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Abstract

We introduce a method of learning spatial probability distributions for discrete

gridded domains. We develop a decision tree based approach, which we call Spatial

Probability Trees (SPTs). SPTs split the data using statistical questions about local

regions in the domain. The leaves of each tree are local probability density functions.

By aggregating these regional probabilities across the entire space, SPTs can be used

to represent global probability density functions. We also introduce an ensemble of

SPTs called a SPT forest, which significantly improves performance.

We apply SPTs to computer Go to predict expert moves. The learned SPTs

can then be used to provide advice to Monte Carlo based computer Go players.

We specifically demonstrate that SPTs and SPT forests can be used to significantly

improve the playing strength of a state-of-the-art computer Go player that uses Upper

Confidence Bounds for Trees.
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Chapter 1

Introduction

Developing an agent to play the board game Go is one of the most difficult problems

currently available in gaming (Müller 2002; Hsu 2007). While super-computers have

been beating chess masters since the mid-90s, no computer agents have been produced

that play Go at the skill level of top expert human players.

The state of the art computer Go players use Monte Carlo-based search, which has

produced the best existing computer Go players. Much of the literature has shifted

away from new algorithms to play Go towards providing information that improves

Monte Carlo search. One approach to this is predicting the best next move based

on what an expert player would play. Existing research in expert move prediction

often claims improving Monte Carlo search as a motivation, but few algorithms have

been demonstrated to improve the search. Furthermore, it is unclear how effective

existing expert move prediction algorithms would be at evaluating thousands of board

positions per second, as is required by Monte Carlo search, as many expert move

prediction algorithms search very large databases to evaluate a move. Therein lies the

motivation for this work: to develop an expert move prediction algorithm sufficiently

simple and yet fast enough to be practically applicable to improve Monte Carlo search.

In the next chapter, we discuss the rules of go. In chapter 3, we discuss in greater

detail the previous approaches to computer Go players and expert move prediction.

Then, in chapter 4, we introduce a novel spatial prediction method, the Spatial Prob-

ability Tree (SPT). In chapter 5, we demonstrate that SPTs enable a top computer

Go player to significantly improve its playing strength and that they are powerful pre-

dictors of expert moves. Finally, in chapter 6 we discuss our conclusions and possible

future work.
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Chapter 2

Rules of Go

Go is a two-player board game that is typically played on a 19 x 19 board covered with

a grid. Players take turns placing stones on the board at the intersection of gridlines,

with one player placing black stones and the other white stones. Go differs from games

such as chess in that, other than color, all stones are functionally identical. The goal

of Go is to control the most territory at the end of the game, which one accomplishes

by surrounding the territory with stones of one’s color. However, the balance of

territory controlled can change many times throughout the game, and small, local

battles can take many turns to play out. In part due to the above reasons, static

evaluation in Go is quite difficult.

The rules for Go are simple, but the resulting game is incredibly complex. The

19×19 board means that there are 361 points on the board. Each point on the board

can be empty, have a black stone, or have a white stone. This yields 3361 (≈ 10172)

possible board positions (Hsu 2007), of which approximately 1.2% (≈ 10170) are

legal (Müller 2002). Then, there are numerous important considerations beyond the

legality of a move, regarding the location of a stone relative to other stones in play.

The first important definition is a group. A group is a collection of one or more

stones of the same color that are connected on the board by the lines of the grid.

The stones must be horizontally or vertically adjacent to each other–stones placed

diagonally across a grid square from each other are not considered adjacent and may

not be part of the same group. Stones in a group all share a common fate. Two useful

special conditions of a group are alive, meaning those stones can never be captured,

and dead, meaning that nothing can be done to prevent that group of stones from

being captured.

A group is captured and removed from the board when it has no liberties. A liberty

is an empty point adjacent to a group. (Adjacency for liberties follows the same rules

as adjacency for stones: an empty point diagonally across a grid square from a group

is not considered adjacent to that group.) Figure 2.1 shows examples of black groups

with various numbers of liberties.
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(a) (b) (c)

Figure 2.1: Example Go board positions with different numbers of liberties. In (a),

the black group has 3 liberties. In (b), the black group has 10 liberties. In (c), the

black group has 6 liberties.

Liberties that are completely surrounded by the stones of a group are called eyes,

and they are important in determining whether a group is dead or alive. Figure 2.2

(a) shows a group of black stones with a single eye; Figure 2.2 (b) shows a group of

black stones with two eyes surrounded by white stones.

Generally, it is not legal to play a stone in such a way that it would have zero

liberties, as it would be immediately captured. Thus, it is generally illegal to play

inside eyes, as the stone played in the eye would have no liberties. There is one

exception to this rule: if a group of stones has an eye as its only liberty, an opponent

can play a stone in the eye to capture the group.

If a group has two or more eyes in it, then it is impossible for that group to be

captured. We refer to groups that cannot be captured as alive.

In capturing, the only things that matter are the number of liberties a group has.

Because liberties are empty points in which a stone can be played, stones or groups

along the edge or corner have fewer liberties than stones in the middle of the board,

thus making them easier to capture. To conceptualize this, it is often convenient to

imagine that the board is surrounded by an additional border of edge stones that can

never be captured.
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(a) (b)

Figure 2.2: Examples of groups with eyes. (a) shows a group of black stones with

a single eye; (b) shows a group of black stones with two eyes surrounded by white

stones.
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Chapter 3

Related Work

The complexity of Go results in a difficult and interesting problem for learning and

search. However, Go’s state space is prohibitively large for the application of tradi-

tional search methods. In order to apply such methods, it is necessary to reduce Go’s

state space. TsumeGo is a good example of this reduction in search space. TsumeGo

is a puzzle variation of Go in which the player is given a board position and instruc-

tions for what results the next move should have. In this case, however, the puzzles

are solved–there is a correct solution that can be found. Wolf (2000) demonstrated

that TsumeGo solutions can be efficiently found using forward-pruning on search.

Dabney and McGovern (2007) achieved 65% accuracy on TsumeGo using Relational

UTree. While TsumeGo is an interesting sub-problem in solving Go, the full problem

of Go cannot be directly solved through search. As a result, approaches other than

traditional search must be used. The approaches we will discuss here fall into two

categories: Monte Carlo methods and expert move prediction.

Most of the work on Monte Carlo methods in Go use Upper Confidence-Bound

Trees (UCT), introduced by Kocsis and Szepesvári (2006). Prior to UCT, state of the

art methods used other Monte Carlo methods (Cazenave and Helmstetter 2005). They

apply the UCB1 N-Armed Bandit algorithm to Monte-Carlo rollout-based planning,

which enables them to develop confidence bounds on each move (Auer et al. 2002).

Monte Carlo planning methods take advantage of the fact that while the state space

is too large to look at every action to determine which is best over the course of the

game, the structure of the game provides a generative model. That is, given a state

and an action, future states and rewards can be simulated. The near-optimal action

can be found, then, by “sampling the future.” In näıve Monte Carlo search, a set of

actions is uniformly selected from the actions available at a particular state. Then,

each of those actions is “rolled out” by simulating the future states and rewards each

action would give. The best action can be selected based on any of a number of

statistics, but usually the best average reward is chosen.

5



UCT improves upon this by selectively sampling from the actions available at a

state. The goal is to reduce the number of actions that must be rolled out at each state

by removing actions that are clearly sub-optimal. The difficulty in removing actions

that appear suboptimal is that the sub-optimality of an action may evolve rapidly over

the course of a game, and the estimation of optimality must be updated accordingly.

It is therefore necessary to balance the exploration of sub-optimal actions with the

exploitation of optimal-appearing actions, a familiar problem in machine learning.

Currently, virtually all state-of-the-art Go playing programs use UCT as a major

component of their implementations (Rosin 2010a; Lee et al. 2009; Enzenberger et al.

2010). The focus of much of the literature has shifted to finding ways to improve

UCT. One area of improvement is the estimation of the optimality of an action.

Expert move prediction is motivated by the potential to improve estimations of

optimality in UCT (Werf et al. 2003; Stern et al. 2006; Araki et al. 2007; Coulom

2007; Sutskever and Nair 2008; Gelly and Silver 2008). Expert move prediction tries

to supply the best next move given a particular board position, where an expert’s

move in the same case is used as the correct answer. Essentially, predicting an expert’s

next move is used as a proxy for finding the best next move: the expert’s move is

assumed to be the best.

Expert move prediction approaches are data-driven methods that develop models

by training on large numbers of games or board positions. There are several databases

of expert best moves on which to train a model, all of which are essentially recordings

of games. There are two primary classes of datasets, distinguished by the level of

the human players whose moves are recorded and the availability of the data. The

GoGod dataset is a collection of games by professional players and requires a fee for

its use. Online datasets, like the KGS Go server, contain a large number of freely

available games played by highly-ranked amateur players (Shubert 2006). While it

is presumed that the professional moves are of higher quality than moves made by

amateurs, the amateur moves are still of sufficiently high quality to be considered

expert level moves.

Expert move prediction methods work by attempting to determine the relationship

between local features and the best next move. The restriction to local features

is important: because the state space is so large, searching for the global state is

infeasible. For most game databases, there will be many possible board configurations

for which there are very few or no corresponding best next moves.
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Most of the literature in expert move prediction features the application of exist-

ing machine learning algorithms, often with small modifications to make them more

suitable to Go. Convolutional neural nets (Sutskever and Nair 2008), Bayesian nets

(Stern et al. 2006; Michalowski et al. 2011), and the Maximum Entropy Method

(Araki et al. 2007) have all been applied to this problem.

The accuracy of these methods, measured as the percentage of time that the algo-

rithm’s predicted next move is the same as the expert’s move that is being replayed,

is generally between 15 and 40 percent. This is because there may be many moves

that are good for a given board position. In fact, if a particular board were shown

to a number of experts, they may come to many different conclusions about what

the best next move is. Because of this plurality of good next moves, it is helpful to

consider other goodness measures. An accepted approach is to have the algorithm

rank all of the legal moves on the board to see where the expert’s move falls within

that range. Calculating the percentage of time in which the expert’s move falls within

the top 10 or top 20 moves provides an indicator of goodness. For current state of

the art algorithms, the expert’s move falls within the moves that the algorithm has

ranked as the top 20 moves between 75%-85% of the time (Araki et al. 2007).

The algorithm presented in this work is expert move prediction using KGS data.
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Chapter 4

Methodology

In this chapter, we introduce a novel spatial prediction algorithm, the Spatial Prob-

ability Tree (SPT). The goal for the SPT is to provide an expert move prediction

algorithm that evaluates board positions fast enough to be practically applicable to

improving Monte Carlo based search. The specifics of the SPT algorithm were moti-

vated by the observation that, in Go, the shape (patterns) of stones in a small area

of the board can be very important in that local region of the board. We developed

a model that explicitly works with the idea that local features can provide predictive

information, not just for the cell where the pattern is centered, but for a small spatial

area around the pattern. This local information is not necessarily useful by itself.

However, when taken in aggregate over an entire space, meaningful probabilities for

an event occurring in that space can be generated.

This chapter first describes in detail the structure of the SPT, and in what domains

it is useful for prediction. Then, we explain how to use a SPT for prediction tasks.

After defining the structure and use of the SPT, we describe the method for growing

the trees. Finally, we describe ensembling multiple SPTs into a SPT forest.

A SPT has a decision tree-like structure with conditional probability tables at the

leaf nodes. The conditional probability tables at the leaf nodes store the probability

of an event occurring at a single point in space. We call this single point of interest the

focus of the SPT, and a fixed sized square area around the focus is a window. The

conditional probability tables are constructed using the results of simple questions

asked about the window around the focus.

4.1 SPT Structure

A SPT has a decision tree-like structure, as shown in the example tree in Figure 4.1.

Internal nodes of the tree contain questions about the area surrounding the focus

point. The only types of question asked in the SPT are counting questions. In a
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discrete domain, a counting question takes the form “Is the number of objects of a

type t in a window of a size wq, greater than or equal to some threshold e?” A window

of size wq refers to an wq × wq square centered on the focus point. Because of the

requirement of the center point, wq must be odd. Different questions in the tree are

not required to ask about the same window size; however, the focus (the center of the

windows) must be the same for all questions in a tree. An example of a question that

might appear in a SPT is, “Is the number of edge points in a three by three window

around the focus point greater than or equal to one?” Figure 4.2 shows an example

of this question evaluated at two points on the board. Algorithm 4.1 describes this

process in pseudocode.

Figure 4.1: A Spatial Probability Tree with a window size wp of 3 and a depth of 2.

The root of the tree splits on the question “Is the number of edge positions in a 3× 3

window around the focus point greater than or equal to 1?” The yes branch from the

root node splits on the question “Is the number of empty points in a 5 × 5 window

around the focus point greater than or equal to 9?” The no branch from the root

node splits on the question “Is the number of white stones in a 3× 3 window around

the focus point greater than or equal to 1?”

9



Figure 4.2: Sample Counting Question: In the example on the left, the question

evaluates to yes, indicating that there is more than one edge point in the window. In

the example on the right, the question evaluates to no, indicating that there are no

edge points.

Algorithm 4.1: AskNodeQuestion

Input: Q = Question, B = Board Position, F = Focus Point

Output: Answer ∈ {True, False}
type, wq, threshold← GetCountingQuestion(Q)

offset← wq/2

count← 0

for x← GetFocusX(F )− offset to GetFocusX(F ) + offset do

for y ← GetFocusY (F )− offset to GetFocusY (F ) + offset do

if B(x, y) = type then
count← count+ 1

end

end

end

return count ≥ threshold

10



For simplicity’s sake, in our discussion of the SPT, we reference only counting

questions drawn from the unprocessed board. However, counting questions can be

made more powerful through the use of knowledge fields. Knowledge fields and their

application to SPT are discussed in Section 4.5

The leaves of the tree are fixed-size probability tables representing the board

points in the window of size wp around the focus point. For each board point, the

table stores the probability that the next stone will be placed there. The leaf nodes

also store the probability that the stone will not be played at any point inside the

window, which we call the null probability. Figure 4.3 shows an example leaf node of

window size three. It is worthwhile to note that while the probability tables at the

leaf nodes are used both for prediction and growing the trees, the null probability is

only used for growing the tree.

Figure 4.3: Example Leaf node with a window size wp of three. The center cell stores

the probability that the next stone will be played at the focus point. Each of the cells

surrounding the focus point stores the probability that the next stone will be played

at that cell. The null probability, listed below the cells, gives the probability that the

next stone will not be played within the window represented by this leaf node.

4.2 SPT Domain

SPTs were designed for the task of expert move prediction in the game of Go. They

answer the question, “Given a board position, what is the probability that a Go

expert would place a stone at each empty point?” However, SPTs are not limited to

Go. They can be used directly in any domain that matches the spatial constraints of

Go, which has the following properties:
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• the space is finite,

• the space is gridded,

• the space is either integer or real valued,

• the event being predicted occurs only at a single location in the space.

4.3 Evaluating a SPT

Before discussing how to use a SPT to predict expert moves, it is necessary to define

what it means to evaluate a SPT. To evaluate the tree, we start from the root of the

tree and ask the question at the root with respect to the focus point being considered.

The answer to the question at the root leads either to another internal node containing

another question to ask, or to a leaf node. If we arrive at an internal node, we ask the

question contained there with respect to the focus being considered and then continue

down the branch indicated by the answer. The tree-traversal process continues until

a leaf node is reached. An algorithmic description of this process can be found

in Algorithm 4.2. As discussed in Section 4.1, each leaf node contains a table of

probabilities representing, for each board point in the window around the focus point,

the probability that the next stone will be placed at the point.

Algorithm 4.2: EvaluateTree

Input: R = SPT Root Node, B = Board Position, F = Focus Point

Output: L = Leaf Node

currentNode← R

while !IsLeafNode(currentNode) do

if AskNodeQuestion(GetNodeQuestion(currentNode), B, F ) then
currentNode← GetY esBranch(current)

end

else
currentNode← GetNoBranch(current)

end

end

return currentNode

In using a SPT for expert move prediction, we are answering the question: “For

each legal move on the board, what is the probability that an expert would play at
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that point?” In order to answer this question, we combine the local probability tables

stored at the leaves of the tree to construct an approximation of a probability table

for the entire board. The pseudocode for this process can be found in Algorithm 4.3.

Algorithm 4.3: ApplyLeafNodeToGlobalTable

Input: L = Leaf Node, G = Global Probability Table, F = Focus

window ← GetWindowSize(L)

offset← window/2

for x← −offset to offset do
for y ← −offset to offset do

gx← GetFocusX(F ) + x

gy ← GetFocusY (F ) + y

G(gx, gy)← G(gx, gy) + L(x, y)

end

end

Constructing the table of probabilities for the entire board (hereafter referred to as

the global table) is straightforward. We begin with a blank table with one cell for each

board point. For each board point, the SPT is evaluated, providing a local table of

probabilities centered on that board point. That local table of probabilities is added

to corresponding cells of the global table. As the local probability tables produced by

evaluating the SPT at each board point overlap, it is necessary to combine values as

the global table is populated. To combine overlapping values, we simply sum them.

Figures 4.4 - 4.16 show an example of this process for a very small SPT. This example

is intended to graphically explain Algorithms 4.2 - 4.4.

Because of the way the table is constructed, certain cells on the table are con-

structed from fewer local tables of probabilities. Specifically, cells corresponding to

corners and edges on the board are constructed from fewer local tables of probabilities

than board points in the interior of the board. For example, for a 3× 3 window size,

corners are covered by four local tables of probabilities and edges are covered by six,

whereas every other board point is covered by nine. To account for this, we divide

each cell by the number of leaf nodes that covered it. Finally, the table is normalized

so that it sums to one. A pseudocode description of this process can be found in

Algorithm 4.4.
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Algorithm 4.4: ConstructGlobalTable

Input: R = SPT Root Node, B = Board Position

Output: G = Global Probability Table

G← table of same size as B, initialized to zeros.

for x← 0 to GetSizeX(B) do

for y ← 0 to GetSizeY (B) do
focus← (x, y)

leaf ← EvaluateTree(R,B, focus)

ApplyLeafNodeToGlobalTable(leaf,G, focus)

end

end

Normalize(G)

return G

Figure 4.4: An example of the SPT evaluation process: The starting focus point is

in the upper left corner of the board, as indicated by the dotted red circle. The focus

point is indicated in this manner in all subsequent examples. The board represents

the empty global table of probabilities that will be populated as the tree is evaluated.
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Figure 4.5: An example of the SPT evaluation process: The first question is eval-

uated, counting the number of edge nodes in the 3 × 3 window. The shaded square

with a dotted outline indicates the window being considered by the question. In this

case, there are five edge points within the window, so the answer is yes, and the SPT

continues down the yes branch.

Figure 4.6: An example of the SPT evaluation process: The next question evaluated

counts the number of empty points (points without stones) in a 5× 5 window around

the focus. In this case there are only five empty points in the window, which sends

the SPT down the no branch.
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Figure 4.7: An example of the SPT evaluation process: The SPT is now at a leaf

node covering the area represented by the shaded square.

Figure 4.8: An example of the SPT evaluation process: The probabilities from the leaf

node are added to the corresponding cells in the empty global table of probabilities.
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Figure 4.9: An example of the SPT evaluation process: The focus point moves over

and the tree is evaluated once more, reaching a leaf node.

Figure 4.10: An example of the SPT evaluation process: The values from the leaf

node’s table of probabilities are once again added to the global table of probabilities.
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Figure 4.11: An example of the SPT evaluation process: The tree is evaluated at the

next focus point and the probabilities in the global table are then updated.

Figure 4.12: An example of the SPT evaluation process: The tree is evaluated at the

next focus point and the probabilities in the global table are then updated.
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Figure 4.13: An example of the SPT evaluation process: The tree is evaluated at the

next focus point and the probabilities in the global table are then updated.

Figure 4.14: An example of the SPT evaluation process: The tree is evaluated at the

next focus point and the probabilities in the global table are then updated.
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Figure 4.15: An example of the SPT evaluation process: The tree is evaluated at the

next focus point and the probabilities in the global table are then updated.

Figure 4.16: An example of the SPT evaluation process: On the left is the global

table of probabilities. The board on the right shows how many leaf nodes cover each

point on the board. The global table of probabilities is normalized to account for

the uneven coverage of leaf nodes. Each value in the global table of probabilities is

divided by the leaf node cover count at the corresponding point. The board is then

normalized to sum to one by dividing the value of each cell by the sum of all of the

cells.
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4.4 Growing a SPT

SPTs are grown using local board position and next move pairs. Global board posi-

tions, as mentioned in previous sections, refer to the entire Go board. Local board

positions are a perspective on the global board position with respect to a particular

focus point. This is a subtle distinction, but it is convenient for undersampling. To

transform a global board position into a local board position, we pair a focus point

with the global board position. Figures 4.17 - 4.19 shows an example of the transfor-

mation process when the reader can see the process of undersampling the data. Note

that prior to undersampling, the global board position is paired with every point on

the board; for a 19×19 board, a single global board position becomes 361 local board

positions.

The local board positions created from the global board position are classified

according to whether or not the next move occurs within the window of size wp around

the focus point. A local board observation is positive if the next move occurs within

the window around the focus point. An observation is negative if the next move

does not occur in the window around the focus point. While the ratio of positive

to negative examples will vary depending on window size, the number of negative

examples, in general, is far greater than the number of positive examples. When we

originally implemented the SPTs, we attempted to learn on the highly skewed data

and results were poor. This is a well-known problem in machine learning and we

used the standard approach of solving this problem by undersampling the negative

observations (Drummond and Holte 2003). We chose to make the number of negative

examples equal to the number of positive examples.

Once we have constructed a training set by transforming the global board positions

into local board positions and undersampling the negative examples, we can grow the

trees.

The tree-growing process begins by creating a tree with a single leaf node con-

taining an empty wp × wp table at the root. Then, we aggregate all the examples in

the training set at the single leaf node at the root of the tree. This means, for each

example in the training set, we increment the values in the leaf node according to

whether the next move occurred within the wp × wp window around the focus point.

If the next move occurred within the leaf node’s window, its position is recorded by

incrementing the value of the cell corresponding to the board point where the next

move was played. If the next move did not fall within the leaf node’s window, the null
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Figure 4.17: Undersampling process: First we transform the global board position

into local positions by pairing it with every possible focus point. The red dotted is

the focus point: the red shaded circle is the next move.
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Figure 4.18: Undersampling process: The red dotted square indicates the positive

examples, where the focus point is within a 3× 3 window of the next move.

23



Figure 4.19: Undersampling process: All of the positive examples are added to the

training set, in addition to an equal number of randomly selected negative examples.
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count is incremented. The number of examples the leaf node has seen is also recorded;

when there are no more examples to aggregate at that leaf, the counts in the cells

are divided by the total number of examples seen by the leaf node, transforming the

table of counts into a table of probabilities. This process is described in Algorithm

4.5.

Algorithm 4.5: CreateLeafNode

Input: D = Processed Data

Output: A Leaf Node

L(x, y)← 0 ∀x, y ∈ wp

nullProbability ← 0

for d = boardPosition, focus, expertMove ∈ D do
wp ← GetWindowSize(L)

if InWindow(wp, focus, expertMove) then
L(expertMove)← L(expertMove) + 1

end

else
nullProbability ← nullProbability + 1

end

end

L← L/Length(D)

nullProbability ← nullProbability/Length(D)

SetNullProbability(L, nullProbability)

return L

The single leaf node tree we have created contains a table of probabilities repre-

senting the probability that the next move will occur in a window of size wp anywhere

on the board. This is not a useful predictor.

To develop more useful leaf nodes, it is necessary to split the data in a meaningful

way. A split consists of a question (as discussed in Section 4.1), two leaf nodes

containing the probability the next stone will be played in a window of size wp around

the focus point given the answer to the question, and the set of examples used to

populate the table of probabilities at each leaf node. Figure 4.20 shows an example

split. The process of splitting the data is described in Algorithm 4.6.

To create a split, we require a question. We generate a number of questions equal

to the parameter s using examples in the training set. For each question, a random
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Figure 4.20: Example Split: A split consists of a question, two leaf nodes, and the

set of examples that accumulate at each leaf node.
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Algorithm 4.6: SplitData

Input: Q = Question, D = Data

Output: yesData, noData

yesData← ∅
noData← ∅
for d = boardPosition, focus, expertMove ∈ D do

if AskNodeQuestion(Q, boardPosition, focus) then
Append(yesData, d)

end

else
Append(noData, d)

end

end

return yesData, noData

stone type t is selected, along with a random focus point p and window size wq. Then,

for a randomly selected example, we ask the question, “How many stones of type t

are present in the window of size wq around the focus point p?” The answer to that

question, e becomes the threshold used in the question for the node, which is, “Is the

number of stones of type t present in the window of size wq around the focus point p

greater than the threshold e?”

Once we have the question to use to split the data, the actual splitting occurs.

For each example in the training set, the question is evaluated. If the answer to the

question is yes, that example is aggregated at the leaf down the yes branch. If the

answer is no, that answer is aggregated at the leaf down the no branch. This process

is repeated until no examples remain.

We want to replace the single leaf node root of the tree with a split that divides

the data in a useful way. Further, we would like to replace the single leaf node root

with a split that divides the data in the best way, or at least in a way that is better

than the other splits generated. Therefore, we need a method to assess the goodness

of a split relative to other splits.

The method used to assess the goodness of a split is a score based on the Likelihood

Ratio. Likelihood, for a leaf node n and example x, is the likelihood that the example

can be explained by the leaf node. This value is simply read from the table of

probabilities at the leaf node. For example, if the next stone in x was placed one
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point to the left of the focus point, the likelihood that x is explained by n is the

value in the cell one cell to the left of the cell corresponding to the focus point in the

table of probabilities stored at n. If the next stone was not played within the window

covered by n, the likelihood that x is explained by n is the null probability stored at

n.

Algorithm 4.7: EvaluateSplit

Input: Q = Question, D = Processed Data

Output: Split Rating

nullLeaf ← CreateLeafNode(D)

yesData, noData← SplitData(Q,D)

yesLeaf ← CreateLeafNode(yesData)

noLeaf ← CreatLeafNode(noData)

yesLikelihood← GetLogLikelihood(yesLeaf, yesData)

noLikelihood← GetLogLikelihood(noLeaf, noData)

nullLikelihood← GetLogLikelihood(nullLeaf,D)

likelihoodRatio← yesLikelihood+ noLikelihood− nullLikelihood
return likelihoodRatio

The likelihood that a set of examples is explained by a particular leaf node is the

product of the likelihoods for the individual examples, given that leaf node. How-

ever, because many of the likelihoods are very small, the likelihood of large sets of

examples eventually becomes zero. The standard approach to mitigate this is to use

the log likelihoods. Therefore, instead of multiplying the likelihoods of the individual

examples in the set, we add the logs of the individual likelihoods.

The log likelihood of a leaf node, then, is calculated by adding the log likelihood

of each example shown to that leaf node with respect to that leaf node.

To calculate the Likelihood Ratio, we first calculate the log likelihood of the

split. This is done by calculating the log likelihood for the set of examples that were

aggregated at the leaf node at the end of the yes branch with respect to the leaf node

at the end of the yes branch and adding it to the log likelihood for the set of examples

that were aggregated at the leaf node at the end of the no branch with respect to the

leaf node at the end of the no branch.

The log likelihood of the original leaf node must also be calculated. This value

represents the null likelihood.
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The Likelihood ratio is simply the difference between the likelihood of the split and

the null likelihood, ln(Ls)− ln(Lnull). We prefer the split with the higher Likelihood

Ratio. The split evaluation process is described in Algorithms 4.7 and 4.8.

Algorithm 4.8: GetLogLikelihood

Input: L = Leaf Node, D = Data

Output: Log Likelihood that D is explained by L

likelihood← 0

for d = boardPosition, focus, expertMove ∈ D do
wp ← GetWindowSize(L)

if InWindow(wp, focus, expertMove) then
likelihood← likelihood+ Log(L(expertMove))

end

else
likelihood← likelihood+ Log(GetNullProbability(L))

end

end

return likelihood

To replace the leaf node at the root of the tree with a split, we generate several

splits and choose the one with the highest likelihood ratio. Now there are two new leaf

nodes that can potentially be better explained by a split. For each new leaf node, we

generate new splits, using only the examples that were aggregated at that leaf node.

The split with the highest Likelihood Ratio replaces the leaf node. This process is

repeated until one of the following conditions is met:

• if the number of examples at a leaf node is less than the minimum node size m,

• if the maximum tree depth d has been reached,

• if the leaf node explains the data better than any of the splits generated.

The entire process of growing a SPT is summarized in Algorithm 4.10.

4.5 Knowledge Fields

One way to expand the power of counting questions is through the concept of Knowl-

edge Fields. Knowledge fields are gridded spaces that are the result of some transform
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Algorithm 4.9: FindBestSplit

Input: D = Processed Data, s = Questions Sampled per Split

Output: Best distinction found given parameters, otherwise null

bestQ← null

bestV ← 0

for i = 1 to s do
Q← generate random question

value ← EvaluateSplit(D,Q)

if value ≥ bestV then
bestQ← Q

bestV ← value
end

end

return best

or calculation on the Go board. These fields can be used to incorporate expert knowl-

edge. For example, in our experiments we used the following knowledge fields:

• Liberty Field - the number of of liberties for each stone on the board.

• Capture Field - the number of opponent’s stones that will be captured by placing

a stone for each empty point on the board.

• Opponent Capture Field - the number of stones that the opponent could capture

by placing a stone for each empty point on the board.

Knowledge fields must be grounded to the Go board. That is, each point of

the knowledge field must correspond to a single point on the Go board. Counting

questions can then be asked with respect to a knowledge field in addition to the Go

board.

4.6 SPT Forests

Although a single SPT can be a powerful spatial predictor, much of the recent work

in machine learning demonstrates that an ensemble of models is more powerful than

any single model. An ensemble is simply a collection of models whose predictions

are combined to produce a single prediction. Common ensembling techniques include
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Figure 4.21: Example Knowledge Fields. The top left shows the Go board position;

the other three boards show knowledge fields built off of the top left Go board. The

White Liberty Field is defined relative to white stones. If a point does contain a white

stone, then the value at that point is the number of liberties of the group containing

the stone at that point. If a point does not contain a white stone, the value is zero.

The Black Liberty is defined the same as the White Liberty field, except for black

stones instead of white. The Black Capture Field is zero at occupied spaces. At every

empty space, it’s the number of white stones that black could capture by playing a

stone at that empty space.
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Algorithm 4.10: GrowSPT

Input: D = Processed Data, c = Current Depth, d = Maximum Depth, m =

Minimum Leaf Node Support, s = Questions Sampled per Split

Output: A SPT

if c < d and Length(D) > m then
node← CreateNode(FindBestSplit(D, s))

if node 6= ∅ then
yesData, noData← SplitData(GetQuestion(node), D)

SetY esBranch(node,GrowSPT (ydata, c+ 1, d,m, s))

SetNoBranch(node,GrowSPT (ndata, c+ 1, d,m, s))

return node
end

end

return CreateLeafNode(D)

boosting, Bayesian Model Averaging, and Random Forests (Breiman 2001; Witten

et al. 2011). A forest is an ensemble containing only decision trees. For this work, we

ensemble a set of SPTs into an SPT forest.

Growing a forest is straightforward. The desired number of trees is grown indepen-

dently as described in Section 4.4, each training on a random set of board positions

drawn from the training data. If there was insufficient training data, we could ensure

diversity in the forest by following the bootstrap randomization approach used by

Random Forests (Breiman 2001). However, because the number of board positions

used for training each tree is small relative to the number of board positions in the

training data, this is not necessary in our case. Another approach we have explored

was to train each tree on games from an individual player but it was not more powerful

than simply training on different sets of games.

Once we have a grown a forest, it can be evaluated. To evaluate a SPT forest, each

tree in the forest is evaluated, producing one probability table describing the whole

board per tree. The resulting tables are summed and then normalized to provide the

forest’s probability table.
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Chapter 5

Empirical Results

We empirically evaluated SPTs in computer Go using two measures. The first mea-

sured the Kth-move performance and the second assessed the performance of Fuego1

(Enzenberger et al. 2010), a top computer Go player, both with and without the ad-

vice provided to UCT search by the SPTs. We used Fuego version 0.4.1, the current

version at the time of the experiments.

The Kth-move measure of performance evaluates the ability of a model to predict

expert moves. A model produces a ranked list of potential moves and we identify

where in this ranked list of moves the actual expert move falls. For example, if the

expert move was the fifth move, then it was within the top 5 moves. From this, we

can ask a more general question: “Given multiple test examples, how often is the

expert’s move within the top k moves?” By varying k, and computing the percentage

of the time the expert move is within the top-k moves across all test examples, we

can compare to published results from state-of-the-art methods that predict expert

moves (Stern et al. 2006). The motivation behind the Kth-move measure is that, in

Go, there is not necessarily only one correct move in a given situation. Kth move

data for each forest was gathered over 30 full Go games, selected randomly from 671

testing games.

In the Fuego integration experiments, we use a forest of SPTs to give advice to

the Fuego UCT player. Fuego uses this advice to bias its UCT rollouts towards better

moves. This is done using a theoretically-motivated additive modification to the UCT

formula (Rosin 2010a). To test the performance of the player with the SPT advice,

we play 1000 games against GnuGo version 3.6 level 10.2 Each game uses 10,000

rollouts per move. These parameters were chosen based on advice from an expert in

the field (Rosin 2010b).

1http://fuego.sourceforge.net/
2http://www.gnu.org/software/gnugo/
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Parameter Description

wp Leaf node window size

s Number of questions sampled per split

m Minimum leaf node support threshold

d Maximum tree depth

n Number of training examples

Table 5.1: SPT parameters

Our training data consists of 19×19 games drawn from the KGS Go Server3 where

both players are ranked at least 6 dan and the game lasts at least 70 moves. Dan

indicates the level of skill possessed by the Go player. Expert players are ranked into

nine dan grades, with players of higher dan possessing greater skill. By focusing on

only the top players, we expect the moves to be more consistent. By including only

games that last 70 moves or longer, we ensure that our data consists of full games.

Our first experiments analyzed the impact of the parameter choices on the per-

formance of the SPT. (Table 5.1 shows the parameters of the SPT.) We measured

the SPT’s ability to correctly predict the expert move within the first move, the top

5, the top 10, and the top 20 moves. Figures 5.1, 5.2, 5.3, 5.5, and 5.4 show the

results of this measure as a function of the five main parameters of the SPT. All of

the experiments were conducted with the same parameters, except for the one being

varied. For the parameter not being varied, the choices were: a window size wp = 3,

minimum leaf node support threshold m = 30, maximum tree depth d = 10, number

of questions sampled per split s = 300, and number of training examples n = 300.

These observations were drawn randomly from 781 training games. We examined the

performance of forests of sizes 1, 5, 10, and 20.

As the tree depth is increased (Figure 5.1), the SPT is better able to predict the

expert moves. The performance quickly levels out around depth 10, most likely in

an interaction with the minimum leaf node support m and the number of training

observations available. Figure 5.2 shows the same results as a function of the minimum

number of observations required to split a leaf node. Here we see a decrease in

performance as the minimum size is increased because the tree is unable to fully grow.

As expected, increasing the number of questions sampled per split s improves the

3http://www.gokgs.com/

34



Figure 5.1: Percent of the time that the expert move is correctly predicted by the

top 1, 5, 10 and 20th ranked moves as a function of the maximum tree depth d. The

error bars represent the standard deviation.

performance of the tree (Figure 5.3). Performance asymptotes around 200 samples.

The performance as a function of the size of the leaf node (Figure 5.4) peaks with leaf

nodes of 3-5 and then shows a clear decrease as the size of the pdf increases. Finally,

the performance as a function of the number of training examples quickly increases

but levels off at around 1000 examples. These results show a robustness to parameter

selection.

We performed n-way analysis of variance to explore parameter significance and po-

tential interaction effects between parameters. In addition to expecting that all SPT

parameters (found in table 5.1) impact performance, we expected that there would be

an interaction effect between the number of questions sampled s and both the depth

of the tree d and the number of training examples n. The results of the analysis
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Figure 5.2: Percent of the time that the expert move is correctly predicted by the

top 1, 5, 10 and 20th ranked moves as a function of the minimum number of instances

required to split a leaf m. The error bars represent the standard deviation.

are shown in Table 5.2. All of the SPT parameters are significant at an α -value of

0.05, meaning that all parameters to the algorithm impact its performance. All of

the interaction effects between parameters are significant except for the interaction

between the number of observations and the leaf node window size, the interaction

between the number of observations and the minimum node size, and the interaction

between the maximum tree depth and the minimum node size.

Table 5.3 shows a comparison of our work with the work of Stern et al. (2006) and

Araki et al. (2007). While these results suggest that SPT does not perform as well as

Stern or Araki’s system, it is important to note that since the systems use different

sets of expert Go moves, the results are not directly comparable. Additionally, the

SPT trains on only 300 board positions while the other systems train on millions of
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Source P-value

Number of questions sampled per split s 0

Number of training examples n 0

Maximum tree depth d 0.0255

Leaf node window size wp 0.0360

Minimum leaf node support threshhold m 0

s× n 0.0227

s× d 0

s× wp 0

s×m 0

n× d 0.0196

n× wp 0.7009

n×m 0.0972

d× wp 0.0001

d×m 0.3564

wp ×m 0

Table 5.2: N-way analysis of variance
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Figure 5.3: Percent of the time that the expert move is correctly predicted by the

top 1, 5, 10 and 20th ranked moves as a function of the number of questions sampled

per split s. The error bars represent the standard deviation.

positions. In some applications, the drastic reduction in necessary training data may

be worth the reduction in performance.

Given the relative insensitivity to the SPT parameters, we used the same param-

eter set described above for our comparison against Fuego. We trained 30 SPTs and

the forests of varying sizes were created by randomly selecting trees from these 30.

We compared our model to the collection of heuristic Go players provided by the

Fuego framework. These heuristic players, like SPT, perform static evaluation of the

board.

Figure 5.6 shows the Kth-move curves for SPT forests of size 1, 5, and 10, as well

as random and the best two Fuego heuristic players. From this, we see that even a

single SPT outperforms the best heuristic players. Furthermore, we see that a forest
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Figure 5.4: Percent of the time that the expert move is correctly predicted by the

top 1, 5, 10 and 20th ranked moves as a function of the leaf node window size wp.

The error bars represent the standard deviation.

of 5 trees performs noticeably better than a single tree. Increasing the forest size

beyond 5 does not appear to greatly affect the performance.

The Kth-move graphs indicate that the SPTs can predict expert moves well. To

assess whether SPT can be used to effectively guide UCT search, we integrated the

forests into Fuego and compared the results against GnuGo level 10. Table 5.4 sum-

marizes the results. Unmodified Fuego won approximately 68.5% of games and Fuego

using a single SPT won 73.6% of games. We tested the significance of these results

using a chi-squared test with one degree of freedom. The test statistic, χ2 = 12.054,

is significant at a p-value of 0.01, confirming that SPTs were able to significantly

improve the performance of Fuego. Fuego using a forest of 5 SPTs won 74.2% of

games, which is not significantly different from Fuego using a single SPT.
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Figure 5.5: Percent of the time that the expert move is correctly predicted by the top

1, 5, 10 and 20th ranked moves as a function of the number of training observations.

Rank SPT Stern 2006 Araki 2007

1 14% 34% 34%

5 42% 66% 60%

10 56% 76% 70%

20 69% 86% 77%

Table 5.3: Cumulative prediction probability
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Figure 5.6: Kth move comparison against Fuego heuristics.

Go Player Win Rate

Unmodified Fuego 68.5

Fuego w single SPT 73.6

Fuego w 5 SPT forest 74.2

Table 5.4: Win rate vs GnuGo version 3.6, level 10
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Chapter 6

Conclusions and Future Work

We have introduced a new model for predicting events in spatial domains, the Spatial

Probability Tree. An SPT is a tree with a conditional probability table at the leaf

nodes that stores the probability of an event occurring at a single point in space,

given the results of several questions asked with respect to that point.

We have applied SPT forests to the problem of predicting expert moves in the

board game Go. We demonstrated that SPTs enable Fuego, one of the top computer

Go players, to significantly improve its performance.

One of the downsides of integrating knowledge into a UCT player is that it slows

down the search process. Although the evaluation of the SPTs is very efficient,

evaluating hundreds of thousands of moves within a game adds to the complexity

of any system. We are investigating how to best add a limited set of knowledge for

timed competitions.

Although we applied the SPT only to computer Go, we are investigating the

application to several very different domains. The SPT can be used to predict the

location of anything that can be represented as a two-dimensional field, and as such

could be useful in weather prediction, terrain classification, and character and image

recognition, in addition to many other areas.

While the application of SPT to prediction tasks is relatively straightforward, its

potential use for classification tasks bears explanation. Essentially, the SPT “colors”

cells of a field. For Go, it assigns a probability to each location on the board. If it

were given images, which are simply fields of pixels, it could mark pixels with the

probability that this pixel or set of pixels is part of a face or letter. Individual trees

could even be trained on specific faces or letters.

Another possible extension of SPT involves stacking trees to learn higher-level

ideas. First, each of the leaf nodes of an SPT is uniquely numbered and the algo-

rithm is run on a field. For each focus point in the field, the number of the leaf

node to which each example went is recorded: these values provide a different dis-

cretely valued field which can be input to another SPT. It is essentially a domain
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transformation–the lower tree transforms information about the field into higher level

objects, and the upper tree is trained on those higher level objects. These trees can be

stacked indefinitely, though there is likely a limit to the depth at which the stacking

is beneficial.

There are many tasks to which SPT might be applied; however, a few limitations

need to be addressed. Currently, the SPT can only predict the location of a single

item in space. In Go, for instance, it predicts a single next move. Future work

could include expanding the SPT so that it can predict the location of any number

of objects or objects larger than a single cell. The latter would be a useful extension

for the character and image recognition problems.

Another limitation of the SPT is the requirement that the input field be discretely

valued. Many real-world spatial prediction tasks are continuously valued; in order to

use SPT on those tasks, they must be transformed to discrete values, and information

is lost during that process. A modification of SPT that can predict in continuous value

fields would therefore be useful.
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