as

well as the apparent lighting of the subjects is investigated to see which cre-

ates an agent that detects the four gestures more frequently. The end product

is a gesture-intelligent drone reacting to hand gestures - the foundation for a

complex physical language interaction.

xi

Chapter 1

Introduction

DJI, an online quadcopter retailer and front runner in drone video recording

and recreation, sells drones that come preloaded with gesture detection tech-

nology (Heliguy 2018). Amazon, a worldwide online retailer, has also submit-

ted a patent for drones with gesture controls and facial recognition (Cuban

et al. 2018). Both companies are developing and deploying drones with gesture

recognition capabilities, but neither release their learning methods, datasets, or

showcase the ability to learn additional gestures. This thesis demonstrates the

process of creating an intelligent drone that can recognize hand gestures and

respond appropriately.

Deep learning has proven powerful in performing astounding image classi-

fications with items such as cards (EdjeElectronics 2018), bird roosts (Chilson

2017), and faces (Viola and Jones 2004). Deep learning with convolutional

neural networks (CNN) can learn on many mediums like photos, a collection

of time-bounded photos, or videos. Some of the most common uses of deep

learning with CNNs are facial recognition in cellphones, posture detection with

video games, and image classification on web searches. However, many of these

methods take large amounts of time and memory to learn and classify an im-

age, and many require multiple measuring apparatuses (Kaâniche 2009). This

spurred the creation of resource conservative learning techniques and real time

1

classifiers like Single Shot Detectors (SSD) (Liu et al. 2016) and You Only Look

Once (YOLO) (Redmon et al. 2016).

There are cases where it is urgent to identify an object as quickly as possi-

ble. Drones interacting with humans are becoming more frequent with delivery

drones and drone-guided rescue efforts, so taking too long to identify a critical

object like a trapped person during a search, or a “stop” gesture could cause

harm to an individual (Cuban et al. 2018).

With these real time techniques came the creation of Inception Networks

(Szegedy et al. 2015) and Mobile Networks (Howard et al. 2017), both networks

being fast image classifiers. Both Networks have been shown to be effective at

performing real time object detection (Szegedy et al. 2015; Sandler et al. 2018),

so their ability to perform real-time object detection was tested on a 640 x 360

RGB video-streaming drone to identify four static hand gestures.

This thesis evaluates the Inception Network and MobileNets on a dataset

of four static gestures created and curated as the Gesture Images For Training

(GIFT) database (Davis 2018). This thesis contributes the first public gesture

database, released on GitHub. GIFT is intending to be a benchmark dataset

for intelligent gesture recognition. The thesis also compares the trade off of

speed of identification through frames per second, with the percentage accuracy

of each classification. This is done by paralleling gestures to drone commands

in hopes to communicate with the drone what the user would like for it to do.

These agents are the first attempt that I am aware of to publicly release hand

gesture datasets and agents trained to run on a mini-drone with video-streaming

capabilities.

2

Chapter 2

Background

Before describing Faster R-CNNs, SSDs, and their deep learning innovations, it

is important to begin with describing artificial neural networks as they provide

the foundation for CNNs and other advanced networks.

2.1 Artificial Neural Networks

In its simplest form, Artificial Neural Networks (ANNs) transform some nu-

merical input into an output that serves to perform some action or produce

a probability array. The ANN architecture can be generalized to have three

parts or layers: an input, a hidden layer, and an output as seen in Figure 2.1.

Layers are the building blocks of neural nets, as they take in numerical input,

transform the data, then output the data into a more useful form for the next

layer to use (Chollet 2018). ANNs do not usually come out of the box ready to

use for a special purpose. They must be trained to be useful. Training consists

of inputting a changing set of numbers through each network, slowly tweaking

the network as it trains, until the user is satisfied with the networks’ reported

accuracy and losses.

The “Neural Network” part of the name comes from the connected units

inside the mechanism called “neurons” (Rumelhart et al. 1985). The term

neuron parallels the discrete building structures of the brain, which receive,

3

Figure 2.1: A single layered artificial neural network.

process, and output electrical signals for other neurons. Each artificial neuron

functions in five steps as seen in Figure 2.2. The neuron first accepts input in the

form of numbers where each number is multiplied by some weight value. Each

neuron in each layer has their own weight, and this weight frequently changes as

the network trains on more data. Second, these inputs are all summed together

into a weighted sum. Third, this new result is passed into a pre-determined

activation function. This activation function is either a threshold or a logistic

function. Fourth, the output is the result of the activation function. For a

threshold activation function, if the weighted sum is larger than an arbitrary

threshold ’Q’, then the output is a 1, and 0 otherwise. Finally, the neuron then

passes on the output of the activation function to any other layer of neurons to

which it is connected (Russell and Norvig 2016). The next neuron then repeats

this process until the output layer is reached, where instead of passing an output

directly to the user, a function is applied to the output layer to produce an array

of probabilities or to perform some action. The abstraction of this process inside

each layer is referred to as a “node.” From hereon the term “node” will be used

4

as the entity that accepts inputs, transforms the input, and passes information

into the proceeding layer.

Mathematically, a node looks like Equation 2.1 with inputs ai, weights wij,

activation function g, and output aj:

aj = g(w0j +
n∑

i=1

wijai). (2.1)

First, sum up the product of each input multiplied by its weight. Next, add the

product of the bias (w0) and its weight. This final sum then becomes the input

to an activation function. For this thesis, I use Rectified Linear Units-6 also

known as ReLU6 (Krizhevsky and Hinton 2010), an extension on the common

ReLU activation function:

g(x) = max(x, 0). (2.2)

ReLU6 simply limits the ceiling of the function to six and the floor to zero:

g(x) = min(max(x, 0), 6). (2.3)

ReLU6 encourages models to learn sparse features of gestures earlier as all

negative inputs become less important to the network, and large inputs are

limited to 6, being considered just slightly more important than smaller positive

values. This activation function is part of a general ReLU-n family where the

function class is:

g(x) = min(max(x, 0), n). (2.4)

Neural networks can take information in many different forms: a picture, a

video, a spreadsheet, or a piece of music. The net does not handle the medium in

its primary form. Instead, there is a layer of neurons that retrieve information

from the medium to pass it through the networks. For pictures, it is very

5

Figure 2.2: Dissection of a Neuron. Adapted from (Russell and Norvig 2016)

common to transform the image into an array of numbers where each number is

a gray-scale pixel evaluation from 0, black, to 255, white. One can also pass in

a matrix of numerical evaluations for RGB values for colored images. Instead

of a pixel having a single value, it will have three values, a Red, a Green, and a

Blue. As long as there is an algorithm to transform one’s information from the

world into some set of numbers, a neural net can work with it.

Once the information has been transformed, each node in the input layer gets

some part (usually a single number) of the transformed information and passes

it to the first layer of hidden nodes. A node must always send its information

to at least one node unless it is in the output layer. It is not uncommon for a

node to send its output to all nodes in the subsequent layer. A layer where all

nodes pass their output to all nodes of the next layer is called “dense” or “fully

connected” (Chollet 2018).

Where there are usually only one of each input and output layer, there

can be zero or more hidden layers. The special case of zero hidden layers

with an activation function defines the neural network to be a “Single Layer

6

Perceptron.” Anything with at least one hidden layer is classified as a “Multi-

Layer Perceptron” (Jantzen 1998).

Once the data has traversed through every layer, it is time for the neural

network to produce something interpretable. This is where the Output layer

comes into play. Here, one last calculation is performed to produce some array of

probabilities or some interpretative output, such as a collection of ones and zeros

to simulate pressing buttons on a game controller. When detecting objects, it

is common to encode the output as a one-hot vector, an n-vector of zeroes with

a single “1”. The single one determines the class label of the image. However,

probabilities at each node in the output layer can be reported. Each node

reports the score of the input being one of the classes. Though, when summing

all of the output nodes score together, this will sometimes not equal 1.0 or 100%

- the image is a horse with probability 0.4 from one node, and is a dog with

probability 0.2. In this instance, the softmax equation can be used to turn the

output into a probability:

σ(a)j =
eaj∑n
k=1 e

ak
. (2.5)

From the example above, the horse would be 0.55 and dog would be 0.45.

2.2 Convolutional Neural Nets

Convolutional Neural Nets (CNNs) are the current state-of-the-art in many

vision tasks, especially object detection as CNNs introduce feature abstractions

where every layer layer learns some feature of the images like edges and shapes

(Chollet 2018) (Ciresan et al. 2011) . This works perfect as the goal of this

thesis is to create an agent which is capable of object detection. They differ

from ANN’s one dimensional layers as each layer has a height, width, and depth

7

Figure 2.3: ANN architecture vs CNN architecture. The main difference is the

CNN’s introduction of convolutional calculations and pooling between successive

layers. Top image from Karpathy 2016, bottom image from Deshpande 2016.

as seen in Figure 2.3. CNNs also take into account that each subsequent layer

only connects to parts of the previous layer, minimizing the number of weights

needed for each connection. This is largely beneficial to image processing, as

most images use an RGB value at each pixel (Karpathy 2016). A CNNs output

would typically be an n-vector of probability scores for each classification but

any real-valued output is possible.

CNN nodes also share weights, rather than each node having its own weight.

This is done by using sliding filters. This filter is smaller than the input, and

moves by units called a stride length. When a filter moves over some part of

the input, the subset of the input is known as the local receptive field, and it is

8

between the filter and this field that the convolution step occurs. The network

then multiplies each of the weights in the filter by each of the variables in the

local receptive field. This then makes a new entry in an output filter. Once

the filter has traveled across the entire input, a feature map is produced. This

process is demonstrated in Figures 2.4 and 2.5. This collection of dot product

summations is called the Convolutional Layer.

After the convolutional layer, the network then reduces the output by se-

lecting values from a filter of the input. This is called pooling. A common form

of pooling is max pooling. The equation for this is:

yj,k = max
m,n

(xm,n), where

m ∈ {s · j, ... s · (j + 1)− 1},

n ∈ {s · k, ... s · (k + 1)− 1},

and where s is the stride length. For each layer of output from the convolutional

step, another filter is slid an arbitrary stride length over the input, and selects

the largest number in the filter over the input. As this is done to every layer,

the width and height of the feature maps shrinks, but no feature map is lost.

2.3 Finding Regions of Interest with R-CNNs

In object detection, it is not enough to say that there is a playing card or there

is not a playing card in the image. The object must also be bound in the image

and the network must declare that this region contains the playing card. CNNs

do not vary their output layers in reaction to how many objects there are in an

image. However, Ross Girshick et al. devised a way to include region proposals

on which to use CNNs (Girshick et al. 2013). The general process is seen in

Figure 2.7.

9

Figure 2.4: CNN Filter moving across an input. Filter W1, the red square,

at each depth is multiplied against the input, the blue square, creating a new

matrix. This matrix then has every cell summed together. The equation for this

is oj = b1 +
∑2

k=0 xk+j ·wk. The filters from W1 multiplied over the inputs and

then summed are -1, -1 and 1 respectively. The three values are summed with

the bias, b1 which is 0, and stored in the output matrix, the green highlighted

cell. Here, −1 +−1 + 1 + 0 = −1. Image from Karpathy 2016.

10

Figure 2.5: Here, with a stride of 2 from Figure 2.4, the filters are then multiplied

against a new set of input, 2 units to the right of the previous filter. Image from

Karpathy 2016.

11

Figure 2.6: Max pooling input of 4x4 with a filter of 2x2 and a stride length of

2. The red square is the initial filter position. The green square is the filter’s

first stride moving two cells to the right. The yellow is the second stride, where,

having met the edge of the matrix, the filter moves two cells downward and

relocates to the left edge of the matrix. The Blue square is the final stride. The

max value of each stride in order is 6, 8, 3, and 4. The results for the output

matrix are in the order of the strides. Image from Karpathy 2016.

Figure 2.7: RCNN works by generating proposals on an image, running CNN

on the proposals to create feature maps, and then classify each region. Image

from Girshick et al. 2013.

12

R-CNN begins by generating about 2000 images (proposals) from the the

main image using Selective Search (covered after this section). Each of the new

images are then scaled into an n x n square, and become input for the CNN.

Once the CNN creates a feature map for every proposal, the map is then fed

into a Support Vector Machine to classify each proposal. The network also then

guesses new values for the bounding box of the proposal to better classify the

proposal from the CNN (Figure 2.8).

Selective search is an algorithm that determines where the proposals on an

image should be, and is a solution to searching intelligently rather than ex-

haustively (Uijlings et al. 2013). First, the search needs to determine where

objects might be in the images, so it divides the image into many regions using

segmentation (Felzenszwalb and Huttenlocher 2004). In Figure 2.9, the indi-

vidual RBG value of each pixel in the input image on the left is subtracted

from each of its neighbors’ RGB value, resulting in three subtractions times

eight neighbors. When the differences of two pixels’ red, green, and blue are

all less than some threshold, the pixels are considered to be contained in the

same component or region of the image. Once all pixels have been compared

to their neighbors, a random color value is assigned to each component, and

the output looks like the right image of Figure 2.9. From these segmentations,

similarity of the components is determined. Similarity is determined as a func-

tion of two components in color, texture, size, and shape (Uijlings et al. 2013).

If the similarity surpasses a threshold, the two components are combined into

a single, larger component. Selective search continues comparing components

until all remaining components are no longer considered similar to their neigh-

bors. The process of merging components produces a hierarchy of successively

larger regions that can be abstracted as objects in the image, similar to Figure

13

Figure 2.8: Each proposal’s CNN pass the feature map to a SVM for classifica-

tion, as well as suggests new values of the bound box on the proposal to better

classify the proposal. Example: proposal contains a face, but only half of a

face. The bounding box could be moved or the size changed to better contain

the face. Image from Girshick et al. 2013.

14

Figure 2.9: Complete segmentation on an indoor scene. Each color on the

output image (right) identifies a different component such as a face, a shirt, a

nametag, or a book from the imput image (left). Image from Felzenszwalb and

Huttenlocher 2004.

2.10. Using these objects, proposals are selected from the components and are

used as inputs to train the RCNN.

2.4 Fast RCNN

RCNN still requires generating 2000 proposals per image, then using each pro-

posal as input for a CNN. The algorithm for proposal selection is also not

stochastic (Girshick et al. 2013). Ross Girshick, part of the team who created

RCNN, improved the algorithm by removing the CNNs on every object pro-

posal on the main input as seen in Figure 2.11(Girshick 2015). Now the image

is directly input into a CNN to create the feature maps. Then, from the fea-

ture maps, proposals are found and scaled into a square. Each layer is then

pooled with Max pooling to create the Region of Interest (RoI) layer. The RoI

becomes the input for a Fully Connected (FC) layer. The FC layer outputs an

15

Figure 2.10: Segmentation (top row) into detection and hierarchy creation (bot-

tom row). Image from Uijlings et al. 2013.

RoI feature vector (like the previous feature maps but only as an n-vector) and

by using softmax, it produces a probability to predict the classification of the

RoI. The ROI feature vector then serves as the input to a fully connected layer

which then produce per-class bounding-box regression offsets (Girshick 2015).

This algorithm only requires convolutional operations once on the image

instead of 2000 times, once on each of the proposals. Girshick found that

with removing the thousands of convolutions, training time and testing time

improved significantly (Girshick 2015).

Faster-RCNN (Figure 2.12) further improves on Fast RCNN by removing se-

lective searches for region proposals and instead learns region proposals through

the feature map of the image through a CNN (Ren et al. 2015). Just like Fast-

RCNN the base image is input into a CNN. However, instead of finding proposals

in the feature map using selective search, a fully convolutional network is used

to output object proposals (the top left corner coordinate as well as the width

and height) as well as an objectness score - the higher the score the more likely

16

Figure 2.11: Improvement to RCNN by feeding the image to the CNN, find the

proposals among the feature map, and scale the proposals into squares for a

fully connect layer. Image from Girshick 2015.

Figure 2.12: Faster-RCNN removes the selective search and instead learns the

proposals as well as classifications. Image from Ren et al. 2015.

17

this region is an object instead of the background (Ren et al. 2015). The pro-

posals are then pooled into an RoI pool that creates n x n squares, and the

proposals are surveyed. The object is then finally classified with a probability

vector, as well as the offset for the proposal boxes. Although algorithms are

usually measured using O(), Shaoqing et al. measured a variety of algorithms

in real-world circumstance on the same machine to provide practical numbers.

They found that using their Faster-RCNN was even faster than Fast-RCNN,

taking only 0.2 seconds to classify an image (Ren et al. 2015).

2.5 Single Shot Detectors

Single Shot Detectors (SSD) (Figure 2.13) increase the speed of the Faster-

RCNN model by eliminating the region proposal step entirely, but with a slightly

different architecture (Liu et al. 2016). SSDs first pass the image through multi-

ple convolutional layers, creating feature maps of different sizes (20x20, 10x10,

6x6, etc.) On each feature map, a 3x3 convolutional filter evaluates a small

set of bounding boxes with arbitrary sizes (Liu et al. 2016). The network then

guesses the classification probabilities and the offset of the previous bounding

boxes. With these multiple feature maps and bounding boxes of varying sizes,

this helps detectors find large and small objects as smaller objects are found

on a finer map with equally finer bounding boxes, and larger objects are found

with larger maps and bounding boxes.

18

Figure 2.13: SSD creates multiple feature maps of varying sizes. The 8x8 finer

map finds the cat in two of the bounding boxes, while the 4x4 larger map finds

the dog using the same, scaled bounding boxes relative to the feature map

dimensions. Image from Liu et al. 2016.

2.6 MobileNets V2 and Inception V2

MobileNets (Figure 2.14) trade-off accuracy for processing speeds, and are de-

signed for embedded vision applications on mobile devices (Howard et al. 2017).

They also introduce two multipliers: a width multiplier to make smaller CNN

models as it reduces the input layer, and a resolution multiplier to control the

input images resolution in the network. MobileNetsV2 (Figure 2.15) uses linear

bottlenecks and inverted residuals to activate certain features earlier and archi-

tecturally uses fewer parameters using pointwise convolutions on CNNs from

the original MobileNets architecture (Sandler et al. 2018).

The Inception network improved the CNN process by solving the issue of

finding desired objects when the size and orientation of the object can vary

greatly (like dog breeds). This would require determining the right filter size to

find both large and small objects in an image. Having multiple filters naively

stacked on each other is computationally expensive. Also, making a CNN larger

though able to handle more parameters increases the possibility of overfitting

19

Figure 2.14: The architecture of MobileNets. The innovative addition to object

detection is the use of depthwise separable convolutions and pointwise convolu-

tions. The table’s top row is the first convolution on the raw image. The output

of the first convolution is the input for the next row below in the table. “dw”

in the table stands for depthwise. Table from Howard et al. 2017.

20

Figure 2.15: MobileNetsV2 architecture. t is the expansion rate, c is the number

of input channels, n is number of times the block is repeated, and s is the stride

length. Table from Sandler et al. 2018.

21

on the data (Szegedy et al. 2015). The solution was to not stack the filters, but

to place them beside each other. Each filter would then use the same input to

perform convolutions, rather than the output of one filter’s convolution being the

input of another filter’s convolution. This produced the architecture in Figure

2.16. Calling these Inception modules, they stacked nine together (Figure 2.17)

and created the Inception network, or the “GoogLeNet” (Szegedy et al. 2015).

As with any deep network, the middle areas of GoogLeNet are prone to

dying off (vanishing gradient). To prevent this, they added two intermediate

classifiers to encourage the middle area to discriminate over dying (Szegedy

et al. 2015). These classifiers add their loss multiplied by 0.3 to the total loss

during training. During inferences, these intermediate classifiers are not used.

Inception V2 removed the larger filters entirely, finding that a 5x5 filter was

2.78 times more computationally expensive compared than a 3x3, meaning they

could use two 3x3 filters and save resources. This produced a new architecture

for a filter layer (Figure 2.18). Going further, they found that a 3x3 filter

could become cheaper by a 1x3 filter and a 3x1 filter in succession (Figure

2.19). Finally, to reduce representational bottle-necking from deep nets reducing

dimensions, they made the final filters in the module wider rather than deeper

(Figure 2.19).

2.7 Mambo Mini-Drones

The Parrot Mambo Drone, Figure 2.22, is a mini-drone that is seven inches

long and wide, and one and a half inches tall with the camera attachment.

The drone camera was accessed through scripts from a public pyparrot package

(McGovern 2018). The DroneVisionGUI script was used to connect with the

22

Figure 2.16: The naive architecture (top) of the Inception network, followed

by the introduction of 1x1 convolutions (bottom) to make the large filters less

computationally expensive. Image from Szegedy et al. 2015.

23

Figure 2.17: The entire Inception/GoogLeNet architecture. Image from Szegedy

et al. 2015.

24

Figure 2.18: Inception V2 module replaced a 5x5 filter with two 3x3 filters as

they were less computationally expensive. Image from Szegedy et al. 2015.

25

Figure 2.19: Inception V2 module replaced an nxn filter with a 1xn and nx1

filter. From Figure 2.18, n=3 here. Image from Szegedy et al. 2015.

26

Figure 2.20: Inception V2 replaced the two ending 3x3 filters in Figure 2.18

with a 1x3 and 3x1 next to each other, rather than in sequence. Image from

Szegedy et al. 2015.

27

Figure 2.21: Complete architecture of Inception V2. Figures 2.18, 2.19, and

2.20 from this paper are from their figures 5, 6, and 7 from their paper in the

architecture table. Image from Szegedy et al. 2015.

28

Figure 2.22: The Parrot Mambo Fly drone used in this thesis. Here, it has the

added camera attachment.

TCP stream from the Mambo’s attached camera. From here, it was possible

to interact with a direct feed of images without any additional processing or

classifications as seen in Figure 2.23. This feed reader is a wrapper around a

method where another program may run in parallel. This method is where the

object detection runs. A live feed can be seen as well as an additional window

with a image marked up with bounding boxes and classification probabilities.

The pyparrot package was developed to teach STEM concepts by program-

ming an autonomous flying drone (McGovern 2018). Pyparrot currently sup-

ports Mambo and Bebop drones, but for this research only Mambo drones are

used.

29

Figure 2.23: Pyparrot python script that streams the raw TCP feed from the

Mambo camera.

30

2.8 Gestures

Gestures are nonverbal forms of communication, that can accentuate what is

being said, or communicate complete thoughts without a verbal component.

Gesture detection focuses on tracking and recognizing gestures to create se-

mantically meaningful commands (Rautaray and Agrawal 2015). This thesis

focuses on classifying visual hand gestures, specifically a hand pointing up,

pointing down, a peace sign, and a flat, opened hand. All of these are static

gestures (Figure 2.24) - gestures that do not require time or displacement to

communicate the intended idea, and are based on a single posture (Kaâniche

2009). Compared to dynamic, moving gestures such as a waving hand (similar

to a gesture accompanying the verbal “hi”), static gestures are easier to detect

as a single frame is sufficient for classification. Dynamic gestures require addi-

tional algorithms and models such as dynamic time warping (Müller 2007) and

Hidden Markov Models (Marasovi et al. 2015) for gesture detection. Classifying

dynamic gestures require time and locations to communicate a coherent thought

(Rautaray and Agrawal 2015).

The gestures are further classified as being 2-Dimensional static models,

which are different than motion based models (Rautaray and Agrawal 2015).

Motion-based models require a field of activators that detect when some object

has passed through it or is currently activating it, and/or local motion his-

tograms (Luo et al. 2010). The gestures for this thesis are free to move during

detection, and do not require a specific movement set, or any movement at all,

to be understood. When performing the gesture detection, previous predictions

will not influence a frame’s classification, though there are models today that

rely on tracking positions and previous frames (Rautaray and Agrawal 2015).

31

Figure 2.24: Taxonomy of Gestures for Gesture Detection from (Kaâniche 2009).

The GIFT dataset consists entirely of static gestures.

This thesis focuses entirely on streaming video to classify gestures instead of

tracking devices on hands or special monitors (Kaâniche 2009).

Finally, gestures are considered completely classified when the gesture is

first detected and bounded with the appropriate classification as seen in Figure

2.25. A gesture is classified and printed on the image when the probability

of the gestures surpasses 85%. This percentage is arbitrary and was chosen

empirically. Raising that percentage will cause fewer gestures to be classified

on the image, but gestures will be much more reliably identified. Lowering

the percentage will allow for more abstract interpretations of gestures to be

identified, but will also afford possible noise and erroneous identifications on

in-between frames when a gesture may be beginning, but is not fully formed.

The location of the gesture does not validate or harm the probability of the

gesture, nor does the preceding or proceeding gestures in the stream. When

dealing with more than one gesture in the frame (Figure 2.26), the terminating

gestures are considered first, namely the “land” command, followed by highest

32

Figure 2.25: A correctly labeled, bounded “down” gesture.

probability gestures. As a last resort if multiple non-terminating gestures are

detected with equal percentages, the gesture whose bounding box is closest to

the origin will be chosen. This translates to the gesturing stage right and the

streaming camera’s left. This ensures safe-guessing a killswitch, terminating the

program and safely landing the drone rather than performing a non-terminating

action.

33

Figure 2.26: A frame with two classified gestures. The protocol would interpret

this frame as a terminating frame since “land” is a termination action and is

always be considered first for safety rather than the higher percentage “peace”

gesture.

34

Chapter 3

GIFT Data Set

“Gesture Images For Training,” or GIFT, is a contribution of this thesis. GIFT

is an image dataset collected by image capture with the mini-drone’s attachable

camera (Figure 3.1). This camera produced 640 X 360 colored jpg images, and

sent about 30 images a second to a laptop through a TCP connection.

The dataset consists of four gestures: a single finger pointing up, a single

finger pointing down, two fingers in a “V” shape, and a flat open hand with

the palm facing upwards. These are referred to as “up”, “down”, “peace”,

and “land” respectively (Figure 3.2). These gestures were collected from 23

volunteers across different months. We obtained permission from each volunteer

to use their images in the GIFT dataset. Each volunteer produced the four

gestures in differing environments (e.g. once against a wall with little noise, once

against a brightly lit projector screen - both seen in Figure 3.3.) Frequently,

the volunteers were not the only object visible in the image, and in a few cases,

were not the only gestures present (Figure 3.4) - some participants waiting their

turn were unintentionally giving some of the gestures in the image. However,

most of the images gathered per individual consisted of a single gesture given

by the volunteer with plenty of noise in the background such as posters, tables,

backpacks, and people (Figure 3.5).

Every frame from the TCP camera during each session was saved as an

individual image to a directory for future viewing and labeling. As the images

35

Figure 3.1: The mini-drone camera attachment, both separated and installed

on the mini-drone.

were taken from a TCP stream, a single gesture resulted in more than one

image. Let us consider the “up” gesture. The normal order of events was that

the volunteer raised their arm and hand into the air, raise a single finger to the

sky, and then lowered their hand. In that small span of a few seconds, there

were about 90 images of the up gesture in different positions from waist to sky.

This included the finger being initially raised from the hand, not quite fully

straight up in the air but clear enough to be seen as up (Figure 3.6), and then

the finger and hand going back down but not so far as to be considered not-up.

This is to say that when viewing the collection of images for each person, some

subset of the photos represents the life cycle of the gesture. GIFT contains

these stages of each gesture as they contain many orientations of the hand that

still display a valid gesture.

The light source was varied when collecting gestures from the volunteers.

This allowed the agent to better abstract gestures in different environments such

as a classroom versus a shadowed patio. The three main types of environments

were “well-lit room from over head lights,” “outside with direct sunlight,” and

“high-contrast light and shadows,” with examples shown in Figure 3.7.

36

Figure 3.2: Gestures from top to bottom: “up”, “down”, “peace”, and “land”.

37

Figure 3.3: Two “up” gestures: one with no harsh light and a clear background,

and one with a brightly lit projector screen.

Figure 3.4: Both individuals are giving the “down” sign: one prominently up

front, and one in the background near their pocket.

38

Figure 3.5: A “peace” gesture given with a high contrast background and a

noisy environment with furniture and lighting.

Figure 3.6: An “up” gesture coming from the chest to the sky. Both images

were weighted equally as an “up” gesture during training.

39

Figure 3.7: Up gestures in three common environments: well-lit (top-left), direct

sunlight (top-right), and high-contrast (bottom).

The data was collected through many sessions and was labeled for training

by using Tzutalin’s python application “LabelImg” (Tzutalin 2015). The appli-

cation loads each image into an editor where one can draw bounding boxes on

any and all desired objects and give them appropriate labels. After an image

has been deemed by the user as fully labeled, the program creates an associ-

ated xml file with metadata such as the classification label and locations of the

bounding box edges. LabelImg currently supports creating YOLO text files and

PascalVOC xmls. For this research I used PacalVOC xml. Figure 3.8 is an im-

age with the corresponding boundary box and PascalVOC file. The PascalVOC

xml is the file that the agent uses to compare the truth bounding box and label

versus the predicted bounding box and label.

40

Figure 3.8: “Up” gesture in LabelImg application with associated PascalVOC

xml file. Program by (Tzutalin 2015).

41

Figure 3.9: Each volunteer (A through W) gave the corresponding gestures in

different environments.

42

Figure 3.10: Female and Male breakdown with relation to the GIFT data set.

Genders were determined by appearance.

3.1 Data in Numbers

In total, 15,476 images from 23 volunteers were used to train the agents.

Females made up 43.51% of the gesture database with males making up

56.49%. Figure 3.10 is the break up of gender and gesture relations to the

database as a whole, and Figure 3.11 is each volunteer’s contribution. Given

that the division of female/male phenotypes is 44% and 56%, each gesture

is represented by the same division +/- 3%. The average contribution of an

individual is 4.35% (100% of of the data/23 volunteers), though the contribution

of the 23 volunteers is either much larger or smaller than 4.35%. This is because

given that most photo-recording sessions were about the same length of time,

most of the volunteers were either present for only one session, or present for

most sessions - the volunteers present for most sessions were either the author

or the participants in a lab section where many of these sessions were held.

The distribution of apparent skin color is shown in Table 3.1 . Each image’s

volunteer was evaluated by the author at having a light complexion, a dark

43

Figure 3.11: Each Volunteer’s individual contribution with their associated ob-

served gender. A is female, and B is male, for example.

44

Percent of Total Images

Light 66.3091%

Middle 20.2249%

Dark 13.466%

Table 3.1: Apparent Skin Color Representation in the GIFT dataset.

Number of Images Percent of Total Images

High Contrast 2027 13.28%

Outside 1505 9.86%

Well-Lit 11735 76.86%

Table 3.2: Environment Representation in GIFT Dataset.

complexion, or a middle complexion. The percentage of middle and dark skin

complexions are just over a third of the database.

The distribution of the three environment types is shown in Table 3.2. The

largest portion is the well-lit room with overhead lights, as these describe meet-

ing rooms and classrooms, both of which were where image sessions commonly

took place. These classrooms and meeting rooms, though containing windows,

were internal rooms and were not connected to an outside-facing wall. The

smallest portion is the direct sunlight category as only one session was held

outside with weather permitting a clear day and sunshine.

45

Chapter 4

Experimental Design

As a proof of concept that deep learning can be used in real-time to do ges-

ture recognition on drones, I chose four gestures to identify. Each gesture was

treated as a single request, meaning the drone would not need to consider mul-

tiple differing gestures before and after the current parsed image. I designated

an “up”, “down”, “peace”, and “land” gesture as a simple language from the

drones. Each gesture in itself can be understood with a single image and can

be given with either hand.

To record data, the drone was flown in front of each volunteer as they ges-

tured, and recorded the video stream at 30 frames per second from the drone’s

on-board camera. This stream was saved with each frame as an image onto a

computer. The agents were initially trained on images taken in a well-lit room

with no windows, with the volunteer about 4 meters away from the hovering

drone. I did not control the clothes worn, or which hand was used to gesture.

More images were taken later in difficult lighting such as in front of a projector

screen with the projector on, and in front of a bright window with room well lit.

The last environment in which images were taken was outside in direct sunlight

and direct shade.

After the raw data was collected, I went through all of the saved images

frame by frame and selected every image where a gesture was present. I then

used LabelImg (Tzutalin 2015) to create metadata about each image. I detailed

46

Well-Lit Well-Lit and Complex

SSD MobileNet V2 MobileNetV2 Clear MobileNetV2 All

Faster-RCNN InceptionNet V2 InceptionV2 Clear InceptionV2 All

Table 4.1: The four agents trained on the GIFT data set. The cross-sections

define the names by which the agents are known. “Clear” agents are trained

on gestures in a well-lit room. “All” agents are trained on all data, including

outside images and high-contrast images.

the width and height of the images, x and y min/max of the bounding box, and

the gesture classification of each bounding box in the image. Though most

of the images all contain single gestures, there are a few images that contain

multiple gestures.

Next, I trained two COCO-trained models on two different subsets of the

previous data set, making four total agents. COCO (Common Objects in Con-

text) is a dataset focusing on scene awareness in addition to 91 object types

(Lin et al. 2014). Each of the models were selected from Tensorflow’s model

zoo (Tensorflow 2018a). In the zoo, each model has a speed-of-detection in

milliseconds, and a COCO mean average precision (Microsoft 2018). I used

“ssd mobilenet v2 coco” with a 1x depth multiplier, and

“faster rcnn inception v2 coco”.

For training, each agent was trained on a GPU with four gigabytes of ded-

icated memory. Each model was trained in Python 3.6 with Tensorflow 1.9.0

(Tensorflow 2018b). For each model I trained the “Clean” model on data where

the gesture was clearly visible in a well-lit room, and then trained the “All”

model with every picture from the GIFT dataset. The reason is that the agent

should be able to identify an unobstructed gesture with ease, but a gesture that

47

is present in multiple types of lighting and a noisy background should also be

identified as well as the unobstructed gesture. All agents had a learning rate of

0.0002 and were trained for 30,000 steps.

After training all four agents, I then tested the classifiers on new images

where each gesture was given at three, five, and seven meters from the drone.

Each gesture was given with both hands, and in three environments: well-lit

room, high contrast, and outside. These 72 images made up the test set.

Finally, after the agents were trained, I created a python script to fly the

drone using gestures. Once the drone takes off, it stays stationary until it reads

one of the four gestures:

• “Up” moves the drone towards the user very slowly

• “Down” move the drone away from the user slowly

• “Peace” moves the drone so that the gesture is in the middle of the frame

• “Land” cause the drone to land

48

Chapter 5

Results

The first focus is on the Tensorflow loss scores of the four trained agents: Mo-

bileNetV2 Clear, MobileNetV2 All, InceptionV2 Clear, and InceptionV2 All.

Then, as well as identifying the 72 gestures from both hands in all environments.

All agents have a classification loss (Figure 5.1), a localization loss (Figure 5.2),

and a total loss (Figure 5.3) - all of which are lower for better agents. A lower

classification loss reflects the agent’s ability to accurately classify the bound

object as the correct gesture. With this, a lower localization loss means the

agent proposed a bounding box close to the true gesture’s bounding box. The

total loss is the sum of all losses for an agent, which includes two additional

losses for InceptionV2 agents. These added losses are from the Region Proposal

Networks (RPN), which SSDs such as MobileNets do not have. Both Inception

agents have a RPN localization loss (Figure 5.4) and an objectness loss (Figure

5.5). The localization loss is the CNN’s regressor’s loss of the bounding boxes

it proposes for objects in an image compared to the RoIs. The objectness loss,

when lower, means that the agent is able to pick proposals as objects instead of

the background in the region of interest. The accuracy of these models is tested

with the 72 gestures.

Overall, the four agents were able to correctly learn and identify the im-

ages in their bounded boxes with diminishing errors (Figure 5.1). Empirically,

49

MobileNetsV2 is considered trained when the network has a consistent classi-

fication loss of around 2, and InceptionV2 is trained when the network has a

consistent classification loss of 0.05. In Figure 5.1 the Clear agents classified just

as well as the All agents. However, testing against the 72 test images at three,

five, and seven meters (Table 5.1, 5.2, and 5.3) the ALL agents identify more

gestures correctly across all distances and environments. Further, InceptionV2

agents out perform their MobileNetV2 counter parts across the board with iden-

tifying more testing gestures correctly. MobileNetsV2 do trade lower accuracy

for higher speed which is preferable for Mobile devices, but with something as

volatile and possibly dangerous as a drone, one should prefer the agents which

correctly identify more gestures correctly over speed.

As an additional test to prove InceptionV2 outperforms MobileNetsV2 on

identifying gestures in the GIFT dataset, I performed a paired t-test. New

InceptionV2 and MobileNet agents, two in total, were trained on a 10-fold cross

validation of the GIFT dataset. Each split was chosen across the volunteers

instead of on environments. The splits are outlined in Figure 5.6 and the average

contingency tables for both models are found in Figure 5.7. With each split, each

volunteer is exclusively in the test, validation, or training set. Each volunteer

appears only once in the test sets and once in validation sets in the ten folds.

Our hypothesis is that the InceptionV2 model and the MobileNetsV2 model are

the same. On average, the InceptionV2 model had a 34.2% higher accuracy

than the MobileNetV2 model (paired t-test, p < 0.01 and df = 18). The

intersection of bounding boxes of the predicted gesture and the truth gesture

were measured as well in Figure 5.8. Over the 10-fold cross validation test folds,

a bounding boxes were considered overlapping if the boxes shared at least one

pixel in common, and do not take the predicted gesture into account. Measuring

50

Inside right Inside left High Contrast right High Contrast left Outside right Outside left

MobileNetV2 Clear U D L U D L U D L P U D L P U D L U D L

MobileNetV2 All - D P L P D L U D U D

InceptionV2 Clear - - - U U D D

InceptionV2 All - - - - U U L

Table 5.1: Gestures not identified at three meters from drone. U = Up, D =

Down, L = Land, P = Peace.

the intersection of bounding boxes in Figure 5.8 lends evidence to InceptionV2

identifying gesturing hands better than MobileNetV2.

The InceptionV2 agents had high RPN localization losses, but low classifi-

cation losses. This is likely due in part to human error when labeling the GIFT

data. Some gestures truths may include small parts of the wrist or have a bit

too much space around the hand as dead air, versus some truths that are exactly

tight around the hand with no wrist in the bounding box. This would produce

low classification losses as it would still guess the correct gesture but may box

too much of the wrist or too little of the wrist, making the localization loss

bounce back and forth fight for wrists or no wrists. Bad RPN guesses due to

this wrist issue would lead to higher box localization losses with the InceptionV2

nets. Comparing the classification loss of all agents in Figure 5.1 with the total

losses in Figure 5.3, MobileNetV2’s classification loss is over two-thirds of the

total loss, while InceptionV2’s classification loss is about half of the total loss.

However, whether the box is too large or too small, one must consider the

classification loss the important identifier as it is more important to be correct

on what is gestured vs exactly how boxed-in the gesture is. It is for this reason

and the low p-value from the paired t-test that the InceptionV2 agent model

should be chosen over a MobileNetsV2 model to control an intelligent mini

drone.

51

Figure 5.1: Box Classification Losses of the four agents on the GIFT training

data. MobileNets should be trained to report a consistent classification loss of

2, and Inception should be trained to report a consistent classification loss of

0.05.

Inside right Inside left High Contrast right High Contrast left Outside right Outside left

MobileNetV2 Clear D D D L D L U D U D

MobileNetV2 All - - L D D D

InceptionV2 Clear - - - U U D D

InceptionV2 All - - - - L D

Table 5.2: Gestures not identified at five meters from drone. U = Up, D =

Down, L = Land, P = Peace.

52

Figure 5.2: Box Localization Losses of the four agents on the GIFT training

data. A low localization loss means the agent identified a gesture whose bound-

ing box was close to the truth’s bounding box.

Inside right Inside left High Contrast right High Contrast left Outside right Outside left

MobileNetV2 Clear D L D L D L U L P U L U L

MobileNetV2 All - - P L D L P U D U D

InceptionV2 Clear - - - U - U D

InceptionV2 All - - - - - U

Table 5.3: Gestures not identified at seven meters from drone. U = Up, D =

Down, L = Land, P = Peace.

53

Figure 5.3: Total Losses of the agents trained on the GIFT dataset.

Figure 5.4: Region Proposal Network Localization Losses of both InceptionNet

agents.

54

Figure 5.5: Region Proposal Network Objectness Losses of both InceptionNet

agents.

Figure 5.6: The 23 volunteers (labeled A to W) were split into 10 different sets

for the two-sample t-test. Every volunteer appeared in every split, and only

appeared once in the test, validation, or training set. Each split was made to

be close to 80% training, 10% validation, and 10% test. The volunteers’ letters

not appearing in a row’s test or validation column are in the training set for

that split.

55

Figure 5.7: The average contingency tables for the ten InceptionNet and Mo-

bileNet agents on the splits from Figure 5.6.

Figure 5.8: This figure shows the average amount of gesture bounding boxes

that shared at least one pixel with the truth bounding box of an image during

the 10-fold cross validation tests. The gesture guessed is not considered in this

table. Only the intersection of the predicted gesture’s bounding box and the

truth bounding box is considered. If no gesture was guessed for an image, then

no bounding box was proposed.

56

Chapter 6

Conclusions and Future Work

My contributions are as follows:

1. Creating and curating the GIFT data set

2. Developing a program that lets a mini-drone react to hand gestures

3. Evaluating the ability of Faster RCNN Inception V2 and MobileNets to

identify gestures from a video feed

4. Training multiple agents with different subsets of GIFT data to address

lighting and environment issues

My research demonstrates the success and process of training real-time agents

on minidrones to detect hand gestures and react appropriately. The agents were

successfully able to capture an image in real time of the environment, detect all

gestures in the image, and then react to the gesture as programmed. This will

open up the possibility of future programmers to have agents already trained

on gesture data to develop agents that respond to their custom gestures.

Currently the data used for this research can be found at

https://github.com/TanerDavis/Gesture-Images-For-Training with an MIT Li-

cense included. I am releasing the GIFT dataset of hand gestures for future

gesture-related research, and to function as a benchmark for intelligent gesture

recognition. Currently GIFT only has four gestures: the “up,” “down,” “peace,”

57

and “land.” The collection of images is currently sorted by gesture and by per-

son, presenting the same data set twice with different categorizations. With

every image, there is an accompanying Pascal VOC XML metadata file (Aytar

2012). Each file gives the class id for each gesture in the photo as well as the

bounding coordinates of the gesture in the image.

To extend the use of language in gesture recognition, I’d like to create an

agent that learns a command, not based solely on the presence of some gesture,

but rather the distance between two hand gestures in two points of time like a

hello-wave motion. The wave could be abstracted as two non-bent wrists with

an open palm displaced by a few inches and be some number of frames apart.

This could then be interpreted as a welcoming gesture, and the drone shakes to

wave back. This consideration of where the gesture is in the image and when it

was given compared to other gestures would afford the ability to build sentences

with gestures to create a non-verbal lexicon with drones.

58

Reference List

Aytar, Y., 2012: The PASCAL Visual Object Classes Homepage. Visited 2018-
11-13.
URL http://host.robots.ox.ac.uk/pascal/VOC/voc2012/

Chilson, C., 2017: Automated Detection of Bird Roosts Using NEXRAD Radar
Data and Convolutional Neural Networks.

Chollet, F., 2018: Deep learning with Python. Manning.

Ciresan, D. C., U. Meier, J. Masci, L. Maria Gambardella, and J. Schmidhuber,
2011: Flexible, high performance convolutional neural networks for image
classification. IJCAI Proceedings-International Joint Conference on Artificial
Intelligence, Barcelona, Spain, volume 22, 1237.

Cuban, M., J. Reitman, and J. Pritchard, 2018: Object detection and analysis
via unmanned aerial vehicle. Visited 2018-12-11.
URL https://patents.google.com/patent/US9989965B2/en

Davis, T., 2018: Gesture Images For Training. Visited 2018-11-13.
URL https://github.com/TanerDavis/Gesture-Images-For-Training

EdjeElectronics, 2018: How To Train an Object Detection Classifier for Multi-
ple Objects Using TensorFlow (GPU) on Windows 10. Visited 2018-11-13.
URL https://github.com/EdjeElectronics/TensorFlow-Object-

Detection-API-Tutorial-Train-Multiple-Objects-Windows-10

Felzenszwalb, P. F. and D. P. Huttenlocher, 2004: Efficient graph-based image
segmentation. International Journal of Computer Vision, 59, 167–181.

Girshick, R., 2015: Fast R-CNN. Proceedings of the IEEE International Con-
ference on Computer Vision, 1440–1448.

Girshick, R., J. Donahue, T. Darrell, and J. Malik, 2013: Rich feature hierar-
chies for accurate object detection and semantic segmentation. 2013. arXiv
preprint arXiv:1311.2524 .

Heliguy, 2018: DJI Spark Gesture Control Tutorial. Visited 2018-11-13.
URL https://www.heliguy.com/blog/dji-spark-gesture

-control-tutorial/

Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, 2017: MobileNets: Efficient Convolutional Neu-
ral Networks for Mobile Vision Applications. Visited 12-14-18.
URL https://arxiv.org/pdf/1704.04861.pdf

59

Jantzen, J., 1998: Introduction to perceptron networks. Technical University of
Denmark, Lyngby, Denmark, Technical Report .

Kaâniche, M., 2009: Gesture recognition from video sequences . Ph.D. thesis,
Université Nice Sophia Antipolis.

Karpathy, A., 2016: Convolutional Neural Networks for Visual Recognition.
Visited 2018-11-13.
URL http://cs231n.github.io/convolutional-networks/

Krizhevsky, A. and G. Hinton, 2010: Convolutional deep belief networks on
cifar-10. Unpublished manuscript , 40.

Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár,
and C. L. Zitnick, 2014: Microsoft COCO: Common Objects in Context.
European Conference on Computer Vision, Springer, 740–755.

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
2016: SSD: Single shot multibox detector. European Conference on Computer
Vision, Springer, 21–37.

Luo, Q., X. Kong, G. Zeng, and J. Fan, 2010: Human action detection via
boosted local motion histograms. Machine Vision and Applications , 21, 377–
389.

Marasovi, T., V. Papi, and J. Marasovi, 2015: Motion-Based Gesture Recogni-
tion Algorithms for Robot Manipulation. International Journal of Advanced
Robotic Systems , 12, 51.
URL https://doi.org/10.5772/60077

McGovern, A., 2018: Pyparrot. Visited 2018-11-13.
URL https://github.com/amymcgovern/pyparrot

Microsoft, 2018: COCO Evaluation Metrics. Visited 2018-11-13.
URL http://cocodataset.org/#detection-eval

Müller, M., 2007: Information Retrieval for Music and Motion. Springer-Verlag,
Berlin, Heidelberg.

Rautaray, S. S. and A. Agrawal, 2015: Vision based hand gesture recognition
for human computer interaction: a survey. Artificial Intelligence Review , 43,
1–54.

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi, 2016: You Only Look
Once: Unified, Real-Time Object Detection. The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).
URL http://dx.doi.org/10.1109/CVPR.2016.91

60

Ren, S., K. He, R. Girshick, and J. Sun, 2015: Faster R-CNN: Towards real-time
object detection with region proposal networks. Advances in neural informa-
tion processing systems , 91–99.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams, 1985: Learning internal
representations by error propagation. Technical report, California Univ San
Diego, La Jolla Inst for Cognitive Science.

Russell, S. J. and P. Norvig, 2016: Artificial intelligence: a modern approach.
Malaysia; Pearson Education Limited.

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 2018: Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 4510–4520.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, 2015: Going deeper with convolutions.
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, 1–9.

Tensorflow, 2018a: Tensorflow Detection Model Zoo. Visited 2018-11-13.
URL https://github.com/tensorflow/models/blob/master/

research/object detection/g3doc/detection model zoo.md

—, 2018b: Tensorflow Object Detection. Visited 2018-11-13.
URL https://github.com/tensorflow/models/tree/master/

research/object detection

Tzutalin, 2015: Visited 2018-11-13.
URL https://github.com/tzutalin/labelImg

Uijlings, J. R., K. E. Van De Sande, T. Gevers, and A. W. Smeulders, 2013:
Selective search for object recognition. International Journal of Computer
Vision, 104, 154–171.

Viola, P. and M. J. Jones, 2004: Robust real-time face detection. International
Journal of Computer Vision, 57, 137–154.

61

