
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EVALUATING GAM-LIKE NEURAL NETWORK ARCHITECTURES FOR

INTERPRETABLE MACHINE LEARNING

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

WILLIAM BOOKER
Norman, Oklahoma

2019



EVALUATING GAM-LIKE NEURAL NETWORK ARCHITECTURES FOR
INTERPRETABLE MACHINE LEARNING

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern, Chair

Dr. Dean Hougen

Dr. Christan Grant



c© Copyright by WILLIAM BOOKER 2019
All Rights Reserved.



Acknowledgements

I’d like to thank my committee chair, Dr. McGovern, for taking me under

her wing and introducing me into the incredible world of machine learning.

For keeping me on track, reviewing countless drafts (that I often provided five

minutes before the deadline), and giving me every opportunity to succeed, I

could not have asked for a better advisor.

I’d like to thank committee member, Dr. Hougen, his support over the years

and for introducing me to academic research. When I came to OU four years

ago, all I wanted to do was publish a paper and you went out of your way to

give me that opportunity. Rio 2018! I still owe you a round of frisbee golf.

I’d like to thank Dr. Grant, for serving on this committee and providing a

source of inspiration over the years. Hobby Robbie may not have been my most

successful project, but it taught me a lot, and inspired me to push forward with

my degree in Computer Science.

I’d like to thank my family, my dad Garry, my mom Lisa, and my brother

Alex, for giving me this opportunity to learn and grow and for supporting me

through all the ups and downs. I really couldn’t have done it without you all.

Finally, I want to thank my best friends, Gabe, Trevor, and Catherine for

looking out for me and keeping me sane throughout this whole process. Seri-

ously, you all are the best.

iv



Table of Contents

Acknowledgements iv

List Of Figures vii

Abstract x

1 Introduction 1

2 Background 4
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Linear Regression and Elastic Nets . . . . . . . . . . . . . . . . 5
2.3 Tree-Based Methods . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . 11
2.5 Local Approximation . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Global Approximation Methods . . . . . . . . . . . . . . . . . . 16
2.7 Logistic Regression, GLMs, and GAMs . . . . . . . . . . . . . . 19

3 Methods 24
3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1 Real World . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Synthetic . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Pandemic . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 External Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Experiments 38
4.1 GAM Approximation Validation . . . . . . . . . . . . . . . . . . 39

4.1.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 GAMs vs. Networks . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Architecture Limitations . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Real World Classification Tasks . . . . . . . . . . . . . . . . . . 48
4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.4 Sloan Sky Survey . . . . . . . . . . . . . . . . . . . . . . 51
4.4.5 Breast Cancer . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.6 Small Datasets . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Deep(ish) Networks . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusion 60
5.1 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Disadvantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Reference List 65

6 Appendix 69

vi



List Of Figures

2.1 Example of a decision tree trained on the Titanic dataset (see
below). Trunk nodes represent decisions to be made and leaf
nodes represent the final prediction. . . . . . . . . . . . . . . . . 8

2.2 Approximating a continuous sigmoid function with decision trees
of varying depths. Greater depths provide better precision but
also require more data to train. . . . . . . . . . . . . . . . . . . 9

2.3 Approximating a continuous sigmoid function with a random for-
est of depth 2. Compared to decision trees of similar depth, the
random forest provides much smoother, and therefore more ac-
curate predictions of the underlying function without requiring
additional training data. . . . . . . . . . . . . . . . . . . . . . . 10

2.4 An example of a perceptron with inputs x1 and x2 and a step
function activation. The bias is represented by w0 and the output
is represented by γ. . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Example of a muli-layer neural network. Each node in the graph
represents a summation and an activation, which each edge rep-
resents a weight. Image credit Nielsen (2015). . . . . . . . . . . 13

2.6 Example of Taylor Polynomials failing to approximate the neigh-
borhood behavior of a non-linear function. (Plumb et al. 2019) . 16

2.7 Example of a PDP plot layered on top of an ICE plot. Black
lines represent ICE and the thick yellow line represents the PDP
plot. (Molnar 2019) . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Example of how ICE/PDP plots can lead to deceptive results in
under-defined input regions. In this instance, x2 is distributed
bimodally, with peaks at positive and negative five. These peaks
correspond to two sets of parabolic curves in the ICE plot and
a trivial PDP curve. Aside from the PDP plot being unhelpful,
the dot and ICE plots strongly suggest that the behavior of x1
is stable on the interval [-8,8]. However, an unexpected inverse
causes outlier point one (red) to exhibit aberrant behavior. Ac-

tual function: y =
−x2

1+0.25

x2
. . . . . . . . . . . . . . . . . . . . . 18

2.9 Example of how two non-linear splines can be added together to
create new functions. The thick blue lines are an exponential
spline and a polynomial spline. The thick red line is the new
function generated by equal weighting of the two splines. The
dashed lines represent intermediate weighting values. . . . . . . 21

2.10 Example of how b-splines can be used to smoothly approximate
a non-linear univariate function. (Servén and Brummitt 2018) . 22

vii



3.1 Example of our network architecture with n = 3 and m = 4. S
represents a sigmoid activation. . . . . . . . . . . . . . . . . . . 25

3.2 Training data for the simulated Gaussian Islands dataset. Blue
points are true positives, red points are true negatives. . . . . . 30

3.3 Training data for the simulated XOR dataset. Blue points are
true positives, red points are true negatives. . . . . . . . . . . . 31

3.4 Examples of a t-cell (left) and a bacterium (right) in the pandemic
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Plots of t-cell and bacteria distributions over time with v = 3.
T-cell fraction increases throughout the simulation while the bac-
teria fraction peaks and then returns to zero. . . . . . . . . . . . 33

3.6 Bacteria distributions with v varying between two and four. Red-
der values correspond to higher values of v and are considered to
be more lethal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.7 Final distribution of bacteria and t-cells from which we pull our
image samples. Red x’s are lethal while blue o’s are non-lethal. . 35

3.8 Example input images with 20 (left) and 100 (right) objects. . . 36

4.1 Model predictions for both our network and a GAM on the el-
lipse dataset. Color represents the model prediction, with blue
being more positive, red being more negative, and yellow being
approximately neutral. X’s are true negatives and O’s are true
positives. Both model facilitate a positive, circular region cen-
tered around (0,0) with a ring of uncertainty corresponding to
the elliptical section of the input space. . . . . . . . . . . . . . . 40

4.2 Marginal distributions for the x1 and x2 variables for both our
network and a GAM in the ellipse dataset. Both methods pro-
duce symmetric, unimodal distributions centered at zero and neg-
ative at the extremes. . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 F1 scores on the stellar dataset for a GAM with an increasing
number of b-splines. Model accuracy increases with an increasing
number of splines but fails to converge beyond 40. . . . . . . . . 43

4.4 Marginal for the redshift variable in the network and GAM im-
plementations. Commonly used as a proxy for distance, the peak
in the network marginal corresponds to the high-density region
for galaxies in the stellar dataset. The 40-spline GAM was un-
able to achieve a similar fit, and the slow decay at high redshift
values decreases overall model performance. . . . . . . . . . . . 43

4.5 Marginals for the field variable in network and GAM implemen-
tations. Represents the location in the sky where the telescope is
looking. A large number of b-splines has caused the GAM model
to overfit the variable when compared to the network architecture. 44

viii



4.6 Network predictions and selection of marginals for each dataset.
In the first two columns (marginals), the x-axis represents the
domain on the input variable and the y-axis represents the pre-
sigmoid contribution to the response. In the third column, net-
work predictions are presented as two-dimensional principle com-
ponents plots. X’s are true negatives and O’s are true positives.
Colors represent the network prediction, with blue being positive,
red being negative, and yellow being neutral. . . . . . . . . . . . 46

4.7 Network predictions and selection of marginals for each dataset.
For a full explanation, see figure 4.6. . . . . . . . . . . . . . . . 50

4.8 Differences between the true image distribution (left) and the
distribution observed by the counter (right). While trends in
the underlying distribution are still visible, imperfections in the
counter network have caused the network outputs to wander from
their real positions. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.9 Final outputs for the single dense layer network. With an f1
score of 0.766 and a ROC AUC of 0.847, the single dense layer
has missed the non-linearity in the counter’s output and under-fit
the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Final outputs for the marginal layer network. With an f1 score of
0.927 and a ROC AUC of 0.976, our marginal layer has correctly
fit the non-linearity in the counter’s output and provides a good
model for the data. . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Marginal distributions for bacteria counts (left) and t-cell counts
(right). The final layer of the network is behaving intuitively.
Low bacteria counts radically increase the chance of survival
while high bacteria counts radically lower it. In general, more
bacteria is worse for survival. Low t-cell counts are bad for sur-
vival, but only if the bacteria counts are above ten. The positive
marginal impact peaks around 30-35, where the infection is at its
maximum point. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

ix



Abstract

In many machine learning applications, interpretability is of the utmost

importance. Artificial intelligence is proliferating, but before you entrust your

finances, your well-being, or even your life to a machine, you’d really like to be

sure that it knows what it’s doing.

As a human, the best way to evaluate an algorithm is to pick it apart, un-

derstand how it works, and figure out how it arrives at the decisions it does.

Unfortunately, as machine learning techniques become more powerful and more

complicated, reverse-engineering is becoming more difficult. Engineers often

choose to implement a model that is accurate rather than one that under-

standable. In this work, we demonstrate a novel technique that, in certain

circumstances, can be both.

This work introduces a novel neural network architecture that improves in-

terpretability without sacrificing model accuracy. We test this architecture in

a number of real-world classification datasets and demonstrate that it performs

almost identically to state-of-the-art methods. We introduce Pandemic, a novel

image classification benchmark, to demonstrate that our architecture has fur-

ther applications in deep-learning models.
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Chapter 1

Introduction

In machine learning, increased accuracy is often paired with increased complex-

ity. As technology continues to improve, new methods are being proposed to

take advantage of recent advances in hardware and mathematics. Deep learn-

ing is supplanting shallow networks in fields such as image recognition (Szegedy

et al. 2015) and machine translation (Bahdanau et al. 2014) while gradient

boosted machines are replacing random forests in many tabular classification

tasks (Friedman 2001). However, as machine learning techniques continue to

improve, it is becoming increasingly difficult to understand each model’s inner

workings. While in some applications this opacity is not an issue, in high-risk

sectors such as medicine, law, and finance, model justifiability remains an ex-

tremely important feature (Hastie et al. 2009).

Over the years, numerous techniques have been proposed to help unmask

the underlying reasoning behind machine learning models. Some model-specific

proposals take advantage of the method’s underlying structure, such as impurity

importance in tree-based methods (Louppe et al. 2013) or network pruning in

artificial neural networks (Kingston et al. 2004). Model-agnostic methods have

also been proposed, such as partial dependence plots (Friedman 2001), sequen-

tial selection (Zou and Hastie 2005), and permutation importance (Breiman

et al. 1984) to help determine the effect of one input on the model’s predicted
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output. While these techniques help with improving interpretability, none suc-

ceed in fully exposing the complete inner working of these complex techniques.

A different approach is to create a model that’s interpretable by design.

The earliest machine learning methods, ordinary least squares linear regres-

sion (Galton 1886) and decision trees (Belson 1959), are good examples of this

paradigm. While both techniques have severe limitations such as brittleness

(Norton 1989) and strong assumptions (Hayashi 2000), both algorithms are still

in common use, largely due to their simplicity and interpretability. Statistics

research has focused heavily on this paradigm, developing extensions to linear

regression such as weighted least squares (Suárez et al. 2017) and logistic regres-

sion (Nelder and Wedderburn 1972) to help address some of the concerns with

ordinary least squares. These avenues have since coalesced into two paradigms,

Generalized Linear Models (GLMs) (Nelder and Wedderburn 1972) and Gen-

eralized Additive Models (GAMs) (Hastie and Tibshirani 2007), which strike

a nice balance between power and interpretability, but come with their own

set of drawbacks, such as complex domain-specific parametric tuning and little

implementation support from the machine learning community.

This thesis proposes a novel machine learning method that fuses the natural

interpretability of GAMs with the flexibility and support of neural networks. We

have developed the first known open source GAM-like implementation in a neu-

ral network framework and demonstrated that the network’s natural flexibility

allows the model to generalize better than traditional GAMs. Additionally, we

have compared our model against other state-of-the-art classification techniques

and demonstrated that we can achieve similar accuracy despite limitations on

the network’s predictive power. Finally, we investigate some of the advantages

2



and disadvantages of this this technique and discuss how it fits with other ma-

chine learning paradigms.
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Chapter 2

Background

2.1 Overview

Machine learning is a sub-field of data analytics that uses semi-automated tech-

niques to transform data into insights. Machine learning plays a major role in

the modern world and forms the backbone for everything from image recogni-

tion (Davis 2018) to weather forecasting (McGovern et al. 2017). Today, there

are thousands of different machine learning techniques that fall into a number

of major categories. In this work, we are primarily interested in paradigm of

supervised learning.

In its most simplistic form, supervised learning is the art of fitting functions

to data. Given some known input vector x and an unknown response vector y,

we would like to make a well-founded approximation of what that output vector

is likely to be, ŷ. Ideally, this output ŷ should be guided by how the inputs

and the outputs have interacted in the past. While there are many different

techniques for generating this prediction, most methods have three features in

common: a function approximator, a loss function, and an optimizer.

Supervised models rely on the assumption that the outputs can be described

as some function of the inputs f(x) plus some unpredictable element σ, known

as noise (equation 2.1).
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y = f(x) + σ (2.1)

A function approximator does its best to mimic this underlying function

without getting thrown off by the noise. Different techniques implement this

approximator in different ways, and each technique has its advantages and draw-

backs.

Just as important as the function approximator is the optimizer, which de-

termines how the approximator will learn from the data and how it will handle

noise. A key element of an optimizer is the loss function, which measures the

difference between a model’s output and the actual output, a value known as the

residual. The optimizer is the most important feature during model training,

and more powerful approximators typically have more complex optimizers.

Two important features to consider when designing a model are its power

and interpretability. Power describes how well the approximator can describe

arbitrarily complex behavior, while interpretability describes how easy it is for

a human to understand how the model came to its conclusion. More powerful

models are more capable of approximating the underlying function, but are

generally less interpretable (Du et al. 2018).

2.2 Linear Regression and Elastic Nets

Linear regression is the oldest and possibly simplest form of machine learning.

The function approximator is a simple weighted sum of the input variables plus

a bias (equation 2.2).
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ŷ = w · x+ w0 =
n∑

i=1

wixi + w0 (2.2)

The most common loss function minimizes the sum of the squares of the

residuals. This squaring has the effect of amplifying large residuals, forcing

the model to account more heavily for outliers. In its most basic form, linear

regression with this type of loss function is known as ordinary least squares

regression (equation 2.3).

loss = (ŷ − y)2 (2.3)

This loss function has the added benefit in that it is analytically tractable, a

unique feature among machine learning methods making ordinary least squares

a highly efficient machine learning method. The weights that minimize this loss

function can be found using the following equation (equation 2.4).

ŵ = (x>x)−1(x>y) (2.4)

Computationally cheap and remarkably effective, linear regression has been

a benchmark of statistics since the late 19th century (Galton 1886). While useful

in a number of applications, simple linear regression does have drawbacks that

limit its usefulness in many scenarios.

The first issue with simple linear regression is that it tends to overfit when

presented with a large number of features relative to the number of samples.

This issue can be mitigated by adding a regularizer that penalizes large weights.

The two most common regularization techniques are to punish on the absolute

value of the weight, or L1 norm (Santosa and Symes 1986), and to punish

on the squared value of the weight, or the L2 norm (Tikhonov and Arsenin
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1977). Linear regression that employs just the L1 punishment is called Lasso

Regression (Tibshirani 1994), just the L2 punishment is called Ridge Regression,

and the technique that employs both punishments is called an Elastic Net (Zou

and Hastie 2005). Each regularizer is weighted with a hyper-parameter that

must be tuned during validation. Because elastic nets use two regularizers, the

technique requires tuning of two hyper-parameters.

While regularizers can help solve the over-fitting issue, linear models still

have limitations on the type of functions they can model. Most importantly,

linear regression assumes that the underlying output variable can be represented

as a simple linear combination of the inputs, something that’s just not true for

most real-world problems.

2.3 Tree-Based Methods

In order to model non-linear functions, we need to move away from simple

linear regression, towards more powerful techniques. Decision trees are one

of the oldest non-linear machine learning methods (Breiman et al. 1984), and

variations on the technique are still common to this day (Natekin and Knoll

2013).

Similar to a flowchart, decision trees work by iteratively asking a sequence

of yes/no questions that move the model towards a prediction (see Figure 2.1).

This process segments the input space, effectively grouping elements that are

perceived to be similar or share important characteristics. The model then takes

an average of the output of these grouped elements. While initially fit by hand

(Chisholm et al. 1968), decision trees became a staple of machine learning with
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Figure 2.1: Example of a decision tree trained on the Titanic dataset (see below).
Trunk nodes represent decisions to be made and leaf nodes represent the final
prediction.

the development of an optimizer that could algorithmically determine variable

splits using training data (Breiman et al. 1984).

This optimizer works in a greedy, top-down fashion, iteratively splitting the

input space and calculating an impurity metric. While many such metrics exist,

such as Gini impurity (Breiman et al. 1984), information gain (Kullback and

Leibler 1951), and variance reduction (Breiman et al. 1984), they all effectively

work to minimize the dissimilarity of the response variable in each group. When

the branch with the smallest impurity is found, the tree splits on that variable

and the process is repeated recursively for the two new groups.

The adoption of the decision tree was a significant step forward for the field

of machine learning. Unlike linear regression, which is restricted to the realm

of linear functions, decision trees can approximate any rational function. How-

ever, this assertion comes with an important caveat. Because decision trees are
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Figure 2.2: Approximating a continuous sigmoid function with decision trees of
varying depths. Greater depths provide better precision but also require more
data to train.

discrete entities, they require a large number of splits to accurately approximate

continuous functions.

Every split approximately halves the number of data points in each bin,

quickly burning through all available information and causing the method to

overfit. As a result, the depth of decision trees must be kept low, making

them more “brittle” and causing them to give poor estimates near the decision

boundaries.

One solution to this issue is to ensemble many trees together, with each tree

fit to a slightly different version of the data. This method is known as random

forest regression (Ho 1995). Random forests employ two techniques to augment

the data before training a tree: bootstrapping (Ho 1995) and bagging (Ho 2002).

Bootstrapping randomly samples n points from the data with replacement while

bagging takes a random sub-sample of the features. These modifications weight

the data just enough to break symmetry and develop a large number of indepen-

dent, predictive trees. By averaging the output of these trees, random forests

create a smoother function without needing to add additional depth.
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Figure 2.3: Approximating a continuous sigmoid function with a random forest
of depth 2. Compared to decision trees of similar depth, the random forest pro-
vides much smoother, and therefore more accurate predictions of the underlying
function without requiring additional training data.

One further improvement to random forests is the Gradient Boosted Ma-

chine (GBM) (Friedman 2001). A sort of addition to random forests, GBMs

add weight to misclassified samples during training, causing future trees to focus

more heavily on difficult regions in the solution space. This modification can of-

ten increase performance, by refocusing the model’s power on difficult-to-model

regions, even if there are relatively few samples in that area. The downside

though, is that the trees must be trained sequentially rather than in parallel,

slowing the time it takes to fit a model.

Note that each improvement on the standard decision tree decreases the

model’s overall interpretability. Where decision trees can be read like a flowchart,

random forests are an average of lots and lots of trees, making it more difficult

to parse out every combination of outcomes. On the other hand, random forests

have a very clear-cut notion of variable importance, with more common splits

being more important to the outcome. This analysis is somewhat more difficult
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Figure 2.4: An example of a perceptron with inputs x1 and x2 and a step
function activation. The bias is represented by w0 and the output is represented
by γ.

in GBMs due to the non-trivial nature of how the samples are weighted before

each tree is trained.

2.4 Artificial Neural Networks

Another powerful machine learning technique is the artificial neural network.

Neural networks are a modular approach to function approximation. The base

unit is a weighted sum fed in to a non-linear activation function called a per-

ceptron.

To get the output of a perceptron, the inputs plus a bias are weighted ac-

cording to vector w. These weighted values are then summed together and fed

as the input to a non-linear activation function f . The purpose of this activation

is to allow the perceptron to expand beyond linear functions. Many different

activations exist, and the optimal choice is still a point of open research (Duch

and Jankowski 2000) (Xu et al. 2015). Historically, the most common activation
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function has been the sigmoid (Minsky and Papert 1969) but there is increasing

interest in other activations, including the rectified linear unit (Glorot et al.

2011), the leaky-rectified linear unit (Maas et al. 2013), and the exponential

linear unit (Clevert et al. 2015).

While potentially more powerful than linear regression, the perceptron is still

highly limited in the types of functions it can approximate. For instance, the

output of a single perceptron with sigmoid activation will always be sigmoidal.

We can get around this limitation by stacking many perceptrons together in

parallel. In fact, it has been proven (Cybenko 1989) that a weighted sum of a

large number of perceptrons can approximate any rational function. This mesh

of perceptrons is known as a neural network and has three layers: one input

layer containing the features, one output layer containing the predictions, and

at least one hidden layer containing the perceptrons.

However, while possible to approximate any rational function with this ar-

chitecture, it is not always easy to do so. Complex functions often require a

large number of hidden nodes, which in turn require large amounts of data and

computational resources. One remedy for this issue to stack multiple percep-

tron layers one after the other (Rumelhart et al. 1985), allowing each layer of

the network to learn simpler functions which generalize more effectively, before

combining them together into the full result (see Figure 2.5). This effect can

speed network convergence, reduce training time, and can radically increase

accuracy without requiring additional data.

In high-dimensional input spaces where input proximity is meaningful (im-

ages or speech for instance) further improvements can be achieved through the

use of convolutions (Fukushima 1980). A convolutional network runs a sequence
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Figure 2.5: Example of a muli-layer neural network. Each node in the graph
represents a summation and an activation, which each edge represents a weight.
Image credit Nielsen (2015).

of filters over an image to create the inputs for the next layer. While less power-

ful than a traditional dense layer, this technique significantly reduces the total

number of connections by ensuring that only spatially-related information is

included in the transformation. This reduction allows convolutional networks

to effectively train more complex structures on less input data.

Networks with a large number of convolutional or dense layers are known

as deep networks, and have produced state-of-the-art results in long-standing

computational challenges, including image recognition (Davis 2018), machine

translation (Bahdanau et al. 2014), and weather forecasting (McGovern et al.

2017).

Unlike logistic regression, which is analytically tractable, and decision trees,

which have a linear-time algorithm for determining splits, artificial neural net-

works are trained using the gradient descent algorithm. Mathematically, the

objective of gradient descent is to minimize a loss function, which for simplicity,

we will consider to be the sum of the squared residuals as in linear regression

(equation 2.5).
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loss =
n∑

i=0

(yi − ŷi)2 (2.5)

Because there does not exist an analytical solution to this optimization prob-

lem, we are forced to use numerical methods to approximate a solution. By

relating the weights of the network to the loss function and computing a deriva-

tive, it is possible to determine which way to adjust the weights to lower the

overall error of the network (equations 2.6 and 2.7).

lossi = (yi − f(w>x))2 (2.6)

∂lossi
∂wj

= −2(yi − f(w>x))f ′(w>x)xj (2.7)

A similar formula can be derived for deeper layers by invoking additional

iterations of the chain rule. By iteratively pushing the weights a small amount,

the network reduces in error until it reaches an equilibrium state, in which it is

considered fit to the data.

With the success of the deep learning paradigm, neural networks have be-

come ubiquitous in the field of machine learning. Powerful libraries including

Keras (Chollet 2019), TensorFlow (Martin et al. 2015), and PyTorch (Paszke

et al. 2017), make it easy to train and integrate neural networks on a range of

systems and hardware. TensorFlowJS (TensorFlow 2019) allows neural networks

to be embedded in web frameworks while other extensions provide support for

statistical software like R (Allaire 2019). Years of research in the field have

developed highly efficient methods and optimizers to train networks faster on

larger amounts of data (Kingma and Ba 2014). These successes and widespread
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support have made neural networks one of the most common methods for mod-

eling in industry, spanning fields from weather forecasting (Lagerquist et al.

2017) to ecology (Chilson et al. 2019).

Like random forests and GBMs, neural networks suffer from a lack of inter-

pretability. While architecture-specific improvements have been suggested to

simplify (Olden and Jackson 2002) or visualize (Özesmi and Özesmi 1999) the

transformations inside a network, none of these solutions fully resolve the inter-

pretability issue. As a result, researchers have started looking to other tools to

help explain a model’s output.

2.5 Local Approximation

One important interpretability technique is to approximate a model over a small

domain rather than approximating the entire function. In other words, our

objective is to fit a linear model such that it is a faithful representation of the

larger model on some domain. This approach works well, as most models behave

linearly on a small enough scale, allowing for relatively simple interpretations.

The most obvious local linear approximator is a first-order Taylor polynomial

centered at a desired point. This approach simply fits a line to the slope of

the model at a given point. While this technique works, it can be extremely

misleading. Taylor polynomials are only guaranteed to be accurate when very

close to initial point, which may not be a good indicator of what the model is

doing on a more reasonable interval.

A better approach is to fit a linear model over a neighborhood that can be

defined by the investigator. This linear model will be more stable than the

Taylor approximation, and will provide better approximations, so long as the

15



Figure 2.6: Example of Taylor Polynomials failing to approximate the neigh-
borhood behavior of a non-linear function. (Plumb et al. 2019)

neighborhood selected is guaranteed to be approximately linear. While there are

different ways of addressing this problem, one approach is to apply regularizers

to the model during training, guaranteeing the model to be approximately linear

in some neighborhood (Plumb et al. 2019).

Local approximation techniques are still an open area research (Ribeiro et al.

2016; Plumb et al. 2018) and initial results have been promising. However, these

approaches only cover local approximations. In large input spaces, it is infeasible

to test every potential point for a local approximation, so we instead look to

other methods to explain the global behavior of an arbitrary model.

2.6 Global Approximation Methods

Partial dependence plots (PDP) and Individual Conditional Expectation (ICE)

are two of the most popular model-agnostic methods for interpreting the global

behaviors of machine learning methods. Both work by varying one input x

across its full range of possible values while holding all other inputs constant
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Figure 2.7: Example of a PDP plot layered on top of an ICE plot. Black lines
represent ICE and the thick yellow line represents the PDP plot. (Molnar 2019)

and plotting the response. In ICE this process is repeated for each data point

and all plots are shown. In PDP, the mean response is plotted for each value of

x. While these techniques do work, they are far from perfect.

ICE plots track every observation across the range of all possible values x.

While fine for a small sample, as the number of observations grow, ICE plots be-

come more complex and difficult to read. While sub-sampling can help with this

complexity, it runs the risk of leaving out important behaviors. Furthermore,

in ICE plots its often unclear which line correlates with observation, somewhat

dampening the overall interpretability.

PDP plots suffer from the opposite issue. While simple and easy to read, they

rely on several strong assumptions which can lead to poor approximators for the

underlying model. The most important assumption for PDP plots is the that of

input independence, as correlations in the input space will result in unrealistic

values being included in the average. For instance, a PDP plot investigating the

impact of input x1 on output E(y|x1, x2) will provide biased results if x1 and x2

are highly correlated, as some values of x2 will be significantly less likely given a
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(a) Dot plot of variable x2. (b) Joint ICE and PDP plot of variable x1.

Figure 2.8: Example of how ICE/PDP plots can lead to deceptive results in
under-defined input regions. In this instance, x2 is distributed bimodally, with
peaks at positive and negative five. These peaks correspond to two sets of
parabolic curves in the ICE plot and a trivial PDP curve. Aside from the PDP
plot being unhelpful, the dot and ICE plots strongly suggest that the behavior of
x1 is stable on the interval [-8,8]. However, an unexpected inverse causes outlier

point one (red) to exhibit aberrant behavior. Actual function: y =
−x2

1+0.25

x2

known value of x1, but will still be included in the PDP average. Furthermore,

because they take an average of a set of observations, PDP plots do not address

the impact of joint terms in the model, and therefore miss a significant portion

of model behavior.

Finally, neither method describes how the model will extrapolate to under-

defined regions in the input space. For instance, if our underlying function is

y = x1x
2
2 and we’re looking at an ICE plot of x2, where we have only seen

large positive and negative values of x1, the figure will contain two parabolic

structures, one for positive values of x1 and one negative values. While useful

for known values, the plot provides no information on what the model would

do if x1 were equal to zero.

This blind spot is a major issue in real-world applications, as under-defined

regions are the most likely to break a well-fit model in a live environment.
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The fundamental issue with each of these methods is that there is no fea-

sible two-dimensional representation sufficient to explain the complexity of an

arbitrary machine learning model. While possible to generalize the behavior to

some degree, there is always a risk of encountering some portion of the input

space that was not covered by the interpretation scheme.

One solution is to simplify the model itself, such that the internal represen-

tations can be expressed exactly as a PDP plot, or a simple sum of arbitrary

one-dimensional functions. While uncommon in machine learning, this approach

is well-known in the field of statistics as a Generalized Additive Model (GAM).

2.7 Logistic Regression, GLMs, and GAMs

Before jumping in to GAMs, we first need to explore an important early de-

velopment in the linear paradigm: logistic regression (Nelder and Wedderburn

1972). Linear regression has a number of drawbacks, but one of the most trou-

blesome was the lack of support for classification problems. This issue with this

class of problem is that the response always takes one of two values: zero or

one. This feature violates the constant variance assumption of linear regression

and leads to impossible behaviors, such as predictions with over one-hundred

or below zero percent confidence.

Logistic regression solves this issue by piping the output from linear regres-

sion into a sigmoid (equation 2.8, bounding the predictions between zero and

one. This simple step was a major breakthrough, as it proved that linear models

could be expanded beyond linearly structured problems.

∂lossi
∂wj

= −2(yi − f(w>x))f ′(w>x)xj (2.8)
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Similar approaches were applied using other distributions, allowing the dis-

tribution of the response to take the form of a Poisson or Bernoulli, for instance.

Methods of this type are known as Generalized Linear Models (Nelder and

Wedderburn 1972) and use a link function to circumvent the constant variance

assumption of linear regression.

Further improvements can be attained using Generalized Additive Models

(GAMs) (Hastie and Tibshirani 2007) which take the additional step of delin-

earizing each of the inputs as well as outputs. This change significantly improves

the predictive power of the model, allowing it to handle complex non-linear func-

tions nearly as well as other machine learning techniques like random forests or

neural networks.

GAMs work by passing each of the inputs through carefully selected spline

functions, which delinearize the inputs before passing them into the model. By

combining multiple non-linear functions together the model can effectively ap-

proximate arbitrary combinations of non-linear behavior as illustrated in Figure

2.9. This technique is effectively a form of feature engineering which significantly

increases our input space (Molnar 2019). GAMs therefore employ a regularizer

similar to elastic nets which help dampen the weights to prevent over-fitting.

The simplest and perhaps most common method of choosing splines is to

manually apply non-linear functions to an input using available domain knowl-

edge. A simple example of this approach is the introductory physics exercise of

applying a quadratic spline to the displacement of a falling object to determine

its acceleration from gravity. While effective, this approach is heavily labor

intensive, requires significant domain knowledge, and is not guaranteed to be

optimal unless there is some strong theoretical foundation for the spline choice.
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Figure 2.9: Example of how two non-linear splines can be added together to
create new functions. The thick blue lines are an exponential spline and a
polynomial spline. The thick red line is the new function generated by equal
weighting of the two splines. The dashed lines represent intermediate weighting
values.

A better option is to use machine learning to fit the spline using a special

type of function known as a b-spline (de Boor 2006). B-splines, short for open

uniform quadratic basis splines, are a cheap and effective method of fitting

somewhat arbitrary one-dimensional functions. An extension of bézier curves,

b-splines use polynomials to smoothly interpolate the values between a set of

control points known as knots. Each section of the b-spline employs a set of

overlapping quadratic bézier curves defined over a small subset of the domain.

All knots are equidistant from one another (uniform) and additional knots are

added on the ends to force the function to go all the way to the edge of the

data (open). By weighting each of these piece-wise curves, we can fit a smooth

non-linear approximation of the underlying data.
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Figure 2.10: Example of how b-splines can be used to smoothly approximate a
non-linear univariate function. (Servén and Brummitt 2018)

GAMs have a number of advantages when compared to other machine learn-

ing methods. Unlike simple linear regression and elastic nets, GAMs have non-

linear predictive power, allowing them to be used on a wider range of prob-

lems. However, unlike random forests and neural networks, GAMs are highly

interpretable. By computing the splines, weighting them, and summing them

together, it becomes possible to visualize how each input affects the output. See

for instance, how a combination of b-splines combines to form an interpretable

non-linear function in Figure 2.10.

The output of a GAM can be expressed as a weighted sum of one-dimensional

non-linearities (equation 2.9). Because there are no joint terms, these plots

describe the complete behavior of the model. This is a useful feature where

model interpretability is paramount, as it can provide information about how

the model works and prevent errors in unforeseen edge cases or changing input

spaces.
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g(y) = f1(w1x1) + f2(w2x2) + ...+ f(wnxn) (2.9)

While extremely useful in high-interpretability situations, GAMs have sev-

eral drawbacks that have slowed widespread adoption in the machine learning

community. First, they are not a universal function approximator, as they can-

not handle arbitrary joint functions of the inputs. Second, the splines are often

difficult to tune, requiring specific domain knowledge to correctly fit in certain

problems.

Despite heavy support in the statistical language, R, there is little support

for GAMs in other languages. Python’s leading GAM package, pyGAM (Servén

and Brummitt 2018), is less supported and less frequently used when compared

to other important machine learning packages like TensorFlow (Allaire 2019)

and SciKit-Learn (Pedregosa et al. 2011).

However, what if we were to rebuild the GAM principles in modern ma-

chine learning frameworks like TensorFlow? Could neural networks be used to

help solve the spline issues, and could we improve support for the method by

piggybacking on the development of better supported frameworks?
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Chapter 3

Methods

3.1 Network Architecture

Neural networks are often difficult to interpret due to complex interactions be-

tween multiple non-linear terms in their hidden layers. While it is easy to

visualize curves in one or two dimensions, higher dimensional non-linearities

quickly become confusing. By removing these joint interactions from the net-

work, we can improve interpretability while only sacrificing a fraction of the

network’s predictive power.

Our architecture consists of n parallel sub-networks joined by an additive

layer with sigmoid activation. Each sub-network has one input, one output, and

one hidden layer containing m sigmoid activated nodes. The output of these

sub-networks represent the delinearization of each of the input variables. Each

non-linearity is independent and can be plotted in two-dimensions.

Conceptually, this network works in three steps. First, the sub-networks

delinearize each of the inputs, mapping the initial values x to the more useful

non-linear space x′. Second, the network weights each of the transformed x′ val-

ues according to vector w and sums them together with a bias to generate score

y. Third, y is passed through a sigmoid activation function (logistic function

with steepness 1) to realize the bounded classification y′.
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Figure 3.1: Example of our network architecture with n = 3 and m = 4. S
represents a sigmoid activation.
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y′net = g(f1(w1x1) + f2(w2x2) + ...+ f(wnxn)) (3.1)

In theory, this methodology is identical to a GAM with b-splines and a

sigmoid link function. In practice however, the sigmoid activations of the neural

network can actually fit a wider range of one-dimensional functions than the b-

spline GAM. Whereas the GAM is restricted to the polynomial-like equations

defined by its splines, the neural network can allocate its hidden units to different

regions of the input space. This feature gives the network more flexibility in its

approximations, which can result in improved performance (see experiment 2).

We implemented our network in Keras (Chollet 2019) using an Adam op-

timizer (Kingma and Ba 2014) with a learning rate of 0.1. The number of

marginal networks is always equivalent to the number of input variables. Each

marginal network has one input, one output, and contains one hidden layer with

eight sigmoid-activated hidden units. The outputs of the marginal networks are

combined in a final dense layer with sigmoid activation.

3.2 Hypotheses

H1. Our network architecture is interpretable and will closely approximate

GAM behavior.

H2. Our network architecture will outperform b-spline GAMs in real-world

datasets where the optimal non-linearity is unimodal with high variance over a

small domain.
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H3. Our network architecture will fail on classification problems where joint

terms are required, such as the XOR problem.

H4. Our network architecture will outperform logistic regression in all tested

real-world classification datasets.

H5. Our network architecture will approach, but not surpass, the performance

of GBMs on any tested real-world dataset.

H6. Our network architecture can be combined with deep networks to form

more interpretable models in deep learning tasks.

3.3 Datasets

3.3.1 Real World

To demonstrate the effectiveness of our architecture in real-world classification

problems, we compare our method to standard techniques on a number of com-

mon benchmark datasets. All datasets in this section have been well-studied

in machine learning literature and were selected to represent a wide range of

sample and feature space sizes. While our network architecture can be used in

multi-class classification tasks, to standardize our comparison, we convert all

non-binary classification datasets to binary classification problems by selecting

the most difficult class to separate.

In all experiments, the data is randomly shuffled before being fed in to the

model. We use 50% of the available data for training and 20% of the available
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data for validation. A simple grid search is used to determine the best hyper-

parameters for each model. The model is then refit on the combined training

and validation data and test results are reported over the remaining 30%.

Wisconsin Breast-Cancer Dataset: (Street et al. 2005) The Wisconsin

breast cancer dataset contains 569 observations of 31 features that are used to

predict if a given tumor is malignant or benign. There are 212 malignant and

357 benign examples in the dataset. Feature examples include the tumor’s mean

texture, radius, and perimeter. The response is not linearly separable given the

input features.

Sloan Sky Survey: (Blanton et al. 2017) The Sloan Sky Survey dataset

contains 10,000 examples of 17 features used to predict if a given celestial object

is a star, galaxy, or quasar. The dataset contains 4998 examples of galaxies,

4512 examples of stars, and 850 examples of quasars. Example features include

red-shift, ascension angle, and u-band magnitudes. We reduce this dataset to a

binary classification task by separating galaxies from other celestial objects.

Iris: (Fisher 1936) Iris is a famous dataset comparing different species of the

Iris plant. It contains 150 observations of four input variables: sepal length,

sepal width, petal length, and petal width. The objective is to correctly classify

50 examples of Iris setosa, Iris versicolor, and Iris virginica using the four input

features. In our experiments, we converted this problem from a multi-class clas-

sification problem to a single-class classification problem by trying to separate

Iris versicolor from the other two classes.
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Titanic: (Stanford 2019) The Titanic dataset contains 1309 rows correspond-

ing to the passengers who were on board the Titanic the night it sank. The

objective is to use the 13 input features to predict which passengers survived

and which ones died during the disaster. Feature examples include sex, age,

and ticket fare. 500 passengers survived the wreck while 809 perished.

Wine: (Forina 1991) The wine dataset contains 178 instances of 13 variables

corresponding to the attributes of different Italian wine samples. The original

dataset contains 59, 71, and 48 examples of each of the output classes. We

simplify this dataset to a binary classification task by taking the class with the

most intermediate values in the first principle component.

3.3.2 Synthetic

In experiment 3, we employ several synthetic datasets to demonstrate the the-

oretical limitations of the GAM approach. These datasets are as follows.

Gaussian Islands: The Gaussian Islands are two synthetic datasets, circle

and ellipse, containing 2000 observations of two features bounded between pos-

itive and negative five. A two-dimensional Gaussian distribution with mean

of zero and variance of one is placed in the center of each grid. In the circle

dataset, the covariance between x1 and x2 is zero while in the ellipse dataset,

the covariance is 0.5. Each observation is randomly placed on the grid. If the

value of the Gaussian distribution at that point is greater than one, the point

is considered a true positive, if the value is less than one, the point is a true

negative.
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(a) Gaussian island with covariance of 0.0.(b) Gaussian island with covariance of 0.5.

Figure 3.2: Training data for the simulated Gaussian Islands dataset. Blue
points are true positives, red points are true negatives.

Simulated XOR: (Hara and Hayashi 2016) The simulated XOR dataset con-

tains 2000 randomly selected observations of two features bounded between pos-

itive and negative five. If the product of the features is positive, the point is a

true positive, if negative, the point is a true negative.

3.3.3 Pandemic

Pandemic is a novel image classification benchmark involving a fictional disease

modeled on Yersinia pestis: the bacteria responsible for the black plague (Perry

and Fetherston 1997). It is designed as a simple synthetic benchmark for our

architecture in image classification tasks.

Most highly contagious diseases tend to follow a common track when they

encounter an uninfected individual. First, upon contact with the new host, the

contagion rapidly begins to multiply in the favorable environment. The host’s

immune system identifies the threat and begins to take measures to mitigate
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Figure 3.3: Training data for the simulated XOR dataset. Blue points are true
positives, red points are true negatives.

the disease. One of these measures is to rapidly bolster t-cell production, a type

of white blood cell that will actively fight the contagion.

Depending on the severity of the disease and the frailty of the host, two

outcomes are possible: the host’s body mounts a rapid response and fights off

the disease, or the contagion multiplies out of control, killing the host. These

outcomes depend on how quickly the contagion multiplies and how quickly the

body can produce an effective immune response. In our dataset, the immune

response can be measured by proxy by taking a sample from an infection site

and observing the relative frequencies of the bacteria and t-cells.

These samples consist of eight-hundred and seventy 120x120 black and white

images containing a number of overlapping t-cells and bacteria. In these images,

bacteria are modeled by a plus shape and t-cells are modeled by a square shape,
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Figure 3.4: Examples of a t-cell (left) and a bacterium (right) in the pandemic
dataset.

as illustrated in Figure 3.4. The total number of objects in any sample is

bounded between zero and one-hundred.

The distributions of t-cells and bacteria are governed by equations 3.2, 3.3,

and 3.4, represented graphically in Figures 3.5 and 3.6.

s(t) =
1

1 + e−t
(3.2)

i(t) = s(t− ci) (3.3)

c(t) = s(vt− cv)(1− i(t)) (3.4)

Ostensibly, both the t-cell and bacterial distributions are modeled as time-

lagged sigmoids, representing an exponential ramp-up in production before ta-

pering as the host reaches capacity. The bacterial distribution is scaled by one

minus the t-cell fraction, representing how the immune system’s ramp-up up

allows the body to fight off the infection.
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Figure 3.5: Plots of t-cell and bacteria distributions over time with v = 3. T-cell
fraction increases throughout the simulation while the bacteria fraction peaks
and then returns to zero.

Time-lag constants ci and cv are used to control the exact shape of the

distributions, and for this experiment are set to one and three respectively. The

viral rate v is bounded between two and four, with all values above three being

considered fatal.

While these classes are easy to separate as-is, the sampling complication

described in the following section makes accurate classification much more dif-

ficult, if not impossible. Specifically, the sampling approach adds significant

noise to the dataset, thereby overlapping the two tails of the distribution and

destroying most of the non-linear behavior. Therefore, we introduce two minor

changes to the distribution to achieve slightly greater separation between fatal

and non-fatal cases. First, we ignore all values v between 2.75 and 3.25 and

second, we add lift constant of 0.15 to all fatal cases. Conceptually, this change
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Figure 3.6: Bacteria distributions with v varying between two and four. Redder
values correspond to higher values of v and are considered to be more lethal.

removes the most difficult edge cases from the dataset and adds a small amount

of bacteria to the fatal cases.

A total of 870 samples are taken in grid fashion from this modified distri-

bution by uniformly varying rate parameter v and time parameter t as shown

in Figure 3.7. For testing, a new set of 870 images is generated from the same

distribution.

An image is generated for each sample by scaling outputs i and c by fifty

times the inverse of the maximum value for each distribution (equations 3.5 and

3.6).

i′t =
50it

max(i)
(3.5)
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Figure 3.7: Final distribution of bacteria and t-cells from which we pull our
image samples. Red x’s are lethal while blue o’s are non-lethal.

c′t =
50ct

max(c)
(3.6)

This step is a linear transformation that forces each of the values between

zero and fifty. Objects are then added to the image in random locations with

total frequencies corresponding to the transformed values i′ and c′. Finally, a

layer of uniform noise is applied across the image. An example of this process

is shown in Figure 3.8.

Intuitively, this dataset represents a two-part classification task where the

model must first identify and count the number of each object in an image and

then use those counts to classify it. While each task is relatively simple on its

own, the combination of the two presents a more difficult hybrid challenge for

most machine learning methods. The counting aspect requires image processing
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Figure 3.8: Example input images with 20 (left) and 100 (right) objects.

techniques, like convolutional networks, while the classification task requires a

method with non-linear predictive power.

In this research, our objective is to correctly classify this dataset using a

single model that is partially interpretable. The rationale being that a single

model is both easier to deploy in the field as well as trainable in a single step,

due to the existence of a gradient over the custom layer.

While other datasets exist that could demonstrate this architecture, Pan-

demic provides two useful features for our analysis. First, every Pandemic

sample has an explicit two-dimensional latent space (bacteria and t-cell counts)

that is easy to understand and to visualize. Most image classification tasks

require the development of an implicit latent space using a technique like auto-

encoders (Baldi 2012), adding unnecessary complexity and obfuscation to our

analysis. Second, the Pandemic image classification task is very simple, allow-

ing the experiment to be run on less powerful hardware. While extensions of

this methodology are applicable on many datasets, Pandemic is designed to be

faster to run and easier understand for the purposes of this demonstration.
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3.4 External Libraries

PyGAM: (Servén and Brummitt 2018) PyGAM is the leading implementa-

tion of generative additive models in Python. It provides support for standard

and logistic GAMs, as well as built-in support for b-splines. In this work,

PyGAM is used as a baseline comparison for our neural network technique.

TensorFlow/Keras: (Chollet 2019) (Allaire 2019) TensorFlow is an open

source neural network development package developed by Google. It is one

of the most powerful and widely used neural networks frameworks available

today. Keras is an abstraction layer included in the base TensorFlow package

which makes it easier to build and train neural networks. All neural networks

presented in this paper were built in Keras with a TensorFlow back-end.

SciKit-Learn: (Pedregosa et al. 2011) SciKit-Learn is the de facto standard

framework for machine learning in Python. It provides implementations for

logistic regression, random forests, and gradient boosted machines, which are

used as benchmarks and points of comparison for our model.
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Chapter 4

Experiments

In the following experiments, we test each of our hypotheses and discuss the

results in the corresponding section.

Experiment 1: Tests our implementation against PyGAM on the ellipse

dataset to examine how well our network approximates a standard GAM.

Experiment 2: Tests an instance in the Sloan Sky Survey dataset where our

network outperforms traditional GAMs due to better marginal fitting.

Experiment 3: Tests our network against datasets that GAMs are incapable

of fitting.

Experiment 4: Tests our network against a number of real-world datasets to

see if the decrease in power is significant in real-world classification tasks.

Experiment 5: Tests the performance of our network as part of a larger

convolutional net on the Pandemic dataset.
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4.1 GAM Approximation Validation

4.1.1 Setup

Testing hypothesis H1. Our network architecture is interpretable and will

closely approximate GAM behavior.

Experiment one is designed to empirically demonstrate that our neural net-

work architecture will exhibit GAM-like behavior in real-world classification

tasks. For this experiment, we compare our architecture against the PyGAM

implementation with 10 b-splines on the ellipse dataset. We report the simi-

larity of the predictions using cosine similarity and plots of the marginals are

provided for visual analysis. Note, while Euclidean and cosine similarities pro-

vide similar results in this instance, we report the cosine similarity due to known

issues with Euclidean distance in high-dimensional spaces (Domingos 2012).

4.1.2 Results

Network Accuracy GAM Accuracy Cosine Similarity

0.967 0.967 0.997

Table 4.1: Similarity of network and GAM predictions. Both methods arrived
at approximately the same result.

4.1.3 Analysis

The results from this experiment support our hypothesis that we can generate

GAM-like behavior using our neural network architecture. Both models gener-

ate a circular region centered at point (0,0) but fail to account for the correlated

regions in quadrants I and III. The accuracy of both models is approximately
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Figure 4.1: Model predictions for both our network and a GAM on the ellipse
dataset. Color represents the model prediction, with blue being more positive,
red being more negative, and yellow being approximately neutral. X’s are true
negatives and O’s are true positives. Both model facilitate a positive, circular
region centered around (0,0) with a ring of uncertainty corresponding to the
elliptical section of the input space.

Figure 4.2: Marginal distributions for the x1 and x2 variables for both our
network and a GAM in the ellipse dataset. Both methods produce symmetric,
unimodal distributions centered at zero and negative at the extremes.
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96% and the cosine similarity of the predictions is 0.997. These results suggest

that our architecture is effectively equivalent to a GAM, and both techniques

have roughly the same power.

One important caveat to this conclusion is the stark difference in how each

model arrives at its predictions. While the GAM’s marginal distributions fa-

vor polynomial-like functions, our architecture tended to produce Gaussian-like

curves for its predictions. This difference stems from the mechanism by which

each model fits its respective marginal functions. In GAMs, the b-spline tech-

nique is limited to smooth polynomial-like fits, while our neural network is

built upon sigmoid non-linearities, which can produce any arbitrary function,

but tend to favor a slope of zero near the end points. While this difference is

often negligible, like in this dataset, there are instances where it can impact

model accuracy.

4.2 GAMs vs. Networks

4.2.1 Setup

Testing hypothesis H2. Our network architecture will outperform b-spline GAMs

in real-world datasets where the optimal non-linearity is uni-modal with high

variance over a small domain.

Experiment two compares our architecture to the pyGAM implementation

on the Sloan sky survey dataset. This dataset was selected for the red-shift

variable, which is strongly predictive of a celestial object being a galaxy over

a very narrow range of intermediate values. We expect that traditional GAMs

will struggle to fit this variable effectively, as a large number of b-splines are

required to effectively model the feature. Our method will have few issues fitting
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this variable, as our neural network has additional flexibility to allocate power

in this small domain.

We compare our architecture with eight hidden units against GAMs with

an increasing number of splines. We then compare the f1-scores of the two

models, as well as a selection of marginal distributions to determine which

method provided superior results.

4.2.2 Results

Splines 5 10 15 20 25 30 35 40

F1 Score 0.929 0.939 0.951 0.961 0.969 0.971 0.973 0.975

Table 4.2: F1 scores on the stellar dataset for a GAM with an increasing num-
ber of b-splines. F1 scores, precision, recall, and accuracy increase with an
increasing number of splines, but the model fails to converge beyond 40.

Hidden Units 5

F1 Score 0.986

Table 4.3: F1 scores on the stellar dataset for our network architecture. The
neural network is more accurate than the GAM with only eight hidden units.

4.2.3 Analysis

Results from this experiment support our hypothesis that our architecture is

more capable than traditional b-spline GAMs at fitting functions with high

output variance over small univariate domains. While increasing the number

of splines did help to improve the GAM’s performance, it came at the cost of

significantly increased complexity. Rather than five b-splines per feature, the

best performing GAMs required upwards of forty, which significantly increased
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Figure 4.3: F1 scores on the stellar dataset for a GAM with an increasing
number of b-splines. Model accuracy increases with an increasing number of
splines but fails to converge beyond 40.

Figure 4.4: Marginal for the redshift variable in the network and GAM im-
plementations. Commonly used as a proxy for distance, the peak in the net-
work marginal corresponds to the high-density region for galaxies in the stellar
dataset. The 40-spline GAM was unable to achieve a similar fit, and the slow
decay at high redshift values decreases overall model performance.
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Figure 4.5: Marginals for the field variable in network and GAM implementa-
tions. Represents the location in the sky where the telescope is looking. A large
number of b-splines has caused the GAM model to overfit the variable when
compared to the network architecture.

training time, made the model less likely to converge, and decreased the in-

terpretability of the remaining marginals. Furthermore, the model’s accuracy

could not be increased further by adding additional splines, at the model failed

to converge when pushed beyond forty.

Even the 40-spline GAM model was unable to match the accuracy of our

network architecture with just eight hidden units. Unlike GAMs, neural net-

works can transform the location of their non-linearities by modifying their

input weights, allowing the model to better focus its limited power on more im-

portant regions. For this dataset, this ability was extremely important, as our

method was able to concentrate its effort in the most important section of the

input space, providing a smooth, sensible marginal distribution for the red-shift

variable.

The use of marginal layers in the input network is a major improvement

to univariate function approximation when compared to traditional b-spline

GAMs. Our architecture is able to provide a better fit with less power thanks to

additional non-linear flexibility. While b-splines are technically able to emulate

any univariate function to an arbitrary degree of accuracy, in practice, this
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functionality requires careful tuning and lots of guesswork on the part of the

modeler. Our network handles this process automatically, making it generally

superior to the b-spline approach. Further work with activation functions in

this type of marginal architecture is likely to improve these results even further.

4.3 Architecture Limitations

4.3.1 Setup

Testing hypothesis H3: Our network architecture will fail on classification prob-

lems where joint terms are required, such as the XOR problem.

Experiment three demonstrates the limitations of our architecture on two

synthetic datasets: Gaussian islands and XOR. This test is designed to demon-

strate the limitations of GAM-like architectures in instances where the response

is a non-linear combination of univariate functions of the inputs.

4.3.2 Results

Dataset Logistic GBM Network

Circle 0.0000 0.8824 0.9903

Ellipse 0.0000 0.8654 0.8113

XOR 0.4357 0.9983 0.4618

Table 4.4: Test set F1 scores for each of the models on each of the real-
world datasets. Underlined values are statistically significant versus the worst-
performing model. Bold values are statistically significant versus to both mod-
els. Statistical significance is measured at the 0.05 confidence level.
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(a) Circle Dataset

(b) Ellipse Dataset

(c) XOR Dataset

Figure 4.6: Network predictions and selection of marginals for each dataset. In
the first two columns (marginals), the x-axis represents the domain on the input
variable and the y-axis represents the pre-sigmoid contribution to the response.
In the third column, network predictions are presented as two-dimensional prin-
ciple components plots. X’s are true negatives and O’s are true positives. Colors
represent the network prediction, with blue being positive, red being negative,
and yellow being neutral.

4.3.3 Analysis

Circle: True to its name, the circle dataset contains a circle of true positives

encased in a field of true negatives. Our architecture performs well in this

dataset, achieving an f1 score of 0.9903. GBMs perform slightly worse, with an

f1 score 0.8824, due to mild over-fitting on the edges of the circle. This dataset
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is not linearly separable, so logistic regression performed poorly, with an f1 score

of 0.0000.

This dataset demonstrates one of the unexpected advantages of our power-

reduced neural network architecture. By removing the joint terms from the

network, we’ve reduced the number of weights our network needs to fit by an

order of n when compared to an equivalently sized fully-connected layer. This

reduction helps curb over-fitting, allowing the network to perform better without

applying additional regularization constraints, such as dropout (Srivastava et al.

2014).

Ellipse: The ellipse dataset is similar to the circle dataset, but with a corre-

lation of 0.5 between the x1 and x2 variables. Our network performance falls

significantly to 0.8113 as the method is unable to handle correlations between

input variables. GBMs perform almost identically with a score of 0.8654, while

logistic regression performs poorly with an F1 score of 0.0000.

This dataset illustrates the major downside of our network architecture and

other GAM-like approaches. While the network is capable of handling the

circle, the addition of correlation term x1x2 creates a behavior that cannot be

modeled, resulting in a major loss of accuracy. This issue applies to all behavior

that cannot be modeled as a linear combination of univariate functions, and can

lead to decreased accuracy, as in this example, or a complete failure to fit, as in

the XOR dataset.

XOR: The XOR dataset mimics a famous neural networks problem, where

the goal is to classify points in quadrants one and three as class one and points

in quadrants two and four as class two. Our architecture is completely unsuited

for this task, and achieves a similar f1-score to logistic regression. While possible
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to model one of the four quadrants, joint terms are required to model both, so

more powerful methods like GBMs will perform much better on this type of

problem.

These limitations help explain why GAMs and GAM-like architectures have

not risen to prominence in most mainstream machine learning applications.

When compared to more powerful techniques like fully-connected neural net-

works or tree-based ensembles, this architecture seems woefully under-powered,

failing to achieve valid predictions for even these very simple problems. How-

ever, the improved interpretability of this method still warrants attention, and

the question remains: how much do joint terms matter in real-world classifica-

tion tasks?

4.4 Real World Classification Tasks

4.4.1 Setup

Testing hypotheses H4 and H5. Our network architecture will outperform lo-

gistic regression in all tested real-world classification datasets. Our network ar-

chitecture will approach, but not surpass, the performance of Gradient Boosted

Machines on any real-world dataset.

Experiment four is designed to test our network architecture against other

state-of-the-art techniques in real world classification datasets in order to as-

certain the importance of joint-terms in this class of problem. Our model is

tested against SciKit-Learn logistic and gradient boosting classifiers in binary

versions of the Wisconsin Breast Cancer, Sloan Sky Survey, Iris, Titanic, and

Wine datasets. In all instances, we compare the f1-scores of all models on all

datasets and run statistical significance tests on the results.
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4.4.2 Results

Dataset Logistic GBM Network

Breast Cancer 0.3592 0.9383 0.9512

Sky Survey 0.6586 0.9871 0.9864

Iris 0.3478 0.9333 0.8966

Titanic 0.7231 0.7361 0.7200

Wine 0.9231 0.8718 0.9189

Table 4.5: Test set F1 scores for each of the models on each of the real-
world datasets. Underlined values are statistically significant versus the worst-
performing model. Bold values are statistically significant versus to both mod-
els.

4.4.3 Analysis

Results from this experiment support our hypotheses that our network archi-

tecture outperforms logistic regression while falling slightly short of GBMs in

most real world datasets. In three out of the five datasets tested, our archi-

tecture was statistically significantly better than logistic regression and in the

remaining two, the results were not statistically significant either way. GBMs

outperformed our architecture in the iris dataset, and there was no statistical

difference in the remaining four.

In each of the datasets, our network was able to pull out pertinent non-

linear features and incorporate them into the network prediction. The lack of

joint terms had surprisingly little impact on the accuracy of the network, as

illustrated by the nearly identical performance of our network with the more

powerful GBM. This result suggests that, for real-world classification problems,

joint terms are often unnecessary, and it is possible to increase interpretability
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(a) Breast Cancer Dataset

(b) Sloan Sky Survey Dataset

(c) Iris Dataset

(d) Titanic Dataset

(e) Wine Dataset

Figure 4.7: Network predictions and selection of marginals for each dataset. For
a full explanation, see figure 4.6.
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without sacrificing accuracy by employing a GAM-like delinearization approach

in this class of problem.

A more thorough breakdown of each of the datasets is provided in the fol-

lowing section.

4.4.4 Sloan Sky Survey

In the Sloan Sky Survey dataset, logistic regression performed poorly with an f1

score of 0.6586. Our network performed much better with an f1 score of 0.9864,

falling just short of the GBM’s score of 0.9871. The score difference between the

network and the GBM was not statistically significant. This dataset was the

largest tested and contains very non-linear features, making it an ideal target

for GBMs. Therefore, its promising that our model was able to keep pace, only

missing the GBM’s performance by a handful of instances.

Our architecture found a number of important non-linear features in this

dataset, the most significant being red-shift. In astronomy, red-shift acts as a

proxy for distance, and is intuitively one of the best ways to separate classes

of astronomical objects. The relevant non-linearity exhibited a large spike at

low-mid ranges of red-shift, suggesting that Galaxies occur most frequently at

a distance between stars and quasars, which they do.

The network picked up on additional non-linear features such as declination

angle, and a number of approximately linear features such as the g, i, and

r bands. The network also zeroed out a number of unimportant variables,

including the mjd, object id, and plate. This zeroing effect illustrates that our

architecture is capable of performing automatic data-driven feature selection.

51



4.4.5 Breast Cancer

In the breast cancer dataset, the objective is to separate malignant and benign

tumors using a set of input variables. This dataset is considerably smaller than

the stellar dataset, but contains more highly correlated features. In this dataset,

the our network outperformed the GBM with an f1 score of 0.9512 to 0.9383,

however this difference was not statistically significant. The small sample size

and large feature set made it more difficult not to overfit GBM, explaining the

slightly lower score. Again, our target variable was not linearly separable, so

logistic regression performed poorly with a f1 score of 0.3592, this result was

statistically significant.

Our network found a number of important non-linear features, including

concavity worst, texture worst, and symmetry worst. It also selected out a

number of uninformative features, such as the patient id. This dataset demon-

strates that the decrease in power from dropping the network’s joint terms does

not always negatively impact the performance of the model. On the contrary,

by dropping the joint terms from the network, we made it significantly less able

to overfit, which actually improved the network’s performance.

4.4.6 Small Datasets

In addition to the two larger datasets above, we also tested our method on three

smaller datasets: Iris, Titanic, and Wine. These datasets are all small-scale

classification problems, containing only a few dozen samples in each category.

Wine is notable for being almost linearly separable, and Titanic is notable for

being very noisy.
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Iris: In the Iris dataset, our architecture significantly outperformed logistic re-

gression while slightly under-performing the GBM. Both differences were statis-

tically significant. The most important classification features were petal length

and petal width, which both exhibited significant marginal non-linearities.

Titanic: In the Titanic dataset, all three methods performed similarly, with

logistic regression and GBMs slightly outperforming the marginal network. The

marginal network picked up the important input variables class, age, and sex,

suggesting that women, children, and first-class passengers had the best chance

of survival. This analysis corresponds with the real-world understanding of the

disaster, where women, children, and first-class passengers were given priority

in boarding the life boats.

Wine: In the wine dataset, logistic regression slightly outperformed our ar-

chitecture with f1 score of 0.9231 to 0.9189. GBMs fared worse with an f1 score

of 0.8718, but none of these differences are statistically significant. Most terms

identified by our network are linear, while the remaining two are linear over a

domain and zero elsewhere. This observation suggests that a linear model may

be the best approach for this dataset. GBMs under-performed due to the large

input dimension (12) over a small number of samples (130), making it more

difficult to avoid over-fitting.
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4.5 Deep(ish) Networks

4.5.1 Background

Testing hypothesis H6: Our network architecture can be combined with deep

networks to form more interpretable models in deep learning tasks.

This experiment examines the feasibility of combining our network with deep

learning techniques to create more a interpretable deep neural network. Thus

far, we’ve considered our network as a standalone entity similar to a random

forest or a GAM. However, neural networks are well-known for their modularity

and our implementation is no exception. By removing the sigmoid activation

from the end of our network, we can create a marginal layer that can be inserted

into different positions in a network.

In many high-dimensional deep learning tasks, the initial layers of the net-

work often construct high-level representations of the input space which can

be embedded as a lower dimensional vector. Auto-encoders (Baldi 2012) are a

particularly pertinent example of this phenomenon, as a type of network archi-

tecture that specializes in low-dimensional representations. Oftentimes, these

low-dimensional representations are interpretable to a human user and can pro-

vide some insights into the final layers of the model.

For instance, in image processing tasks, stacked convolutional and pooling

layers are used to extract spatial features from a network. These features embed

a low dimensional representation that is passed to one or more dense layers for

the final analysis. In many applications, it is common to take a pre-trained

network, freeze the weights, cut the dense layers off the end, and replace them

with a new ready-to-train set of dense layers (Pelka et al. 2018).
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In the case of one dense layer, the post-convolutional phase of the net-

work has linear power, potentially allowing for interpretation of the inputs, but

limiting the functions the network can model. More dense layers can approx-

imate more complex functions, but the network loses interpretability. In this

experiment, we explore the potential of adding a marginal layer to the end of

a convolutional network, allowing the network to generalize to more complex

functions while maintaining a high level of interpretability.

4.5.2 Setup

In this experiment, we train our neural network classifier on the pandemic

dataset in two phases. In the first phase, we fit a convolutional network, known

as the counter, to the images and predict the number t-cells and bacteria present.

The first four layers of the counter employ 3-by-3 convolutions with stride one

and output depths of size six, twelve, twelve, and eight. The network then

uses 112-by-112 average pooling to convert the image into a vector of size eight,

which is scaled by 1000 to speed training, and passed into a dense layer of output

size two. Table 4.6 provides additional network architecture details.

Layer Type Output Shape Number of Parameters

3-by-3 Convolution (118, 118, 6) 60
3-by-3 Convolution (116, 116, 12) 660
3-by-3 Convolution (114, 114, 12) 1308
3-by-3 Convolution (112, 112, 8) 872
112-by-112 Average Pooling (1, 1, 8) 0
Scaling (1/1000) (1, 1, 8) 0
Flatten (8) 0
Dense (2) 18

Table 4.6: Counter network architecture. This network is designed to count
the number of bacteria and t-cells on screen and output the results to the
experimental layers.
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The counter is trained on all 870 network images using the default Adam

optimizer and mean squared error loss for 1000 epochs. No regularization or

dropout was necessary. Once trained, the network weights are frozen and the

counter is used as the input for our two experimental networks.

The first experimental network is a simple dense layer and sigmoid acti-

vation attached to the end of the counter network. The second experimental

network attaches a marginal layer of width 12 before the dense layer to delin-

earize the network outputs. Both approaches are highly interpretable after the

counting layers and the objective of this experiment is to determine which is

more successful at correctly classifying infection lethality.

Both experimental networks are fit on a new set of 870 images with the

goal of correctly classifying lethality. Both networks are trained using an Adam

optimizer with a learning rate of 0.1 and a binary cross-entropy loss function

for 5000 epochs. After training, a new set of 870 images is generated, and ROC

AUC and F1 scores are reported for both models. Scatter plots are also included

for visual analysis.

4.5.3 Results

Network Layer Dense Marginal

F1 Score 0.766 0.927
ROC AUC 0.847 0.976

Table 4.7: F1 and ROC AUC scores for the two networks. The marginal layer
outperforms the dense layer significantly in both metrics.
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Figure 4.8: Differences between the true image distribution (left) and the dis-
tribution observed by the counter (right). While trends in the underlying dis-
tribution are still visible, imperfections in the counter network have caused the
network outputs to wander from their real positions.

Figure 4.9: Final outputs for the single dense layer network. With an f1 score
of 0.766 and a ROC AUC of 0.847, the single dense layer has missed the non-
linearity in the counter’s output and under-fit the data.
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Figure 4.10: Final outputs for the marginal layer network. With an f1 score
of 0.927 and a ROC AUC of 0.976, our marginal layer has correctly fit the
non-linearity in the counter’s output and provides a good model for the data.

Figure 4.11: Marginal distributions for bacteria counts (left) and t-cell counts
(right). The final layer of the network is behaving intuitively. Low bacteria
counts radically increase the chance of survival while high bacteria counts radi-
cally lower it. In general, more bacteria is worse for survival. Low t-cell counts
are bad for survival, but only if the bacteria counts are above ten. The positive
marginal impact peaks around 30-35, where the infection is at its maximum
point.
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4.5.4 Analysis

This experiment supports our hypothesis that a marginal layer will outperform

a single dense layer while still providing high transparency to the network out-

puts. As illustrated in Figure 4.9, the lower power of a single dense layer limits

the network to a single linear classification boundary. This limitation greatly

restricts the number of functions the network can approximate, and in this

instance, this led to a sharp drop in accuracy.

The marginal layer performs much better, as illustrated in Figure 4.10, find-

ing a smooth and effective classification boundary between the two sets of points.

The model maintains high interpretability, as illustrated in Figure 4.11, behav-

ing intuitively across the domain of both variables.

This experiment demonstrates that marginal layers can be effectively added

into deeper networks and that these layers can improve interpretability without

decreasing model accuracy. Because the marginal distribution is itself part of

the network, it should be possible to further improve the accuracy of the model

by unfreezing the initial weights and allowing the gradient to propagate through

it. This change could provide minor improvements in instances where the pre-

trained model does not provide a perfect match for the outputs, or even to train

the entire model completely from scratch.
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Chapter 5

Conclusion

The contributions of this research are four-fold:

1. We have demonstrated that it is possible to improve interpretability in

neural networks through the addition of GAM-like layers, and provided

the first open source implementation to do so.

2. We have investigated some of the limitations of this architecture and

demonstrated that those limitations often do not significantly impact per-

formance in real-world classification tasks.

3. We have developed the Pandemic benchmark dataset for low-power small-

sample image classification tasks.

4. We have demonstrated that marginal layers can be used effectively in

conjunction with deeper neural networks.

This research has demonstrated a novel technique for improving interpretabil-

ity in neural networks. By removing joint terms, we are able to simulate GAM-

like behavior, providing results that closely match state-of-the-art techniques

on many real-world classification problems. Our neural network architecture is

a reliable and effective way to increase the power of logistic regression without

sacrificing model interpretability. While the GAM paradigm does break down in
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several contrived instances, our research has demonstrated that these situations

are relatively uncommon in real-world tabular datasets.

In addition, we have shown that unlike traditional GAMs, our architecture

can be applied within deeper networks. As illustrated in our pandemic experi-

ment, applying marginal layers at the end of a deep network can help improve

the transparency of the final output, while maintaining high levels of accuracy.

The key to the technique is to find an effective and interpretable embedding

that can be fed into a marginal layer that provides the final classification.

All the code used in this research is open sourced and publicly available

online at https://github.com/zoox101/MarginalNetworks. The marginal layer

code in Keras is also available at the end of this document.

Finally, like any machine learning technique, this architecture has a number

of advantages and disadvantages compared to other approaches.

5.1 Advantages

Interpretability: Perhaps the most important advantage GAM-like networks

is the strong interpretability of the outputs. Unlike dense networks, which are

difficult to decode, the outputs from our architecture can be represented as a

sum of one-dimensional functions. These one-dimensional functions are easy to

visualize and interpret, making this architecture one of the most transparent

available.

Overfitting Protection: Compared to dense networks, our architecture is

less prone to overfitting, and thus requires less data to effectively train. Remov-

ing the joint connections reduces the network’s degree of freedom by a factor of

n− 1, making it harder for the network to exploit random noise.
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Partial Automatic Feature Selection: Due partially to the decreased de-

grees of freedom and partially to a strong propensity to automatically zero

outputs, this network architecture performs a basic form of feature selection

during the marginal delinearization process. If a feature has no impact on clas-

sification, the delinearization step tends to push the marginal output to zero,

as illustrated by the ID field in the sky survey example. This effect reduces the

need for extensive data preprocessing before training the model.

5.2 Disadvantages

No Joint Terms: The obvious main drawback of this architecture is the

lack of joint terms in the network, which breaks the assumptions required to

make the network a universal approximator. While tests on real-world datasets

suggest that this often has little impact on classification accuracy, there do exist

situations, such as the XOR problem, that this architecture cannot handle.

Training Time: Training a neural network is always significantly slower than

training tree-based methods. While our architecture performs better in some

instances, traditional GAMs still train significantly faster and typically provide

nearly identical results. We aim to improve on this issue in our future work.

Classification Only: In this work, we limited our experiments to classifica-

tion tasks, as initial testing suggested that our architecture performs signifi-

cantly worse than state-of-the-art on regression-type problems. This effect is

likely caused by the increased impact of joint terms in regression tasks, as cor-

roborating signals often have a diminishing effect on model output. However,

additional work is needed to confirm or discount this hypothesis.
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5.3 Future Work

While this work has demonstrated some of the advantages of this type of network

architecture, this work has opened up at least two major avenues that I believe

should be investigated in future research.

First, more investigation is needed to determine how well this technique

applies to regression problems. I suspect that this type of network architecture

will struggle in this domain, but to date no formal experiments have been run

confirming that claim.

Second, more work needs to be done on the delinearization technique for this

type of neural network. In our implementation, we rely on the implicit power

of the network to force the delinearization of each of the network marginals.

However, while a network of this type can theoretically model any arbitrary

univariate function, it often has difficulty converging on the best one. Local

minima cause issues for the network, and slow non-linear training times make

convergence a pain. However, by implementing a version of the GAM b-spline

delinearization technique within a marginal layer, I believe these training times

can be improved tremendously.
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Chapter 6

Appendix

Listing 6.1: Marginal Layer Code
from keras import backend as K
from keras . l a y e r s import Layer

#Marginal Layer Class f o r Keras
c l a s s MarginalLayer ( Layer ) :

#Saving input v a r i a b l e s and i n i t i a l i z i n g l ay e r
de f i n i t ( s e l f , h idden un i t s =12, ∗∗kwargs ) :

s e l f . h idden un i t s = h idden un i t s
super ( MarginalLayer , s e l f ) . i n i t (∗∗ kwargs )

#Bui lds the marginal l ay e r
de f bu i ld ( s e l f , input shape ) :

#I n i t i a l i z e r s
w in i t = keras . i n i t i a l i z e r s . RandomNormal (mean=1.0 , stddev =0.05 , seed=None )
b i n i t = keras . i n i t i a l i z e r s . RandomNormal (mean=0.0 , stddev =0.05 , seed=None )
o i n i t = keras . i n i t i a l i z e r s . RandomNormal (mean=0.0 , stddev =0.05 , seed=None )

#Creat ing input weight matrix
s e l f . win = s e l f . add weight (name = ’ marg ina l input we ight ’ ,

shape = ( input shape [ 1 ] , s e l f . h idden un i t s ) ,
i n i t i a l i z e r = win i t )

#Creat ing the input b ia s matrix
s e l f . bin = s e l f . add weight (name = ’ marg ina l i nput b i a s ’ ,

shape = ( input shape [ 1 ] , s e l f . h idden un i t s ) ,
i n i t i a l i z e r = b i n i t )

#Creat ing the output weight matrix
s e l f . wout = s e l f . add weight (name = ’ marg ina l output we ight ’ ,

shape = ( input shape [ 1 ] , s e l f . h idden un i t s ) ,
i n i t i a l i z e r = o i n i t )

#Creat ing the output b ia s matrix
s e l f . bout = s e l f . add weight (name = ’ marg ina l output b ia s ’ ,

shape = ( input shape [ 1 ] , s e l f . h idden un i t s ) ,
i n i t i a l i z e r = b i n i t )

#Bui ld ing l ay e r
super ( MarginalLayer , s e l f ) . bu i ld ( input shape )

#Ca l l s the l ay e r on the input
de f c a l l ( s e l f , x ) :

#Marginal c a l c u l a t i o n s
a = K. expand dims (x , ax i s=2)

#Expanding win along ax i s 0 and mul t ip ly ing i t with va r i ab l e a and adding a b ia s
b = a ∗ K. expand dims ( s e l f . win , ax i s=0) + K. expand dims ( s e l f . bin , ax i s=0)

#Pass ing b through an ac t i va t i on , mul t ip ly ing by wout , and adding a b ia s
c = K. sigmoid (b) ∗ K. expand dims ( s e l f . wout , ax i s=0) + \

K. expand dims ( s e l f . bout , ax i s=0)

#Adding l i e n a r term back in to the marginal
c = K. concatenate ( [ c , a ] , ax i s=2)

#Summing along the second ax i s
d = K. sum( c , ax i s =2, keepdims=False )

#Returning marginal output
return d

#Computing the output shape
de f compute output shape ( s e l f , input shape ) :

re turn input shape
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